
Checking Equality and Regularity for nBPA with Silent Moves

Yuxi Fu ?

BASICS, Department of Computer Science, Shanghai Jiao Tong University

Abstract. The decidability of weak bisimilarity on normed BPA is a long standing open problem.
It is proved in this paper that branching bisimilarity, a standard refinement of weak bisimilarity, is
decidable for normed BPA and that the associated regularity problem is also decidable.

1 Introduction

In [1,2] Baeten, Bergstra and Klop proved a surprising result that strong bisimilarity between con-
text free grammars without empty production is decidable. The proof exploits periodic tree struc-
ture of process graphs associated to Greibach normal forms. The decidability is in sharp contrast to
the well known fact that language equivalence between these grammars is undecidable [16]. Seeing
from another perspective, Baeten, Bergstra and Klop’s work has extended the decidability result
of bisimulation equivalence from finite state systems [29,31,40] to infinite state systems. After [1]
decidability and complexity issues of equivalence checking of infinite systems à la process algebra
have been intensively investigated. See [22,5,37,32,26,23] for a number of surveys. As regards BPA,
Hüttel and Stirling [18] improved Baeten, Bergstra and Klop’s proof by a more straightforward one
using tableau system. Hüttel [17] then repeated the tableau construction for branching bisimilarity
on totally nBPA processes, where nBPA stands for normed BPA. Later Hirshfeld [14] applied the
tableau method to the weak bisimilarity on the totally nBPA processes. An affirmative answer
to the decidability of the strong bisimilarity on general BPA is given by Christensen, Hüttel and
Stirling by applying the technique of bisimulation base [9,10].

The complexity aspect of BPA has also been investigated over the years. By constructing an
NC-reduction from a variant of the Boolean Circuit Value Problem to the strong bisimilarity prob-
lem on a finite labeled transition system, Balcazar, Gabarro and Santha [3] pointed out that strong
bisimilarity is P-hard, reaffirming our intuition about the sequential nature of bisimulation. Huynh
and Tian [19] showed that the problem is in Σp

2 , the second level of the polynomial hierarchy [33].
Hirshfeld, Jerrum and Moller [15] completed the picture by offering a remarkable polynomial algo-
rithm for the strong bisimilarity of nBPA. For the general BPA, Burkart, Caucal and Steffen [6]
showed that the strong bisimilarity problem is elementary. They claimed that their algorithm can
be optimized to get a 2-EXPTIME upper bound. A further elaboration of the 2-EXPTIME upper
bound is given in [20] with the introduction of infinite regular words. The current known best
lower bound of the problem, EXPTIME, is obtained by Kiefer [24], improving both the PSPACE
lower bound result and its proof of Srba [35]. Kiefer observed that the problem of determining the
winner of a so-called hit-or-run game is EXPTIME complete and that it is reducible to the strong
bisimilarity problem of BPA. An obvious challenge now is to close the gap between the EXPTIME
lower bound and the 2-EXPTIME upper bound. Much less is known about the weak bisimilarity
on BPA. Stř́ıbrná’s PSPACE lower bound [39] is subsumed by both the result of Srba [35] and
that of Mayr [28]. Mayr reduced the acceptance problem of Alternating Linear Bound Automaton,

? Email: fu-yx@cs.sjtu.edu.cn

BPA nBPA

∼

Decidable [9]
2-EXPTIME [6]

EXPTIME-hard [24]
PSPACE-hard [35]

Decidable [1]
Decidable [18]

P-complete [3][15]

' ?
EXPTIME-hard [28]

?
EXPTIME-hard [28]

≈
?

EXPTIME-hard [28]
PSPACE-hard [39]

?
EXPTIME-hard [28]
PSPACE-hard [39]

Fig. 1. Decidability of BPA

which is known to be EXPTIME-complete, to the complement of the weak bisimilarity problem of
nBPA, showing that the latter is EXPTIME-hard. These lower bound results on BPA are subsumed
by Kiefer’s recent result. A slight modification of Mayr’s reduction produces a reduction from the
acceptance problem of Alternating Linear Bound Automaton to the complement of the branch-
ing bisimilarity problem of nBPA. A summary of some of the afore-mentioned results is given in
Figure 1, where ∼, ' and ≈ are respectively strong, branching and weak bisimilarity.

It is generally believed that weak bisimilarity, as well as branching bisimilarity, on BPA is
decidable. There has been however a lack of technique to resolve the difficulties caused by silent
transitions. All currently known decidability results on BPA with silent transitions are achieved by
placing restrictions on the model. This paper answers affirmatively to one of the questions posed in
Fig. 1. We will show that branching bisimilarity on nBPA and its associated regularity problem are
decidable. The crux of the proof is the observation that the tree consisting of the state preserving
silent transitions from a nBPA process is essentially finite. In fact it is effectively finite. The effective
finite tree property allows one to approximate branching bisimilarity of nBPA via a sequence of finite
branching bisimulations. Consequently a semi-decidable procedure for the complement of branching
bisimilarity of nBPA is readily available. The effective finite tree property also suggests to investigate
tableau method for branching bisimilarity of nBPA. It turns out that nBPA satisfies some form of
cancelation property that can be used to control the size of a tableau. Based on this observation
a tableau based decidable procedure can be designed to check the branching bisimilarity of two
nBPA processes. Remarkably the cancelation property also offers an interesting way of deciding if
a nBPA process is branching bisimilar to some finite state process.

What is obtained in this paper is significantly stronger than previous decidability result on the
branching bisimilarity of totally nBPA [17,8]. It is easy to derive effective size bound for totally
nBPA since a totally nBPA process with k variable occurrences has a norm at least k. For the same
reason right cancellation property holds. So both branching bisimilarity and its complement are
semidecidable.

The rest of the paper is organized as follows: Section 2 lays down the preliminaries. Section 3
points out that nBPA enjoy finite tree property and that the complement of branching bisimilarity
on nBPA processes is semi-decidable. Section 4 defines tableau system for the branching bisimilarity
and proves that branching bisimilarity is decidable. Section 5 demonstrates that the regularity
problem for nBPA processes is decidable. Section 6 comments on some future research issues.

An extended abstract of this paper has appeared in [13].

2

2 Branching Bisimilarity for BPA

In this section we fix the terminologies and notations for BPA and introduces the technical prelim-
inaries necessary in the rest of the paper.

2.1 Basic Process Algebra

A basic process algebra (BPA for short) Γ is a triple (V,A, ∆) where V = {X1,Xn} is a finite set
of variables, A = {a1,am} ∪ {τ} is a finite set of actions ranged over by `, and ∆ is a finite set
of transition rules. The special symbol τ denotes a silent action. A BPA process defined in Γ is an
element of the set V∗ of finite string of element of V. The set V will be ranged over by capital letters
and V∗ by lower case Greek letters. The empty string is denoted by ε. We think of V∗ as constructed
from sequential operator ‘.’. So α.β is a sequential process which acts as α and invokes β only after
α has become ε by performing a finite number of actions. This informal semantics points out that
the sequential operator is associative and ε is the unit. The algebraic property allows us to ignore
the operator completely at the syntactical level. We will use = for the grammar equality on V∗. A

transition rule is of the form X
`−→ α, where ` ranges over A. The transitional semantics is closed

under composition in the sense that Xγ
`−→ αγ for all γ whenever X

`−→ α. We shall assume that
every variable of a BPA is defined by at least one transition rule and every action in A appears in
some transition rule. Accordingly we sometimes refer to a BPA by its set of transition rules. We
write −→ for

τ−→ and =⇒ for the reflexive transitive closure of
τ−→. The set A∗ will be ranged over

by `∗. If `∗ = `1 . . . `k for some k ≥ 0, then α
`∗−→ α′ stands for α

`1−→ α1 . . .
`k−1−→ αk−1

`k−→ α′ for

some α1, . . . , αk−1. We say that α′ is a descendant of α if α
`∗−→ α′ for some `∗.

We use finite branching labeled trees to describe operational behaviors of processes, in which
the label of a node is a BPA process and the label of an edge is an action. We let l,m,n to range
over the set of nodes. We often confuse a node with its label. Suppose T , T ′ are labeled trees. The
notation T ⊆ T ′ indicates that each path from the root of T is also a path from the root of T ′. If
in addition T is finite, we write T ⊆f T ′. A transition tree T α rooted at α is composed from the
transition sequences starting from α. The subtree consists of all silent transition sequences from α,
denoted by T α,τ , is called the τ -tree of α. We may think of T α,τ as a tree without any labels on its
edges. Given a variable X in a BPA, the set rv(X) of variables reachable from X consists of every
variable that appears as the first variable of a node in T X . Similarly the set rvτ (X) of variables
reachable from X via silent transition consists of every variable that appears as the first variable
of a node in T X,τ .

A BPA process α is normed if there are some actions `1, . . . `j such that α
`1−→ . . .

`j−→ ε. A
process is unnormed if it is not normed. Normedness is a desirable feature for languages since
generations of infinitely long words are considered unnecessary. The norm of a BPA process α,

denoted by ‖α‖, is the least k such that α
`1−→ . . .

`k−→ ε for some `1, . . . `k. A normed BPA, or
nBPA, is one in which every variable is normed.

For each given BPA ∆, we introduce the following notations:

– m∆ is the number of transition rules.
– n∆ is the number of variables, and the variables will be referred to as X1, . . . , Xn∆ .

– r∆ is max
{
|γ|
∣∣∣ X λ−→ γ ∈ ∆

}
, where |γ| denotes the size, or the length of γ. We will assume

that r∆ > 0 for otherwise the BPA ∆ would be a submodel of the finite state CCS whose
equivalence checking problem has already been resolved.

3

– t∆ is max1≤i≤n∆ {t(Xi) | t(Xi) is defined}. The notation t(Xi) stands for the length of the short-
est silent transition sequence from Xi to ε. We take t(X) as undefined if there is no silent
transition sequence leading from X to ε. Clearly t∆ > 0.

– ‖∆‖ is max {‖Xi‖ | 1 ≤ i ≤ n∆ and Xi is normed}.

Each of m∆, n∆, r∆, t∆ and ‖∆‖ can be effectively calculated from ∆. For example algorithms for
t∆ and ‖∆‖ can be designed using dynamic programming technique.

2.2 Branching Bisimilarity

The idea of the branching bisimilarity of van Glabbeek and Weijland [41] is that not all silent actions
can be ignored. What can be ignored are those that do not change system states irreversibly. The
following definition is from [41]. We write R−1 for the reverse relation of R and we often use infix
notation xRy for (x, y) ∈ R.

Definition 1. A binary relation R on BPA processes is a van-Glabbeek-Weijland branching bisim-
ulation if the following statements are valid whenever αRβ:

1. If βR−1α `−→ α′ then one of the following statements is valid:

(i) ` = τ and α′Rβ.

(ii) β =⇒ β′′R−1α for some β′′ such that β′′
`−→ β′R−1α′ for some β′.

2. If αRβ `−→ β′ then one of the following statements is valid:

(i) ` = τ and αRβ′.
(ii) α =⇒ α′′Rβ for some α′′ such that α′′

`−→ α′Rβ′ for some α′.

The van-Glabbeek-Weijland branching bisimilarity 'vGW is the largest van-Glabbeek-Weijland branch-
ing bisimulation.

For the purpose of defining an equality for BPA the above definition has to be modified, the reason
being that 'vGW is not a congruence relation for sequential processes. The simplest counter example
is given by the process ε and the process Ω defined by the BPA (Ω, {τ}, {Ω τ−→ Ω}). One clearly
has Ω 'vGW ε, but Ωα 6'vGW εα for every α that may perform an external action. The modification
we adopt imposes a condition easily checkable algorithmically.

Definition 2. A binary relation R is a branching bisimulation for BPA if it is a van-Glabbeek-
Weijland branching bisimulation and the following is valid whenever αRβ:

3. If α = ε then β =⇒ ε, and if β = ε then α =⇒ ε.

The branching bisimilarity ' for BPA is the largest branching bisimulation for BPA.

The branching bisimilarity' satisfies the standard properties of observational equivalence stated
in the next two lemmas.

Lemma 1 (Computation Lemma). Suppose α0
τ−→ α1

τ−→ α2
τ−→ . . .

τ−→ αk ' α0. Then
α0 ' α1 ' α2 ' . . . ' αk.

Lemma 2 (Bisimulation Lemma). Suppose α =⇒ α′ ' β and β =⇒ β′ ' α. Then α′ ' α '
β ' β′.

4

As far as we know Lemma 1 appears for the first time in [41] and Lemma 2 in [12]. Using Compu-

tation Lemma one easily sees that whenever β ' α `−→ α′ is simulated by β
τ−→ β1

τ−→ β2 . . .
τ−→

βk
`−→ β′ such that βk ' α and β′ ' α′ then β ' β1 ' . . . ' βk. Using the same lemma it is easy

to prove that ' is a congruence.

Lemma 3. The branching bisimilarity ' is equivalent and congruent. It is the largest equivalent
congruence contained in 'vGW .

Proof. Let R ⊆ 'vGW be an equivalence and a congruence and let α be such that αRε. Define
A by the labeled transition system {A a−→ A}, where a is some label that is not used by α. Now
αARA by congruence. So αA 'vGW A. Hence α =⇒ ε.

Having defined an equality for BPA, we can formally draw a line between the silent actions
that change the capacity of systems and those that do not. We say that a silent action α

τ−→ α′

is state preserving if α ' α′; it is a change of state if α 6' α′. We will write α → α′ if α
τ−→ α′ is

state preserving and α
ι−→ α′ if it is a change of state. The reflexive and transitive closure of →

is denoted by →∗. Since both external actions and change-of-state silent actions must be explicitly
bisimulated, we let  range over the set (A\{τ})∪{ι}. So α

−→ α′ means either α
a−→ α′ for some

a 6= τ or α
ι−→ α′. The following lemma is an easy consequence of Computation Lemma.

Lemma 4. If there exists a state preserving silent transition sequence from α to β, then all silent
transition sequences from α to β are state preserving.

It is time to see some BPA’s and some examples of branching bisimilar processes.

Example 1. The BPA Γ0 is defined by the following transition rules:

X
a−→ ε, Y

b−→ ε, Z
a−→ V, V

b−→ Z.

It is easy to see that XY Z ' Z but XZ 6' Z 6' Y Z. The variables Z, V are unnormed. We remark
that the set {α | αZ ' Z} is infinite but is finitely generated by {XY }. At the moment we do not
know the answer to the following question: For an unnormed variable U defined in a general BPA,
is the set {α | αU ' U} finitely generated?

Example 2. The BPA Γ1 is defined by the following transition rules:

H
c−→ ε, H

c−→ U, H
c−→W, U

a−→ U, W
b−→W.

Although U 6'W , one has HU ' HW . In this example both U and W are unnormed.

Example 3. The BPA Γ2 is defined by the following transition rules:

A
a−→ A, A

τ−→ ε, B
b−→ B, B

τ−→ ε,

C
a−→ C, C

b−→ C, C
τ−→ ε,

D
d−→ A, E

d−→ B.

It is easy to see that AC ' BC and DC ' EC, although A 6' B and D 6' E. In this example all
variables are normed.

5

Example 4. The BPA Γ3 is defined by the following transition rules:

I
a−→ J, J

a−→ I, I
c−→ ε, J

c−→ K, K
b−→ ε, K

τ−→ ε,

L
b−→M, M

b−→ L, L
d−→ ε, M

d−→ N, N
a−→ ε, N

τ−→ ε,

Q
a−→ Q, Q

b−→ Q, Q
τ−→ ε.

It is not difficult to see that ILIQ ' JLIQ and ILILQ ' JLILQ. However ILI 6' JLI and
ILIL 6' JLIL.

The equalities and inequalities stated in Example 1 and Example 2 are also valid for strong
bisimilarity.

2.3 Bisimulation Base

An axiom system B is a finite set of equalities on nBPA processes. An element α = β of B is
called an axiom. Write B ` α = β if the equality α = β can be derived from the axioms of B by
repetitive use of any of the three equivalence rules and two congruence rules. For our purpose the
most useful axiom systems are those that generate branching bisimulations. These are bisimulation
bases originally due to Caucal (see the survey paper [5] for more background). The following
definition is Hüttel’s adaptation to the branching scenario [17].

Definition 3. A finite axiom system B is a bisimulation base if the following bisimulation base
property hold for every axiom (α0, β0) of B:

1. If α0 −→ α1 −→ . . . −→ αn
`−→ α′ then there are β1, . . . , βn, β

′ such that B ` α1 = β1, . . . ,
B ` αn = βn, B ` α′ = β′ and the following hold:

(i) For each i with 0 ≤ i < n, either βi = βi+1, or βi −→ βi+1, or there are β1i , . . . , β
ki
i such

that βi −→ β1i −→ . . . −→ βkii −→ βi+1 and B ` αi = β1i , . . . , B ` αi = βkii .

(ii) Either ` = τ and βn = β′, or βn
`−→ β′, or there are β1n, . . . , β

kn
n such that βn −→ β1n −→

. . . −→ βknn
`−→ β′ and B ` αn = β1n, . . . , B ` αn = βknn .

2. If β0 −→ β1 −→ . . . −→ βn
`−→ β′ then there are α1, . . . , αn, α

′ such that B ` β1 = α1, . . . ,
B ` βn = αn, B ` β′ = α′ and the following hold:

(i) For each i with 0 ≤ i < n, either αi = αi+1, or αi −→ αi+1, or there are α1
i , . . . , α

ki
i such

that αi −→ α1
i −→ . . . −→ αkii −→ αi+1 and B ` βi = α1

i , . . . , B ` βi = αkii .

(ii) Either ` = τ and αn = α′, or αn
`−→ α′, or there are α1

n, . . . , α
kn
n such that αn −→ α1

n −→
. . . −→ αknn

`−→ α′ and B ` βn = α1
n, . . . , B ` βn = αknn .

3. If α0 = ε then either β0 = ε or β0 −→ β1 −→ . . . −→ βk −→ ε for some β1, . . . , βk with k ≥ 0
such that B ` ε = β1, . . . , B ` ε = βk.

4. If β0 = ε then either α0 = ε or α0 −→ α1 −→ . . . −→ αk −→ ε for some α1, . . . , αk with k ≥ 0
such that B ` α1 = ε, . . . , B ` αk = ε.

The next lemma points out the importance of bisimulation base [17]. It also explains the ter-
minology ‘bisimulation base’.

Lemma 5. If B is a bisimulation base then B` = {(α, β) | B ` α = β} is a branching bisimulation.

6

Proof. We prove that B` satisfies the bisimulation base property, which implies that it is a branching
bisimulation. Suppose B ` α = β. It can be easily shown by induction that there must exist

γ1δ1λ1, γ2δ2λ2, γ3δ3λ3, . . . , γk−1δk−1λk−1, γkδkλk and δ′1, . . . , δ
′
k

for k ≥ 1 such that α = γ1δ1λ1, γkδ
′
kλk = β and the following hold:

γ1δ1λ1 B γ1δ′1λ1 = γ2δ2λ2 B γ2δ′2λ2 = γ3δ3λ3 . . . γk−1δ
′
k−1λk−1 = γkδkλk B γkδ′kλk.

Now suppose α −→ α1 −→ . . . −→ αn
`−→ α′. The last action ` could be performed by γ1 or

δ1 or λ1. If it is caused by γ1, the process γ1δ
′
1λ1 can trivially bisimulate the action sequence.

If it is caused by δ1, it suffices to make use of the bisimulation base property. The third case is
similar to the second one. Property 3 and property 4 of Definition 3 are necessary in the last
case. By repeating the argument we eventually get a transition sequence from β that bisimulates

α −→ α1 −→ . . . −→ αn
`−→ α′ in the style prescribed in Definition 3.

Given a bisimulation base B, it is semi-decidable to check if B ` α = β. This property, together
with Lemma 5, explains why bisimulation base has often been used to produce (semi-)decidable
procedure. For the application of this technique to the decidability study of strong bisimilarity on
BPA and branching bisimilarity on totally nBPA, see [18,17,9].

3 Approximation of Branching Bisimilarity

To look at the algebraic property of the branching bisimilarity ' more closely, we introduce a
notion of normedness appropriate for the equivalence.

Definition 4. The branching norm of an nBPA process α is the least number k such that there
exists a sequence α →∗ 1−→ α1 →∗

2−→ α2 →∗ . . . →∗
k−→ αk →∗ ε for some 1 . . . k and α1 . . . αk.

The branching norm of α is denoted by ‖α‖b.

Clearly if α →∗ α′ then ‖α′‖b = ‖α‖b. It is also clear that ‖α‖b ≤ ‖α‖. The inequality is useful
since we can replace ‖α‖b by ‖α‖ when we look for effective upper bound. Let’s look at a number
of examples:

– The branching norm of A defined by {A τ−→ ε} is 0; the branching norm of B defined by

{B a−→ B,B
τ−→ ε} is 1; and the branching norm of C defined by {C τ−→ Y, Y

b−→ Y, Y
τ−→ ε}

is 1.
– The branching norm of D with the transition system {D a−→ D} could be defined as ∞ since

it can perform the a action in a nonstop fashion.
– The branching norm of E defined by {E τ−→ E} is tricky. An algorithm that tries to calculate

the branching norm would never stop. We could say that the branching norm of E is undefined
and denote this fact by writing ‖E‖b = ⊥.

We now state several simple lemmas about branching norm. The first is standard.

Lemma 6. If α ' β then ‖α‖b = ‖β‖b.

The second one is expected.

7

Lemma 7. The following hold:

1. If ‖α‖b = 0 then α ' ε.
2. If ‖α‖b = ⊥ then α ' Ω.
3. If ‖α‖b =∞ then αγ ' α.

Proof. If α cannot perform any external action, then its branching norm must be zero if it can
terminate and must be undefined if it can only diverge. If α can never reach ε, then everything
after α is useless.

The next lemma is more interesting.

Lemma 8. Suppose α is normed. Then α ' δα if and only if ‖α‖b = ‖δα‖b.

Proof. If ‖α‖b = ‖δα‖b then every silent action sequence from δα to α must contain only state
preserving silent transitions according to Computation Lemma. Moreover there must exist such a
silent action path for otherwise ‖α‖b < ‖δα‖b.

It does not follow from α ' δα that δ ' ε. This is the most tricky situation as far as equivalence
checking is concerned. A counter example is given by the BPA defined in Example 3. One has
AC ' C ' BC. But clearly ε 6' A 6' B 6' ε. To deal with situations like this we need the notion of
relative norm.

3.1 Relative Norm

Definition 5. The relative norm ‖α‖σb of α with respect to σ is the least k such that ασ →∗ 1−→
α1σ . . .→∗

k−1−→ αk−1σ →∗
k−→ αkσ →∗ σ for some 1, . . . , k, α1, . . . , αk.

In other words, the relative norm of α with respect to σ is the least total number of external
actions and change-of-state silent actions ασ must perform in order to reach σ. Obviously 0 ≤
‖α‖σb ≤ ‖α‖b. Returning to the BPA Γ2 defined in Example 3 again, we see that ‖A‖Bb = 1 and
‖A‖Cb = 0.

Using the notion of relative norm we can introduce the following terminologies:

– A transition Xσ
`−→ ησ is norm consistent if either ‖η‖σb = ‖X‖σb and ` = τ or ‖η‖σb = ‖X‖σb −1

and ` 6= τ ∨ ` = ι.
– If Xσ −→ ησ is norm consistent with ‖X‖σb > 0, then it is norm splitting if there are at least

two variables in η whose relative norms in ησ are greater than 0.

For a nBPA ∆ no silent transition sequence contains more than ‖∆‖b norm splitting transitions,
where ‖∆‖b denotes max{‖Xi‖b | 1 ≤ i ≤ n∆ and Xi is normed}.

The crucial property about relative norm is described in the following lemma.

Lemma 9. Suppose α, β, δ, γ are normed and ‖α‖γb = ‖β‖δb. If αγ ' βδ then γ ' δ.

Proof. Suppose ‖α‖γb = ‖β‖δb . Now ‖α‖γb + ‖γ‖b = ‖αγ‖b = ‖βδ‖b = ‖β‖δb + ‖δ‖b. Therefore

‖γ‖b = ‖δ‖b. A norm consistent action sequence αγ →∗ 1−→ . . . →∗ k−→→∗ γ must be matched up

by βδ →∗ 1−→ . . . →∗ k−→ β′δ for some β′. Clearly ‖β′δ‖b = ‖γ‖b = ‖δ‖b. It follows from Lemma 8
that δ ' β′δ ' γ.

8

It should be remarked that the above lemma fails if δ, γ are unnormed. Indeed the BPA defined in
Example 2 renders a counter example. Lemma 9 describes a weak form of left cancelation property.
The general left cancelation property fails. The normed process A defined in Example 3 satisfies
AA ' A. But clearly A 6' ε. Obviously this counter example also shows that right cancelation fails
as well. In the decidability proof of the strong bisimilarity for nBPA, the right cancelation property
plays a crucial role. One wonders if some useful form of right cancelation holds. We dwelt upon the
following conjecture for a few days: If Xσ 6' σ and αXσ ' βXσ then αX ' βX. We realized that
it is a false conjecture when we came up with the BPA defined in Example 4. The search for an
alternative to the right cancelation property led to the discovery of a nice and simple property of
nBPA that allows us to control the size of common suffix of a pair of bisimilar processes. The basic
idea is to remove redundant variables from two bisimilar processes while maintaining bisimilarity.

Definition 6. A process α is irredundant over γ if ‖α‖γb > 0. It is redundant over γ if ‖α‖γb = 0.
A process α is head irredundant if either α = ε or α = Xα′ for some X,α′ such that α 6' α′. It is
head redundant otherwise. We write Hirred(α) to indicate that α is head irredundant. A process
α is completely irredundant if every suffix of α is head irredundant. We write Cirred(α) to mean
that α is completely irredundant.

If α is normed, then α is irredundant over γ if and only if αγ 6' γ. The next lemma says that a
redundant process consists solely of redundant variables.

Lemma 10. Suppose X1, . . . , Xk, σ are normed. Then X1 . . . Xk is redundant over σ if and only if
Xi is redundant over σ for every Xi ∈ {X1, . . . , Xk}.

Proof. Suppose X1, . . . , Xk, σ are normed and X1 . . . Xk is redundant over σ. Then

X1 . . . Xkσ =⇒ X2 . . . Xkσ =⇒ . . . =⇒ Xkσ =⇒ σ ' X1 . . . Xkσ.

It follows from Computation Lemma that X1 . . . Xkσ ' X2 . . . Xkσ ' . . . ' Xkσ ' σ. We are done
by using the congruence property. The implication in the other direction is due to congruence.

The normedness assumption in Lemma 10 is crucial. The lemma would be invalid without the
assumption. A counter example is given by the BPA defined in Example 1. The lemma suggests to
introduce, for each σ, the redundant set Rσ of σ defined by

Rσ
def
= {X | Xσ ' σ} .

In other words Rσ is the set of the redundant variables over σ. Let V(α) be the set of variables
appearing in α. We have two useful corollaries. The first is simple.

Corollary 1. Suppose α, σ are normed. Then ασ ' σ if and only if V(α) ⊆ Rσ.

The second is instructive to our construction of tableau.

Corollary 2. Suppose α, β, σ0, σ1 are defined in a nBPA and Rσ0 = Rσ1. Then ασ0 ' βσ0 if and
only if ασ1 ' βσ1.

Proof. Suppose Rσ0 = Rσ1 . Let S be {(ασ0, βσ0) | ασ1 ' βσ1}. It is not difficult to see that S ∪ '
is a branching bisimulation.

9

3.2 Finite Tree Property

We now take a close look at the τ -trees of nBPA processes. We are particularly interested in
the subtrees of τ -trees containing only state preserving silent transitions. It turns out that all
such subtrees are essentially finite. Let’s explain what we mean by ‘essentially finite’. Suppose

β = Xω ' α
`−→ α′ and the action is bisimulated by Xω →∗ Zθ `−→ ηθ. Generally the length of

the state preserving transition sequence Xω →∗ Zθ is unbounded, and consequently we have to
consider an infinite number of simulating sequences. But if there is some θ′ such that Xω →∗ Zθ′
and θ′ ' θ, and moreover the length of Xω →∗ Zθ′ is smaller than that of Xω →∗ Zθ, then we

can safely abandon the bisimulating sequence Xω →∗ Zθ `−→ ηθ in favor of Xω →∗ Zθ′ `−→ ηθ′.
We say that β has the finite tree property, and that the subtree of T β,τ containing only state
preserving silent transitions is essentially finite, if there is a finite subtree Tβ of T β,τ such that
whenever β →∗ Y δ then there is some node Y δ′ in Tβ with δ′ ' δ. Before discussing the finite tree
property for nBPA, let’s see in how many steps a variable V can reach silently every variable that
can ever be reached from V silently. A variable Z is said to be reachable silently from a process γ
if γ =⇒ Zγ′ for some γ′. Suppose V → Vk1 . . . Vkj . It takes at most (r∆− 1)t∆ + 1 silent transitions
to reach from V to Vki with 1 ≤ i ≤ j. It follows that in fewer than ((r∆ − 1)t∆ + 1)(n∆ − 1)
steps every variable W reachable via silent transitions from V can be reached. Recall that we have
assumed that r∆ > 0 and t∆ > 0. So the previous formula is bounded by r∆t∆(n∆ − 1).

Next we establish two technical lemmas. The first is about state preserving transitions caused
by an irredundant variable.

Lemma 11. Suppose Xω →∗ Y ω′ and ‖X‖ωb = ‖Y ‖ω′b > 0. Then there is some ω′′ such that
ω′′ ' ω′, Xω →∗ Y ω′′ and the length of Xω →∗ Y ω′′ is bounded by r∆t∆(n∆ − 1).

Proof. First notice that if Xω →∗ Y ω′ and ‖X‖ωb = ‖Y ‖ω′b > 0 then ω′ = δω for some δ and
Xω →∗ Y ω′ is induced by X =⇒ Y δ. Notice that if

Xω →∗ V γ1ω →∗ Wγ2ω →∗ Y ω′

for some head irredundant processes V γ1ω,Wγ2ω such that the processes on the path from V γ1ω
to Wγ2ω, excluding both V γ1ω and Wγ2ω, are all head redundant, then by Lemma 4 we may
assume that V γ1ω →∗ Wγ2ω is the shortest silent transition sequence from V γ1ω to Wγ2ω, whose
length is bounded by (r∆−1)t∆+1. It follows that we may assume that the length of the transition
sequence between every pair of neighboring head irreducible processes in Xω →∗ Y ω′ is bounded
by (r∆−1)t∆+1. Under this assumption if the length of X =⇒ Y δ is greater than r∆t∆(n∆−1) ≥
((r∆− 1)t∆ + 1)(n∆− 1), then there must be two head irreducible processes Zγ0ω,Zγ1ω such that

X =⇒ Zγ0 =⇒ Zγ1 =⇒ Y δ

and
Xω →∗ Zγ0ω →∗ Zγ1ω →∗ Y δω.

It follows from ‖X‖ωb = ‖Y ‖ω′b > 0 that ‖Z‖γ0ωb = ‖Z‖γ1ωb = ‖Y ‖ω′b . Using the fact that ‖Z‖γ0ωb > 0
one sees immediately that γ1 = γ′1γ0 for some γ′1. By removing the part γ′1 from every process in
Zγ1ω →∗ Y δω we can remove Zγ0ω →∗ Zγ1ω from Xω →∗ Zγ0ω →∗ Zγ1ω →∗ Y δω and get a
shorter sequence Xω →∗ Zγ0ω →∗ Y δ′ω for some δ′ with δ′ω ' ω ' δω by Lemma 9. The above
procedure can be repeated until we reach a transition sequence whose length is strictly bounded
by r∆t∆(n∆ − 1).

10

The second deals with state preserving transitions caused by a redundant variable.

Lemma 12. Suppose Z0 =⇒ Zδ, Z0ω →∗ Zδω and ‖Z0‖ωb = 0. Then Z0 =⇒ Zδ′ for some δ′ such
that Z0ω →∗ Zδ′ω and the length of Z0 =⇒ Zδ′ is bounded by r∆t∆(n∆ − 1).

Proof. Notice that every silent transition sequence Z0 =⇒ Zδ must take the following shape

Z0 −→ η1l Z1η
1
r =⇒ Z1η

1
r

−→ η2l Z2η
2
rη

1
r =⇒ Z2η

2
rη

1
r

−→ =⇒ . . .
−→ ηkl Zkη

k
r . . . η

2
rη

1
r =⇒ Zkη

k
r . . . η

2
rη

1
r = Zδ

for some η1l , Z1, η
1
r , η

2
l , Z2, η

2
r , . . . , η

k
l , Zk, η

k
r such that none of ηkr , . . . η

2
r , η

1
r is affected in the transition

sequence. It follows from ‖Zδ‖ωb = 0 and Lemma 1 that η1l , Z1, η
1
r , η

2
l , Z2, η

2
r , . . . , η

k
l , Zk, η

k
r are all

redundant over ω. If k ≥ n∆ then there must be i < j such that Zi = Zj . In this case we can remove

the transition sequence Ziη
i
r . . . η

2
rη

1
r =⇒ Zjη

j
r . . . η2rη

1
r from Z0 =⇒ Zδ in the following manner:

Z0 −→ η1l Z1η
1
r =⇒ Z1η

1
r

−→ =⇒ . . .
−→ ηilZiη

i
r . . . η

2
rη

1
r =⇒ Ziη

i
r . . . η

2
rη

1
r = Zjη

i
r . . . η

2
rη

1
r

−→ =⇒ . . .

−→ ηkl Zkη
k
r . . . η

j+1
r ηir . . . η

1
r =⇒ Zkη

k
r . . . η

j+1
r ηir . . . η

1
r .

So we may as well assume that k < n∆. According to Lemma 4, we may assume further that, for
each h ∈ {1, . . . , k}, the transition sequence ηhl Zhη

h
r =⇒ Zhη

h
r is the shortest among all the silent

transition sequences from ηhl Zhη
h
r to Zhη

h
r , which is bounded by (r∆− 1)t∆. It follows that some δ′

exists such that δ′ ' δ and Z0 →∗ Zδ′ with its legnth bounded by (r∆− 1)t∆(n∆− 1) + (n∆− 1) ≤
r∆t∆(n∆ − 1).

We are now in a position to prove that all nBPA processes enjoy the finite tree property and
that there are effective bounds on the size of the finite trees.

Lemma 13. For each nBPA process α = Xω, one can effectively construct a finite tree Tα ⊆f T α,τ
of height less than an effective bound Hα uniformly computable from α such that whenever α→∗ V θ
then θ ' η for some node V η of Tα.

Proof. Suppose α = Xω. We take a closer look at the state preserving silent transitions caused by
X. There are four possibilities:

1. ‖X‖ωb = 0. In this case an upper bound is given by Lemma 12.

2. ‖X‖ωb > 0. Xω →∗ Zδω for some Z, δ such that ‖Z‖δωb = ‖X‖ωb . In this case an upper bound is
given by Lemma 11.

3. ‖X‖ωb > 0. Xω →∗ Zδω for some Z, δ such that X =⇒ Zδ, ‖Z‖δωb = 0 and all the processes on
the path, except Xω, are head redundant. Using the same argument as in the proof of Lemma 12
we can easily show that X =⇒ Zδ′ for some δ′ such that (i) Xω →∗ Zδ′ω, (ii) apart from Xω all
the processes in Xω →∗ Zδω are head redundant and (iii) the length of X =⇒ Zδ′ is bounded
by r∆t∆n∆.

11

4. ‖X‖ωb > 0. Xω →∗ Y γω τ−→ ηγω is caused by X →∗ Y γ τ−→ ηγ for some Y, γ, η such that

Y γω
τ−→ ηγω is a norm splitting transition and no transition in Xω →∗ Y γω is norm splitting.

By Lemma 11 we know that in no more than r∆t∆(n∆−1)+1 steps we can encounter the norm
splitting transition.

The bounds derived in the above four cases are no greater than r∆t∆n∆.
If Xω is head irredundant then α→∗ V θ may contain at most ‖∆‖b−1 norm splitting transitions

and that no transition in the sequence can affect ω. After the last norm splitting transition it takes
fewer than r∆t∆n∆ steps to exhaust all possibilities. Therefore some η exists such that η ' θ
and α →∗ V η with its length bounded by r∆t∆n∆‖∆‖b. If Xω is head redundant, then either
every variable in α is redundant or there are at most |α ` 1 consecutive redundant variables in
α. Consequently we have the bound max{r∆t∆n∆|α|, r∆t∆n∆(|α ` 1 + ‖∆‖b)}. So we can set
Hα = r∆t∆n∆(|α| + ‖∆‖b); and we can let Tα be the finite tree consisting of all silent transition
sequences whose length is no more than Hα.

The effective bound Hα defined in the above proof could be too generous. A much more economic
analysis is necessary if one intends to study the complexity aspect of the problem. For the purpose
of this paper it is sufficient to know that the number of possible simulation sequences of a given
transition is effectively bounded.

Corollary 3. Suppose α, βγ are nBPA processes and γ 6' βγ. If βγ ' α
−→ α′, then there is

a transition sequence βγ →∗ β′′γ −→ β′γ with its length bounded by Hβ such that β′′γ ' α and
β′γ ' α′.

Proof. Under the assumption γ 6' βγ we can repeat the proof of Lemma 13 for βγ in a way that γ
is not affected. So the computable bound is independent γ.

We are now in a position to prove the following.

Proposition 1. The relation 6' on nBPA processes is semi-decidable.

Proof. We define 'k, the branching bisimilarity up to depth k, by exploiting Corollary 3. The
inductive definition is as follows:

– α '0 β for all α, β.
– α 'i+1 β if the following hold:

1. If β '−1i α
`−→ α′ then one of the following statements is valid:

(i) ` = τ and α′ 'i β.

(ii) β =⇒ β′′ '−1i α for some β′′ such that β′′
`−→ β′ '−1i α′ for some β′ and the length of

β =⇒ β′′ is bounded by Hβ.

2. If α 'i β
`−→ β′ then one of the following statements is valid:

(i) ` = τ and α 'i β′.
(ii) α =⇒ α′′ 'i β for some α′′ such that α′′

`−→ α′ 'i β′ for some α′ and the length of
α =⇒ α′′ is bounded by Hα.

Since we are only dealing with nBPA, we do not need the following clause in the above definition: If
α = ε then β =⇒ ε, and if β = ε then α =⇒ ε. Each 'k is decidable because (i) the finite branching
property holds for the transition system, (ii) the length of every simulating sequence is bounded

12

effectively, and (iii) the property 3 in the definition of 'i+1 is decidable. Using Corollary 3 one
easily sees that ' ⊆

⋂
k∈ω 'k. The converse inclusion can be proved by showing that the relation

{(α, β) | α 'k β for infinitely many k}

is a branching bisimulation, which is standard. The semi-decidability of 6' then follows from the
coincidence of ' with

⋂
k∈ω 'k and the decidability of 'k for every k ≥ 0.

4 Equality Checking

Milner’s approach to the proof of bisimulation equivalence between two finite state processes is
by fixpoint induction [29,31]. To prove that P is weakly congruent to Q, we unfold P and Q
simultaneously to produce a tree of equality. If P is really weakly congruent to Q, we get a finite
tree. A leaf of the tree is either a pair of identical processes or a pair (M,N) that is the same as one
of its ancestors. Now by folding up leaves of the latter form, we get a guarded equation satisfied by
both P and Q. The fixpoint induction then allows us to conclude that P,Q are provably equal. The
tableau approach can be seen as a generalization of the fixpoint induction from finite state systems
to infinite state systems. A tree of this kind has been called a tableau system [18,17]. The goal of
this section is to give a semi-decidable procedure for the branching bisimilarity on nBPA processes
using tableau method.

4.1 Tableau Method

Suppose α0α 6' α and β0β 6' β. A match for an equality α0α = β0β over (α, β) is a finite set
{γiα = λiβ}ki=1 containing only those equalities accounted for in the following two reciprocal
conditions:

1. For each transition α0α
`−→ α′α, one of the following holds:

– ` = τ and α′α = β0β ∈ {γiα = λiβ}ki=1;

– there is a sequence β0β
τ−→ β1β

τ−→ . . .
τ−→ βnβ

`−→ β′β, for n < Hβ0 , such that {α0α =
β1β, . . . , α0α = βnβ, α

′α = β′β} ⊆ {γiα = λiβ}ki=1 and βiβ 6' β for all i ∈ {1, . . . , n}.
2. For each transition β0β

`−→ β′β, one of the following holds:

– ` = τ and α0α = β′β ∈ {γiα = λiβ}ki=1;

– there is a sequence α0α
τ−→ α1α

τ−→ . . .
τ−→ αnα

`−→ α′α, for n < Hα0 , such that {α1α =
β0β, . . . , αnα = β0β, α

′α = β′β} ⊆ {γiα = λiβ}ki=1 and αiα 6' α for all i ∈ {1, . . . , n}.

If α0σ 6' σ and β0σ 6' σ, a match for α0σ = β0σ over (σ, σ) is said to be a match for α0σ = β0σ over
σ. The conditions βiβ 6' β and αiα 6' α can be dropped. We include them for conceptual clarity.
The presence of the computable bounds Hα0 , Hβ0 , which are reasonable in view of Corollary 3,
guarantees that the number of matches for α0α = β0β over (α, β) is effectively bounded.

Given a nBPA process α, it is easy to check if α ' ε. It amounts to checking if X ' ε for every
X ∈ V(α), which is the same as checking if X =⇒ ε and if X can only perform silent actions. So
we shall focus on the equality between two nontrivial nBPA processes, say α0, β0. A tableau for
α0 = β0 is a tree with each of its nodes labeled by an equality between two nBPA processes. The
root of the tableau is labeled by α0 = β0. We shall distinguish between global tableau, local tableau
and ambient tableau. The global tableau is the overall tableau whose root is labeled by the goal

13

Decmp
γα = λβ

α = β {Uα = α}U∈V(γ) {V β = β}V ∈V(λ)

|γ|+ |λ| > 0,
∀U ∈ V(γ).U =⇒ ε,
∀V ∈ V(λ).V =⇒ ε.

SDecmp
γα = λβ

α = β {Uα = α}U∈V(γ) {V β = β}V ∈V(λ)

|γ|+ |λ| > 0,
Hirred(α), Hirred(β),
∀U ∈ V(γ).U =⇒ ε,
∀V ∈ V(λ).V =⇒ ε.

Match
γα = λβ

α1α = β1β . . . αkα = βkβ

γα 6' α, λβ 6' β, and {αiα = βiβ}ki=1

is a match for γα = λβ over (α, β).

SubstL
γα = λβ

γδβ = λβ
α = δβ is the residual.

SubstR
γα = λβ

γα = λδα
δα = β is the residual.

ContrL
γZδ = λ

γδ = λ Zδ = δ
Hirred(δ), Z =⇒ ε and |γZδ| > max{|α0|, |β0|}‖∆‖.

ContrR
γ = λZδ

γ = λδ Zδ = δ
Hirred(δ), Z =⇒ ε and |λZδ| > max{|α0|, |β0|}‖∆‖.

ContrC
γσ′σ0σ1 = λσ′σ0σ1

γσ′σ1 = λσ′σ1 {V σ1 = σ1}V ∈V(σ0)

|σ′σ0σ1| > 2n∆ , |σ0| > 0,
Hirred(σ1),
∀V ∈ V(σ0).V =⇒ ε.

Fig. 2. Rules for Global Tableaux

α0 = β0. Local tableau and ambient tableau are relative notions; their difference will be explained
later. A global tableau is constructed from the rules given in Fig. 2. Decmp rule decomposes a goal
into several subgoals. We shall find it useful to use SDecmp, which is a stronger version of Decmp.
The side condition of SDecmp ensures that it is unnecessary to apply it consecutively since both α
and β are irredundant. When applying Decmp rule we assume that an equality γσ = σ, respectively
σ = γσ, is always decomposed in the following manner

γσ = σ

σ = σ {V σ = σ}V ∈V(γ)
respectively

σ = γσ

σ = σ {V σ = σ}V ∈V(γ)
.

Accordingly γ = ε, respectively ε = γ, is always decomposed in the following fashion

γ = ε

ε = ε {V = ε}V ∈V(γ)
respectively

ε = γ

ε = ε {V = ε}V ∈V(γ)
.

Match rule can be applied as long as α respectively β is prefixed by process irredundant over α
respectively β. SubstL and SubstR allow one to create common suffix for the two processes in an
equality. ContrL and ContrR are used to remove a redundant variable inside a process. In the side
conditions of these two rules, α0, β0 are the processes appearing in the root label of the global
tableau. ContrC deletes redundant variables from the common suffix of a node label whenever the
size of the common suffix is over limit. Notice that all the rules are forward and backward sound.

14

Notice also that all the side conditions on the rules are semi-decidable due to the semi-decidability
of 6'.

In what follows a node Zη = Wκ to which Match rule is applied with the condition Zη 6'
η ∧ Wκ 6' κ is called an M-node. A node of the form Zσ = σ with σ being head irredundant
is called a V-node. We now describe in detail how a global tableau for α0 = β0 is constructed.
Assuming α0 = γXα1 and β0 = λY β1 such that Xα1 6' α1 and Y β1 6' β1, we apply the following
instance of SDecmp rule to construct the children of the root:

γXα1 = λY β1
Xα1 = Y β1 {UXα1 = Xα1}U∈V(γ) {V Y β1 = Y β1}V ∈V(λ)

.

By definition Xα1 = Y β1 is an M-node and {UXα1 = Xα1}U∈V(γ) ∪{V Y β1 = Y β1}V ∈V(λ) is a set
of V-nodes. These nodes are the roots of new subtableaux. We now explain how these subtableaux
are constructed:

I. Starting from Xα1 = Y β1 we apply Match rule under the condition that neither α1 nor β1 is
affected. The application of Match rule is repeated to grow the subtableau rooted at Xα1 = Y β1.
The construction of the tree is done in a breadth first fashion. So the tree grows level by level.
At some stage we apply Decmp rule to all the current leaves. The application of Decmp rule
must meet the following conditions:

• Both α1 and β1 must be kept intact in all the current leaves.

• Either α1 or β1 is exposed in at least one current leaf.

Choose a leaf labeled by either α1 = δ1β1 for some δ1 or by δ′1α1 = β1 for some δ′1 and call it the
residual node or R-node. Suppose the residual node is α1 = δ1β1. All the other current leaves,
the non-residual nodes, must be labeled by an equality of the form γ1α1 = λ1β1. A non-residual
node with label γ1α1 = λ1β1 is then attached with a single child labeled by γ1δ1β1 = λ1β1. This
is an application of SubstL rule. Now we can recursively apply the global tableau construction
to γ1δ1β1 = λ1β1 to produce a new subtableau.

Let’s take a look at the size of γ1α1 = λ1β1. The number of times Match rule has been applied
in the above construction is bounded by ‖∆‖. By the definition of Match rule, the maximal
length of transition sequence admitted in a match is effectively bounded. So the maximal length
of overall transition sequences from the root to the leaves of the subtableau is bounded by a
number, say S, effectively computable. It follows that |δ1|, |γ1| and |λ1| are effectively bounded
by r∆S.

The treatment of a V-node child, say UXα1 = Xα1, is similar. We keep applying Match rule
over α1 as long as the side condition is met. At certain stage we apply Decmp rule to all the
leaves. The decomposition should meet the following conditions:

• No occurrence of α1 is affected.

• There is an application of Decmp that takes the following shape

γ1α1 = λ1α1

α1 = α1 {V α1 = α1}V ∈V(γ1) {V α1 = α1}V ∈V(λ1)
.

It is clear that the size bound r∆S still applies to the new leaves. We can then recursively apply
the global tableau construction to the current leaves to produce new subtableaux.

The construction of a path in a global tableau ends with either a successful leaf or an unsuccessful
leaf. The definition of successful/unsuccessful leaf for the global tableau is as follows:

15

Localization
γσ′σ0σ1 = λσ′σ0σ1

γσ′σ1 = λσ′σ1

{Xiσ1 = σ1}i∈I
{Xiσ0σ1 = σ0σ1}i∈I

|γ| > 0 and |λ| > 0; |σ′σ0σ1| > 2n∆ ,
2n∆ ≥ |σ1| > 0 and |σ0| > 0;
Cirred(σ′σ0σ1) and Cirred(σ′σ1);
γσ′σ0σ1 6' σ′σ0σ1, γσ

′σ1 6' σ′σ1;
λσ′σ0σ1 6' σ′σ0σ1, λσ

′σ1 6' σ′σ1;
I ∩ J = ∅, I ∪ J = {1, . . . , n∆};
∀j ∈ J. Xjσ0σ1 6'σ0σ1 and Xjσ1 6'σ1;
Xi =⇒ ε for all i ∈ I.

Fig. 3. Rule for Local Tableaux

• A successful leaf is either a node labeled by ς = ς for some ς, or a node labeled by ε = V
(V = ε) with V ' ε, or a node labeled by γσ = λσ that meets two conditions: (i) the label
is the same as the label of one of its ancestors and (ii) |γ|, |λ| ≤ 2r∆S and |σ| ≤ 2n∆ .
• An unsuccessful leaf is produced if the node is either labeled by ε = V (V = ε) with V 6' ε,

or labeled by some ς = ς ′ with distinct ς, ς ′ such that no rule is applicable to ς = ς ′.
II. In the above construction the R-node α1 = δ1β1 deserves special treatment. It is the root of a

new subtableau, which might contain another R-node say α2 = δ2β2. In this way new R-nodes
are generated one by one. Two things may happen. An R-node shares the same label as one of
its ancestors. In this case we get a successful leaf. A different situation arises when we get an
R-node whose size is larger than max{|α0|, |β0|}‖∆‖. Since the branching norms of the R-nodes
strictly decrease, the size violation must be caused by a huge number of redundant variables.
Therefore we may apply ContrL and/or ContrR repeatedly to reduce the size of the node. By
the end of this procedure we get a leaf whose size is under control.

If after an application of SubstL/SubstR rule we get a node α′σ′σ0σ1 = β′σ′σ0σ1 such that ContrC
rule is applicable, we get a C-node. Once a C-node appears, we immediately apply ContrC rule to
reduce the size of its common suffix. An application of ContrC rule may produce some V-nodes and
some more C-nodes. We apply ContrC to the new C-nodes if necessary. Intuitively we should apply
ContrC sufficiently often so that the common suffix becomes completely irredundant. Eventually
either the length of the common suffix has become no more than 2n∆ , in which case we continue to
build up the global tableau, or the side conditions of Localization rule are satisfied, in which case we
get an L-node. Notice that without ContrC rule we may come to a node α′σ′σ0σ1 = β′σ′σ0σ1 where
the length of the common suffix surpasses the limit but the condition Cirred(σ′σ0σ1)∧Cirred(σ′σ1)
is not satisfied.

Now suppose an L-node is labeled by α′σ′σ0σ1 = β′σ′σ0σ1. In the following application of
Localization rule

α′σ′σ0σ1 = β′σ′σ0σ1

{Xiσ1 = σ1}i∈I α′σ′σ1 = β′σ′σ1 {Xiσ0σ1 = σ0σ1}i∈I
I ∪ J = {1, . . . , n∆},

the node α′σ′σ1 = β′σ′σ1 is a new L-node, {Xiσ1 = σ1}i∈I are the left siblings of the new L-node,
and {Xiσ0σ1 = σ0σ1}i∈I are the right siblings. We call {Xi | i ∈ I} the R-set of the new L-node.
If the size of the common suffix of α′σ′σ1 = β′σ′σ1 is still larger than 2n∆ , we continue to apply
Localization rule. Otherwise we get an L-root, which is the root of a local tableau. Now suppose
α′σ′σ1 = β′σ′σ1 is an L-root. The construction of the local tableau should stick to two principles
described as follows:

16

– Locality. No application of Decmp, SDecmp, SubstL, SubsR and ContrC should ever affect σ′σ1
or any suffix of σ′σ1. Notice that applications of SubstL or SubstR can never affect σ′σ1 or any
suffix of σ′σ1.

– Consistency. Suppose γα = λβ is a node to which Match rule is applied using a match over
(α, β). Then either σ′σ1 is a suffix of both α and β, or α = β = σ′′σ1 for some σ′′ satisfying the
following:
• σ′′ is a proper suffix of σ′;
• γ = UZ and λ = Z such that Zσ′′ is a suffix of σ′; and
• the match is over σ′′σ1.

The locality and consistency conditions basically say that the choices made in the construction of
the local tableau should not contradict to the fact that σ′σ1 is completely irredundant.

A right sibling may still be subject to an application of Localization rule. But since the size of a
right sibling strictly shrinks, we eventually reach a situation in which Localization rule is no longer
applicable.

A local tableau may contain another local tableau. In this case we say that the former is an
ambient tableau of the latter. A series of nested local tableaux creates a hierarchical structure. A
node of a local tableau is only compared to a node within the same local tableau with one exception:
An L-root must be compared to the L-roots that are in the path from the root of the global tableau
to the present L-root.

A local tableau inherits the definition of successful/unsuccessful leaves from the global tableau
(see page 15). In addition a local tableau has two new kind of successful/unsuccessful leaves:

– An L-root is a successful leaf if it shares the same label with one of its ancestors that is also an
L-root.

– Suppose α′σ′σ0σ1 = β′σ′σ0σ1 is an L-node and its child α′σ′σ1 = β′σ′σ1 is an L-root. In the
local tableau rooted at α′σ′σ1 = β′σ′σ1, a node of the form Zσ1 = σ1 is deemed as a leaf. It is
a successful leaf if Z is in the R-set of the L-root; it is an unsuccessful leaf otherwise.

The first question one must ask about the tableau construction is if it always terminates. The
answer is affirmative.

Lemma 14. The size of every tableau for an equality is effectively bounded.

Proof. A path cannot contain an infinite number of L-nodes since every L-node δσ = δ′σ satisfies
|δ|, |δ′| ≤ 2r∆S and σ ≤ 2r∆S + 2n∆ . It cannot contain an infinite number of L-roots since every
L-root δσ = δ′σ satisfies |δ|, |δ′| ≤ 2r∆S and σ ≤ 2n∆ . In other words the length of a chain of
nested local tableaux is effectively bounded. For the same reason a path in the global tableau or
within a local tableau contains only an effectively bounded number of M-nodes and V-nodes. Such
a path cannot contain an infinite number of R-nodes since that would imply the existence of an
infinite number of M-nodes or V-nodes. It is easy to see that the number of R-nodes in such a path
is also effectively bounded. Since the branching degree of all tableaux is bounded by a constant, we
conclude that every tableau is finite with an effective bound.

In view of Lemma 14 and the fact that the number of the matches for an equality is effectively
bounded, we derive immediately the following corollary.

Corollary 4. The number of tableaux for an equality is finite and effectively bounded.

17

4.2 Completeness Proof

We now turn to tableaux that define bisimulation bases. A tableau is successful if all of its leaves,
including all the leaves of all local tableau inside it, are successful. It is unsuccessful if it is not
successful. The significance of the existence of a successful tableau is pointed out in the following
proposition.

Proposition 2. Suppose Xα, Y β are nBPA processes. Then Xα ' Y β if and only if there is a
successful tableau for Xα = Y β.

Proof. If Xα ' Y β we can easily construct a tableau using the bisimulation property, Corollary 3
and Corollary 2. Conversely suppose there is a successful tableau T for Xα = Y β. Let A be the
axiom system consisting of three parts as defined by the following equation:

A = Ab ∪ Al ∪ Az.

The set Ab of basic axioms is given by the labels of T:

Ab = {γ = λ | γ = λ is a label of a node in T}.

The sets Al,Az are defined from T. To define Al we introduce for each L-root n a tableau Tn

obtained by performing some relabeling operation on the local tableau with the root n:

1. Let n be an L-root whose associated local tableau does not contain any local tableau, and
let γσ′σ1 = λσ′σ1 be its label and γσ′σ0σ1 = λσ′σ0σ1 be the label of its parent. Let Tn be
constructed from the local tableau rooted at n by replacing consistently the label ησ′σ1 = κσ′σ1
of a node of the local tableau by the label ησ′σ0σ1 = κσ′σ0σ1. When this is done we say that the
L-root γσ′σ1 = λσ′σ1 and its associated local tableau have been lifted to its ambient tableau.
Notice that after relabeling the L-root and its parent have the same label. We therefore coerce
these two nodes in the ambient tableau.

2. In the inductive step let m be an L-root γ′σ′′σ′0σ
′
1 = λ′σ′′σ′0σ

′
1 that has not yet been lifted and

that contains only L-roots that have been lifted. Let m1, . . . ,mk be all the top local tableaux,
properly relabeled in previous steps, inside the local tableau rooted at m. By a top local tableau
inside the local tableau rooted at m we mean that the former is not inside another local tableau
inside the latter. Now replace in T the local tableaux rooted at m1, . . . ,mk by Tm1 , . . . ,Tmk

respectively. Again the parent of mi, an L-node, for each i ∈ {1, . . . , k}, is coerced with the
root of Tmi . Now we apply the relabeling operation as described in step 1 to the resulting local
tableau rooted at m. What we get is Tm.

Let An denote all the labels of Tn. Now Al is defined by

Al =
⋃

n is an L node

An.

The set Az is defined by

Az =

{
V σ = θσ, θσ = σ

∣∣∣∣V σ = σ is in Ab, and V
τ

=⇒ θ
τ

=⇒ ε
is a chosen shortest path from V to ε.

}
.

According to Lemma 5, it is sufficient to show that A is a bisimulation base. The proof is by
induction on the nodes of the tableau starting with leaves.

18

– The axioms ς = ς obviously satisfy the property of bisimulation base.
– The axiom X = ε satisfies the bisimulation base property using Az.
– Suppose X1 . . . Xiη = Y1 . . . Yjκ is a node to which Decmp rule is applied:

X1 . . . Xiη = Y1 . . . Yjκ

η = κ X1η = η . . . Xiη = η Y1κ = κ . . . Yjκ = κ
.

Suppose we have the following transition sequence from X1 . . . Xiη:

X1 . . . Xiη −→ η1 −→ . . . −→ ηk−1 −→ ηk
`−→ η′. (1)

We prove that (1) can be simulated by a transition sequence from X1 . . . Xi−1η that satisfies
the bisimulation base property. The last action ` could be caused by any one of X1, . . . , Xi, η.

Suppose (1) is X1 . . . Xiη −→ . . . −→ Xiη
τ

=⇒ η
`−→ η′. Now X1 . . . Xiη −→ . . . −→ Xiη is

simulated by X1 . . . Xi−1η −→ . . . −→ η trivially. The transition Xiη
τ

=⇒ η can be simulated

by η vacuously using Az. And the transition η
`−→ η′ is simulated of course by η

`−→ η′. For

another case suppose (1) is X1 . . . Xiη −→ . . . −→ Xiη −→ X ′iη
`−→ X ′′i η. Here the simulating

sequence from X1 . . . Xi−1η can be easily produced using induction hypothesis on Xiη = η.
Finally if the action ` is caused by one of X1, . . . , Xi−1, the simulating sequence is trivial. In
summary (1) can be simulated by a transition sequence from X1 . . . Xi−1η in a way that satisfies
the defining property of bisimulation base.

For similar reason a transition sequence X1 . . . Xi−1η −→ . . . −→ `−→ η′′ can be simulated by a
transition from X1 . . . Xi−2η, and so on and so fourth. By putting all these simulations together
we conclude that (1) must be simulated by a transition sequence from η that satisfies the
bisimulation base property. The induction hypothesis on η = κ produces a simulating sequence
from κ. This simulating sequence can be simulated by Y1 . . . Yjκ by the transition sequence

Y1 . . . Yjκ
τ

=⇒ κ, permitted by Az, followed by the transition sequence from κ.

– Suppose γα = λβ is a node to which Match rule is applied. Let γα −→ . . . −→ α′′
`−→ α′

be a transition sequence from γα. By the definition of Match the whole transition sequence
or part of the transition sequence can be simulated in the relation Ab. Assume that γα −→
. . . −→ α0α −→ . . . −→ α′′

`−→ α′ is the transition sequence and that γα −→ . . . −→ α0α can
be simulated by λβ −→ . . . −→ β0β in Ab. By induction hypothesis the transition sequence

α0α −→ . . . −→ α′′
`−→ α′ can be simulated by a transition sequence from β0β.

– If α = β ∈ Ab is a node to which SubstL/SubstR/ContrL/ContrR/ContrC is applied, we may
use simple induction to establish the bisimulation base property.

– Now we prove that the nodes in Al satisfy the bisimulation base property. Suppose l is an L-root
whose associated local tableau contains no local tableaux. It is easy to show that the pairs in
Al satisfy the bisimulation base property, assuming that all its leaves satisfy the bisimulation
base property. The inductive step can be proved as follows. Suppose n0 is an L-root labeled
γσ′σ1 = λσ′σ1 and its parent m0, an L-node, is labeled by γσ′σ0σ1 = λσ′σ0σ1. A node in An0

is of the form δσσ0σ1 = θσσ0σ1. The pair (δσσ0σ1, θσσ0σ1) copycats the bisimulation strategy
of (δσσ1, θσσ1) until it reaches a subgoal of the form (Xiσ0σ1, σ0σ1) for Xi in the R-set of m0.
The subdoal can bisimulate each other by construction. This argument relies on the property
that bisimulation of (δσσ1, θσσ1) keeps σ1 intact until it reaches subgoals of the form (Xiσ1, σ1)
for Xi in the R-set of m0. It is guaranteed by the consistency condition imposed on the local
tableau construction. So the bisimulation base property also hold for the pairs in Am0 .

19

To give a flavor of what really happens, let’s see the above argument in more detail. Suppose
in the local tableau rooted at n0 there is an L-root n1 labeled by γ′σ′′σ3 = λ′σ′′σ3. The parent
node m1 of the L-root, an L-node, is labeled by γ′σ′σ′0σ1 = λ′σ′0σ

′σ1. The tree structure is
indicated by the following

m0 : γσ′σ0σ1 = λσ′σ0σ1

{Xiσ1 = σ1}i∈I n0 : γσ′σ1 = λσ′σ1 {Xiσ0σ1 = σ0σ1}i∈I
...

m1 : γ′σ′0σ
′σ1 = λ′σ′0σ

′σ1

{Xi′σ3 = σ3}i′∈I′ n1 : γ′σ′′σ3 = λ′σ′′σ3 {Xi′σ2σ3 = σ2σ3}i′∈I′

where σ′0σ
′σ1 = σ′′σ2σ3. By induction all nodes in Tm1 satisfy the bisimulation base property.

The root of Tm1 is γ′σ′′σ2σ3 = λ′σ′′σ2σ3, which is syntactically the same as γ′σ′0σ
′σ1 = λ′σ′0σ

′σ1.
The nodes in Tm1 must be relabeled in Tm0 . We need to prove that the nodes in Tm1 still satisfy
the bisimulation base property after they are lifted into Tm0 . A node in Tm1 lifted from Tm0

must be of the form

γ′′σ′′′σ′0σ
′σ0σ1 = λ′′σ′′′σ′0σ

′σ0σ1. (2)

We show that (2) satisfies the bisimulation base property. This can be demonstrated by mim-
icking bisimulations in the local tableaux. We look at two cases:

• |σ1| > |σ3|. Let σ2,1, σ1,3 be such that σ2 = σ2,1σ1,3 and σ1 = σ1,3σ3. According to the lift
construction, the pair in (2) can copycat the bisimulation of γ′′σ′′′σ′′σ3 = λ′′σ′′′σ′′σ3 until
it is decomposed into subgoals of the form Xi′σ2,1σ0σ1 = σ2,1σ0σ1 for i′ ∈ I ′. The subgoal
Xi′σ2,1σ0σ1 = σ2,1σ0σ1 imitates Xi′σ2σ3 = σ2σ3 until it reaches further subgoals of the form
Xiσ0σ1 = σ0σ1. The bisimulation base property is satisfied by the pair (Xiσ0σ1, σ0σ1) by
construction. Notice that the consistency condition is needed to keep clear for example the
boundary at σ2,1 and σ1,3.

• |σ1| < |σ3|. Let σ3,1 be such that σ3 = σ3,1σ1. The pair in (2) can copycat the bisimulation
of γ′′σ′′′σ′′σ3 = λ′′σ′′′σ′′σ3 until it is decomposed into subgoals of the form Xi′σ2σ3,1σ0σ1 =
σ2σ3,1σ0σ1 for i′ ∈ I ′. The latter pair then bisimulate each other like the pair (Xi′σ2σ3, σ2σ3)
until it is decomposed into further subgoals of the form (Xiσ0σ1, σ0σ1) for i ∈ I. Now
(Xiσ0σ1, σ0σ1) satisfies the bisimulation base property by definition. Again the consistency
condition is necessary here.

– Finally let’s consider the axioms in Az. Suppose V σ = σ ∈ Ab and V σ
τ

=⇒ θσ
τ

=⇒ σ with

V σ = θσ, θσ = σ ∈ Az. A transition sequence θσ =⇒ `−→ γ is simulated by V σ
τ−→ θ0σ

τ−→
θ1σ

τ−→ . . .
τ−→ θkσ

τ−→ θσ =⇒ `−→ γ. Notice that Az ` V σ = θ0σ = σ = θσ, . . . , Az ` V σ =

θkσ = σ = θσ. The transition sequence V σ
τ−→ θ0σ

τ−→ θ1σ
τ−→ . . .

τ−→ θkσ
τ−→ θσ =⇒ `−→ γ

can be simulated by a transition sequence from σ by induction on V σ = σ. We conclude that
both V σ = θσ and θσ = σ satisfy the bisimulation base property.

We have verified that A is indeed a bisimulation base. It follows from Lemma 5 that A is part of
a branching bisimulation. Consequently Xα ' Y β.

We are now in a position to establish the main result.

Theorem 1. The branching bisimilarity on nBPA processes is decidable.

20

Proof. The equality between an nBPA process γ and ε is decidable. Given two nBPA processes Xα
and Y β, our algorithm constructs all tableaux for Xα = Y β in parallel. At the same time it keeps
checking if a successful tableau has been generated. By Proposition 2 the algorithm terminates
with a ‘yes’ answer if and only if Xα ' Y β. Since by Lemma 14 there is an effective bound on
the number of tableaux for Xα = Y β, the algorithm is capable of answering ‘no’ if no successful
tableau exists.

In the presence of Proposition 1 one gets decidability as long as every tableau is finite.

5 Regularity Checking

Given a process α defined in a nBPA ∆, the bisimulation class [α] represented by α is the set
{α′ | α′ ' α}. A bisimulation class of ∆ is a bisimulation class represented by some process defined
in ∆. We say that the BPA ∆ is a finite state system if the set of bisimulation classes of ∆ is
finite. We say that α is a finite state process if the set of the bisimulation classes represented by the
nodes of T α is finite. It is an infinite state process otherwise. The regularity problem of branching
bisimilarity for nBPA asks if a nBPA process is a finite state process.

The regularity problem for the strong bisimilarity on nBPA has been settled. Kučera [25] showed
that it is decidable in polynomial time. Srba [35] observed that it is actually solvable in nondeter-
ministic logarithmic space. In the same paper he also proved that the problem is NL-hard using a
reduction from the reachability problem of DAG. The decidability of the regularity problem for the
strong bisimilarity on general BPA was proved by Burkart, Caucal and Steffen [6,7]. The problem
was shown to be PSPACE-hard by Srba [35] by reducing from the Quantified Boolean Formula
Problem. In the presence of silent actions the picture is far less clear. To the best of our knowledge
the decidability of almost all regularity problems of weak/branching bisimilarity, in the setting
of process rewriting system [27], are unknown. The only exception is the undecidability result of
the regularity problem for weak bisimilarity of Petri Net, and its extension, established by Jancar
and Esparza [21]. This is interesting in view of the fact that the regularity problem for strong
bisimilarity of Petri Net is decidable [21]. Srba [36] proved the regularity of weak bisimilarity by
showing that the problem is both NP-hard and co-NP-hard for nBPA. Mayr proved that the weak
bisimilarity of weakly regular BPA processes is EXPTIME-hard [28]. A BPA process is weakly
regular if it is weakly bisimilar to a finite state. By combining Srba’s polynomial reduction from
the weak bisimilarity of weakly regular processes to the regularity problem of weak bisimilarity [36],
one concludes that the latter is EXPTIME-hard. Mayr’s proof of the EXPTIME lower bound [28]
can be modified so that it applies to branching bisimilarity as well. We omit the details here. A
summary of these results is given in Fig. 4.

In this section we show that the regularity problem of branching bisimilarity for nBPA is
decidable. We begin with a proof that a related but slightly different problem is decidable.

Proposition 3. It is decidable to check if a nBPA ∆ defines a finite state system.

Proof. Let ∆ be a nBPA with n variables. We need to prove that the set of all bisimulation
classes of processes defined in ∆ is finite. For every process defined by ∆ of length 2n + 1, we can
algorithmically check if it is completely irredundant. If no such process is completely irredundant,
then ∆ is a finite state system. Otherwise let κ be such a process. Now there must exist processes
σ′′, σ, σ′ such that κ = σ′′σσ′ and the redundancy set of σσ′ is the same as the redundancy set of

21

BPA nBPA

∼ Decidable [6,7]
PSPACE-hard [35]

NL-complete [35][25]

' ?
EXPTIME-hard [28]

?
EXPTIME-hard [28]

≈ ?
EXPTIME-hard [28]

?
EXPTIME-hard [28]

NP-hard [39,36]

Fig. 4. Regularity of BPA

σ′. The inequality σσ′ 6' σ′ holds by the complete irredundancy of κ. Moreover σσσ′ 6' σσ′ for
otherwise Corollary 2 would imply σσ′ ' σ′. Meanwhile we also have σσσ′ 6' σ′ since ‖σσσ′‖b >
‖σσ′‖b > ‖σ′‖b. By induction we can prove that σi+1σ′ 6' σiσ′ and ‖σi+1σ′‖b > ‖σiσ′‖b for all
i ≥ 0, where σi stands for σ . . . σ︸ ︷︷ ︸

i times

. It follows that σiσ′ 6' σjσ′ whenever i 6= j. Therefore ∆ defines

an infinite state system in this case.

Proposition 3 does not imply the decidability of the regularity problem. This is because even
if a nBPA defines an infinite state system, a process defined in the BPA can still be a finite state
process. To prove the general result we need the following technical lemma.

Lemma 15. For nBPA there is an algorithm to calculate the function ‖ ‖b.

Proof. Let α be a process defined by a nBPA. Consider the transition tree T α. This tree is in
general infinite. We can trim this tree down to a finite tree by cutting off a path at some point.
The strategy is as follows:

– If α
`1−→ α1 . . .

`k−→ αk contains ‖α‖ external actions plus change-of-state silent actions, then
remove all the descendants of αk.

– Suppose α
`1−→ α1 . . .

`k−→ αk → αk+1 → . . . → αh is a path in the tree. If α
`1−→ α1 . . .

`k−→ αk
contains at most ‖α‖ − 1 external actions plus change-of-state silent actions and the length of
αk → αk+1 → . . .→ αh is Hαk , then remove all the descendants of αh.

The first rule is based on the fact ‖α‖b ≤ ‖α‖ and the second rule on Lemma 13. It is now easy to
calculate ‖α‖b from the finite tree using Theorem 1.

It is interesting to notice that, unlike the situation for the strong bisimilarity, it is after the
proof of the decidability of ' that we are able to show the effectiveness of ‖ ‖b. By Lemma 15 the
value ‖∆‖b is effectively calculable.

In what follows we provide two semi-decidable procedures that would lead to the decidability
of the regularity problem. The first semi-decidable procedure allows one to answer positively when
the input nBPA process is a finite state process.

Lemma 16. It is semi-decidable to check if an nBPA process is a finite state process.

Proof. Suppose α is a nBPA process. Construct the branching transition tree with root label α as
follows:

22

– The tree is constructed in a width first fashion. Suppose β is a leaf of the current tree that is not

marked as a leaf of the final tree. Suppose further that β →∗ β′ `−→ γ is such that the length
of β →∗ β′ is less than Hβ. Then the node β has a child labeled γ and the edge is labeled by `.

– Whenever a new leaf is generated whose label is branching bisimilar to the label of some inner
node of the current tree, then that leaf is marked as a leaf of the final tree. An inner node of
the tree is a node that is not a leaf.

– A leaf labeled by ε is marked as a leaf of the final tree.

If α is a finite state process then clearly the branching transition tree is finite. Conversely suppose

the branching transition tree is finite. Let α→∗ `1−→ α1 . . .→∗
`k−→ αk be a transition sequence such

that each αi with 1 ≤ i < k is branching bisimilar to some node of the branching transition tree
and αk is not branching bisimilar to any node of the tree. Clearly there must be some node in

the sequence α →∗ `1−→ α1 . . . →∗
`k−→ αk, say αj1 , that is a leaf of the tree. By definition there

must be some inner node β1 such that αj1 ' β1. It follows that there is some αj2 such that

αj1 →∗
`j1+1−→ . . . →∗

`j2−→ αj2 is bisimulated by some transition sequence β1 →∗
`j1+1−→ . . . →∗

`j2−→ β2
with the latter sequence satisfying the following:

– β1 −→ . . . −→ β2 is a path in the branching transition tree with β2 being a leaf.
– the edges are labeled respectively by `j1+1, . . . , `j2 .

Now β2 is branching bisimilar to some inner node of the tree. So we may repeat the above argument.
Eventually we get some node of the tree that is branching bisimilar to αk, which is a contradiction.
We conclude that every process reachable from α is branching bisimilar to some node in the finite
tree. The construction of the branching transition tree is effective due to Lemma 3 and Theorem 1.
Hence the semi-decidability of the procedure.

To simplify the account of the other semi-decidable procedure we introduce the following tech-
nical lemma.

Lemma 17. Suppose V0σ0 is defined in a nBPA ∆ with n variables and V0σ0
`1−→ V1σ1

`2−→
V2σ2 . . .

`i−→ Vmσm for some m > n2n such that |σ0| ≤ |σ1| ≤ . . . ≤ |σm|. If there are n2n + 1
processes Vi0σi0 , Vi1σi1 , . . . , Vin2nσin2n , where i0 < i1 < . . . < in2n, such that ‖Vi0σi0‖b < ‖Vi1σi1‖b <
. . . < ‖Vin2nσin2n‖b, then V0σ0 is an infinite state process.

Proof. By assumption there must exist j, j′ ∈ {0, . . . , n2n} such that j < j′, Vij = Vij′ and Rσij =

Rσij′ . Now σij′ = σσij for some σ since |σij | ≤ |σij′ |. Moreover ‖σ‖
σij
b > 0 due to the inequality

‖Vijσij‖b < ‖Vijσij′‖b. Clearly Vijσ
kσij is a descendant of V0σ0 for all k ≥ 0. By the proof of

Lemma 3 we conclude that V0σ0 is an infinite state process.

Lemma 18. There is a semi-decidable procedure to check if a nBPA process is an infinite state
process.

Proof. Suppose α is an infinite state process defined by a nBPA ∆ with n variables. There must be

an infinite path α
`1−→ α1

`2−→ α2 . . .
`i−→ αi . . . such that the norms of the processes α, α1, . . . , αi, . . .

are unbounded. Assume that α = V0σ0 for some V0, σ0 and αi = Viσi for some Vi, σi for each i > 0.
The infinite transition sequence can be rewritten as

V0σ0
`1−→ V1σ1

`2−→ V2σ2 . . .
`i−→ Viσi (3)

23

Choose from (3) a finite subsequence

Vjσj
`j+1−→ Vj+1σj+1

`j+2−→ Vj+2σj+2 . . .
`k−→ Vkσk (4)

such that the following are satisfied:

∀j′ ∈ {j + 1, . . . , k}.|σj | < |σj′ |, (5)

‖Vkσk‖b > ‖Vjσj‖b + n222n‖∆‖br∆. (6)

By Lemma 15 condition (6) is effectively checkable. Condition (5) implies that σj is a proper suffix
of σj′ for all j′ ∈ {j + 1, . . . , k}. We call Vpσp, for p > j, a minimal turning point if there exists
some p′ such that j < p′ ≤ p and |σp′−1| > |σp′ |= . . . = |σp| < |σp+1|. Let Vj1σj1 be a minimal
turning point such that for any other minimal turning point Vpσp the inequality |σj1 | ≤ |σp| holds
and if |σj1 |= |σp| then j1 > p. Since σj is a suffix of σj1 , there must be a maximal initial segment

Vjσj
`j−→ Vj+1σj+1 . . .

`j′1−→ Vj′1σj′1 (7)

of (4) that enjoys the property |σj | ≤ |σj+1| ≤ . . . ≤ |σj′1 |. If there are n2n + 1 processes in (7),

say V 1σ1, . . . , V n2n+1σn2
n+1, such that ‖V 1σ1‖b < . . . < ‖V n2n+1σn2

n+1‖b, then we conclude from
Lemma 17 that α is an infinite state process. Otherwise we derive from the fact |σj | < |σj1 | < |σj′1 |

that there is an initial segment Vjσj
`j−→ Vj+1σj+1 . . .

`j′′1−→ Vj′′1 σj′′1

`j′′1 +1

−→ Vj′′1+1σj′′1+1 of (7) that meets
the following condition

|σj′′1 | ≤ |σj1 | < |σj′′1+1|. (8)

Notice that |σj1 |= |σj′1 | is impossible by the way σj1 is chosen. So the right inequality in (8) must
be strict. By normedness one has that

Vjσj
`j−→ Vj+1σj+1 . . .

`j′′1−→ Vj′′1 σj′′1

`j′′1 +1

−→ Vj′′1+1σj′′1+1
`∗−→ σj1

for some `∗. Clearly

‖Vj1σj1‖b − ‖Vjσj‖b = ‖Vj1‖
σj1
b + ‖σj1‖b − ‖Vjσj‖b

≤ ‖Vj1‖
σj1
b + ‖Vj′′1+1σj′′1+1‖b − ‖Vjσj‖b

≤ ‖Vj1‖
σj1
b + ‖Vj′1σj′1‖b − ‖Vjσj‖b

≤ ‖∆‖b + (n2n − 1)‖∆‖br∆
≤ n2n‖∆‖br∆,

using the assumption that there are at most (n2n − 1) transitions in (7).

The above construction can be repeated and we eventually get a transition sequence Vjσj
`∗1−→

Vj1σj1
`∗2−→ Vj2σj2 . . .

`∗m−→ Vjmσjm such that |σj | ≤ |σj1 | ≤ . . . ≤ |σjm | and

‖Vjσj‖b ≤ ‖Vj1σj1‖b ≤ . . . ≤ ‖Vjmσjm‖b. (9)

It follows from condition (6) that m > n2n and that there are at least n2n strict inequalities in (9).
So we can apply Lemma 17 anyway.

24

The existence of a transition sequence described above allows one to design a semi-decidable
procedure. Given a nBPA process α the semi-decidable program constructs the transition tree Tα
in a width first fashion and keeps checking if there is a sub-path of a path in the tree satisfying the
property described in (5) and (6). If α is an infinite state process then the procedure is bound to
find such a sub-path and gives a positive answer.

In summary we have the following decidability result.

Theorem 2. The regularity problem of branching bisimilarity on nBPA is decidable.

6 Remark

For parallel processes, basic parallel processes (BPP) and Petri nets (PN), in which silent transitions
are treated as unobservable the only known decidability result concerning equivalence checking is
due to Czerwiński, Hofman and Lasota. They have proved in [11] that branching bisimilarity on
normed BPP processes is decidable. Their proof is based on a novel technique that reduces every
normed BPP process to a normal form. The norm form for a bisimulation class is an element in
the class that is minimal with regards to lexicographic order. Other equivalence checking problems
about parallel processes are either open or undecidable. This paper provides the first decidability
result for the sequential processes, basic process algebras (BPA) and pushdown automata (PDA),
in which silent transitions are treated as unobservable. The technique used to establish this result is
more traditional compared to the one used by Czerwiński, Hofman and Lasota. For further research
one could try to apply the technique developed in this paper to the general BPA. One could also
try to adapt the methodology to investigate the decidability issue of branching bisimilarity of PDA.
The latter problem is particularly interesting in the light of the facts that the strong bisimilarity
on PDA is decidable [34,38] whereas the weak bisimilarity on normed PDA is undecidable [23].
If either problem turns out to be decidable, the associated regularity problem would then invite
immediate study.

Currently we do not see how the techniques used in this paper can be transplanted to weak
bisimilarity [30]. Neither Lemma 9 nor Corollary 2 is known to hold for weak bisimilarity, although
Lemma 10 is valid for weak bisimilarity on nBPA processes. Without Lemma 9 we are not able
to establish the finite tree property. And without Corollary 2 we cannot control the size of a
tableau. Further investigation is necessary before we can say more about the decidability of the
weak bisimilarity.

This paper is a first step in looking for upper bound on branching bisimilarity of nBPA processes.
In next step one could try to answer the following question: Is the problem elementary? In view of
Kiefer’s result [24] one expects that the EXPTIME lower bound to be improved. At this point it
seems appropriate to mention a recent result of Benedikt, Moller, Kiefer and Murawski [4]. They
have proved that strong bisimilarity on normed PDA is non-elementary.

Acknowledgement. I would like to thank the members of BASICS for their interest and valuable
discussions. One of the discussions has convinced me that the reduction described in [28] can be
improved to show that branching bisimilarity of nBPA and its associated regularity problem are
EXPTIME-hard. In particular my thanks go to Chaodong He for bringing up the issue of transitivity
of bisimulation base and for his expert proof-reading, to Mingzhang Huang for informing me of
Example 2 and for pointing out a mistake in my earlier formulation of Localization rule, to Huan

25

Long and Qiang Yin for thought provoking discussions, and to Zhimo Shen and Fei Yang for
questioning my previous proof of the decidability of the regularity problem. Last but not least I
would like to thank Xinxin Liu for pointing out an omission in my previous proof of Lemma 13.
The support from NSFC (60873034, 61033002) is gratefully acknowledged.

References

1. J. Baeten, J. Bergstra, and J. Klop. Decidability of bisimulation equivalence for processes generating context-free
languages. In PARLE’87, pages 94–113. Lecture Notes in Computer Science 259, 1987.

2. J. Baeten, J. Bergstra, and J. Klop. Decidability of bisimulation equivalence for processes generating context-free
languages. J. ACM, 40:653–682, 1993.

3. J. Balcazar, J. Gabarro, and M. Santha. Deciding bisimilarity is p-complete. Formal Aspects of Computing,
4:638–648, 1992.

4. M. Benedikt, S. Moller, S. Kiefer, and A. Murawski. Bisimilarity of pushdown automata is nonelementary. In
Logic in Computer Science, pages 488–498, 2013.

5. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures. In J. Bergstra, A. Ponse,
and S. Smolka, editors, Handbook of Process Algebra, pages 545–623. North-Holland, 2001.

6. O. Burkart, D. Caucal, and B. Steffen. An elementary bisimulation decision procedure for arbitrary context free
processes. In MFCS’95, pages 423–433. Lecture Notes in Computer Science 969, Springer, 1995.

7. O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and the process taxonomy. In CONCUR’96, pages
247–262. Lecture Notes in Computer Science 1119, Springer, 1996.

8. D. Caucal, D. Huynh, and L. Tian. Deciding branching bisimilarity of normed context-free processes is in σp2 .
Information and Computation, 118:306–315, 1995.

9. S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is decidable for all context-free processes. In
CONCUR’92, pages 138–147. Lecture Notes in Computer Science 630, Springer, 1992.

10. S. Christensen, H. Hüttel, and C. Stirling. Bisimulation equivalence is decidable for all context-free processes.
Information and Computation, 12:143–148, 1995.

11. W. Czerwiński, P. Hofman, and S. Lasota. Decidability of branching bisimulation on normed commutative
context-free processes. In CONCUR’11, pages 528–542. Lecture Notes in Computer Science 6901, Springer, 2011.

12. R. De Nicola, U. Mantanari, and F. Vaandrager. Back and forth bisimulations. In Proc. CONCUR’90, volume
458 of Lecture Notes in Computer Science, pages 152–165, 1990.

13. Y. Fu. Checking equality and regularity for normed bpa with silent moves. In ICALP 2013, Lecture Notes in
Computer Science 7966, pages 244–255. Springer, 2013.

14. Y. Hirshfeld. Bisimulation trees and the decidability of weak bisimulations. Electronic Notes in Theoretical
Computer Science, 5:2–13, 1996.

15. Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisimilarity of normed context free
processes. Theoretical Computer Science, 158(1-2):143–159, 1996.

16. J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley
Publishing Company, 1979.

17. H. Hüttel. Silence is golden: Branching bisimilarity is decidable for context free processes. In CAV’91, pages
2–12. Lecture Notes in Computer Science 575, Springer, 1992.

18. H. Hüttel and C. Stirling. Actions speak louder than words: Proving bisimilarity for context-free processes. In
LICS’91, pages 376–386, 1991.

19. T. Huynh and L. Tian. Deciding bisimilarity of normed context free processes is in σp2 . Theoretical Computer
Science, 123:83–197, 1994.

20. P. Jančar. Bisimilarity on basic process algebra is in 2-exptime. 2012.
21. P. Jančar and J. Esparza. Deciding finiteness of petri nets up to bisimulation. In ICALP’96, pages 478–489.

Lecture Notes in Computer Science 1099, Springer, 1996.
22. P. Jančar and F. Moller. Techniques for decidability and undecidability of bisimilarity. In Concur’99, volume

1664 of Lecture Notes in Computer Science, pages 30–45, 1999.
23. P. Jančar and J. Srba. Undecidability of bisimilarity by defender’s forcing. Journal of ACM, 55(1), 2008.
24. S. Kiefer. Bpa bisimilarity is exptime-hard. Information Processing Letters, 113:101–106, 2013.
25. A. Kučera. Regularity is decidable for normed bpa and normed bpp processes in polynomial time. In SOFSEM’96,

pages 377–384. Lecture Notes in Computer Science 1175, Springer, 1996.

26

26. A. Kučera and P. Jančar. Equivalence-checking on infinite state systems: Techniques and results. Theory and
Practice of Logic Programming, 6:227–264, 2006.

27. R. Mayr. Process rewrite systems. Information and Computation, 156:264–286, 2000.
28. R. Mayr. Weak bisimilarity and regularity of bpa is exptime-hard. In EXPRESS’03, 2003.
29. R. Milner. A complete inference system for a class of regular behaviours. Journal of Computer and System

Science, 28:439–466, 1984.
30. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
31. R. Milner. A complete axiomatization system for observational congruence of finite state behaviours. Information

and Computation, 81:227–247, 1989.
32. F. Moller, S. Smolka, and J. Srba. On the computational complexity of bisimulation, redux. Information and

Computation, 194:129–143, 2004.
33. C. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.
34. G. Sénizergues. Decidability of bisimulation equivalence for equational graphs of finite out-degree. In Foundations

of Computer Science, 1998. Proceedings. 39th Annual Symposium on, pages 120–129. IEEE, 1998.
35. J. Srba. Strong bisimilarity and regularity of basic process algebra is pspace-hard. In ICALP’02, pages 716–727.

Lecture Notes in Computer Science 2380, Springer, 2002.
36. J. Srba. Complexity of weak bisimilarity and regularity for BPA and BPP. Mathematical Structures in Computer

Science, 13:567–587, 2003.
37. J. Srba. Roadmap of infinite results. In Formal Models and Semantics, II. World Scientific Publishing Co., 2004.
38. C. Stirling. Decidability of bisimulation equivalence for normed pushdown processes. Theoretical Computer

Science, 195(2):113–131, 1998.
39. J. Stř́ıbrná. Hardness results for weak bisimilarity of simple process algebras. Electronic Notes in Theoretical

Computer Science, 18:179–190, 1998.
40. R. van Glabbeek. A complete axiomatization for branching bisimulation congruence of finite-state behaviours.

In Proc. MFCS’93, volume 711 of Lecture Notes in Computer Science, pages 473–484, 1993.
41. R. van Glabbeek and W. Weijland. Branching time and abstraction in bisimulation semantics. In Information

Processing’89, pages 613–618. North-Holland, 1989.

27

	Checking Equality and Regularity for nBPA with Silent Moves

