
Decidability of Behavioral Equivalences in
Process Calculi with Name Scoping?

Chaodong He, Yuxi Fu, Hongfei Fu

BASICS, Department of Computer Science
Shanghai Jiao Tong University, Shanghai 200240, China

MOE-MS Key Laboratory for Intelligent Computing and Intelligent Systems

Abstract. Local channels and their name scoping rules play a signifi-
cant role in the study of the expressiveness of process calculi. The paper
contributes to the understanding of the expressiveness in the context
of CCS by studying the decidability issues of the bisimilarity/similarity
checking problems. The strong bisimilarity for a pair of processes in
the calculi with only static local channels is shown Π0

1 -complete. The
strong bisimilarity between those processes and the finite state processes
is proved decidable. The strong similarity between the finite state pro-
cesses and the processes without name-passing capability is also shown
decidable.

1 Introduction

Process calculi are usually Turing complete. The known proofs of Turing com-
pleteness share the same guideline that counting is represented as the nesting
of suitable components [4, 6, 20]. In the name-passing calculi [24, 26], the encod-
ings of counter [4, 6] depend on the existence of local channels and some degrees
of name-passing capabilities. In the setting of CCS-like calculi, there are several
Turing complete variants in which local channels are provided by the localization
operation while name-passing capabilities are partly obtained by an explicit op-
eration such as parametric definition [23, 11] or relabeling [22], or by an implicit
dynamic-scoping recursion [28, 4].

A fundamental problem in the area of system verification is that of equiva-
lence (or preorder) checking [3]. In concurrency theory these are the problems
of deciding whether two given processes are behaviorally equal, or whether one
process is behavioral close to the other. Among these equivalences (or preorders),
bisimilarity (or similarity) plays a prominent role.

This paper explores the decidability issues of bisimilarity/similarity checking
problems for various subcalculi of CCS classified by different name scoping rules,
in which the capability of producing and manipulating local channels becomes
weaker and weaker. These decidability results contribute to the understanding
of the way productions and mobilities of local channels affect the expressiveness.

? The work is supported by NSFC (60873034, 61033002).

CCSµ◦ // CCSµ• // CCSµ // CCSPdef

CCS!
◦

//

OO

CCS!
•

//

OO

CCS!

OO

Fig. 1. CCS Hierarchy

The seven subcalculi of CCS studied in this paper are given in Fig. 1. In the
diagram an arrow ‘ // ’ indicates the sub-language relationship. These seven
subcalculi are further divided into four classes in which the scoping rules of local
channel names are weakened gradually.

The first class contains CCSPdef , the full CCS with parametric definition
(but without relabeling), which is known to be Turing complete [11]. In CCSPdef

process copies can be nested at arbitrary depth by the name-passing capability
offered by parametric definition. Turing completeness implies that all behavioral
equivalences and preorders for CCSPdef are undecidable.

The second class contains CCSµ and CCS!. These two subcalculi have the
power of producing new local channels but do not have the power of passing
names around. In both models the infinite behaviors are specified by (static
scoping) recursion and replication respectively. They are not Turing complete
because they are not expressive enough to define the process Counter in the
sense of Section 2.5 of [10]. For the readers unfamiliar with the static scoping
recursion, we give the following illustration. Static scoping and dynamic scoping
are different ways of manipulating local names when unfolding recursions [11,

10]. When a process is defined as P
def
= µX.(a | (a)(a |X)), the static scoping

requires that the local a and the global a must be distinguished before unfold-
ing. That is, µX.(a | (a)(a |X)) is understood the same as µX.(a | (a′)(a′ |X)).
The recursion used in [4, 6] admits dynamic scoping, meaning that P should
be understood as a | (a)(a | a | (a)(a |P)), which induces the infinite computation

P
τ−→ a | (a)(0 |0 | (a)(a |P))

τ−→ It is pointed out in [11] that the dynamic
scoping recursion can be encoded via parametric definition. For this reason we
shall only consider the parametric definition in this paper.

The third class contains CCSµ• and CCS!
•. They are the subcalculi of CCSµ

and CCS! which have only static local names. Here ‘static’ means that no local
channels can be produced during the evolution of a process. In these situa-
tions, localizations can only act as the outermost constructors, and processes
in CCSµ• and CCS!

• can be assumed in the form (ã)P where the inner process
P is localization-free. In this paper the word ‘static’ is only used in the con-
text of ‘static local names’ in order to avoid confusion with the ‘static scoping
recursion’.

The fourth class contains CCSµ◦ and CCS!
◦, where the localization operator

are removed completely. For those subcalculi, strong bisimilarity is decidable [7].
We will use notation L1∼L2 (or L1 -L2) to indicate the problem of check-

ing strong bisimilarity (or strong similarity) between an L1 process and an L2

2

L L∼L L∼FS FS-L L-FS

CCS!
◦ X [7] X [7] ? ?

CCSµ◦ X [7] X [7] ? ?

CCS!
• ? ? ? ?

CCSµ• ? ? ? ?

CCS! ? ? ? ?

CCSµ ? ? ? ?

CCSPdef × [4, 11] × [4, 11] × [4, 11] × [4, 11]

“∼”: strong bisimilarity
“-”: strong similarity

“X”: known decidable
“×”: known undecidable
“?”: unknown

Fig. 2. Problems to Explore

process. These problems are indicated by the question marks in the table of
Fig. 2. The notation FS stands for the class of the finite state processes. The
contributions of this paper are summarized as follows.

– We show the undecidability (Π0
1 -hardness) of CCSµ• ∼CCSµ• by a reduction

from the halting problem of Minsky Machine. The relevant technique is called
‘Defender’s Forcing’ [14, 18], which is widely used in undecidability proofs
for bisimilarity checking. Typical examples of this technique can also be
found in [17, 18]. The reduction is then modified to show the undecidability
(Π0

1 -hardness) of CCS!
•∼CCS!

•. This resolves the four problems in the first
column of the table.

– Busi, Gabbrielli and Zavattaro establish in [5] the undecidability (Σ0
1 -

hardness) of the weak bisimilarity of CCS!. By modifying the proof of Busi et
al., CCS!∼FS is shown undecidable (Π0

1 -hard), which immediately implies
the undecidability (Π0

1 -hardness) of CCSµ∼FS.

– By constructing a translation from CCS!
• to the Labeled Petri Net, we

demonstrate the decidability of CCS!
•∼FS, CCS!

•-FS and FS-CCS!
•,

making use of Jančar and Moller’s decidability result [16] on the Labeled
Petri Nets. The same approach applies to CCSµ• .

– We show that FS-CCS! is decidable. The technique used in the proof is
simulation base, originated from the technique of bisimulation base pioneered
by Caucal and widely used in decidability proofs of bisimilarity. Our proof
also makes use of expansion tree presented in [17] and the well-structured
transition system [8] for CCS! [4, 10]. In literature there are examples of
formalisms [19] in which bisimilarity is decidable while similarity is not. We
are not aware of any examples showing that the opposite situation happens.
This result is more or less surprising.

The finite branching property guarantees that the bisimilarity can be ap-
proximated in the sense that P 6∼ Q if and only if P 6∼n Q for some n. The
approximation can also be applied to the similarity relation. It necessarily im-
plies that all the problems in Fig. 2 are actually in Π0

1 . So we only need to show
Π0

1 -hardness to get Π0
1 -completeness. We remark that a relation R(x) is in Σ0

1

(resp. Π0
1) in arithmetic hierarchy if it can be expressed by ∃y.S(x, y) (resp.

3

Choice ∑n
i=1 λi.Ei

λi−→ Ei
Composition

E
λ−→ E′

E |F λ−→ E′ |F

E
l−→ E′ F

l−→ F ′

E |F τ−→ E′ |F ′

Localization
E

λ−→ E′ a not appear in λ

(a)E
λ−→ (a)E′

Fixpoint
E{µX.E/X} λ−→ E′

µX.E
λ−→ E′

Fig. 3. Semantics of CCSµ

∀y.S(x, y)) for some decidable relation S(x, y). Clearly R(x) is in Σ0
1 if and only

if its complement is in Π0
1 .

The rest of the paper is organized as follows. Section 2 lays down the prelimi-
naries. Section 3 investigates the problems of deciding the strong bisimilarity on
the CCSµ processes and the CCS! processes. Section 4 considers the problem of
deciding the strong bisimilarity/similarity between a CCS!/CCSµ process and a
finite state process. Section 5 gives concluding remarks.

Most proofs and technical details are omitted. See [13] for complete coverage.

2 Basic Definition and Notation

To describe the interactions between systems, we need channel names. The set
of the names N is ranged over by a, b, c, . . . , and the set of the names and
the conames N ∪ N is ranged over by l, The set of the action labels A =
N ∪N ∪ {τ} is ranged over by λ. To define the fixpoint operator and we need a
set of process variables V ranged over by X,Y, Z.

The set ECCSµ of CCSµ terms is generated by the following grammar.

E ::= 0 | X |
n∑
i=1

λi.Ei | E |E′ | (a)E | µX.E.

A name a appeared in a localization term (a)E is local. A name is global if it is
not local. The variable X in the fixpoint term µX.E is bound. A variable is free
if it is not bound. A CCSµ term containing no free variables is a CCSµ process.

In µX.E it is not required that X be guarded in E because unguarded recur-
sion can be encoded by guarded recursion in CCSµ [10]. With guarded recursion
and guarded choice

∑n
i=1 λi.Ei, finite branching property is guaranteed. Once

unguarded recursion is admitted, replication !P can be defined by the recursion
µX.(X |P).

The standard semantics of CCSµ is given by the labeled transition system
(ECCSµ ,A,−→), where the elements of ECCSµ are often referred to as states. The
relation −→ ⊆ ECCSµ × A × ECCSµ is the transition relation. The membership

(E, λ,E′) ∈ −→ is always indicated by E
λ−→ E′. The relation −→ is generated

inductively by the rules defined in Fig. 3. The symmetric rules are omitted.

4

Standard notations and conventions in process calculi will be used through-
out the paper. The inactive process 0 is omitted in most occasions. For instance
a.b.0 is abbreviated to a.b. A finite sequence (or set) of names a1, . . . , an is
often abbreviated to ã. The guarded choice term

∑n
i=1 λi.Ei is usually writ-

ten as λ1.E1 + · · · + λn.En. Processes are not distinguished syntactically up to
the commutative monoid generated by ‘+’ and ‘ | ’. We shall write

∏n
i=1 Pi for

P1 | . . . |Pn. The notation ‘≡’ is used to indicate syntactic congruence. We shall
write PL for the set of the processes definable in L. The set of the derivatives
of a process P , denoted by Drv(P), is the set of the processes P ′ such that

P
λ1−→ · · · λn−→ P ′ for some n ≥ 0 and λ1, . . . , λn ∈ A.
CCS! is obtained from CCSµ by using the replication instead of the fixpoint

operation. The grammar is defined as follows:

P ::= 0 |
n∑
i=1

λi.Pi | P |P ′ | (a)P | !P.

The operational semantics of the replication stated below is from [4, 5], which
enjoys the finite branching property.

Replication
P

λ−→ P ′

!P
λ−→ P ′ | !P

P
l−→ P ′ P

l−→ P ′′

!P
τ−→ P ′ |P ′′ | !P

The advantage of the replication is that one could give a first order presentation
of CCS. There is no need for process variables. This is why the above grammar
and rules are defined on the set of the processes, not on the set of the terms.

A binary relation R on PL is a strong simulation if, for each pair (P,Q) ∈ R,
P can be simulated by Q in the following sense:

If P
λ−→ P ′, then Q

λ−→ Q′ for some Q′ such that (P ′, Q′) ∈ R.

A binary relation R is a strong bisimulation if both R and its inverse R−1
are strong simulations. The strong similarity - is the largest strong simulation,
and the strong bisimilarity ∼ is the largest strong bisimulation. The former is a
preorder and the latter is an equivalence.

Strong bisimilarity has a game theoretic characterization known as the bisim-
ulation game. It is a complete-information dynamic game played by two players
named ‘attacker’ and ‘defender’. The labeled transition system (PL,A,−→) is
perceived as a game-board. During the play the current position is described by
a pair of states (P1, P−1) ∈ PL × PL. The game is played in rounds. In each
round the players change the position according to the following rules:

1. The attacker chooses a state i ∈ {1,−1}, an action λ ∈ A, and some P ′i ∈ PL
such that Pi

λ−→ P ′i .

2. The defender responds by choosing some P ′−i ∈ PL such that P−i
λ−→ P ′−i;

and then (P ′1, P
′
−1) becomes the current position of the next round.

If the defender never gets stuck, it wins. Otherwise the attacker wins. It is easy
to see that the defender has a winning strategy in the bisimulation game starting
from the position (P,Q) if and only if P ∼ Q.

5

3 Undecidability of Strong Bisimilarity

This section aims at the undecidability of CCSµ∼CCSµ and CCS!∼CCS!. In
fact, by many-one reductions from the halting problem of Minsky Machines, it
can be shown that both CCSµ• ∼CCSµ• and CCS!

•∼CCS!
• are Π0

1 -complete.
Two-register Minsky Machine is a well-known Turing complete computa-

tional model [25]. A Minsky Machine R has two registers r1 and r2 that can
hold arbitrary large natural numbers. The behavior of R is specified by a se-
quence of instructions {(1 : I1), (2 : I2), . . . , (n− 1 : In−1), (n : halt)}. For each
i ∈ {1, . . . , n− 1}, the i-th instruction may be in one of two forms:

- (i : Succ(rj)): The instruction adds 1 to the content of the register rj and
i+ 1 becomes the value of the program counter.

- (i : Decjump(rj , s)): If the content of the register rj is not zero, the instruc-
tion decreases it by 1 and i + 1 becomes the value of the program counter;
otherwise s becomes the value of the program counter.

The configuration of R is given by the tuple (i; c1, c2) where i is the program
counter indicating the instruction to be executed, and c1,c2 are the current
contents of the registers. The computation of R is defined in a natural way via
a (finite or infinite) sequence of configurations starting from a certain initial
configuration. Whenever the n-th instruction (known as the halting state) is
reached, the computation terminates.

The halting problem of Two-register Minsky Machines, whose undecidability
is well-known, is formally stated as follows:

Problem: HaltingMinskyMachine
Instance: A Two-register Minsky Machine R.
Question: Does the computation of R terminate when R starts from the initial

configuration (1; 0, 0)?

Lemma 1. HaltingMinskyMachine is undecidable. It is Σ0
1 -complete in the

arithmetic hierarchy.

If a process calculus L is able to encode the computation of a Minsky Machine
faithfully, undecidability of L∼L can be obtained by a straightforward reduction
from HaltingMinskyMachine, which confirms that the i-th Minsky Machine
Ri does not halt if and only if the interpretation PRi of Ri is strongly bisimilar
to !τ . Recall that there is no such reduction for any calculi in Fig. 1 except for
CCSPdef .

In the rest of this section, we outline the reductions that demonstrate the
undecidability of CCSµ• ∼CCSµ• and CCS!

•∼CCS!
•.

3.1 Undecidability of CCSµ
• ∼CCSµ

•

The idea is to construct a CCSµ• process which models a given Minsky Machine
R in a nondeterministic fashion. The encoding is nondeterministic because it in-
troduces unfaithful computations which do not follow the expected behavior of

6

R. Two slightly modified copies of the constructed process are taken for bisim-
ilarity checking. The modifications guarantee that in the bisimulation game,
whenever the attacker takes the ‘unfaithful’ move at some round, the defender
have the ability to punish the attacker by moving to a pair of trivially bisimilar
states. Thus the attacker are ‘forced’ to take the ‘faithful’ move at each round
and the defender will lose the game if R ever halts. This technique is known as
‘Defender’s Forcing’ [14, 18].

The construction is motivated by a construction in [17]. For convenience
constant definitions are used instead of µ-operations. Since localization operator
must not appear underneath any µ-operations, no confusion will arise. Two
slightly modified copies are given directly instead of describing the encoding in
advance.

Let R be an instance of HaltingMinskyMachine whose instruction set is
{(1 : I1), (2 : I2), . . . , (n − 1 : In−1), (n : halt)}. Without using the localization
operator the processes {Pi}ni=1 and {Qi}ni=1 are defined as follows:

– Pi
def
= incj .Pi+1 and Qi

def
= incj .Qi+1 if the i-th instruction is (i : Succ(rj)).

– If the i-th instruction is (i : Decjump(rj , s)), then let

Pi
def
= decj .d.Pi+1 + zeroj .(tt.z.Ps + ff.z.Qs),

Qi
def
= decj .d.Qi+1 + zeroj .(tt.z.Qs + ff.z.Ps).

– Pn
def
= halt.0 and Qn

def
= 0 for the n-th instruction (n : halt).

The processes {Pi}ni=1 and {Qi}ni=1 are two families of slightly different processes
that interpret the instructions of R. Special attention should be paid to the
gadget ff.z.Qs (or ff.z.Ps) in the defining equation of Pi (or Qi) for instruction
(i : Decjump(rj , s)). This gadget is designed to ‘force’ the attacker to stick to
the faithful moves. Also notice that the only asymmetry between Pi’s and Qi’s
is that Pn can perform a special action halt whereas Qn cannot.

The processes PseudoCounterj(k), for j ∈ {1, 2}, introduced below are used
to partially model the registers of R.

PseudoCounterj(k)
def
= Cj | Cj | . . . | Cj︸ ︷︷ ︸

k

| Oj ,

where Oj and Cj are defined as follows without using the localization operation:

Oj
def
= incj .(Cj | Oj) + zeroj .tt.Oj ,

Cj
def
= decj .0 + zeroj .ff.Cj .

The process PseudoCounterj ’s are the weak forms of the counter, for they lack
the ability to zero-test — they can make a ‘zero’ move while the actual value of
the counters are positive. However PseudoCounterj ’s are good enough for the
purpose of deriving the undecidability results we want.

7

Finally every configuration of R is modeled by the following two slightly
different processes.

ConfigP (i; c1, c2)
def
= (ĩnc)(d̃ec)(z̃ero)(tt)(ff)

(Pi |PseudoCounter1(c1) |PseudoCounter2(c2)),

ConfigQ(i; c1, c2)
def
= (ĩnc)(d̃ec)(z̃ero)(tt)(ff)

(Qi |PseudoCounter1(c1) |PseudoCounter2(c2)).

The correctness of the above encoding is guaranteed by Lemma 2, Lemma 3,
and Lemma 4, which eventually lead to Theorem 1.

Lemma 2. Let (i; c1, c2) be a configuration of R and (i : Succ(rj)) be the i-th
instruction. Then there is a unique continuation of the bisimulation game from
the pair of processes ConfigP (i; c1, c2) and ConfigQ(i; c1, c2) such that, after
one round, the players reach the pair ConfigP (i; c′1, c

′
2) and ConfigQ(i; c′1, c

′
2)

where c′j = cj + 1 and c′3−j = c3−j.

Lemma 3. Let (i; c1, c2) be a configuration of R and (i : Decjump(rj , s)) be
the i-th instruction. Assume that a bisimulation game is played from the pair
ConfigP (i; c1, c2) and ConfigQ(i; c1, c2). The followings hold:

(a) If cj = 0, then there is a unique continuation of the game such that after three
rounds, the players reach the pair ConfigP (s; c1, c2) and ConfigQ(s; c1, c2).

(b) If cj > 0 and the attacker chooses the τ action induced by the synchronization
via channel decj, then the defender has a way to continue the game such
that, after two rounds, ConfigP (i; c′1, c

′
2) and ConfigQ(i; c′1, c

′
2) are reached,

where c′j = cj−1 and c′3−j = c3−j. If the defender does not play in this way,
there is a way for the attacker to win the game.

(c) If cj > 0 and the attacker chooses the τ action induced by the synchronization
via channel zeroj, then there is a way for the defender to win the game.

Lemma 4. The execution of R from the configuration (1; 0, 0) terminates if and
only if ConfigP (1; 0, 0) 6∼ ConfigQ(1; 0, 0).

Theorem 1. Both CCSµ• ∼CCSµ• and CCSµ∼CCSµ are Π0
1 -complete.

3.2 Undecidability of CCS!
• ∼CCS!

•

The result established in Section 3.1 does not immediately imply the same result
for CCS!/CCS!

•. A well known fact is that recursion can be turned into replica-
tion [26, 11] by the encoding J K whose nontrivial part is given by JXiK = ai.0 and
JµXi.EK = (ai)(ai | !ai.JEK), where names ai’s are fresh. However this encoding
does not give rise to a strong bisimulation. Another problem is that an encoding
from CCSµ to CCS! would not always produce an encoding from CCSµ• to CCS!

•
automatically since they introduce additional local names.

Undecidability of CCS!
•∼CCS!

• does not rely on the existence of such an
encoding. The basic idea and the construction in Section 3.1 can be repeated

8

with subtle modifications. The intuition of the next encoding is to interpret every
instruction of a Minsky Machine R by a process of the form !addr.opr, where addr
should be understood as the address of the instruction and opr the operation of
the instruction. The difficulty is to guarantee that only a finite number of local
channels are necessary. In the following definition 2n extra static local channels
{instiP , instiQ}ni=1 are used.

– If the i-th instruction is (i : Succ(rj)), let

Pi
def
= !instiP .incj .insti+1

P , Qi
def
= !instiQ.incj .insti+1

Q .

– If the i-th instruction is (i : Decjump(rj , s)), let

Pi
def
= !instiP .(decj .d.insti+1

P + zeroj .(tt.τ.τ.z.instsP + ff.ack.z.instsQ)),

Qi
def
= !instiQ.(decj .d.insti+1

Q + zeroj .(tt.τ.τ.z.instsQ + ff.ack.z.instsP)).

– For the n-th instruction (n : halt), let

Pn
def
= !instnP .halt.0, Qn

def
= !instnQ.0.

In the following modification of PseudoCounterj(k), {mj}2j=1 and ack are the
only extra local channels introduced.

PseudoCounterj(k)
def
= Cj | Cj | . . . | Cj︸ ︷︷ ︸

k

| Oj | !mj .ack.Cj ,

where Oj
def
= !(incj .Cj + zeroj .tt), and Cj

def
= decj + zeroj .ff.mj . When zeroj is

triggered on some Cj , channel mj is used to require a new copy of Cj from
the resource !mj .ack.Cj , and after that, the channel ack ais used to inform the
process that triggers the action zeroj . Such treatment will make the whole system
sequential. As a side-effect it will take two more computation steps when the zero-
testing is unfaithfully chosen by the attacker, and for the defender, two extra
τ ’s are introduced into the definition of Pi and Qi. The configuration (i; c1, c2)
of R is interpreted by the following two processes:

Config!P (i; c1, c2)
def
= (ĩnst)(ĩnc)(d̃ec)(z̃ero)(m̃)(tt)(ff)(ack)instiP |

n∏
i=1

Pi |
n∏
i=1

Qi |
2∏
j=1

PseudoCounterj(cj)

 ,

Config!Q(i; c1, c2)
def
= (ĩnst)(ĩnc)(d̃ec)(z̃ero)(m̃)(tt)(ff)(ack)instiQ |

n∏
i=1

Pi |
n∏
i=1

Qi |
2∏
j=1

PseudoCounterj(cj)

 .

Using the same argument as in Section 3.1 we can prove the following.

Theorem 2. Both CCS!
•∼CCS!

• and CCS!∼CCS! are Π0
1 -complete.

9

4 Strong (Bi)similarity on Finite State Processes

We investigate in this section the decidability of strong bisimilarity/similarity
between a CCS!/CCSµ process and a finite state process.

4.1 Undecidability of CCS! ∼FS

The general problem CCS!∼FS is undecidable. This result depends on the con-
struction of Busi et al in Section 3 of [5], where Minsky Machines are encoded
by CCS! processes in a nondeterministic fashion. Using this encoding, one can
show that if a Minsky Machine R does not halt, the encoding of R is a CCS!

process strongly bisimilar to !τ , which cannot perform any visible actions and is
divergent in every computation branch. If R does halt, the encoding of R has at
least one divergent computation branch. This fact leads to Theorem 3.

Theorem 3. The strong bisimilarity between a process P ∈ PCCS! (or P ∈
PCCSµ) and a fixed finite state process F ∈ PFS is Π0

1 -complete.

It is worth noting that Theorem 1 of [5] confirms that the Minsky Machine R
halts if and only if R is interpreted as a CCS! process P satisfying P ≈ τ.P+halt,
which establishes the Σ0

1 -hardness of the weak bisimilarity checking problem of
CCS!. An interesting question is how to establish the Π0

1 -hardness of CCS!≈FS.
It is widely believed that checking weak bisimilarity is harder than checking the
strong bisimilarity. However the above construction does not immediately offer
an answer to the latter problem.

4.2 Decidability of CCS!
• ∼FS

Although both CCS!∼FS and CCSµ∼FS are undecidable in the general case,
their restricted versions, CCS!

•∼FS and CCSµ• ∼FS, turn out to be decidable.
These results are motivated by the following observations. Suppose P ∈ PCCS!

•
or P ∈ PCCSµ•

. We may assume that P is of the form (ã)
∏
i∈I Pi in which ã are

all the local names of P and every Pi is localization free and is not a composition.
We call (ã)

∏
i∈I Pi a concurrent normal form of P , and every Pi a concurrent

component of P . The key opoint is that no local names can be produced during
the evolution of P , and the number of the possible concurrent components of all
derivatives of P must be finite.

Based on the above observations, a strongly bisimilar encoding from CCS!
•

(or CCSµ•) to the Labeled Petri Net is constructed. With the help of the results
of Jančar et al. [16], we know that the same problem for the Labeled Petri Net
is decidable. Hence the decidability of CCS!

•∼FS and CCSµ• ∼FS.

Definition 1. A Petri Net is a tuple N = (Q,T, F,M0) and a Labeled Petri
Net is a tuple N = (Q,T, F, L,M0), where Q and T are finite disjoint sets of
places and transitions respectively, F : (Q×T)∪ (T ×Q)→ N is a flow function
and L : T → A is a labeling. M0 is the initial marking, where a marking M is
a function Q→ N assigning the number of tokens to each place.

10

A transition t ∈ T is enabled at a marking M , denoted by M
t−→, if M(p) ≥

F (p, t) for every p ∈ Q. A transition t enabled at M may fire yielding the

marking M ′, denoted by M
t−→M ′, where M ′(p) = M(p)−F (p, t) +F (t, p) for

all p ∈ Q. For each λ ∈ A, we write M
λ−→, respectively M

λ−→ M ′ to mean

that M
t−→, respectively M

t−→M ′ for some t with L(t) = λ.

In the above definition A is the set of the action labels. A Labeled Petri
Net N can be viewed as a labeled transition system (M,A,−→) with M be-
ing the markings of N . Strong bisimilarity is defined accordingly. Suppose Q =
{S1, S2, . . . , Sn} is the finite set of places. Labeled transition rules of the form

Sm1
1 Sm2

2 . . . Smnn
λ−→ S

m′1
1 S

m′2
2 . . . S

m′n
n are used to indicate that there is a tran-

sition t whose label is λ and the flow function for t is defined by F (Si, t) =
mi and F (t, Si) = m′i for every i = 1, . . . , n. A marking M is denoted by

S
M(S1)
1 S

M(S2)
2 . . . S

M(Sn)
n , which can be viewed as a multiset over Q. Thus N

is specified by (Q,A,Tr,M0), where Tr is the set of the labeled transition rules.
The next lemma is due to Jančar and Moller [16].

Lemma 5. The strong bisimilarity between a marking M0 of a Labeled Petri
Net N and a finite state process F ∈ PFS is decidable.

To describe the encoding from CCS!
• to the Labeled Petri Net, we need the

following definitions and lemma, borrowed from [10].

Definition 2. Suppose the PCCS! process P does not contain any local names.
The concurrent subprocesses of P , notation Csub(P), is defined inductively by

Csub(0)
def
= ∅,

Csub(P ′ |P ′′) def
= Csub(P ′) ∪ Csub(P ′′),

Csub(

n∑
i=1

λi.Pi)
def
= {

n∑
i=1

λi.Pi} ∪
⋃
i∈I

CSub(Pi),

Csub(!P ′)
def
= {!P ′} ∪ Csub(P ′).

Clearly if P ≡ (a)P ′ is in concurrent normal form, then Csub(P)
def
= Csub(P ′).

Lemma 6. For every process P of CCS!
• in concurrent normal form, Csub(P)

is finite, and for every P ′ ∈ Drv(P), Csub(P ′) ⊆ Csub(P).

By letting Csub(µX.E)
def
= {µX.E} ∪ Csub(E{µX.E/X}), the counterpart

of Lemma 6 for CCSµ• can be established. Now an encoding from the concurrent
normal forms of CCS!

• or CCSµ• to the Labeled Petri Net is given in the proof of
Lemma 7.

Lemma 7. There is an algorithm such that, given process P ∈ PCCS!
•

(or P ∈
PCCSµ•

) in concurrent normal form, it outputs a Labeled Petri Net NP with the
same set of the action labels and P ∼ NP .

11

Proof. Let Csub(P) = {Ci | i ∈ I} and P = (ã)(
∏
i∈I C

ni
i). The Labeled

Petri Net NP = (Q,A,−→,M0) is defined as follows. The set of the places is

Q
def
= {[Ci] | i ∈ I} and the initial marking is M0

def
=

∏
i∈I [Ci]

ni . The transition
rules are defined inductively:

– If Ci
λ−→

∏
j∈I C

nj
j , then [Ci]

λ−→
∏
j∈I [Cj]

nj is a rule provided that λ 6∈ m̃.

– If Ci1
l−→

∏
j∈I C

mj
j and Ci2

l−→
∏
j∈I C

nj
j , then [Ci1][Ci2]

τ−→∏
j∈I [Cj]

mj+nj is a rule.

The remaining work is to confirm that

{((ã)(
∏
i∈I

Cnii),
∏
i∈I

[Ci]
ni) | ni ≥ 0 for i ∈ I)}

is a bisimulation. ut

The combination of Lemma 7 and Lemma 5 produces the following.

Theorem 4. The strong bisimilarity between a process P ∈ PCCS!
•

(or P ∈
PCCSµ•

) and a finite state process F ∈ PFS is decidable.

4.3 Decidability Results of Simulation Preorder

This part focuses on the problems L-FS and FS-L. In the case that L is
CCS!

• or CCSµ• , the decidability result can be obtained via the same encoding
provided in Section 4.2 with the help of the results already known for the Labeled
Petri Net stated in Theorem 3.2 and Theorem 3.5 of [16].

Theorem 5. FS-CCS!
•, FS-CCSµ• , CCS!

•-FS, CCSµ• -FS are decidable.

Now let’s turn to CCS! or CCSµ. It has been suggested that the similarity
checking is computational harder than the bisimilarity checking. This point is
supported by two general proof methods applied to many process classes in a
paper by Kučera and Mayr [19]. These two proof methods however cannot be
used to show similar results for CCS! or CCSµ. As a matter of fact we will prove
that FS-CCS! is decidable, despite of the fact that FS∼CCS! is undecidable
by Theorem 3.

Our proof makes use of simulation bases. A simulation base is a finite subset
of - consisting only of ‘crucial’ similar pairs from which a possibly infinite sim-
ulation relation can be produced algorithmically. Similarity will be decidable if
simulation bases can be effectively constructed. For more on this technique, the
reader is referred to [3, 17, 18].

In order to get a simulation base, we shall make good use of the well-
structured transition system [8] of PCCS! , which was first pointed out by Busi et
al in [4]. Here we follow the definition from [10] with slight amendment.

Definition 3. A well quasi order (X,≤) is a preorder such that, for every infi-
nite sequence x0, x1, x2, . . . in X, there exist indexes i < j such that xi ≤ xj.

12

Definition 4. The structural expansion 4 on the CCS! processes is defined
inductively as follows:

– P 4 Q whenever Q ≡ P |R for some R;
– (a)P 4 (a)Q whenever P 4 Q;
– P 4 Q whenever P ≡ P1 |P2, Q ≡ Q1 |Q2, P1 4 Q1 and P2 4 Q2.

Notice that Definition 4 works up to structural congruence. Intuitively P 4 Q
means that Q contains at least as many possible individual processes running
concurrently as P . The relation 4 is transitive. Due to the syntactical nature
of the definition, 4 is decidable. The next two technical lemmas, due to Busi
et al, are crucial to the effective production of the simulation bases. The proof
of Lemma 8 is straightforward. For a detailed proof of Lemma 9, one may con-
sult [10].

Lemma 8 (Compatibility Lemma). Suppose that P ,Q are CCS! processes.

If P 4 Q and P
λ−→ P ′, then Q′ exists such that Q

λ−→ Q′ and P ′ 4 Q′.

Lemma 9 (Expansion Lemma). Let P ∈ PCCS! , then (Drv(P),4) is a well
quasi order.

Using the techniques and lemmas discussed above, one can infer the following
main result of the section.

Theorem 6. FS - CCS! is decidable.

5 Concluding Remark

Summary. We have studied several decidability and undecidability issues on
the bisimilarity and similarity checking problems of some subcalculi of CCS.
We have concentrated on the question of how the solutions are affected when
the capability of producing and manipulating local channels becomes weaker.
An instance is identified that similarity checking is decidable while bisimilarity
checking is not. Fig. 4 summarizes the status quo of our understanding of the
decidability property. These results offer a different angle to look at the relative
expressiveness of the subcalculi of CCS.

Related Work. The relative expressiveness of CCS is studied in [4, 5, 11, 6, 10,
2]. It is proved in [5, 11] that CCS! and CCSµ are less expressive than CCSPdef .
Two problems are left open in [11, 2]. Both are answered in [10]. One answer
is given by an encoding from CCSµ to CCS! that is codivergent and branching
bisimilar. The other is by an encoding from CCSµ to itself with only guarded
recursion. A more formal approach to the expressiveness study is proposed in [9].
In [15] the bisimilarity checking problem between the infinite-state processes and
the finite-state ones is reduced to the model checking problem of reachability of
Hennessy-Milner property. A recent survey on the decidability and complexity
results of bisimilarity checking for the processes defined in Process Rewrite Sys-
tems [21] is given in [27]. A surprising result is pointed out in [20] that strong

13

L L∼L L∼FS FS-L L-FS

CCS!
◦ X [7] X [7] X X

CCSµ◦ X [7] X [7] X X
CCS!

• × (Th.2) X (Th.4) X (Th.5) X (Th.5)

CCSµ• × (Th.1) X (Th.4) X (Th.5) X (Th.5)

CCS! × × (Th.3) X (Th.6) ?

CCSµ × × (Th.3) ? ?

CCSPdef × [4, 11] × [4, 11] × [4, 11] × [4, 11]

“∼”: strong bisimilarity
“-”: strong similarity

“X”: known decidable
“×”: known undecidable
“?”: unknown

Fig. 4. Summary of the Results

bisimilarity is decidable for a higher-order calculus. The Petri Net semantics is
proposed in [12] for CCSµ◦ with guarded recursion. In [2] a similar encoding of
CCS!

◦ into the Petri Nets is presented. Our results assert the nonexistence of
reasonable encodings from CCS!/CCSµ to the Labeled Petri Net. The interplay
between CCS! and the Chomsky Hierarchy are studied in [1].

Future Work. Recently we have attempted to set up an expansion order for
CCSµ, which we hope would help us prove the decidability of FS - CCSµ. The
problem CCS! - FS is interesting. It appears undecidable, but nothing seems
to indicate that a positive answer is unlikely. Finally notice that the number of
the static local channels used to show Theorem 1 is bounded, whereas we have
not got such a bound for Theorem 2. This may suggest that CCSµ• cannot be
encoded into CCS!

•.

Acknowledgements The authors are indebted to all the anonymous referees
for their detailed reviews on the previous version of the paper. Their criticisms,
questions and suggestions have led to a significant improvement of the paper.

References

1. Jesús Aranda, Cinzia Di Giusto, Mogens Nielsen, and Frank D. Valencia. Ccs
with replication in the chomsky hierarchy: The expressive power of divergence. In
APLAS, pages 383–398, 2007.

2. Jesús Aranda, Frank D. Valencia, and Cristian Versari. On the expressive power
of restriction and priorities in ccs with replication. In FOSSACS, pages 242–256,
2009.

3. Olaf Burkart, Didier Caucal, Faron Moller, and Bernhard Steffen. Verification on
infinite structures. In Handbook of Process Algebra, pages 545–623, 2001.

4. Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. Replication vs. recursive
definitions in channel based calculi. In ICALP, pages 133–144, 2003.

5. Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. Comparing recursion,
replication, and iteration in process calculi. In ICALP, pages 307–319, 2004.

6. Nadia Busi, Maurizio Gabbrielli, and Gianluigi Zavattaro. On the expressive power
of recursion, replication and iteration in process calculi. Mathematical Structures
in Computer Science, 19(6):1191–1222, 2009.

14

7. Søren Christensen, Yoram Hirshfeld, and Faron Moller. Decidable subsets of CCS.
Comput. J., 37(4):233–242, 1994.

8. Alain Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theor. Comput. Sci., 256(1-2):63–92, 2001.

9. Yuxi Fu. Theory of interaction. 2010. http://basics.sjtu.edu.cn/~yuxi/.
10. Yuxi Fu and Hao Lu. On the expressiveness of interaction. Theor. Comput. Sci.,

411(11-13):1387–1451, 2010.
11. Pablo Giambiagi, Gerardo Schneider, and Frank D. Valencia. On the expressiveness

of infinite behavior and name scoping in process calculi. In FoSSaCS, pages 226–
240, 2004.

12. Ursula Goltz. CCS and petri nets. In Semantics of Systems of Concurrent Pro-
cesses, pages 334–357, 1990.

13. Chaodong He, Yuxi Fu, and Hongfei Fu. Decidability of be-
havioural equivalences in process calculi with name scoping. 2010.
http://basics.sjtu.edu.cn/~chaodong/.

14. Petr Jancar and Jiŕı Srba. Undecidability of bisimilarity by defender’s forcing. J.
ACM, 55(1), 2008.

15. Petr Jančar, Antońın Kučera, and Richard Mayr. Deciding bisimulation-like equiv-
alences with finite-state processes. Theor. Comput. Sci., 258(1-2):409–433, 2001.

16. Petr Jančar and Faron Moller. Checking regular properties of petri nets. In CON-
CUR, pages 348–362, 1995.

17. Petr Jančar and Faron Moller. Techniques for decidability and undecidability of
bisimilarity. In CONCUR, pages 30–45, 1999.

18. Antońın Kučera and Petr Jancar. Equivalence-checking on infinite-state systems:
Techniques and results. TPLP, 6(3):227–264, 2006.

19. Antońın Kučera and Richard Mayr. Why is simulation harder than bisimulation?
In CONCUR, pages 594–610, 2002.

20. Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, and Alan Schmitt. On the expres-
siveness and decidability of higher-order process calculi. In LICS, pages 145–155,
2008.

21. Richard Mayr. Process rewrite systems. Inf. Comput., 156(1-2):264–286, 2000.
22. Robin Milner. Communication and concurrency. Prentice-Hall, 1989.
23. Robin Milner. Communicating and Mobile Systems: the π-calculus. Cambridge

University Press, 1999.
24. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes.

Inf. Comput., 100(1):1–77, 1992.
25. Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, 1967.
26. Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile Processes.

Cambridge University Press, 2001.
27. Jǐŕı Srba. Roadmap of Infinite results, volume Vol 2: Formal Models and Semantics.

World Scientific Publishing Co., 2004.
28. Dirk Taubner. Finite Representations of CCS and TCSP Programs by Automata

and Petri Nets, volume 369 of Lecture Notes in Computer Science. Springer, 1989.

15

