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Abstract. We give an interpretation of Martin-Löf’s type theory (with universes)
extended with generalized inductive types. The model is an extension of the recursive
model given by Beeson. By restricting our attention to PER model, we show that
the strictness of positivity condition in the definition of generalized inductive types
can be dropped. It therefore gives an interpretation of general inductive types in
Martin-Löf’s type theory.

1 Introduction

Interest in inductively defined types has been around for some time. An early work on a categorical
approach to recursively defined types is in [31], where the authors demonstrate that the initial T -algebra
approach is a good alternative to what was proposed by ADJ-group. Later on, several researchers have
investigated the idea of extending the existing typed calculi with inductively (coinductively) defined
types. In [21, 22, 24], see also [7], the author considers a particular version of inductive and coinductive
types. Two combinators and two rules are added to the second order λ-calculus to capture recursion
and computational rules. In contrast to what is studied in other works, the notion of subtypes is
used. That might cause some inconvenience; but it does enjoy a certain degree of conceptual clarity
if one has in mind a constructive set-theoretical semantics. A general scheme for adding inductively
defined types in Martin-Löf’s type theory and in ECC are considered in [3, 4, 10, 11] and in [8, 20].
In both cases, the motivating example is the well-known W -types. The basic idea is to formalize the
introductions of, and inductions on, data types. This method is more intuitive, and akin to the type
theoretical tradition, than the initial T -algebra approach. The only primitive types assumed here are
the Π-types with intensional equality, as opposed to the initial T -algebra case where one wants in
addition the disjoint sums and the unit type at least.

A different methodology is to code up all inductive types in an extensional type theory with enough
type constructors. This is adopted in [32, 30, 16, 14]. The argument against this approach is threefold.
First, encoded inductive types are sometimes not good enough. For instance, the polymorphic encoding
of the natural numbers type verifies only a weak form of recursion. Second, the meta-theory of the
extensional theory (with the η-rule and the surjective paring rule) is hard. As a matter of fact, useful
results in this area are almost non-existent. There are many conjectures though! Third, the encodings
of inductive types via W -types look messy. Those reasons, together with the result in [9] which shows
that the encodings are impossible in an intensional type theory, are convincing enough for us to prefer
the traditional method.

The formulation of inductive types as initial T -algebras is studied in [29]. The construction of
functors from type constructors is used to code up some T -algebras. In loc.cit., there are interesting
examples of how to use this kind of inductive types.

Categorical formulation of inductive (coinductive) types can be found in [23, 25]. Related to this
is the work [12] where some properties of “algebraic complete” categories are obtained.

The model theory of the inductive types has been a research topic for some time. An old approach is
to interpret an inductive type by the initial T -algebra of a κ-continuous functor on Set, the category of
sets. This method works also for the generalized inductive types, see [8]. Unfortunately, a monotonic
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and κ-bounded functor on the category ω-Set of ω-sets ([18, 29]) in general does not possess an
initial T -algebra, the reason being that ω-Set does not have all (filtered) colimits. The ω-Set version
of κ-continuous functors is too restrictive to model all generalized inductive types. Another way of
interpreting inductive types is to use Aczel’s notion of rule sets ([2, 11]). This approach, which is
mathematically weaker, does generalize to ω-Set. For more details on both the subjects, see [13, 15].

In this paper, we interpret generalized inductive types in the category Per of partial equivalence
relations on ω, the set of natural numbers. What is the advantage of this interpretation over that
in ω-Set? First, in the case of Per, the rule sets are more elegantly defined than those in the case
of ω-Set. As ω×ω is the largest element in the poset (Obj(Per),⊆), the terminal object ω×ω is
somehow the largest ‘universe’ in the world of per’s. On the other hand, we certainly do not have a
largest ω-set, whatever that might mean. Second, the existence of such a ‘universe’ is necessary for the
interpretation of coinductive types formulated as terminal T -coalgebras. It is hoped that our model
can motivate a general definition of lazy sets in Martin-Löf’s type theory. Finally the Per model
interprets the general inductive types. This is the content of section 6.

2 Generalized Inductive Types

As the basic calculus, we take Martin-Löf’s type theory with an infinite hierarchy of cumulative uni-
verses. The language, ML∞, has Π-types and extensional definitional equality (i.e. with the η-rule).
Intuitively the small universes satisfy the following properties:

Type0∈Type1∈Type2∈· · · ,
T ype0⊂Type1⊂Type2⊂· · · .

In what follows, i ranges over natural numbers. The basic rules are:

[] valid
Empty Context

Γ ` A : Typei

Γ, x : A valid
Context

Γ, x : A, Γ′ ` valid

Γ, x : A, Γ′ ` x : A
Variable

Γ valid

Γ ` Typei : Typei+1
Universe

Γ ` A : Typei

Γ ` A : Typei+1
Cumulativity

Γ ` A : Typei Γ, x : A ` B : Typei

Γ ` Πx:A.B : Typei
Product

Γ, x : A ` M : B

Γ ` λx:A.M : Πx:A.B
Abstraction

Γ ` M : Πx:A.B Γ ` N : A

Γ ` MN : B[N/x]
Application

Γ ` M : A Γ ` A = B : Typei

Γ ` M : B
Transitivity

The above description is over simplified. A complete presentation should spell out all the rules about
definitional equality and the premises missing in the above formulation. For instance full Application
is

Γ ` A : Typei Γ, x : A ` B : Typei

Γ ` M : Πx:A.B Γ ` N : A Γ ` B[N/x] : Typei

Γ ` MN : B[N/x]
.

There might appear some redundancy. But it makes much easier the proofs using induction on deriva-
tions. We follow the usual convention which is: 1. to derive Γ ` a : A, one must derive Γ ` A : Typei

first; 2. to derive Γ ` a = b : A, one must derive Γ ` a : A and Γ ` b : A first; 3. to derive
Γ ` A = B : Typei, one must derive Γ ` A : Typei and Γ ` B : Typei first.

One can extend the above calculus in different ways. As our main concern is about the semantics
of inductive types, we enrich it with the generalized inductive types in [8] to get things off the ground.
We will call this language ML∞

gi .
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Definition 2.1 Suppose Γ, X : Typei ` φ(X) : Typei. We say φ(X) is strictly positive with respect
to X if X does not occur in φ or φ = X or φ = Πx:K.φ′(X) where X does not occur in K and φ′(X)
is strictly positive with respect to X. Clearly φ(X) in Γ, X : Typei ` φ(X) : Typei is strictly positive
if either φ(X) contains no X or φ(X) = Πx1:K1. · · ·Πxm:Km.X such that X does not occur in any of
K1, · · · ,Km.

If Γ ` A : Typei and Γ ` PA : A→ Typei, then PA can be understood as a property about A. If
furthermore Γ, X : Typei ` φ(X) : Typei and φ(X) is strictly positive with respect to X and actually
contains X, then we can extend PA to Γ ` Pφ(A) : φ(A) → Typei, a property about φ(A). This is
defined as follows:

• If φ(X) = X, then Pφ(A)
def= PA.

• If φ(X) = Πx1:K1. · · ·Πxm:Km.X, then

Pφ(A)
def= λz:φ(A).Πx1:K1. · · ·Πxm:Km.PA(zx1 · · ·xm).

Similarly, if Γ ` f : Πx:A.PA(x), we see f as a proof that PA holds of every inhabitant of A. We
extend f to a proof φ�(f) showing that Pφ(A) holds of all members of φ(A),

Γ ` φ�(f) : Πz:φ(A).Pφ(A)(z) = Πz:φ(A).Πx1:K1. · · ·Πxm:Km.PA(zx1 · · ·xm),

in the same fashion:

• If φ(X) = X, then φ�(f) def= f .

• If φ(X) = Πx1:K1. · · ·Πxm:Km.X, then

φ�(f) def= λz:φ(A).λx1:K1. · · ·λxm:Km.f(zx1 · · ·xm).

Definition 2.2 Suppose Γ, X : Typei ` Θ(X) : Typei. We say that Θ is a constructor type if Θ(X)
is of the form Πx1:φ1(X). · · ·Πxm:φm(X).X with φ1(X), · · · , φm(X) being strictly positive with respect
to X.

We are now ready to give rules for generalized inductive types. In all these rules,

Θk(X) = Πxk1:φk1(X). · · ·Πxknk
:φknk

(X).X

is a constructor type for each k∈{1, . . . , n}.

Formation
Γ, X : Typei ` Θ1(X) : Typei, . . . , Γ, X : Typei ` Θn(X) : Typei

Γ ` µX.[Θ1(X), . . . , Θn(X)] : Typei

We will abbreviate µX.[Θ1(X), . . . , Θn(X)] to µX.[~Θ] or even to µ.

Introduction

Γ ` tk1 : φk1(µX.[~Θ]), . . . , Γ ` tknk : φknk (µX.[~Θ])[tk1, . . . , tknk−1/xk1, . . . , xknk−1]

Γ ` introµ
k(tk1, . . . , tknk ) : µX.[Θ1(X), . . . , Θn(X)]

for each k∈{1, . . . , n}.

Elimination

Γ ` Pµ : µX.[Θ1(X), . . . , Θn(X)]→Typei

Γ, x11 :φ11(µ),. . ., x1n1 :φ1n1(µ), y111:Pφ111 (µ)(x111),. . ., y11p:Pφ11p (µ)(x11p)

` f1 : Pµ(introµ
1 (~x1))

...
Γ, xn1 :φn1(µ), . . . , xnnn :φnnn(µ), ynn1:Pφnn1 (µ)(xnn1),. . ., ynnp:Pφnnp (µ)(xnnp)

` fn:Pµ(introµ
n(~xn))

Γ ` recµ(f1, . . . , fn) : Πz:µ.Pµ(z)

This rule calls for some explanation. For each k ∈{1, . . . , n}, φkk1(X), . . . , φkkp
(X) are among those

φk1(X), . . . , φknk
(X) that actually contain the variable X. f1, . . . , fn are induction steps; together

they show that the property Pµ holds for every member of µX.[Θ1(X), . . . ,Θn(X)].
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Computation

Γ ` tk1 : φk1(µ), . . . , Γ ` tknk : φknk (µ)[tk1, . . . , tknk−1/xk1, . . . , xknk−1]
Γ ` Pµ : µX.[Θ1(X), . . . , Θn(X)]→Typei

Γ, x11 :φ11(µ),. . ., x1n1 :φ1n1(µ), y111:Pφ111 (µ)(x111),. . ., y11p:Pφ11p (µ)(x11p)

` f1 : Pµ(introµ
1 (~x1))

...
Γ, xn1 :φn1(µ), . . . , xnnn :φnnn(µ), ynn1:Pφnn1 (µ)(xnn1),. . ., ynnp:Pφnnp (µ)(xnnp)

` fn:Pµ(introµ
n(~xn))

Γ ` recµ(~f)(introµ
k(tk1, . . . , tknk )) =

fk(tk1, . . . , tknk ,

(φkk1 [tk1, . . . , tkk1−1/xk1, . . . , xkk1−1])
�(recµ(~f))tkk1 ,

· · · ,
(φkkp [tk1, . . . , tkkp−1/xk1, . . . , xkkp−1])

�(recµ(~f))tkkp)

for each k ∈ {1, . . . , n}. Explicitly, (φkk1 [tk1, . . . , tkk1−1/xk1, . . . , xkk1−1])�(recµ(~f))tkk1 is, say,

λx1
kk1

:K1
kk1

[tk1, . . . , tkk1−1/xk1, . . . , xkk1−1]. · · · .
λxm

kk1
:Km

kk1
[tk1, . . . , tkk1−1/xk1, . . . , xkk1−1].recµ(~f)(tkk1x

1
kk1

· · ·xm
kk1

).

Example 2.3 The W -types ([26, 28]). This example is meant to bring out the intuition behind the
above rules. There is only one constructor type : Θ = Πx:A.Πy:B(x)→X.X. Here φ1(X) = A and
φ2(X) = B(x)→X. The introduction rule is the familiar one:

Γ ` a : A Γ ` b : B(a)→W (A, B)

Γ ` sup(a, b) : W (A, B)
.

The reader is advised to check that the elimination rule amounts to
Γ ` P :W (A, B)→Typei Γ, x :A, y :B(x)→W (A, B), w :Πz:B(x).P (yz) `f :P (sup(x, y))

Γ ` recW (A,B)(f) : Πz:W (A, B).P (z)
.

The generalized inductive types are straightforward generalizations of W -types. 2

3 The Recursive Model

In this section we define a recursive model M for the language defined in the previous section. The
general method follows from [5, 6]. Our contribution is to explore the notion of rule sets to define the
extensions of a certain collection of names, which is to be used to interpret the generalized inductive
types.

3.1 Some Preliminaries

We avail ourselves of an effective pairing function 〈 , 〉 and two projection functions ()0 and ()1. The
n-tuples will be coded in the usual way. The (i + 1)-th component of an n-tuple v will be noted by
(v)i. We also assume a standard Gödel numbering ϕ of n-ary recursive functions for each n ≥ 1.
ϕf (a1, . . . , an) will be simplified to f ·(a1, . . . , an).

Definition 3.1 A per, partial equivalence relation, is a transitive symmetric relation A on the set ω

of natural numbers. dom(A) def= {n|nAn}. x ∈ A iff xAx. A map from a per A to another per B is
the set [l]A→B of all natural numbers such that ∀m,n∈ [l]A→B .∀p, q∈A.pAq ⇒ (m·p)B(n·q), where x·y
is the result of applying the x-th recursive function to the number y. We will write A � B if A ⊆ B.

Given pers A and B, we can define the usual constructions as follows. The product A×B is the per
such that m(A×B)n iff (m)0A(n)0 and (m)1B(n)1. The exponential A → B contains all the pairs
〈m,n〉 such that for any pair 〈a, b〉 ∈ A, it is the case that 〈m ·a, n ·b〉 ∈ B. The coproduct A + B
contains all the pairs 〈m,n〉 such that either (m)0 = (n)0 = 0 and (m)1A(n)1 or (m)0 = (n)0 = 1 and
(m)1B(n)1. The initial object is the empty relation while the terminal object is the total relation. In
fact, the category Per is a locally cartesian closed category with finite colimits.

In the sequel we need an ‘effective version’ of the following definition.

Definition 3.2 ([1]) A rule on the set U is a pair u
v such that u⊂U and v∈U . A rule set on U is a

set of rules on U . Given a rule set R on U , a set A is R-closed if for any rule u
v ∈R, u⊂A implies

v∈A. The set inductively defined by R is the set I(R) def=
⋂
{A|A is R-closed}, the smallest R-closed

set. A rule set R is deterministic if u1
v ∈R∧ u2

v ∈R ⇒ u1 = u2.
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Rule sets have been used to interpret inductive types in Martin-Löf’s set theory, see [2, 11]. We now
briefly explain how to model the generalized inductive types in the category Set. This should serve
as a motivation for the Per interpretation to be defined later.

For a type A(x) with a free variable x, we will write [[A(x)]]x:=D for the denotation of A(x) when
x is interpreted as D. If a type A(x1, . . . , xn) contains more than one free variables, we will write

[[A(x1, . . . , xn)]][D1, . . . , Dn/x1, . . . , xn],

or even [[A(x1, . . . , xn)]][D1, . . . , Dn], for the denotation of A(x1, . . . , xn) when x1, . . . , xn are inter-
preted as D1, . . . , Dn respectively. The notation [[A(x, y)]][a][y := b], for example, will denote the same
thing as [[A(x, y)]][a, b/x, y].

Suppose A is a set and B : A−→Set is a map that associates a set to each member of A. Define
π(A,B) to be the set of all functions f such that ∀a∈A.f(a)∈B(a). Let Θj(X) = Πx1:φ

j
1(X). · · ·Πxm:

φj
m(X).X be a constructor type. The rule set RΘj

is defined as the following set: ∪k=1···mrange(fk)

〈nΘj , m, f1, . . . , fm〉
∣∣∣∣ f1∈ [[φj

1(X)]][X := Vκ]∧· · ·∧
fm∈ [[φj

m(X)]][f1, . . . , fm−1][X := Vκ]

 (1)

where nΘj
is a code for Θj(X) and Vκ is a large enough universe. For the generalized inductive type

µX.[Θ1, . . . ,Θn], the corresponding rule set RµX.[~Θ] is the union ∪j=1··nRΘj
. The type µX.[Θ1, . . . ,Θn]

can now be interpreted as the smallest RµX.[~Θ]-set I(RµX.[~Θ]). The eliminator for µX.[~Θ] can be defined
on the way the elements of I(RµX.[~Θ]) are generated. For details, see loc.cit..

In order to give a recursive model of ML∞
gi , we need to explain how the interpretation of generalized

inductive types in Set can be carried out in Per.
Suppose A is a per and B : dom(A)−→Per is a map such that for any m,n ∈ A, mAn implies

B(m) = B(n). Two new pers are defined as follows:

π(A,B) def= {〈f, g〉 | ∀(a, b)∈A.(f ·a)B(a)(g ·b)},

σ(A,B) def= {〈〈a, b〉, 〈c, d〉〉 | aAc∧bB(a)d}.

In the Per interpretation, a context is interpreted as a per. A type Γ ` A is modeled by a function
[[A]] : dom([[Γ]])−→Per such that m[[Γ]]n implies [[A]](m) = [[A]](n). The context Γ, x : A is interpreted
by σ([[Γ]], [[A]]). [[Γ ` Πx:A.B]] is the map π[[Γ]]([[A]], [[B]]) that sends α∈ [[Γ]] to π([[A]](α, ), [[B]](α, )).
See [17, 19] for more on Per models.

In Per the rule set that corresponds to ṘΘj
can be defined as RΘj

, except that Vκ is replaced by
the ‘largest’ per ω×ω:

ṘΘj

def
=

 ∪k=1···mrange(fk)

〈nΘj , m, f1, . . . , fm〉
∣∣∣∣ f1∈ [[φj

1(X)]][X := ω×ω]∧· · ·∧
fm∈ [[φj

m(X)]][f1, . . . , fm−1][X := ω×ω]

 . (2)

In this definition, [[φj
k(X)]][f1, . . . , fk−1][X := ω×ω] is just [[φj

k(X)]][f1, . . . , fk−1] if X does not occur in
φj

k(X); and in this case range(fk) is the empty set. On the other hand if φj
k(X) does contain X, say

φj
k(X) = Πxk1:K

j
k1. · · ·Πxkmk

:Kj
kmk

.X, then

[[φj
k(X)]][f1, . . . , fk−1][X := ω×ω]

= π([[Kj
k1]][f1, . . . , fk−1], . . . , π([[Kj

kmk
]][f1, . . . , fk−1], ω×ω) · · ·).

Let ṘµX.[~Θ]

def= ∪i=1··nṘΘi . ṘµX.[~Θ] is a rule set on ω. So I(ṘµX.[~Θ]) is a subset of ω. But we want a

per. This per P(I(ṘµX.[~Θ])) can be obtained as the least fixpoint of the following sequence:

• P0 is defined to be the initial per ∅.

• Pα+1 def= ∪j=1··nSj where Sj is the following set: 〈〈nΘj , m, f1, . . . , fm〉,
〈nΘj , m, g1, . . . , gm〉〉

∣∣∣∣∣∣∣∣
〈nΘj , m, f1, . . . , fm〉∈I(ṘµX.[~Θ])∧
〈nΘj , m, g1, . . . , gm〉∈I(ṘµX.[~Θ])∧
f1{[[φj

1(X)]][X := Pα]}g1∧· · ·∧
fm{[[φj

m(X)]][f1, . . . , fm−1][X := Pα]}gm

 .

Clearly, Pα⊂Pα+1⊂I(ṘµX.[~Θ])×I(ṘµX.[~Θ]).
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• For a limit ordinal θ, Pθ def= ∪α∈θPα.

We can now interpret µX.[~Θ] by P(I(ṘµX.[~Θ])). Suppose we have the following derivation using the
introduction rule:

` t1 : φj
1(µX.[~Θ]), · · · ` tm : φj

m[t1, . . . , tm−1/x1, . . . , xm−1](µX.[~Θ])

` introµ
j (t1, . . . , tm) : µX.[Θ1, . . . , Θn]

.

By induction hypothesis, we have

[[t1]] ∈ [[φj
1(X)]][X := P(I(ṘµX.[~Θ]))],

...
[[tm]] ∈ [[φj

m(X)]][[[t1]], . . . , [[tm−1]]][X := P(I(ṘµX.[~Θ]))].

Then by the definition of P(I(ṘµX.[~Θ])), 〈nΘj ,m, [[t1]], . . . , [[tm]]〉∈P(I(ṘµX.[~Θ])).

3.2 The Model

The purpose of this section is to construct a model M on the partial applicative structure (ω, ·). In
section 4 an interpretation of ML∞

gi in M will be given. M consists of a countable set of names,
each of which is associated with a per on the set ω of natural numbers, called its extension. As
our language L has an infinite hierarchy of small universes, M must contain an infinite cumulative
recursive submodels M0,M1, · · · ,Mi, · · ·. In each of the following definitions, one first postulates a
name, one then attaches a subset of ω to the name, finally one defines an equivalence relation on the
subset. There are three kinds of judgements:

• Suppose M0, . . . ,Mi−1 have already been defined. Mi |= 〈l, m〉 means that 〈l,m〉 is a name
already defined in Mi. The number l classifies the names of a particular collection of per’s.

• Mi |= ext(n) = S says that n names S, a subset of ω.

• Mi |= x = y∈ext(n) means that x and y are equivalent in Mi.

M is inductively defined as follows:

1. Let M0 |= 〈0, 1〉, M0 |= ext(〈0, 1〉) = ω, and M0 |= x = y∈ ext(〈0, 1〉) for all x, y∈ω. So 〈0, 1〉
names the terminal per.

2. If M0 |= a and ∀x(M0 |= x∈ ext(a) ⇒ M0 |= d·x) and ∀x, y(M0 |= x = y ∈ ext(a) ⇒ M0 |=
d·x .= d·y), then d is said to be a family of names in M0 over a. For the definition of .=, see 5
below.

3. Suppose b is a family of names in M0 over a. Let π(a, b) def= 〈1, a, b〉. Then define M0 |= π(a, b),
and M0 |= n∈ext(π(a, b)) iff

∀x(M0 |= x∈ext(a) ⇒M0 |= n·x∈ext(b·x))∧
∀x, y(M0 |= x = y∈ext(a) ⇒M0 |= n·x = n·y∈ext(b·x))

and M0 |= m = n∈ext(π(a, b)) iff

M0 |= m∈ext(π(a, b))∧M0 |= n∈ext(π(a, b))∧
∀x(M0 |= x∈ext(a) ⇒M0 |= m·x = n·x∈ext(b·x)).

4. Let’s abbreviate 〈2, n, 〈n1, l1, c
1〉, · · · , 〈nn, ln, cn〉〉 to ind, where c1, c2, · · · , cn are names already

defined. Define
M0 |= ind, M0 |= ext(ind) = P(I(Rind))

where Rind = ∪k=1··nR〈nk,lk,ck〉. R〈m,l,d〉 is defined as follows (if m = nk, then intro is introk, a
code for the elements of ext(ind) of a particular form):

R〈m,l,d〉
def
=


∪i∈{1,...,m}range(ti, (l)i−1, (d

i)1)

〈intro, m, t1, · · · , tm〉

∣∣∣∣∣∣∣
(d1)0 = 1∧M0 |= t1∈ext((d1)1)
∧(d2)0 = 1∧M0 |= t2∈ext((d2)1)
∧· · ·∧(dm)0 = 1∧
M0 |= tm∈ext((dm)1)
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where d1 def= d, d2 def= (d1)2 ·t1, · · · , dm def= (· · · ((d1)2 ·t1)2 ·t2 · · ·)2 ·tm−1 and

range(t, 0, d)
def
= ∅,

range(t, l + 1, d)
def
=

t·a1 · · ··al

∣∣∣∣∣∣∣∣∣
(d)0 = 1∧M0 |= a1∈ext((d)1)∧
((d)2 ·a1)0 = 1∧M0 |= a2∈ext(((d)2 ·a1)1)
∧· · ·∧((· · · ((d)2 ·a1)2 ·a2 · · ·)2 ·an−1)0 = 1
∧M0 |= al∈ext(((· · · ((d)2 ·a1)2 ·a2 · · ·)2 ·al−1)1)
∧((· · · ((d)2 ·a1)2 ·a2 · · ·)2 ·al−1)2 ·al = 〈0, 1〉


provided that M0 |= t∈ext(d). Notice that when l = 0, t·a1 · · · al is just t. As the set of conclu-
sions of ∪k=1··nrange(nk, ck) is closed, every element of ext(ind) is of the form 〈introk, nk, t1, · · · , tnk

〉
for some k∈{1, . . . , n}.

5. M0 |= a
.= b if M0 |= a and M0 |= b and ∀x(M0 |= x ∈ ext(a) ⇔ M0 |= x ∈ ext(b)) and

∀x, y(M0 |= x = y ∈ ext(a) ⇔ M0 |= x = y ∈ ext(b)). So .= is the extensional equality. This
completes our definition of M0.

6. M1 |= 〈3, 0〉, the name of the first universe. (M1 |= x∈ext(〈3, 0〉) ⇔M0 |= x) and (M1 |= x =
y∈ext(〈3, 0〉) ⇔M0 |= x

.= y).

7. Let M1 include M0. Therefore we have intuitively M0⊂M1 and M0∈M1.

8. We then close up M1 the same way we did to M0.

9. Similarly, we can construct M2,M3, · · ·. For instance let M2 |= 〈3, 1〉,M3 |= 〈3, 2〉, · · · etc. This
completes the definition of Mi for i∈ω.

10. Let b be a family of names in Mi over a. Then M |= γ(a, b) where γ(a, b) def= 〈4, a, b〉.

M |= (c0, c1)∈ext(γ(a, b)) ⇔M |= c0∈ext(a)∧M |= c1∈ext(b·c0),

M |= (c0, c1)=(d0, d1)∈ext(γ(a, b)) ⇔M |= c0=d0∈ext(a)∧M |= c1=d1∈ext(b·c0).

We say the length of γ(a, b), len(γ(a, b)), is 2.

11. Let γ′ = γ(· · · γ(γ(a1, a2), a3), . . . , an). Suppose M |= γ′. A family f of names over γ′, noted
M |= f : γ′−→〈3, i〉, is an index of an n-ary recursive function such that if M |= (c0, . . . , cn−1)∈
ext(γ′) then Mi+1 |= f ·(c0, . . . , cn−1)∈ext(〈3, i〉) and if M |= (c0, . . . , cn−1) = (d0, . . . , dn−1)∈
ext(γ′), then Mi+1 |= f ·(c0, . . . , cn−1) = f ·(d0, . . . , dn−1)∈ext(〈3, i〉).

12. Suppose len(γ(a, b)) = n. M |= f = g : γ(a, b)−→〈3, i〉 iff M |= f : γ(a, b)−→〈3, i〉 and
M |= g : γ(a, b)−→〈3, i〉 and M |= (c0, . . . , cn−1)∈ ext(γ(a, b)) ⇒ Mi+1 |= f ·(c0, . . . , cn−1) =
g ·(c0, . . . , cn−1)∈ext(〈3, i〉).

13. Suppose M |= f : γ(a, b)−→〈3, i〉. Then M |= γ(γ(a, b), f) and len(γ(γ(a, b), f)) is len(γ(a, b))+
1.

M |= (c0, . . . , cn−1, cn)∈ext(γ(γ(a, b), f))

⇔ M |= (c0, . . . , cn−1)∈ext(γ(a, b))∧Mi |= cn∈ext(f ·(c0, . . . , cn−1)),

M |= (c0, . . . , cn−1, cn) = (d0, . . . , dn−1, dn)∈ext(γ(γ(a, b), f))

⇔ M |= (c0, . . . , cn−1) = (d0, . . . , dn−1)∈ext(γ(a, b))

∧Mi |= cn = dn∈ext(f ·(c0, . . . , cn−1)).

14. Suppose M |= A : γ−→〈3, i〉. Then M |= a : γ =⇒A iff for any x∈ext(γ), a·x∈ext(A·x). And
M |= a = b : γ=⇒A iff for any x∈ext(γ), a·x = b·x∈ext(A·x).

This completes our definition of M.
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4 The Interpretation

The interpretation ˆ : L−→M is defined inductively on the derivations of terms. A valid context is
interpreted by a name of the form γ( , ). A sequent x1 : A1, . . . , xn : An ` a : A (or equivalently
just a) is interpreted as an (equivalence class of) n-ary recursive function. A type (under a context) is
modeled by either a name or the extension of a name depending on whether the type appears on the
left hand side or right hand side of ‘:’. We will write Aˆ for Â when A is a long expression. We also
use Kleene’s notation Λx.t for an index of the function λx.t.

• Empty Context. The empty context is interpreted by 〈0, 1〉.

• Context. By induction hypothesis, M |= Â : Γ̂−→〈3, i〉. ̂Γ, x : A
def= γ(Γ̂, Â).

• Variable. x1 : A1, . . . , xi : Ai, . . . , xn : An ` xi : Ai is interpreted by the recursive function
Λx1, . . . , xn.xi.

• Universe. ̂Typei
def= Λx0. · · ·Λxn−1.〈3, i〉. Clearly Λx0. · · ·Λxn−1.〈3, i〉 is a family of names.

• Cumulativity. This rule is valid because of the cumulativity of M0, M1, . . ..

• Product. By induction hypotheses, M |= Â : Γ̂−→〈3, i〉, and M |= B̂ : γ(Γ̂, Â)−→〈3, i〉. Suppose
Γ = x1 : A1, . . . , xi : Ai, . . . , xn : An. By s-m-n theorem, there is a total recursive function h
such that

B̂ ·(x1, . . . , xn, x) = h(B̂, x1, . . . , xn)·x.

For M |= (a0, . . . , an−1) ∈ ext(Γ̂), h(B̂, a0, . . . , an−1) is a family of names over Γ̂ for if Mi |=
a ∈ ext(Â · (a0, . . . , an−1)), Mi |= h(B̂, a0, . . . , an−1) ·a = B̂ · (a0, . . . , an−1, a). The procedure
that sends a0, . . . , an−1 to π(Â(a0, . . . , an−1), h(B̂, a0, . . . , an−1)) is obviously an n-ary recursive
function. Assign to (Γ ` Πx:A.B : Typei)ˆ an index for that function.

• Abstraction. By induction hypothesis, M |= M̂ : γ(Γ̂, Â)=⇒ B̂. Suppose len(Γ̂) = n. Again by
s-m-n theorem, there is a total recursive function g such that

M̂ ·(x1, . . . , xn, x) = g(M̂, x1, . . . , xn)·x.

Let ̂λx:A.M be this g. We need to show that M |= ̂λx:A.M : Γ̂ =⇒ ̂Πx:A.B. By induction
hypothesis, M |= Â : Γ̂−→〈3, i〉, M |= B̂ : γ(Γ̂, Â)−→〈3, i〉, M |= M̂ : γ(Γ̂, Â) =⇒ B̂. Suppose
M |= (a0, . . . , an−1) ∈ ext(Γ̂). For any a such that M |= a ∈ ext(Â ·(a0, . . . , an−1)), we havêλx:A.M ·a = g(M̂, a0, . . . , an−1) ·a = M̂ · (a0, . . . , an−1, a). But Mi |= M̂ · (a0, . . . , an−1, a) ∈
ext(B̂ ·(a0, . . . , an−1, a)). It follows that Mi |= ̂λx:A.M ·a ∈ ext(h(B̂, a0, . . . , an−1) ·a) where h
is obtained in the previous case. The second condition in the definition of γ can be similarly
verified. Therefore M |= ̂λx:A.M : Γ̂=⇒ ̂Πx:A.B.

• Application. By induction hypotheses, M |= M̂ : Γ̂=⇒ ̂Πx:A.B and M |= N̂ : Γ̂=⇒ Â. M̂ ·N is
interpreted as Λx1, . . . , xn.(M̂ ·(x1, . . . , xn))·(N̂ ·(x1, . . . , xn)).

• Transitivity. This rule is obviously valid in the model.

• Formation. By induction hypothesis, M |= Θ̂k : γ(Γ̂,Λx0, . . . , xn−1.〈3, i〉)−→〈3, i〉. Because
Mi+1 |= 〈0, 1〉∈ext(〈3, i〉), Mi+1 |= Θ̂k ·(a0, . . . , an−1, 〈0, 1〉)∈ext(〈3, i〉) for M |= (a0, . . . , an−1)
∈ext(Γ̂). We assign to µ̂(a0,...,an−1) the number

〈2, n, 〈n1, l1, Θ̂1 ·(a0, . . . , an−1, 〈0, 1〉)〉, . . . , 〈nn, ln, Θ̂n ·(a0, . . . , an−1, 〈0, 1〉)〉〉,

where li = 〈l1i , . . . , l
ni
i 〉 for i ∈ {1, . . . , n}. Here for o ∈ {1, . . . , ni}, loi is q + 1 if φio(X) is the

type Πz1:K1 · · ·Πzq:Kq.X and is 0 if φio(X) does not contain X. So µ̂ is Λx1, . . . , xn.µ̂(x1,...,xn).

• Introduction. We have already explained how the terms of introduction form should be inter-
preted.
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• Elimination and Computation. By induction hypothesis, for any k ∈ {1, . . . , n} and any M |=
(a0, . . . , an−1)∈ext(Γ̂),

gk(x, y) def= f̂k(a0, . . . , an−1, (x)2, . . . , (x)nk+1, φ̂�kk1
[(x)2, . . . , (x)k1 ] · (y) · (x)k1+1,

. . . , φ̂�kkp
[(x)2, . . . , (x)kp ] · (y) · (x)kp+1)

is a recursive function. By Church’s thesis, the following function

f(a0,...,an−1)(x, y) def=


g1(x, y); if (x)0 = intro1∧(x)1 = n1

g2(x, y); if (x)0 = intro2∧(x)1 = n2

...
gn(x, y); if (x)0 = intron∧(x)1 = nn

is a recursive function. Besides there is a Turing machine that takes g1-th, g2-th,. . . and gn-
th Turing machines and constructs the f(a0,...,an−1)-th Turing machine. To see that, one no-
tices that all such a machine has to do is to plug the g1-th, g2-th,. . . and gn-th Turing ma-
chines into appropriate places in a machine that computes a branching programme; then it
imitates a universal Turing machine and starts generating (n + 2)-ary Turing machine; upon
generating the i-th machine, it compares it to the composed one token by token; when it
recognizes the m-th machine, it returns m and stops. By recursion theorem, there is (an in-
dex of) a recursive function r(a0,...,an−1)(f(a0,...,an−1)) such that r(a0,...,an−1)(f(a0,...,an−1)) ·x '
f(a0,...,an−1)(x, r(a0,...,an−1)(f(a0,...,an−1))) where f ' g iff (f ↑ ∧g ↑) or (f ↓⇔ g ↓)∧(f ↓⇒ f = g).
Interpret recµ(f1, . . . , fn) by Λx1, . . . , xn.r(x1,...,xn)(f(x1,...,xn)). Now we have to argue that

M |= Λx1, . . . , xn.r(x1,...,xn)(f(x1,...,xn)) : Γ̂=⇒ ̂Πz:µ.Pµ(z).

Given M |= (a0, . . . , an−1)∈ext(Γ̂),

(Λx1, . . . , xn.r(x1,...,xn)(f(x1,...,xn)))·(a0, . . . , an−1)
= r(a0,...,an−1)(f(a0,...,an−1)).

For any M |= t∈ext(µ̂(a0,...,an−1)), t must be of the form

〈introk, nk, tk1, . . . , tknk
〉

for some k∈{1, . . . , n}. Then

r(a0,...,an−1)(f(a0,...,an−1))t
' f(a0,...,an−1)(t, r(a0,...,an−1)(f(a0,...,an−1)))

= f̂k(a0, . . . , an−1, tk1, . . . , tknk
, φ̂�kk1

[tk1, . . . , tkk1−1](r(a0,...,an−1)

(f(a0,...,an−1)))tk1 , . . . ,

φ̂�kkp
[tk1, . . . , tkkp−1](r(a0,...,an−1)(f(a0,...,an−1)))tkp

)

where by definition φ̂�kk1
[tk1, . . . , tkk1−1](r(a0,...,an−1)(f(a0,...,an−1)))tk1 is, say

Λx1, . . . , xm.r(a0,...,an−1)(f(a0,...,an−1))(tkk1x1 · · ·xm).

We are reduced to show that r(a0,...,an−1)(f(a0,...,an−1))(tkk1x1 · · ·xm) etc. are the right kind of
functions. But this is the induction principle associated with the definition of the corresponding
rule set.

• Finally, let’s explain how substitution is interpreted. Suppose Γ ` N : A and Γ, x : A ` M :
B. Then Γ ` M [N/x] : B[N/x] is interpreted by M |= M̂ ◦ 〈id, N̂〉 : Γ̂ ⇒ ̂B[N/x] where
M̂ ◦ 〈id, N̂〉 is the n-ary recursive function such that if M |= (a0, . . . , an−1) ∈ ext(Γ̂), then
(M̂ ◦ 〈id, N̂〉) · (a0, . . . , an−1) = M̂ · (a0, · · · , an−1, N̂ · (a0, . . . , an−1)). Similarly, Γ ` B[N/x] :
Typei is interpreted by M |= B̂ ◦ 〈id, N̂〉 : Γ̂ =⇒〈3, i〉 such that (B̂ ◦ 〈id, N̂〉)·(a0, . . . , an−1) =
B̂ · (a0, . . . , an−1, N̂ · (a0, . . . , an−1)). Notice that M |= M̂ · (a0, . . . , an−1, N̂ · (a0, . . . , an−1)) ∈
ext(B̂ ·(a0, . . . , an−1, N̂ ·(a0, . . . , an−1))) follows from M |= M̂ : γ(Γ̂, Â)=⇒B̂.
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This completes the definition of the interpretation. Let us consider the β-rule:

Γ, x : A ` M : B Γ ` N : A

Γ ` (λx:A.M)·N = M [n/x] : B[N/x]
.

By definition ̂λx:A.M
def= g where g is obtained from s-m-n theorem such that if M |= (a0, . . . , an−1)∈

ext(Γ̂), then (g · (a0, . . . , an−1)) · (N̂ · (a0, . . . , an−1)) = M̂ · (a0, . . . , an−1, N̂ · (a0, . . . , an−1)). But M̂ ·
(a0, . . . , an−1, N̂ ·(a0, . . . , an−1)) = ̂M [N/x]·(a0, . . . , an−1) and (g·(a0, . . . , an−1))·(N̂ ·(a0, . . . , an−1)) =
((λx:A.M)·N)ˆ·(a0, . . . , an−1).

Now we explain why the interpretation is sound with respect to the η-rule:

Γ ` f : Πx:A.B

Γ ` f = λx:A.fx : Πx:A.B
.

By induction hypothesis, M |= f̂ : Γ̂ =⇒ ̂Πx:A.B. From f̂ one can effectively obtain an (n+1)-ary
recursive function f̂ ′ such that for M |= (a0, . . . , an−1) ∈ ext(Γ̂), Mi |= an ∈ ext(Â ·(a0, . . . , an−1)),
f̂ ′ ·(a0, . . . , an−1, an) = f̂ ·(a0, . . . , an−1). Here f̂ ′ is the denotation of Γ, x : A ` f : Πx:A.B. We also
have M |= x̂ : γ(Γ̂, Â) =⇒ Â. By definition, λx:A.fx is interpreted by an n-ary recursive function g
such that

(f̂ ′ ·(a0, . . . , an−1, an))·(x̂·(a0, . . . , an−1, an)) = (g ·(a0, . . . , an−1))·an.

But the left hand side of the above equation is equal to (f̂ ·(a0, . . . , an−1)) ·an by definition. It
follows that

Mi |= g ·(a0, . . . , an−1) = f̂ ·(a0, . . . , an−1)∈ext(( ̂Πx:A.B)·(a0, . . . , an−1)).

Therefore M |= g = f̂ : Γ̂=⇒ ̂Πx:A.B.

5 Positivity Need Not be Strict

If X : Typei ` φ(X) : Typei and φ(X) is positive (instead of strictly positive), the definition of PA

and f� remains virtually unchanged.

• If φ(X) = X, then Pφ(A)
def= PA and φ�(f) def= f .

• If φ(X) = Πx1:K1. · · ·Πxm:Km.X, then

Pφ(A)
def= λz:φ(A).Πx1:K1[A/X]. · · ·Πxm:Km[A/X].PA(zx1 · · ·xm),

φ�(f) def= λz:φ(A).λx1:K1[A/X]. · · ·λxm:Km[A/X].f(zx1 · · ·xm).

One is tempted to relax the strict positivity condition in the definition of generalized inductive types.
This is reinforced by the fact that what we have given is a sound interpretation of this more liberal
inductive types. Let’s first see an example. Suppose Θ1(X) = Πx:φ(X).X, Θ2(X) = X and φ(X) =
Πy:X→A.X. Some of the rules concerned with µX.[Θ1,Θ2] are

`⊥: µ

` t : (µ→A)→µ

` intro(t) : µ

` P : µ→Typei ` f0 : P (⊥)
x : (µ→A)→µ, y : Πz:µ→A.P (xz) ` f1 : P (intro(x))

` rec(f0, f1)(⊥) = f0 : P (⊥)

` P : µ→Typei ` t : (µ→A)→µ ` f0 : P (⊥)
x : (µ→A)→µ, y : Πz:µ→A.P (xz) ` f1 : P (intro(x))

` rec(f0, f1)(intro(t)) = f1(t, λz:µ→A.rec(f0, f1)(tz)) : P (intro(t))
.

6 General Inductive Types

As we have observed in the last section, Pφ(A) and φ�(f) are well-defined as long as φ(X) is of the form
Πx1:K1. · · ·Πxm:Km.X. We will call general inductive types those defined in section 2 by dropping the
strictness condition on positivity.
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Definition 6.1 Suppose Γ, X : Typei ` φ(X) : Typei. (i) If φ(X) does not contain X, then it is
both positive and negative with respect to X. (ii) If φ(X) = X, then it is positive with respect to
X. (iii) If φ(X) = Πx:G.H and X is positive in H and negative in G, then X is positive in φ(X).
(iv) If φ(X) = Πx:G.H and X is positive in G and negative in H, then X is negative in φ(X). A
general constructor type Θ(X) is a type of the form Πx1:φ1(X). · · ·Πxm:φm(X).X such that for each
k ∈ {1, . . . ,m}, either φk(X) does not contain X or φk(X) = Πxk1 :Kk1(X). · · ·Πxkmk

:Kkmk
(X).X

with Kk1(X), . . . ,Kkmk
(X) being negative with respect to X.

General inductive types are defined similarly as the generalized inductive types except that constructor
types are replaced by general constructor types.

Some questions naturally arise:

1. Is this extra generality useful?

2. Is the meta theory of the these types anything different from that of the generalized inductive
types?

3. What is the model theoretical justification?

We do not have sufficient information to answer question 1. Recently Martin Hofmann1 discovered a
programme which makes use of a non-strictly positive datatype. In Mart́ın Abadi2, it is shown how
Scott numerals can be typed as terms of a polymorphic type which codes up a non-strict covariant
functor. We need more substantial examples.

In this section we give an answer to question 3. We do this by showing that the interpretation we
have given is also an interpretation of the general inductive types.

By examination, the definitions of both the model and the interpretation remain unchanged. The
only places where one has to be careful are in the definition of rule set and in the interpretation of
terms of introduction form. First, the definition of the rule set ṘµX.[~Θ] is unchanged. To see this,

notice that in (2) f1, . . . , fm are all natural numbers. It follows that ṘµX.[~Θ] does define a rule set on

ω. The situation is in contrast to that in Set. In (1), if φj
1(X) is positive but not strictly positive with

respect to X then f1 may not be in Vκ. When that is the case, 〈nθj
,m, f1, . . . , fm〉 is not in Vκ and we

conclude that (1) does not define a rule set on Vκ. Secondly we need to show that the following holds:

[[φj
1(X)]][X := Pα]

� [[φj
1(X)]][X := Pα+1],

... (3)
[[φj

m(X)]][f1, . . . , fm−1][X := Pα]
� [[φj

m(X)]][f1, . . . , fm−1][X := Pα+1].

We now show that positivity condition is enough to guarantee (3).

Proposition 6.2 Suppose X : Typei ` φ(X) : Typei and A � B. Then the following hold: (i)
[[φ(X)]]X:=A � [[φ(X)]]X:=B if φ(X) is positive with respect to X; and dually (ii) [[φ(X)]]X:=B �
[[φ(X)]]X:=A if X is negative in φ(X). Here [[φ(X)]]X:=A is the denotation of φ(X) in Per with X
being interpreted as A.

Proof : First let’s mention that a judgement x : G ` H : Typei is interpreted as a function [[H]] :
dom([[G]]) −→Per, where [[G]] is a per (the denotation of G), such that if m[[G]]n then [[H]](m) =
[[H]](n). A term x : G ` t : H is interpreted as a recursive function [[t]] such that m[[G]]n implies
[[t]] · m{[[H]](m)}[[t]] · n. The context x : G, y : H is interpreted as the per [[x : G, y : H]] such that
m[[x : G, y : H]]n if and only if (m)0[[G]](n)0 and (m)1{[[H]]((m)0)}(n)1.

We now state and prove a result more general than the proposition:

Suppose X : Typei, x1 : K1, . . . , xn : Kn ` K : Typei. The for any

m∈dom([[x1 : K1, . . . , xn : Kn]]X:=A) ∩ dom([[x1 : K1, . . . , xn : Kn]]X:=B),

{[[K]]X:=A}(m) � (�){[[K]]X:=B}(m) if K is positive (negative) with respect to X.

1Electronic forum Types, 18 Feb. 1993.
2Electronic forum Types, 22 Feb. 1993.
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This is proved by induction on the structure of K.

• K is either X or does not contain X. Trivial.

• K is positive and K = Πx:G.H. Then G is negative and H positive. Because X : Type, x1 :
K1, . . . , xn : Kn ` G : Type and the induction hypothesis, for any

m∈dom([[x1 : K1, . . . , xn : Kn]]X:=A) ∩ dom([[x1 : K1, . . . , xn : Kn]]X:=B),

{[[G]]X:=A}(m) � {[[G]]X:=B}(m). And for l∈{[[G]]X:=B}(m), {[[H]]X:=A}(m, l) � {[[H]]X:=B}(m, l)
by induction hypothesis. It follows that {[[Πx:G.H]]X:=A}(m) � {[[Πx:G.H]]X:=B}(m).

• The dual to the above case is proved similarly.

The proposition is the special case when n = 0. 2

Corollary 6.3 The inclusion (3) holds in the case of general inductive types.

It is worth remarking that the classical set theoretical model can not be extended to that of the
general inductive types. The reason is that the κ-continuous functors are no longer available. The
interpretation using rule sets ([11]) also breaks down, as we have already seen, because the negativity
makes it impossible to give an inductive definition ([27]). As a consequence, the ω-Set model of the
generalized inductive types given in [15] can not be modified to interpret general inductive types in
the Calculus of Constructions.

7 Discussion

In view of the computational nature of inductive types, the result of this paper should not be surprising.
Our interpretation of general inductive types shows that these types are as computational as the
inductive ones. The questions about them are to do with pragmatics.

Unlike the interpretation of inductive types in Set, the requirement for set theory in our model is
very preliminary . The underlying rule sets can be obtained as the least fixed points of some sequences,
using the pleasant fact that ω×ω is an upper bound, thus avoiding the apparent impredicativity in
definition 3.2. Besides the lengths of these sequences are bounded by ℵ1. So the constructions of the
rule sets happen in a fixed yet very small universe.

A question remains unanswered is that to what extent the result can be formulated in the language
of category theory. There are at least two possible ways to look at the question: one is to use the
notion of T -algebras; the other is to employ Mendler’s categorical definition of recursions ([25]). The
analysis in [15] suggests that neither can be tackled in a simple-minded way.
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