
Checking Equivalence for Higher Order Process

Yuxi Fu∗

BASICS†, Department of Computer Science
Shanghai Jiaotong University, Shanghai 200030, China

Abstract

In a higher order process calculus, recursion can be achieved by higher order communications. The
Turing complete property rules out any algorithm to decide the equivalence between two higher order
processes. The paper takes a look at a variant of the calculus of higher order processes that embodies
the idea of resource sensitiveness. Resource sensitiveness means that a process received through a
communication can only be used once. Two complete systems are given for the finite higher order
π-processes and the finite higher order CCS processes. These systems immediately suggest how to
derive algorithms to check the equivalences on the finite higher order processes.

Key Words: Process Calculus, Higher Order Mobile Process, Bisimulation

1 Motivation

Higher order features in process calculi are playing a more important role in the theory of mobile com-
puting ([8, 17]). Part of the reason for the growing importance is the demand for theoretical frameworks
to explain the ever broadening view of distributed and mobile computing. One recent model of mobile
computing, the Ambient Calculus ([1]), studies the movements of particular processes, the ambients,
from source processes to target processes. The interactions defined in the Ambient Calculus are of higher
order. Previous theoretical investigations into the higher order processes include the work of Thomsen
([18, 19, 20, 21]) and Sangiorgi ([11, 12, 13]), to name a few. The models CHOCS and Plain CHOCS
studied by Thomsen, and the model studied by Sangiorgi in [13] are essentially the Higher Order CCS.
By Higher Order CCS we mean the pure CCS of synchronization ([7]) extended with the higher order
communications of processes. In Higher Order CCS, processes can be passed around through communi-
cations, whereas names can not be exchanged over interactions. So there are two kinds of interactions:
One is the higher order communication whose interactional behaviour is described by

a(X).E | aH.F τ−→ E{H/X} |F (1)

and the other is the first order synchronization with semantics defined by

a.E | a.F τ−→ E |F (2)

Two kinds of bindings are used by Thomsen. In the dynamic binding an occurrence of a bound name
can escape the scope of the localization operator through a higher order communication. For instance

a(X).E | (z)aH.F τ−→ E{H/X} | (z)F

is dynamic binding since the name z in H becomes free after the higher order interaction. The dynamic
binding, studied in CHOCS, takes a syntactical view of the localization operator. In the Plain CHOCS
static binding is adopted. Using the same process expression the static binding results in a different
process expression:

a(X).E | (z)aH.F τ−→ (z)(E{H/X} |F)
∗The author is supported by The National Distinguished Young Scientist Fund of NNSFC (60225012), The National 973

Project (2003CB317005) and The National Nature Science Foundation of China (60473006).
†Laboratory for Basic Studies in Computing Science (http://basics.sjtu.edu.cn).

Clearly a semantic approach is called for to define the static binding. Dynamic binding can be checked
out at compile time, whereas the static binding has to be processed at runtime. In CHOCS care should
also be given to the relabelling operator. At first sight there also appears to be a dichotomy between
dynamic binding and static binding for the relabelling. In the dynamic style the effect of the relabelling
on the higher order communication can be seen from the following reductions:

a(X).E | (aH.F)[b 7→c] τ−→ E{H/X} |F [b 7→c] (3)

(a(X).E)[b 7→c] | aH.F τ−→ (E{H/X})[b 7→c] |F (4)

assuming that a 6= b. The process expression H can free itself from the range of the relabelling [b 7→c] by
higher order output. It can also get bound by [b 7→c] through higher order input. How about the static
binding? It seems to fit well with the higher order output:

a(X).E | (aH.F)[b 7→c] τ−→ E{H[b 7→c]/X} |F [b 7→c] (5)

However it does not appear to make any sense to talk about static relabelling for higher order input. If
one defines the static version by brutal force, one gets the following reduction

(a(X).E)[b 7→c] | aH.F τ−→ (E{H[c7→b]/X})[b 7→c] |F

which is just not correct. We are thus led to adopt the dynamic relabelling. So was Thomsen.
In [11] Sangiorgi investigated a model of higher order π-processes. This model admits the first order

communication studied in [8]:
a(x).E | ay.F τ−→ E{y/x} |F (6)

Throughout this paper we shall refer to the Higher Order CCS the language whose interaction semantics
is defined by (2) and (1), and the Higher Order π-Calculus the model defined by (6) and (1). Both calculi
are assumed to have static binding for the localization operator. The relationship between the first order
π-calculus and the Higher Order π-Calculus has been studied by Sangiorgi in [12]. And that between
CCS and the Higher Order CCS has been discussed by Thomsen in [18].

The algebraic theory of the higher order processes have been investigated by several researchers.
Thomsen introduced the higher order bisimilarity ≈d

ho on the CHOCS processes. The higher order
bisimulations are straightforward generalizations of the bisimulations for CCS processes. It has been
pointed out that ≈d

ho has too strong a discriminating power to be reasonable. The debatable bisimulation
property of the higher order bisimulations is to do with the higher order output actions. In CHOCS it
is defined as follows:

(*) If F ≈d
ho E

(ey)aG−→ E′ then F =⇒(ez)aH−→ F ′ ≈d
ho E

′, G ≈d
ho H and ỹ = z̃.

In (*) the equality ỹ = z̃ means that ỹ and z̃ are the same finite set of names. The above clause can be
rejected on several accounts. First of all the requirement ỹ = z̃ is not really sound. A counter example
is the pair of processes (y)a[(x)xy] and (y)a[(x)xx]. They are obviously observationally equivalent.

But they are not higher order bisimilar since (y)a[(x)xy]
(y)a[(x)xy]−→ 0 and (y)a[(x)xx]

a[(x)xx]−→ (y)0 have
incomparable action labels. A stronger argument against (*) is that neither E′ ≈d

ho F ′ nor G ≈d
ho

H is necessary. Assuming that b 6∈ fn(P), the processes (b)(a[b] | b.P) and (b)(a[b] | b.P) are clearly
observationally equivalent. But obviously neither b.P ≈d

ho b.P nor b ≈d
ho b holds. The bisimulations

Thomsen studied are the delayed bisimulations. The delayed approach ([22]) does not consider any
internal actions after an observable action. It was remarked by Thomsen that allowing internal actions
after an observable action causes problem to the proof of the equivalence property. The higher order
bisimulations for the CHOCS and the Plain CHOCS are not required to be closed under substitutions
of names since there is no first order communication.

Sangiorgi studied in [13] a higher order CCS with abstractions. Technically this language bears
similarity to CHOCS. Sangiorgi studied the context bisimilarity ≈d

ct in the delayed approach. Using our
notation, the clause defining the simulation of higher order output actions is the following:

(**) If F ≈d
ct E

(ey)aG−→ E′ then F =⇒(ez)aH−→ F ′ ≈d
ct E

′ for some z̃, F ′ such that (ỹ)(K{G/X} |E) ≈d
ct

(z̃)(K{H/X} |F) for every process expression K[X] satisfying ỹz̃ ∩ fn(K[X]) = ∅.

2

In (**) the process expressionK[X] plays the role of a receiving environment. An important tool employed
in [13] is the Factorization Theorem. It states that

E{F/X} ≈d
ct (m)(E{Trm/X} | !m.F) (7)

where m does not appear in either E or F . In the above equivalence Trm is a trigger defined as m.0.
It is worth remarking that equation (7) fails in the presence of the unguarded summation. For instance
b+F is clearly not equivalent to (m)((b+m) | !m.F) in general. Factorization is the ability to achieve the
effect of a process movement by sending a reference to the process.

Using the Factorization Theorem Sangiorgi was able to give a simpler characterization of the context
bisimilarity in terms of the normal bisimulations ([13]). In the normal approach, to show that a(X).E
and a(X).F are equivalent is the same as to showing that E{Trm/X} and F{Trm/X} are equivalent
for a fresh m. In other words to simulate a higher order input it is enough to confine one’s attention
to the situations where the input processes are fresh triggers. In line with this, the simulations of the
higher order output actions can be done in a way that the environments are totally ignored. One has
that (ỹ)a[G].E and (z̃)a[H].F are equivalent if and only if (ỹ)(E | !m.G) and (z̃)(F | !m.H) are equivalent.

In [11] Sangiorgi investigated the Higher Order π-Calculus using the same machinery of [13]. The
model admits abstraction and guarded summation. The context bisimilarity is studied in its general
form. For example simulations of the higher order output actions are defined as follows:

(***) If F ≈ct E
(ey)aG−→ E′ then F

(ez)aH
=⇒ F ′ for some F ′ such that (ỹ)(K{G/X} |E′) ≈ct

(z̃)(K{H/X} |F ′) for every process expression K[X] satisfying ỹz̃ ∩ fn(K[X]) = ∅.

The general definition poses some problems. As is already observed in [18] it is not obvious how
to prove that ≈ct is an equivalence relation. To illustrate the problem suppose that G ≈ct F ≈ct

E
(ex)aL−→ E′. By definition some z̃,M, F1, F2, F

′ exist such that F =⇒ F1
(ey)aM−→ F2 =⇒ F ′ and

(x̃)(K{L/X} |E′) ≈ct (ỹ)(K{M/X} |F ′) for every process expression K[X] with the process vari-

able X. Again by definition some z̃, N,G1, G2 exist such that G =⇒ G1
(ez)aN
=⇒ G2, G1 ≈ct F1 and

(z̃)(K{N/X} |G2) ≈ct (ỹ)(K{M/X} |F2). Now (ỹ)(K{M/X} |F2) =⇒ (ỹ)(K{M/X} |F ′) is simulated
(z̃)(K{N/X} |G2) =⇒ G3, which is not necessarily induced by G2 =⇒ G′ for some G′. So we can not

conclude that G
(ez)aN
=⇒ G′ for some G′ such that (x̃)(K{L/X} |E′) ≈ct (z̃)(K{N/X} |G′). In fact this

problem can be easily bypassed using Bisimulation Lemma. Bisimulation Lemma was used in the studies
of the χ-calculus ([2, 3, 5]) and the π-calculus ([4, 6]) to derive some crucial algebraic properties.

A prominent feature of (***) is that it is of a late style. An early counterpart is the following:

(****) If F ≈ct E
(ey)aG−→ E′ then for every process expression K[X] satisfying ỹ∩fn(K[X]) = ∅

some F ′ exists such that F
(ez)aH
=⇒ F ′ and (ỹ)(K{G/X} |E′) ≈ct (z̃)(K{H/X} |F ′).

Sangiorgi has proved that the early and the late versions generate the same context bisimilarity. His
proof exploits the coincidence between the context bisimilarity and the normal bisimilarity. Intuitively
one may argue that (****) subsumes (***). Take for instance K[X] to be the process expression b[X] for

a fresh b. Then (****) implies that some F ′ exists such that F
(ez)aH
=⇒ F ′ and

(ỹ)(b[G] |E′) ≈ct (z̃)(b[H] |F ′) (8)

It is clear that (8) is equivalent to saying that

∀ fresh c.(ỹ)(c[G] |E′) ≈ct (z̃)(c[H] |F ′) (9)

From (9) and the congruence property the following equivalence follows:

(ỹ)(c[G] |E′) | c(X).K[X] ≈ct (z̃)(c[H] |F ′) | c(X).K[X] (10)

Now for each K[X] pick up a name c that does not appear in K[X]. By appealing to the Bisimulation
Lemma one gets from (10) that (ỹ)(K{G/X} |E′) ≈ct (z̃)(K{H/X} |F ′). The above argument also
shows that (***) is equivalent to the simulation in a very early style:

(*****) If F ≈ct E
(ey)aG−→ E′ then for every process expressionK[X] satisfying ỹ∩fn(K[X]) = ∅

some F ′, F ′′ exist such that F
(ez)aH
=⇒ F ′′ and (z̃)(K{H/X} |F ′′) =⇒ F ′ ≈ct (ỹ)(K{G/X} |E′).

3

It should be pointed out that the coincidence of the late and the early higher order output bisimulations
depends crucially on the property that we could forbid any interactions between an exported process, like
G, and the environments for as long as we want. For higher order calculi with less controlling power, like
the Ambient Calculus, the coincidence between the early semantics and the late semantics is not obvious.

In [11] there is a proof of the coincidence of the context bisimilarity and the barbed equivalence
([9, 16]). The proof makes use of an infinite number of processes recursively defined, each of the processes
using an infinite number of free names. The limitation of admitting recursive definitions is that, assuming
the set of names is countable, one can always define by recursive definition processes that exhaust all
(free) names. It is not clear how to define static contexts to tell apart two such processes that are
not context bisimilar. Moreover if one admits only fixpoint operator but not recursive definition, every
process expression has only finite number of free names. Using Bisimulation Lemma, infinite recursive
definitions can be avoided in the coincidence proof.

The context bisimilarity is not closed under first order input prefix operation. Two processes E and F
are congruent if C[E] ≈ct C[F] for every context C[]. This is the congruence relation studied in [11, 13].
There is another standard approach to define congruence equivalence in the calculi of mobile processes.
The open bisimulations ([14]) imposes the condition that bisimilar processes are dynamically tested by
the environments. That is to say that after each bisimulation step the environment might have totally
changed. The open bisimilarity enjoys many good properties. One such good property is that it has clean
equational systems. For the Higher Order π-Calculus the open style bisimulations have not be discussed.

As is in the λ-calculus the higher order mechanism provides a computable power that is Turing com-
plete. The following communication is a process version of the computation of the λ-term (λx.xx)(λx.xx):

(a)(a(X).(X | aX) | a[a(X).(X | aX)]) τ−→ (a)(a(X).(X | aX) | a[a(X).(X | aX)]) (11)

By modifying this example one can easily define a higher order process !P that enjoys the following
operational property:

!P τ−→ P | !P τ−→ P |P | !P τ−→ . . .

In CHOCS a process transported through a higher order communication could get bound by or escape
the scope of a relabelling operator. This property is exploited in Thomsen’s definition of the fixpoint
operator in [20]. The Y -operator is defined in the following way:

YE
def= (a)(a(X).E[(b)(X[a7→b] | bX)] | a[a(X).E[(b)(X[a7→b] | bX)]])

In the above definition a, b are fresh. It is not difficult to see that

YE
τ−→ E(YE) (12)

For the reduction to work it is important that X[a7→b] is not the same as X. The fundamental difference
between substitution and relabelling is that the former is a syntactic operation and the latter is a semantic
one. These examples explain why in the higher order process calculi the replication operator or the fix-
operator are not really necessary. At the same time however the Turing computability of the model defeats
all attempts to find an algorithm to check the equivalence of higher order processes. But is there any hope
for a restricted goal on decidability? Consider the linear higher order processes. These are the processes in
which two copies of a same process variable can never be in a concurrent situation. For instance a.X+b.X
is a linear process but a.X | b.X is not. Using the linear processes one can define neither the reduction in
(11) nor the reduction in (12). Now the question is: Is there a complete equational system for the context
congruence on the finite linear processes? There doesn’t appear to be an easy answer. For one thing, it
is not known whether it is tractable to test the bisimilarity between the linear processes (x̃)a[A].P and
(ỹ)a[B].Q. A test in the Higher Order π-Calculus will have to place the processes A and B in the contexts
where there could be multiple references to A and B. This would immediately break down the restriction
on linearity. The normal bisimilarity does not provide any clue either since the explicit replications in
(x̃)(P | !m.A) and (ỹ)(Q | !m.B) make things worse. We are forced to impose a stronger restriction: Not
only we focus on the linear processes, we also confine to the linear environments. This takes us to a
calculus of linear higher order π-processes. It is interesting to see that (x)a[x.0].x.b and (x)a[x.0].x.b.x.b
are bisimilar from the viewpoint of the linear environments, but they are not bisimilar in the Higher
Order π-Calculus. In the linear scenario, the higher order communications are not able to induce infinite
computations. Recursion mechanism need be explicitly introduced into the model. So two programming

4

styles are present in the models of linear processes. The higher order communications are typical of the
functional programming. In the higher order communications private information is exchanged. The
recursion mechanism support the object oriented programming style. Universal information is made
public by processes in the replication form.

Pragmatically the linear higher order processes have abundant applications in modern computing
environments. In commercial applications, platforms are designed to support resource sensitive usages
of softwares and computing powers. This happens in the form of gaming, distance learning, video on
demand and so on. The mechanism design of buying and selling computing resources is also a key issue
in grid computing. In a network computing scenario, computing resources are subject to bargain. Using
a piece of resource a couple of time is definitely not the same as using it once. On the theoretical side,
models like Ambient Calculus have been proposed in literature to formalize the situation of a piece of
code moving from one site to another. After arriving at the target site, the piece of codes is located
alongside of the other programmes. In Ambient Calculus imported programs can never be duplicated.
The guideline is that a consumer can not duplicate any resource it has got through exchange, whereas a
provider may access to a resource in a nonrestricted manner.

The main objective of the paper is to study the algorithmic aspect of the finite higher order processes.
This is achieved by constructing complete equational systems. The framework we are working with is
the Linear Higher Order π-Calculus. Along the way to reach a completeness result, we will be proving
a number of intermediate results that are of interest on their own right. In order for the results and the
proof techniques to be more applicable, we set up the framework in a general fashion. The main technical
points and contributions are as follows:

• We will be working with the unguarded summation operator. The purpose is to see how much
of the theory developed in [11] survives without the help of the Factorization Theorem. This is
important since the Factorization Theorem is not a very stable property. In some model of higher
order interactions, say the Ambient Calculus, Factorization Theorem does not really make sense.

• We will focus on the general bisimulations rather than the delayed bisimulations. This makes it
natural the extension of the first order theory to the higher order theory. The Bisimulation Lemma
plays a crucial role in the algebraic theory of the higher order processes. The proof of say the fact
that the general bisimilarity is an equivalence relation makes heavy use of the lemma.

• For the Linear Higher Order π-Calculus we will study the open style bisimilarity. The open bisim-
ulations, introduced by Sangiorgi ([14, 16]), refer to the property of closure under the substitution
of names. This open style bisimilarity relates to the dynamic barbed bisimialrity ([16]) and thus
plays the role of being the authentic bisimilarity of the Linear Higher Order π-Calculus.

• As a major result we construct a complete equational system for the finite LHOπ processes. The
systems are distinguished in that they have rules dealing with higher order prefix operators. The
power of these rules is to transform the higher order complexity to the first order one. Based upon
the completeness results, algorithms are designed to check up the equivalences between finite linear
higher order π-processes as well as finite linear higher order CCS processes

Although the proofs in this paper are for the Linear Higher Order π-Calculus, most of the algebraic
results actually hold for the Higher Order π-Calculus.

For the uniformity of terminology, we will in the rest of the paper write HOCCS for the Higher Order
CCS, LHOCCS for the Linear Higher Order CCS, HOπ for the Higher Order π-Calculus, and LHOπ
for the Linear Higher Order π-Calculus.

The paper is structured as follows: Section 2 defines the Linear Higher Order π-Calculus. Section 3
introduces the local bisimilarity for the linear higher order π-processes and establishes the equivalence
and congruence properties. Section 4 studies the relationship between the equivalence of the prefixed
processes and the equivalence of the continuations. The results of the section lays down the basics for
the equivalence checking. Section 5 discusses some local congruence properties. Section 6 establishes
the standard properties for the recursive processes. Section 7 takes a look at the open bisimulations for
LHOπ. Section 8 discusses head normal forms for the finite linear higher order π-processes. Section 9
proposes two rules to guarantee the saturation property. Section 10 proves the completeness theorem.
Section 11 describes the checking algorithm. Section 12 transplants the completeness result of LHOπ to
HOCCS. Section 13 summarizes.

5

2 Linear Higher Order π-Calculus

This section defines the semantics of LHOπ. Let N be the set of names ranged over by the small letters,
and V be the set of process variables, or variables for short, ranged over by X,Y, Z, The notation N
denotes the set {a | a ∈ N} of co-names. The union N ∪ N will be ranged over by α. The set LHPE
of linear higher order process expressions, or just process expressions, ranged over by E,F,G,H, . . ., is
defined by the following abstract grammar:

E := X
a(x).E a is the subject name; x is not a free name
ax.E a is the subject name; x is a free name
a(X).E a is the subject name; X is not a free variable
a[E].E′ a is the subject name; fv(E) ∩ fv(E′) = ∅
E |E′ fv(E) ∩ fv(E′) = ∅
(x)E x is a local name; x is not a free name
[x=y]E
E+E′

fixX.E X is isolated in E; X is not a free variable

where the property of “X being isolated in E” is inductively defined as follows:

• X is isolated in X;

• If X is isolated in E, then X is isolated in a(x).E, ax.E, a(Y).E, (x)E, [x=y]E and fixY.E;

• If X is isolated in E and E′, then X is isolated in E + E′;

• If X is isolated in E and P does not contain any free process variables, then X is isolated in a[E].P ,
a[P].E, E |P and P |E.

The process expressions are built up from the process variables and the standard process operators.
The expressions have their usual interpretations. For instance a[E].F is a higher order output process
expression that intends to export E through channel a. The linearity means that whenever E1 |E2 is a
sub-term of E then fv(E1) ∩ fv(E2) = ∅.

Throughout the paper we will use the convention that all non-free names (variables) are pairwise
distinct and are different from any free name (variable). We write fn(E), respectively fv(E), for the set
of free names, respectively the set of free variables, of E. A finite sequence x1, . . . , xn of names is often
abbreviated to x̃. For simplicity we shall also write x̃ for the set {x1, . . . , xn}. In this paper we shall say
that a(x) binds x in a(x).E, (x) localizes x in (x)E, and a(X) binds X in a(X).E.

For higher order processes two kinds of substitutions are necessary.

• A first order substitution {m1/x1, . . . ,mn/xn} is a function from N to N that maps a name
xi ∈ {x1, . . . , xn} onto mi and maps any other name onto itself. The notation n(σ) denotes
{x1, . . . , xn,m1, . . . ,mn} if σ = {m1/x1, . . . ,mn/xn}. The set of the first order substitutions will
be ranged over by σ, σ′, σ′′,

• A higher order substitution {E1/X1, . . . , En/Xn} is a function from V to LHPE . It maps Xi,
for i ∈ {1, . . . , n}, onto Ei and maps any other variable to itself. The set of the higher order
substitutions will be ranged over by Σ,Σ′,Σ′′,

Applications of a substitution to a term is denoted in a postfix fashion. We postulate that Xσ =
X. This is to say that the meta operation has an instantaneous effect. If substitutions are explicit,
meaning that it is a built-in operator like the relabelling functions in CCS, then Xσ = X is definitely
false. The slogan is: substitutions are syntactical. It is also in line with the fact that in the first
order substitutions where the names to be replaced were bound names. A process variable should be
instantiated by a process expression that avoids name capture since a foreign process does not know
the local information represented by the bound names. Sometimes we write E[X1, . . . , Xn] to make it
explicit that E might contain the free variables X1, . . . , Xn. To go along with this notation we write
E[E1, . . . , En] for E[X1, . . . , Xn]{E1/X1, . . . , En/Xn}. We say that a substitution {E1/X1, . . . , En/Xn}
in E is well-defined if the following two conditions are met: (i) the free names (variables) in E1 | . . . , |En

6

are not captured by any bound name (variable) in E; and (ii) the substitution does not create any non-
linear process expressions. In the rest of the paper all references to the higher order substitutions are
assumed to be well-formed.

A binary relation R is closed under substitution of names if for each first order substitution σ,
(Eσ,Fσ) ∈ R whenever (E,F) ∈ R. A binary relation R is closed under substitution of variables if, for
each higher order substitution Σ, (EΣ, FΣ) ∈ R whenever (E,F) ∈ R and EΣ, FΣ are well-formed.

In the definition of the operational semantics we need to be able to say that two variables are in, or
not in, a concurrent position. For that purpose we introduce the following definition:

cp(E,X) def= ∅, if X 6∈ fv(E) or E ≡ X

cp(a(x).E,X) def= cp(E,X)

cp(ax.E,X) def= cp(E,X)

cp(a(Y).E,X) def= cp(E,X)

cp(aE′.E,X) def=
{
fv(E′, X) ∪ cp(E,X), if X ∈ fv(E)
fv(E,X) ∪ cp(E′, X), if X ∈ fv(E′)

cp(E |E′, X) def=
{
fv(E′, X) ∪ cp(E,X), if X ∈ fv(E)
fv(E,X) ∪ cp(E′, X), if X ∈ fv(E′)

cp((x)E,X) def= cp(E,X)

cp([x=y]E,X) def= cp(E,X)

cp(E+E′, X) def= cp(E,X) ∪ cp(E′, X)

cp(fixZ.E,X) def= cp(E,X)

Intuitively cp(E,X) is the set of variables in E that could be in concurrent position with X.
The operational semantics of LHOπ is defined by the following labeled transition system on LHPE :

Prefix

a(x).E
ay−→ E{y/x} ax.E

ax−→ E

fv(H) ∩ cp(E,X) = ∅
a(X).E aH−→ E{H/X} a[H].E aH−→ E

Composition

E
λ−→ E′

E |F λ−→ E′ |F
E

ax−→ E′ F
ax−→ F ′

E |F τ−→ E′ |F ′
E

ax−→ E′ F
a(x)−→ F ′

E |F τ−→ (x)(E′ |F ′)
E

aH−→ E′ F
(ex)aH−→ F ′

E |F τ−→ (x̃)(E′ |F ′)

Localization

E
λ−→ E′ x 6∈ fn(λ)

(x)E λ−→ (x)E′

E
ax−→ E′ x 6= a

(x)E
a(x)−→ E′

E
(ex)aH−→ E′ y ∈ fv(H) \ x̃a

(y)E
(y)(ex)aH−→ E′

Condition
E

λ−→ E′

[x=x]E λ−→ E′

Choice
E

λ−→ E′

E+F λ−→ E′

Recursion
E{fixX.E/X} λ−→ E′

fixX.E λ−→ E′

In the composition rules we should make sure that fv(E) ∩ fv(E′) = ∅. All the symmetric rules are

omitted. For clarity we shall often write E
a[H]−→ E′ for E aH−→ E′.

7

For the operational semantics to be well-defined, one needs to show that no actions create nonlinear
process expressions. In particular the third prefix rule preserves linearity and the recursion rule does not
lead to nonlinearity. These simple properties are guaranteed by the following two lemmas.

Lemma 1. The following properties hold:
(i) If E[X] and F [Y] are linear process expressions and fv(F) ∩ cp(E,X) = ∅, then E[F] is a linear
process expression.
(ii) If X is isolated in E[X] and Y is isolated in F [Y] then Y is isolated in E[F [Y]].

The proof of the above lemma is an easy structural induction. Apart from using structural inductions,
proofs in process calculi often make use of inductions on the height of derivation trees. Since the opera-
tional semantics is defined to assign meanings to the operator, inductions on derivations are reincarnated
in the form of structural inductions. But bear in mind that structural induction does not work in the
presence of the fix-operator. The following lemma is a simple induction on derivations.

Lemma 2. Suppose E and H are linear higher order process expressions. The following properties hold:
(i) If E λ−→ E′ and λ is τ or a first order action then E′ is a linear higher order process expression;
(ii) If E aH−→ E′ then E′ is a linear higher order process expression;
(iii) If E aG−→ E′ then both G and E′ are linear higher order process expressions.

Proof. The proof is by induction on the height of the derivations. Use Lemma 1 in the proof of (ii); and
use (ii) and (iii) in the proof of (i).

Throughout the paper the nil process 0 abbreviates (x)x(X).X. We shall often omit the process 0
whenever possible. For instance we shall abbreviate λ.0 to λ, E |0 to E, (x)0 to 0 and E+0 to E. There
are three kinds of derived prefix operators. One is the higher order bound output prefix as in (x̃)aH.E.
The other two are the tau prefix and the first order bound output prefix defined below:

τ.E
def= (b)(b(x) | bb.E), where b is fresh

a(x).E def= (x)ax.E, where a 6= x

We will frequently use the synchronization notation of the pure CCS defined as follows:

α.E
def= α(x).E, where x 6∈ fn(E)

According to these abbreviations, E{a/X} stands for the process expression obtained by replacing X by
a(x).0 in E. We will also write λ to range over the set of all prefix operators, including the derived prefix

operators. We will use =⇒ and
bλ=⇒ in their standard meanings. A finite sequence of match operations

concatenated one after another, called a condition, is often denoted by φ, ϕ, ψ. For a condition ϕ we denote
by σϕ an arbitrarily chosen substitution generated by ϕ. The capital letters A,B,C,O, P,Q,R, S, T will
denote processes, which are process expressions that do not contain any free process variables. The
process expression a(X).X+X for instance is a process. The set of processes is denoted by LHP.

Let !λ.E be defined by fixX.λ.(E |X). It is clear that !λ.E is the bounded replication of the first order
π-calculus. Even with the condition of E being isolated, the recursion fixX.E is still very expressive. Let
A stand for the process fixX.(τ+b |X). It is clear that A b−→ A. That is A may perform a sequence of
b actions before terminating itself with a tau action. But this is not all the operational behaviours of A.
The following is a legal derivation of the operational semantics:

τ+b |A τ−→ 0
A

τ−→ 0
b |A τ−→ b

τ+b |A τ−→ b

A
τ−→ b
...

A
τ−→ b | . . . | b

8

So A can make an internal choice on the number of b-actions it is going to perform in sequel. In summary
A may do a finite number of b-actions, followed by a nondeterministic internal choice, which decides how
many b-actions it will do before termination. A more interesting example of using the fix-operator is
the process (a)fixX.(a.b | (τ.X+fixY.a.Y)). This process can perform n consecutive τ -actions, reaching
a state from which the b-actions can be performed precisely n-times.

In the study of LHOπ we need to consider substitution to guarantee the congruence. The next three
lemmas record the properties we shall be using in later investigations. The proofs of these properties are
simple inductions on derivation.

Lemma 3. If E λ−→ E′ then Eσ
λσ−→ E′σ.

Lemma 4. Suppose that E contains the free variables X1, . . . , Xn and that E1, . . . , En are process ex-

pressions. If E λ−→ E′ then E{E1/X1, . . . , En/Xn}
λ{E1/X1,...,En/Xn}−→ E′{E1/X1, . . . , En/Xn}.

Lemma 5. Suppose that E contains the free variables X1, . . . , Xn and that b1, . . . , bn do not appear in

any of E, λ,E′. If E{b1/X1, . . . , bn/Xn}
λ{b1/X1,...,bn/Xn}−→ E′{b1/X1, . . . , bn/Xn} then E

λ−→ E′.

3 Bisimulation

For technical reason we need to introduce an equivalence that identifies process expressions with only
structural difference. There are several ways to define such a relation. The following bisimulation ap-
proach is the most convenient one when it comes to formal proofs.

Definition 6 (Structural Equivalence). A symmetric relation R on process expressions is a structural
bisimulation if it is closed under substitution of names and variables and whenever ERF then the following
properties hold:
(i) If E λ−→ E′ and λ is not a higher order output action then F ′ exists such that F λ−→ F ′RE′.

(ii) If E
(ex)aG−→ E′ then some x̃′,H, F ′ exist such that F

(ey)aH−→ F ′RE′, GRH and x̃ = ỹ.
The structural equivalence ∼ is the largest structural bisimulation.

The structural bisimilarity is precisely Thomsen’s strong higher order bisimilarity ([20]). It is our
opinion that ∼ is best seen as a structural equivalence than an observational equivalence. We will make
full use of the fact that the structural equivalence is both an equivalence relation and a congruence
relation. The structural equivalence satisfies the well known structural equalities between processes.

From now on we focus on the observational equivalences on the process expressions. In the observa-
tional approach processes are compared by their observable actions. The next definition formalizes the
notion of observability.

Definition 7. A process expression E is observable at a non-tau action λ, notation E⇓λ, if E =⇒ λ−→ E′

for some E′. A process expression E is observable, notation E⇓, if it is observable at a non-tau action λ.
A binary relation on the process expressions is observed if E⇓ ⇔ F⇓ whenever ERF .

The idea of the observational equivalences is to place processes in the environments and then make
observations on the consequences. The environments can be formalized as contexts.

Definition 8. Contexts are defined inductively as follows: (i) [] is a context; (ii) If C[] is a context then
λ.C[], E |C[], C[] |E, (x)C[], [x=y]C[] are contexts. Full contexts are defined inductively as follows:
(i) a context is a full context; (ii) if C[] is a full context then a[C[]].E, C[]+E, E+C[] and fixX.C[]
are contexts. A local context is a context of the form (x̃)(|O).

A context is an environment that can make finite observations. From a practical point of view it
makes sense to assume that each observation is finite, but the number of the potential observations is
infinite. Notice that a context C[] is different from a process expression E[X]. In C[F] free names and
variables in F may get bound in C[F]. In E[F] however one must make sure that no free names and
variables are captured by E.

The local contexts play a crucial role in the theory of π-calculus. Placing E in a local context
(x1) . . . (xn)(O |) gives rise to the process expression

(x1) . . . (xn)(O |E)

9

It describes a situation where E shares the local names x1, . . . , xn with the environment. The environment
may export the local names to foreigners. Whomever are told of the local information will keep them
secret. In the π-calculus a local name remains a local name forever. A local context never disappears.
Once a process expression is placed in a local context, it never escapes. The importance of the local
contexts is precise because they can not be removed. We shall see that in the algebraic theory we need
to reason about the equivalence of process expressions qua local contexts. More often a local context is
represented by the following standard form:

(x1) . . . (xn)(c1x1 | . . . | cnxn |)

where c1, . . . , cn are distinct names. The above context is general enough since we can choose c1, . . . , cn
to be distinct from the free names of the process expressions in consideration. Such a context incor-
porates both the persistent and the dynamic aspects of the local names. In sequel we often abbreviate
c1x1 | c2x2 | . . . | cnxn to c̃x for pairwise distinct c1, . . . , cn, x1, . . . , xn.

To investigate the observational theory we begin with the definition of an observational equivalence
that imposes the least requirements. The first requirement is that the relation should be closed under con-
text. This is natural because equivalent processes must have non-distinguishable interactive behaviours
with environments. The second one is that the equivalence should be an observed relation. This is the
minimal condition for an observational equivalence. The third one characterizes the equivalence as a
bisimulation relation. Bisimulation is a robust property against hostile environments.

Definition 9. A symmetric binary relation R on processes is an observed bisimulation if
(i) it is closed under context;
(ii) it is observed;
(iii) and Q =⇒ Q′RP ′ for some Q′ whenever QRP τ−→ P ′.
The observed bisimilarity ≈o is the largest observed bisimulation.

Definition 9 imposes three minimal conditions on an observational bisimulation equivalence: (i) is
the smallest requirement for a well behaved equivalence; (ii) is the least condition for an observational
equivalence; and (iii) is the most basic property of a bisimulation equivalence.

Here are some examples of observed bisimilarity. The process (x)a[x].x.b is observed bisimilar to the
process (x)a[x].x.b. This example serves to show that (ỹ)a[A].P ≈o (ỹ)a[B].Q does not imply either
A ≈o B or P ≈o Q. However a[A].P ≈o a[B].Q does imply P ≈o Q and, in the event that P is finite,
A ≈o B as well. The second example is that the process a[x.b].!x.b is observed bisimilar to the process
a[0].!x.b. The higher order output produces a redundant copy of x.b, which amounts to outputting
nothing. The third example is due to the linearity of the calculus: The process (x)a[x].x.b is observed
bisimilar to the process (x)a[x].(x.b |x.b). It is interesting to notice that had we defined the operational
semantics of the higher order output prefix in the following call-by-value style

H
τ−→ H ′

a[H].E τ−→ a[H ′].E

we would have had the property that a[A].P ≈o a[B].Q implies both P ≈o Q and A ≈o B.
The observed bisimilarity is defined on LHP. We can extend the above definition to the process

expressions in the following manner: Suppose E |F contains process variables X1, . . . , Xn. Then E ≈o F
if and only if

E{P1/X1, . . . , Pn/Xn} ≈o F{P1/X1, . . . , Pn/Xn}

for all processes P1, . . . , Pn.
The nice thing about Definition 9 is that it does not distinguish between any two observable actions,

which makes it a good candidate for a standard when comparing different calculi. The definition of the
observed bisimilarity draws similarity to that of the barbed bisimilarity ([9, 16]). The former appears
weaker and more general than the latter. The arguments against Definition 9 could be that the equivalence
it introduces might be too weak and that the definition is too general to work with. In the rest of the
section an alternative characterization of the observed bisimilarity is given to support Definition 9.

Definition 10. A symmetric relation R on LHPE is a local bisimulation if it is closed under substitution
of names and whenever PRQ then the following properties hold:
(i) If P τ−→ P ′ then Q′ exists such that Q =⇒ Q′RP ′.

10

(ii) If P αx−→ P ′ then Q′ exists such that Q αx=⇒ Q′RP ′.
(iii) If P

a(x)−→ P ′ then Q′ exists such that Q
a(x)
=⇒ Q′ and (x)(P ′ |O) R (x)(Q′ |O) for all O.

(iv) If P aA−→ P ′ then Q′ exists such that Q aA=⇒ Q′RP ′.

(v) If P
(ex)aA−→ P ′ then some x̃′, B,Q′ exist such that Q

(ex′)aB
=⇒ Q′ and (x̃)(E[A] |P ′) R (x̃′)(E[B] |Q′) for

every process expression E[X] with free variable X such that x̃x̃′ ∩ fn(E[X]) = ∅.
P is local bisimilar to Q, notation P ≈l Q, if there exists a local bisimulation R such that (P,Q) ∈ R.

Clause (iii) takes into account that the local name x might be sent to any foreign process whatsoever.
The residuals, P ′, Q′ must be considered together with the receiving party. Notice that (iii) appears in
late style. An early version would be stated like this:

(iii’) If P
a(x)−→ P ′ then for everyO someQ′, Q′′ exist such thatQ =⇒a(x)−→ Q′′ and (x)(Q′′ |O) =⇒

Q′ R (x)(P ′ |O).

Clause (iv) is in an early fashion. The late version of (iv) is as follows:

(iv’) If P aX−→ E′ andX 6∈ fv(E|F) then F ′ exists such thatQ aX=⇒ F ′ andE′{A/X}RF ′{A/X}
for all A.

Clause (v) is of a late style. Its early counterpart can be stated as follows:

(v’) If P
(ex)aA−→ P ′ then for every process expression E[X] with free variable X such that x̃x̃′ ∩

fn(E[X]) = ∅ there exist some x̃′, B,Q′, Q′′ such that Q =⇒(ex′)aB−→ Q′′ and (x̃′)(E[B] |Q′′) =⇒
Q′ R (x̃)(E[A] |P ′).

Late simulation is desirable since it reduces the complexity of equivalence checking. It is one of the key
properties underpinning our algorithmic approach to higher order equivalence checking. It will become
clear that (iii), (iv) and (v) are equivalent to (iii’), (iv’) and (v’) respectively. The proofs of these facts
make extensive use of the following lemma.

Lemma 11 (Bisimulation Lemma). If E =⇒≈l F and F =⇒≈l E then E ≈l F .

Proof. Suppose that E,F contain the free variables X1, . . . , Xn. It follows from Lemma 4 that

E{A1/X1, . . . , An/Xn} =⇒≈l F{A1/X1, . . . , An/Xn}

and
F{A1/X1, . . . , An/Xn} =⇒≈l E{A1/X1, . . . , An/Xn}

for all processes A1, . . . , An. It is clear that an action of F{A1/X1, . . . , An/Xn} can be simulated by
E{A1/X1, . . . , An/Xn} by first performing a sequence of internal interactions to reach a state locally
bisimilar to F{A1/X1, . . . , An/Xn}, and then simulating the action according to the definition of ≈l.
Therefore

E{A1/X1, . . . , An/Xn} ≈l F{A1/X1, . . . , An/Xn}
for all processes A1, . . . , An. Hence E ≈l F by definition.

Notice that since the calculus does not have the mismatch operator, it follows from E =⇒≈l F ∧
F =⇒≈l E and Lemma 3 that Eσ =⇒≈l Fσ and Fσ =⇒≈l Eσ for every substitution σ. Bisimula-
tion Lemma is a universal property for the observational bisimulation equivalences. It holds of all the
observational equivalences of this paper.

It is obvious from the above proof that we may assume that E and F are processes without loss of
generality. In this and next sections we often make that assumption.

The proofs of the next two lemmas are typical examples of how to use the Bisimulation Lemma.

Lemma 12. If (x)(E | a.G) ≈l (x)(F | a.G) for a fresh a then (x)(E |G) ≈l (x)(F |G).

Proof. (x)(P | a.R) a−→ (x)(P |R) must be matched up by

(x)(Q | a.R) =⇒ (x)(Q1 | a.R) a−→ (x)(Q1 |R) =⇒ Q′ ≈l (x)(P |R)

which can be rewritten as (x)(Q | a.R) a−→ (x)(Q |R) =⇒ Q′ ≈l (x)(P |R). Similarly one could show that
(x)(P |R) =⇒ P ′ ≈l (x)(Q |R) for some P ′. So (x)(P |R) ≈l (x)(Q |R) by Bisimulation Lemma.

11

Lemma 13. (ỹ)(a[H] |E) ≈l (z̃)(a[K] |F) for a fresh a if and only if (ỹ)(G[H] |E) ≈l (z̃)(G[K] |F) for
every process expression G[Z].

Proof. Implication in one direction is easy. Now suppose (ỹ)(a[A] |P) ≈l (z̃)(a[B] |Q) for a fresh a. Then

(ỹ)(a[A] |P)
(ey1)a[A]−→ (ỹ2)P

where ỹ1ỹ2 = ỹ, must be simulated by

(z̃)(a[B] |Q) =⇒ (z̃)(a[B] |Q1)
(ez1)a[B]−→ (z̃2)Q1

=⇒ (z̃2)Q′

where z̃1z̃2 = z̃, such that (z̃1)(G[B] | (z̃2)Q′) ≈l (ỹ1)(G[A] | (ỹ2)P) for every process expression G[Z]. It
follows that

(z̃)(G[B] |Q) =⇒≈l (ỹ)(G[A] |P)

Similarly
(ỹ)(G[A] |P) =⇒≈l (z̃)(G[B] |Q)

We may then conclude by Bisimulation Lemma that (ỹ)(G[A] |P) ≈l (z̃)(G[B] |Q) for every process
expression G[Z].

Using the above lemma, one could argue that (v’) on page 11 is equivalent to the (v) of Definition 10
in the sense that they give rise to the same local bisimilarity. Let E[X] be b[X] for a fresh b. The early
simulation for the higher order output actions take the following form:

If P
(ex)aA−→ P ′ then there exist some x̃′, B,Q′, Q′′ such thatQ =⇒(ex′)aB−→ Q′′ and (x̃′)(b[B] |Q′′) =⇒

Q′ ≈l (x̃)(b[A] |P ′).

Now Q′ must be of the form (x̃′)(b[B] |Q1). Therefore Q
(ex′)aB
=⇒ Q1 and (x̃′)(G[B] |Q1) ≈l (x̃)(G[A] |P ′)

for every G[X] by Lemma 13.
Bisimulation Lemma also underpins the proof that ≈l is an equivalence relation.

Proposition 14. The local bisimilarity is an equivalence relation.

Proof. Suppose that P ≈l Q ≈l R. We need to check the bismulation property for the first order bound
output and the higher order output actions.

• P
b(x)−→ P ′. By definition some Q1, Q2, Q

′ exist such that Q =⇒ Q1
b(x)−→ Q2 =⇒ Q′ and the

equivalence (x)(P ′ | a.O) ≈l (x)(Q′ | a.O) for every O and every fresh a not in O. Now R =⇒ R1 ≈l

Q1 for some R1 and R1
b(x)
=⇒ R2 for some R2 such that (x)(Q2 | a.O) ≈l (x)(R2 | a.O). The reduction

(x)(Q2 | a.O) =⇒ (x)(Q′ | a.O) must be simulated by (x)(R2 | a.O) =⇒ (x)(R′ | a.O) ≈l (x)(Q′ | a.O)

for some R′. Clearly R2 =⇒ R′. In summary R
b(x)
=⇒ R′ and (x)(P ′ | a.O) ≈l (x)(R′ | a.O). It follows

from Lemma 12 that (x)(P ′ |O) ≈l (x)(R′ |O).

• P
(ex)bA−→ P ′. By definition some ỹ, B,Q1, Q2, Q

′ exist such that Q =⇒ Q1
(ey)bB−→ Q2 =⇒ Q′ and

(x̃)(a[A] |P ′) ≈l (ỹ)(a[B] |Q′) for a fresh name a. Using similar argument one could show that some

z̃, C,R′ exist such that R
(ez)bC
=⇒ R′ and (x̃)(a[A] |P ′) ≈l (ỹ)(a[C] |R′). It follows from Lemma 13

that (x̃)(E[A] |P ′) ≈l (ỹ)(E[C] |R′) for every E[Z].

we are done.

The well-definedness of the local bisimilarity should also be judged by the closure properties it satisfies.
The next two lemmas show that ≈l has the expected closure properties.

12

Lemma 15. Suppose E ≈l F . Then the following equalities hold:
(i) a(x).E ≈l a(x).F , ax.E ≈l ax.F ;
(ii) E |G ≈l F |G, G |E ≈l G |F , (x)E ≈l (x)F and [x=y]E ≈l [x=y]F ;
(iii) a(X).E ≈l a(X).F ;
(iv) a[H].E ≈l a[H].F .

Proof. Construct a series of relations as follows:

S0
def= ≈l

...

Si+1
def=



(a(z).E, a(z).F)
(az.E, az.F)

(a[H].E, a[H].F)
(a(X).E, a(X).F)

(E|G,F |G)
(G|E,G|F)

((z)E, (z)F)
([y=z]E, [x=y]F)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
E Si F


...

It is clear that all the Si’s are closed under substitutions of names and variables. Let S be
⋃

i∈ω Si. We
prove by structural induction that S is a local bisimulation up to ∼. We only have to consider process
expressions without free variables. Now suppose that all pairs in S0 ∪ . . . ∪ Si satisfy the bisimulation
property of Definition 9, meaning that whenever (P,Q) ∈ S0∪ . . .∪Si then the following properties hold:

1. If P τ−→ P ′ then Q′ exists such that Q =⇒ Q′ ∼ S ∼ P ′.

2. If P αx−→ P ′ then Q′ exists such that Q αx=⇒ Q′ ∼ S ∼ P ′.

3. If P
a(x)−→ P ′ then Q′ exists such that Q

a(x)
=⇒ Q′ and (x)(P ′ |O) ∼ S ∼ (x)(Q′ |O) for all O.

4. If P aA−→ P ′ then Q′ exists such that Q aA=⇒ Q′ ∼ S ∼ P ′.

5. If P
(ex)aA−→ P ′ then some x̃′, B,Q′ exist such that Q

(ex′)aB
=⇒ Q′ and (x̃)(G[A] |P ′) ∼ S ∼ (x̃′)(G[B] |Q′)

for every context G[Y] such that x̃x̃′ ∩ fn(G[Y]) = ∅.

We now check that all pairs in Si+1 satisfy the bisimulation properties as well:

• a(z).P Si+1 a(z).Q. Clearly a(z).P ax−→ P{x/z} is matched up by a(z).Q ax−→ Q{x/z}SiP{x/z}.

• az.P Si+1 az.Q. Obviously az.P az−→ P is matched up by az.Q az−→ QSiP .

• a(X).E Si+1 a(X).F . Apparently a(X).E aA−→ E[A] is matched up by a(X).F aA−→ F [A] since
E[A]SiF [A] for each A.

• aA.P Si+1 aA.Q. Now aA.P
aA−→ P is matched up by aA.Q aA−→ Q since (E[A] |P)Si+1(E[A] |Q)

for each E.

• P |R Si+1 Q|R.

1. If P τ−→ P ′ then Q |R =⇒ Q′ |R ∼ S ∼ P ′ |R.

2. P αx−→ P ′. There are two cases:

– P |R αx−→ P ′ |R is matched up by Q |R αx=⇒ Q′ |R ∼ S ∼ P ′ |R.

– R
αx−→ R′. P |R τ−→ P ′ |R′ is matched up by Q |R τ=⇒ Q′ |R′ ∼ S ∼ P ′ |R′.

3. If P
a(x)−→ P ′. There are two cases:

13

– P |R a(x)−→ P ′ |R is simulated by Q |R a(x)
=⇒ Q′ |R and (x)(P ′ |R |O) ∼ S ∼ (x)(Q′ |R |O)

for all O.
– R

ax−→ R′. P |R τ−→ (x)(P ′ |R′) is simulated by Q |R τ=⇒ (x)(Q′ |R) and (x)(P ′ |R′) ∼
S ∼ (x)(Q′ |R′).

4. P aA−→ P ′. There are two cases:
– P |R aA−→ P ′ |R is simulated by Q |R aA=⇒ Q′ |R ∼ S ∼ P ′ |R.

– R
(ey)aA−→ R′. P |R τ−→ (ỹ)(P ′ |R′) is simulated by Q |R τ=⇒ (ỹ)(Q′ |R′) ∼ S ∼ (ỹ)(P ′ |R′).

5. P
(ex)aA−→ P ′. There are two cases:

– P |R (ex)aA−→ P ′ |R is simulated by Q |R (ex′)aB
=⇒ Q′ |R and

(x̃)(G[A] |R |P ′) ∼ S ∼ (x̃′)(G[B] |R |Q′)

for every context G[Y] such that x̃x̃′ ∩ fn(G[Y]) = ∅.
– R

aA−→ R′. P |R τ−→ (x̃)(P ′ |R′) is simulated by Q |R τ=⇒ (x̃)(Q′ |R′) and

(x̃)(G[A] |R′) ∼ S ∼ (x̃′)(G[B] |R′)

for every context G[Y] such that x̃x̃′ ∩ fn(G[Y]) = ∅.

• P |R Si+1 Q|R. Symmetric to the previous case.

• (y)P Si+1 (y)Q.

1. P τ−→ P ′. (y)P τ−→ (y)P ′ is simulated by (y)Q =⇒ (y)Q′ ∼ S ∼ (y)P ′.

2. P αx−→ P ′.
– (y)P αx−→ (y)P ′ is simulated by (y)Q αx=⇒ (y)Q′ ∼ S ∼ (y)P ′.

– (x)P
a(x)−→ P ′ is simulated by (x)Q

a(x)
=⇒ Q′ and (x)(Q′ |O) ∼ S ∼ (x)(P ′ |O) for all O.

3. P
a(x)−→ P ′. (y)P

a(x)−→ (y)P ′ is simulated by (y)Q
a(x)
=⇒ (y)Q′ and (y)(x)(P ′ |O) ∼ S ∼

(y)(x)(Q′ |O) for all O.

4. P aA−→ P ′. (x)P aA−→ (x)P ′ is simulated by (x)Q aA=⇒ (x)Q′ ∼ S ∼ (x)P ′.

5. P
(ex)aA−→ P ′. (y)P

(y)(ex)aA−→ P ′ or (y)P
(ex)aA−→ (y)P ′ is simulated by (y)Q

(y)(ex′)aB
=⇒ Q′ or (y)Q

(ex′)aB
=⇒

(y)Q′ such that (y)(x̃)(G[A] |P ′) ∼ S ∼ (y)(x̃′)(G[B] |Q′) for every context G[Y] such that
x̃x̃′ ∩ fn(G[Y]) = ∅.

• [x=y]P Si+1 [x=y]Q. If x = y then the induction is obvious. Otherwise there is nothing to prove.

So S is a local bisimulation up to ∼. It follows that S ⊆≈l.

The above proof is basically a structural induction. This is possible only if the fix-operator is excluded.
The local bisimilarity is not closed under summation for well-known reason. For LHOπ, the higher

order output prefix also causes problems. Notice that P ≈l Q does not imply a[P].A ≈l a[Q].A. As a
matter of fact a[P] 6≈l a[τ.P] in general.

Theorem 16. E ≈o F if and only if E ≈l F .

Proof. By Lemma 15, ≈l is an observed bisimulation. Hence ≈l⊆≈o. The inclusion ≈o⊆≈l amounts to
showing that ≈o is a local bisimulation, which is a routine exercise. Again the Bisimulation Lemma is
necessary to tidy up the argument.

Before ending this section we state a technical lemma to be used later on.

Lemma 17. Suppose a, b, c are distinct names not free in E |F . Then the following properties hold:
(i) (x)(y)(ax | by |E) 6≈l (y)(ay | by |F);
(ii) (x)(y)(ax | by | cy |E) 6≈l (x)(y)(ax | bx | cy |F);
(iii) If (x)(ax | bx |E) ≈l (x)(ax | bx |F) then (x)(ax |E) ≈l (x)(ax |F).

It follows from (i) of Lemma 17 that (y)(ax | by |E) 6≈l (y)(ay | by |F). Lemma 17 will be used
implicitly when we assume that the a derivative of an action must take a certain shape.

14

4 Prefix and Continuation

This section studies the relationship between the equivalence of the prefixed processes and the equivalence
of the continuations. For instance two such relationships are the followings:

Input Prefix : a(x).E ≈l a(x).F if and only if E ≈l F .
Output Prefix : ax.E ≈l ax.F if and only if E ≈l F .

The general question is this: What can be said about the equivalence between E and F if λ.E and λ.F
are equivalent? This is about the reverse of the congruence property. For the other forms of the prefix
operators, the characterizations are not as simple as the above ones. More complexity would be added if
things are considered in local contexts.

Proposition 18. Suppose c̃ = c1, . . . , cn are pairwise distinct fresh names, z̃ = z1, . . . , zn are pairwise
distinct, a 6∈ c̃, and x 6∈ z̃. Then the following properties hold:
(i) (z̃)(c̃z | a(x).E) ≈l (z̃)(c̃z | a(x).F) if and only if (z̃)(c̃z |E) ≈l (z̃)(c̃z |F);
(ii) (z̃)(c̃z | ay.E) ≈l (z̃)(c̃z | ay.F) if and only if (z̃)(c̃z |E) ≈l (z̃)(c̃z |F).

Proof. (i) There are two cases:

• a 6∈ z̃. One implication is obvious. Now suppose (z̃)(c̃z | a(x).P) ≈l (z̃)(c̃z | a(x).Q). It is clear that
(z̃)(c̃z | a(x).P) ax−→ (z̃)(c̃z |P) is simulated by (z̃)(c̃z | a(x).Q) ax−→ (z̃)(c̃z |Q) =⇒ Q′ ≈l (z̃)(c̃z |P).
Similarly (z̃)(c̃z |P) =⇒≈l (z̃)(c̃z |Q). Hence (z̃)(c̃z |P) ≈l (z̃)(c̃z |Q) by Bisimulation Lemma.

• a = zi ∈ z̃. Now assume that (z̃)(c̃z | a(x).P) ≈l (z̃)(c̃z | a(x).Q). Let d, e be fresh names. Then

(e+ci(z).(d+zx.ciz)) | (z̃)(c̃z | zi(x).P)
τ−→∼ (z̃)((d+zix.cizi) | (c1z1 | . . . | ci−1zi−1 | ci+1zi+1 | . . . | cnzn | zi(x).P))
τ−→∼ (z̃)(c̃z |P)

must be simulated by

(e+ci(z).(d+zx.ciz)) | (z̃)(c̃z | zi(x).Q)
τ−→∼ (z̃)((d+zix.cizi) | (c1z1 | . . . | ci−1zi−1 | ci+1zi+1 | . . . | cnzn | zi(x).Q))
τ−→∼ (z̃)(c̃z |Q)
=⇒ (z̃)(c̃z |Q′)
≈l (z̃)(c̃z |P)

We are done by resorting to Bisimulation Lemma.

(ii) We show that (z̃)(c̃z | ay.P) ≈l (z̃)(c̃z | ay.Q) implies (z̃)(c̃z |P) ≈l (z̃)(c̃z |Q). The other direction is
simple. We confine ourselves to the situation where a = zi. There are two major cases:

• a = y = zi ∈ x̃. Let d, e be fresh. Then

(e+ci(z).(d+z(x).cix)) | (z̃)(c̃z | zizi.P)
τ−→∼ (z̃)((d+zi(x).cix) | (c1z1 | . . . | ci−1zi−1 | ci+1zi+1 | . . . | cnzn | zizi.P))
τ−→∼ (z̃)(c̃z |P)

must be simulated by

(e+ci(z).(d+z(x).cix)) | (z̃)(c̃z | zizi.Q)
τ−→∼ (z̃)((d+zi(x).cix) | (c1z1 | . . . | ci−1zi−1 | ci+1zi+1 | . . . | cnzn | zizi.Q))
τ−→∼ (z̃)(c̃z |Q)
=⇒ (z̃)(c̃z |Q′)
≈ (z̃)(c̃z |P)

Now apply the Bisimulation Lemma.

15

• z̃ 3 zi = a 6= y = zj ∈ z̃. Let d, e, cj′ be fresh. Then

(e+ci(z).(d+z(x).(ciz | c′jx))) | (z̃)(c̃z | zizj .P)
τ−→∼ (z̃)((d+zi(x).(cizi | c′jx)) | (c1z1 | . . . | ci−1zi−1 | ci+1zi+1 | . . . | cnzn | zizj .P))
τ−→∼ (z̃)(c′jzj | c̃z |P)

must be simulated in the following manner

(e+ci(z).(d+z(x).(ciz | c′jx))) | (z̃)(c̃z | zizj .Q)
τ−→∼ (z̃)((d+zi(x).(cizi | c′jx)) | (c1z1 | . . . | ci−1zi−1 | ci+1zi+1 | . . . | cnzn | zizj .Q))
τ−→∼ (z̃)(c′jzj | c̃z |Q)

=⇒ (z̃)(c′jzj | c̃z |Q′)

≈ (z̃)(c′jzj | c̃z |P)

It follows from Lemma 17 (iii) that (z̃)(c̃z |Q′) ≈ (z̃)(c̃z |P). The rest of the proof is routine.

We are done.

In the rest of the section we investigate similar properties for the first order bound output prefix and
the higher order prefixes. These characterizations play a key role in the algebraic theory. The proof of
Proposition 18 shows how to deal with the local contexts. The proofs in the rest of this section will ignore
the local contexts.

4.1 Localization Theorem

It is important to bear in mind that for the first order bound output prefixes, it is not valid that
a(x).P ≈l a(x).Q if and only if P ≈l Q. The equality P ≈l Q is far more strong than a(x).P ≈l a(x).Q.
However the relationship between the bound output and the continuations is still simple.

Theorem 19 (Localization). Suppose c̃ = c1, . . . , cn are pairwise distinct fresh names and z̃ = z1, . . . , zn

are pairwise distinct. The following statements are equivalent:
(i) (z̃)(c̃z | b(x).E) ≈l (z̃)(c̃z | b(x).F);
(ii) (z̃)(c̃z | (x)(ax |E)) ≈l (z̃)(c̃z | (x)(ax |F)) for some fresh a;
(iii) (z̃)(c̃z | (x)(G |E)) ≈l (z̃)(c̃z | (x)(G |F)) for every process expression G.

Proof. (i⇒ii): The action b(x).P
b(x)−→ P ′ is simulated by b(x).Q

b(x)−→=⇒ Q′ such that (x)(ax |P) ≈l

(x)(ax |Q′) for some fresh a. Hence (x)(ax |Q) =⇒≈l (x)(ax |P). Similarly (x)(ax |P) =⇒≈l (x)(ax |Q).
Conclude by Bisimulation Lemma that (x)(ax |P) ≈l (x)(ax |Q).

(ii⇒iii): Suppose (x)(ax |P) ≈l (x)(ax |Q) for some fresh a. Then a(x).G | (x)(ax |P) τ−→ (x)(G |P).
The simulation must be a(x).G | (x)(ax |Q) =⇒ a(x).G | (x)(ax |Q′) τ−→ (x)(G |Q′) =⇒ Q′′. It fol-
lows that (x)(G |Q) =⇒≈l (x)(G |P). Symmetrically (x)(G |P) =⇒≈l (x)(G |Q). Hence (x)(G |P) ≈l

(x)(G |Q) by Bisimulation Lemma.
(iii⇒i): This follows immediately from definition.

The Localization Theorem implies that (iii’) stated on page 11 is equivalent to the (iii) of Definition 10.

4.2 Abstraction Theorem

Intuitively a(X).E ≈ a(X).F if and only if E{A/X} ≈ F{A/X} for all process A. It would be nice
if we could remove the universal quantification. We are looking for a particular process U such that
a(X).E ≈ a(X).F if and only if E{U/X} ≈ F{U/X}. There are many choices for U . We take a look
at two of them. Let Ia abbreviate a(X).X and a abbreviate a(x).0. Sangiorgi has studied the issue
for HOCCS. He proved that a(X).E is delayed bisimilar to a(X).F if and only if E{a/X} is delayed
bisimilar to F{a/X}. For our purpose his proof has to be modified in two aspects. First he worked
in a framework without the choice operator, so his result follows immediately from the Factorization
Theorem, which in our case does not hold. Secondly Sangiorgi’s results were established for the delayed
bisimulation equivalence. The proofs need be extended to the more general bisimulations.

16

Lemma 20. If A participates in E[A] λ−→ E′[A′] then E[Ia] aA−→ E′′[A] λ−→ E′[A′] for a fresh a and for
some E′′.

Proof. This is a simple exercise using induction on the height of derivation. Notice that a communication
between E and A must be through a global name since E should neither bind nor localize any free names
in A.

Theorem 21 (Abstraction). Suppose c̃ = c1, . . . , cn are pairwise distinct fresh names and z̃ = z1, . . . , zn

are pairwise distinct. The following statements are equivalent:
(i) (z̃)(c̃z | b(X).E) ≈l (z̃)(c̃z | b(X).F) for some name b;
(ii) (z̃)(c̃z |E{Ia/X}) ≈l (z̃)(c̃z |F{Ia/X}) for a fresh name a;
(ii’) (z̃)(c̃z |E{a/X}) ≈l (z̃)(c̃z |F{a/X}) for a fresh name a;
(iii) (z̃)(c̃z |E{G/X}) ≈l (z̃)(c̃z |F{G/X}) for every process expression G.

Proof. Without loss of generality, we may assume that E,F contain at most the process variable X.
(i) ⇔ (ii): Only one implication is nontrivial. Let R be the following symmetric relation:{

(E{A/X}, F{A/X})
∣∣∣∣ E{Ia/X} ≈l F{Ia/X}
a is fresh, A a process

}
∪ ≈l

Suppose that E{A/X}RF{A/X} and that σ is a substitution. By definition

E{Ia/X} ≈l F{Ia/X}

Let b be a fresh name that does not appear in σ. Since ≈l is closed under substitution of names, one
must have E{Ib/X} ≈l F{Ib/X}. For the same reason one has that

Eσ{Ib/X} ≈l Fσ{Ib/X}

Therefore Eσ{Aσ/X} R Fσ{Aσ/X}. We conclude that R is closed under substitution of names.
Now we show that R is a local bisimulation up to ∼. Suppose that E{A/X} λ−→ P . There are four

major cases for the action. We discuss them in turn:

• The action is caused by a copy of A, say A
λ−→ A′. By the fact that substitutions avoid name

capture, one has that
E{A/X} λ−→ E′{A′/X} ≡ P

for some E′. Then clearly

E{Ia/X} | g
a[g.Ib]−→ E′{g.Ib/X} | g

for fresh b, g. It follows from E{Ia/X} ≈l F{Ia/X} that some F ′ exists such that

F{Ia/X} | g
a[g.Ib]=⇒ F ′{g.Ib/X} | g
≈l E′{g.Ib/X} | g

Using the Bisimulation Lemma, one could easily show that F ′{Ib/X} ≈l E
′{Ib/X}. It follows that

F{A/X} λ=⇒ F ′{A′/X}RE′{A′/X}.

• The action is caused by a prefix in E, that is

E{A/X} λ−→ E′{A/X} ≡ P

for some E′. Thus E{Ia/X}
λ−→ E′{Ia/X}. By assumption there must exist some F ′ such that

F{Ia/X}
bλ=⇒ F ′{Ia/X}

Therefore E{A/X} λ−→ E′{A/X} is simulated by F{A/X}
eλ=⇒ F ′{A/X}.

• Suppose the action E{A/X} τ−→ E′{A′/X} is caused by a communication between E and A. There
are six cases:

17

– E
cz−→ E′ and A

c(z)−→ A′. Let C be a[c(z).h.h′.A′+g].h+ f where f, g, h, h′ are fresh. Then by
Lemma 20 some E′′[X] exists such that

E{Ia/X} |C
τ−→ E′′{c(z).h.h′.A′+g/X} |h

τ−→∼ (z)E′{(h.h′.A′ |h)/X} |h
τ−→ (z)E′{h′.A′/X}

It follows from E{Ia/X} ≈l F{Ia/X} that F1, F2, F
′ exist such that

F{Ia/X} |C
τ=⇒ F2{c(z).h.h′.A′+g/X} |h
τ=⇒ F1{h.h′.A′/X} |h
τ=⇒ F ′{h′.A′/X}
≈l (z)E′{h′.A′/X}

It follows easily from F ′{h′.A′/X} ≈l (z)E′{h′.A′/X} and Bisimulation Lemma that F ′{A′/X} ≈l

(z)E′{A′/X}. Consequently F{A/X} τ=⇒ F ′{A′/X} R (z)E′{A′/X}.

– E
cz−→ E′ and A cz−→ A′. This case is simpler than the previous one.

– E
c(z)−→ E′ and A cz−→ A′. Let C be a[c(z).f.(

∑
v∈V [z=v]bv+g.A′)].f where V is the set of free

names in E |F and bv, f, g, for every v ∈ V , are fresh names. Again by Lemma 20 some E′′[X]
exists such that

E{Ia/X} |C
τ−→ E′′{c(z).f.(

∑
v∈V

[z=v]bv+g.A′)/X} | f

τ−→∼ (z)E′{f.(
∑
v∈V

[z=v]bv+g.A′)/X} | f

τ−→ (z)E′{
∑
v∈V

[z=v]bv+g.A′/X}

It follows from E{Ia/X} ≈l F{Ia/X} that F1, F2, F
′ exist such that

F{Ia/X} |C
τ=⇒ F2{c(z).f.(

∑
v∈V

[z=v]bv+g.A′)/X} | f

τ=⇒ F1{f.(
∑
v∈V

[z=v]bv+g.A′)/X} | f

=⇒ F ′{
∑
v∈V

[z=v]bv+g.A′/X}

≈l (z)E′{
∑
v∈V

[z=v]bv+g.A′/X}

Now F ′{A′/X} ≈l (z)E′{A′/X} follows from

F ′{
∑
v∈V

[z=v]bv+g.A′/X} ≈l (z)E′{
∑
v∈V

[z=v]bv+g.A′/X}

by Bisimulation Lemma. Consequently F{A/X} τ=⇒ F ′ R (z)E′{A′/X}.

– E
cz−→ E′ and A cz−→ A′. This case is simpler than the previous one.

– E
(ez)cR−→ E′ and A

cR−→ G[R]. Let C be a[c(X).g.h.G[X]].g + f for fresh f, g, h. By Lemma 20
some E′′[X] exists such that

E{Ia/X} |C
τ−→ E′′{c(X).g.h.G[X]/X} | g

τ−→∼ (z̃)E′{g.h.G[R]/X} | g
τ−→ (z̃)E′{h.G[R]/X}

18

and some F1, F2, F
′ exist such that the above actions must be matched up by

F{Ia/X} |C
τ=⇒ F2{c(X).g.h.G[X]/X} | g
τ=⇒ (z̃)F1{g.h.G[R]/X} | g
τ−→ (z̃)F ′{h.G[R]/X}
≈l (z̃)E′{h.G[R]/X}

Again (z̃)F ′{G[R]/X} ≈l (z̃)E′{G[R]/X} follows from (z̃)F ′{h.G[R]/X} ≈l (z̃)E′{h.G[R]/X}
by Bisimulation Lemma. It is then clear that F{A/X} τ=⇒ (z̃)F ′{G[R]/X} R (z̃)E′{G[R]/X}.

– E
cR−→ E′ and A

(ez)cR−→ A′. Let C be a[(z̃)cR.g.h.A′].g + f for fresh f, g, h. The proof is similar
to the previous case.

We are done.
(i) ⇔ (ii’): The implication (i) ⇒ (ii’) is obvious. The proof of the converse implication is similar to

the proof of (ii) ⇒ (i). Notice that (a)(E{a/X} | a.A)) ∼ (a)(E{Ia/X} | a[A]) for a fresh name a.
(i) ⇔ (iii): This is straightforward by Bisimulation Lemma.

4.3 Concretion Theorem

Higher order output prefix in LHOπ is more subtle than the higher order input prefix. When (ỹ)a[A].P
emits the process A through a, A must be evaluated in all possible environments while keeping in touch
with P through ỹ. In the receiving environment A may or may not be used. Half way through compu-
tation, it could be exported to another alien environment to be further evaluated. The situation could
be very complicated. A key observation that would lead to a useful characterization is that an exported
process can not be fired unless it is in a position able to perform an external action. So instead of sending
out a process A one could send off a trigger that can kick off A when the trigger is in a fire-able position.
This idea is due to Thomsen and Sangiorgi. Again we need to bypass the Factorization Theorem in our
framework.

First we prove two technical lemmas.

Lemma 22. Suppose a, b are fresh names. The following properties hold:
(i) If A contributes in the action (ỹ)E[A] λ−→ P , then (ỹ)(E[a] | a.(A+b)) λ=⇒ P ′ ∼ P for some P ′.
(ii) If (ỹ)(E[a] | a.(A+b)) λ=⇒ P ′ such that P ′ contains neither a nor b, then (ỹ)E[A] λ=⇒ P ∼ P ′ for
some P .

Proof. (i) First we prove that

If A contributes in the action E[A] λ−→ P , then E[a] | a.(A+b) λ=⇒ P ′ ∼ P for some P ′

This is established by induction on the height of the derivation of E[A] λ−→ P . Since the operational
semantics is defined according to the structure of the processes, we should therefore carry out a structural
analysis. As A contributes in the action E[A] λ−→ P the process E[X] can not be in prefix form.

• E ≡ X. Then A λ−→ P . Clearly a | a.(A+b) τ−→ A+b λ−→ P .

• E[X] ≡ R |E1[X]. It is clear that P should be of the form (w̃)(R1 |P1). There are several cases:

– E1[A] λ−→ P1. This is simple using induction.

– λ = τ and it is caused by a communication between R and E1[A]. There are ten subcases. All
can be routinely verified.

• E[X] ≡ (z)E1[X]. In this case we continue the structural analysis with E1[X].

• E[X] ≡ [v=v]E1[X]. Now E1[A] λ−→ P has a derivation tree of less height. So we could apply the
induction hypothesis.

19

• E[X] ≡ E1[X] + E2[X]. Suppose that E1[A]+E2[A] λ−→ P is caused by E1[A] λ−→ P . Us-
ing the induction hypothesis one gets that E1[a] | a.(A+b) λ=⇒ P ′ ∼ P for some P ′. Thus
(E1[a]+E2[a]) | a.(A+b) λ=⇒ P ′ ∼ P .

• E[X] ≡ fixY.E1[X,Y]. By the labeled semantics one must have E1[A,fixY.E1[A, Y]] λ−→ P . Thus
E1[a,fixY.E1[a, Y]] | a.(A+b) λ=⇒ P ′ ∼ P by induction hypothesis. So E[a] | a.(A+b) λ=⇒ P ′ ∼ P .

(i) then follows easily.
(ii) The proof is by induction on derivation. It is easy to show that there must exist E1, E2, E3, E4

such that (ỹ)(E[a] | a.(A+b)) λ=⇒ P ′ takes the following shape:

(ỹ)(E[a] | a.(A+b)) =⇒ (ỹ)(E1[a] | a.(A+b))
τ−→ (ỹ)(E2[0] | (A+b))

=⇒ (ỹ)(E3[0] | (A+b))
λ−→ (ỹ′)(E4[0] |A′)

=⇒ P ′

Using structural induction it is routine to show that (ỹ)E[A] =⇒ (ỹ)E1[A] λ−→ (ỹ′)E4[A′] =⇒ P ∼ P ′

for some P since (ỹ′)E4[A′] ∼ (ỹ′)(E4[0] |A′).

Lemma 23. Suppose b̃, c, d are fresh names. If (x̃)(b̃x | (ỹ)(c.(H+d) |E[c])) ≈ (x̃)(b̃x | (z̃)(c.(G+d) |F [c]))

then (x̃)(b̃x | (ỹ)E[H]) ≈ (x̃)(b̃x | (z̃)F [G]).

Proof. Let R be the following relation:

{((ỹ)E[A], (z̃)F [B]) | (ỹ)(E[a] | a.(A+b)) ≈l (z̃)(F [a] | a.(B+b)), where a, b are fresh}∪ ≈l

It is routine to show that R is closed under substitution of names. Suppose that (z̃)F [B]R(ỹ)E[A] λ−→ P .

• If A does not participate in the action (ỹ)E[A] λ−→ P , then P ≡ (ỹ)E′[A] for some E′[X].
Clearly (ỹ)(E[a] | a.(A+b)) λ−→ (ỹ)(E′[a] | a.(A+b)). To match that there must have some F ′[X]
such that (z̃)(F [a] | a.(A+b)) λ=⇒ (z̃)(F ′[a] | a.(A+b)) ≈l (ỹ)(E′[a] | a.(A+b)). Hence (z̃)F [B] λ=⇒
(z̃)F ′[B]R(ỹ)E′[A].

• If A contributes in the action (ỹ)E[A] λ−→ P , then by Lemma 22, (ỹ)(E[a] | a.(A+b)) λ=⇒ P ′ ∼ P for
some P ′. Therefore (z̃)(F [a] | a.(B+b)) λ=⇒ Q′ ≈l P

′. By Lemma 22 again, (z̃)F [B] λ=⇒ Q ∼ Q′,
which implies that (z̃)F [B] λ=⇒ QRP .

We conclude that R is a local bisimulation.

Sangirogi’s characterization of the higher order output actions depends crucially on the replication or
recursion. This would not be helpful if one is interested in the algorithmic aspect of the calculus. For
our calculus this problem can be removed thanks to the linearity.

Theorem 24 (Concretion). Suppose c̃ = c1, . . . , cn are pairwise distinct fresh names and z̃ = z1, . . . , zn

are pairwise distinct. The following statements are equivalent in LHOπ:
(i) (z̃)(c̃z | (x̃)b[H].E) ≈l (z̃)(c̃z | (ỹ)b[K].F) for some b;
(ii) (z̃)(c̃z | (x̃)(a[H] |E)) ≈l (z̃)(c̃z | (ỹ)(a[K] |F)) for a fresh a;
(ii’) (z̃)(c̃z | (x̃)(a.(H+b) |E)) ≈l (z̃)(c̃z | (ỹ)(a.(K+b) |F)) for fresh a, b;
(iii) (z̃)(c̃z | (x̃)(G[H] |E)) ≈l (z̃)(c̃z | (ỹ)(G[K] |F)) for every process expression G[X].

Proof. (i⇒ii): Suppose (x̃)b[A].P ≈l (ỹ)b[B].Q. Now (x̃)b[A].P
(fx1)b[A]−→ (x̃2)P , where x̃ = x̃1x̃2, must be

matched up by (ỹ)b[B].Q
(ey1)b[B]−→ (ỹ2)Q =⇒ (ỹ2)Q′ for some Q′, where ỹ = ỹ1ỹ2, such that for each fresh

name a it holds that (ỹ)(a[B] |Q) =⇒ (ỹ)(a[B] |Q′) ≈l (x̃)(a[A] |P). Similarly

(x̃)(a[A] |P) =⇒ (x̃)(a[A] |P ′) ≈l (ỹ)(a[B] |Q)

Hence (x̃)(a[A] |P) ≈l (ỹ)(a[B] |Q) by Bisimulation Lemma.
(iii⇔ii) is just Lemma 13. (iii⇒i) is valid by definition. (iii⇒ii’) is obvious. And (ii’⇒iii) is an easy

consequence of Lemma 23.

20

5 Local Congruence

The local bisimulations are defined on the set of processes and are extended to the set of process expres-
sions. The Abstraction Theorem seems to suggest that one might as well define the bisimulations on the
process expressions in the first place. It would be interesting to see if the bisimilarity so defined coincide
with the local bisimilarity.

Definition 25. A symmetric relation R on LHPE is a bisimulation if it is closed under substitution of
names and of variables, and whenever ERF then the following properties hold:
(i) If E τ−→ E′ then F ′ exists such that F =⇒ F ′RE′.
(ii) If E αx−→ E′ then F ′ exists such that F αx=⇒ F ′RE′.

(iii) If E
a(x)−→ E′ then F ′ exists such that F

a(x)
=⇒ F ′ and (x)(E′ |G) R (x)(F ′ |G) for all G.

(iv) If E aX−→ E′ and X 6∈ fv(E |F) then F ′ exists such that F aX=⇒ F ′RE′.

(v) If E
(ex)aG−→ E′ then some x̃′,H, F ′ exist such that F

(ex′)aH
=⇒ F ′ and (x̃)(K[G] |E′) R (x̃′)(K[H] |F ′) for

every process expression K[X] such that x̃x̃′ ∩ fn(K[X]) = ∅.
E is bisimilar to F , notation E ≈ F , if there exists a bisimulation R such that (E,F) ∈ R.

Several points need be made. First bisimulations are closed under substitution of variables. That
means that if E ≈ F then E{H/X} ≈ F{H/X} for every H. Second the simulation of the higher order
input actions is defined in the late style. By the definition E aX−→ E′ is simulated by F aX=⇒ F ′ such that
E{H/X} ≈ F{H/X} for every process expression H. Working with the process expressions makes it
easy to define the late semantics.

The following result is reassuring.

Proposition 26. E ≈l F if and only if E ≈ F .

Proof. It is easy to see that ≈ and ≈l coincide on LHP. Suppose E,F contain the free variables
X1, . . . , Xn. If E ≈ F then it follows from the closure property of ≈ that E{A1/X1, . . . , An/Xn} ≈
F{A1/X1, . . . , An/Xn}. Thus E{A1/X1, . . . , An/Xn} ≈l F{A1/X1, . . . , An/Xn} by definition. Hence
E ≈l F .

On the other hand ≈l is closed under substitution of variables. Let a1, . . . , an be distinct fresh
names. If E ≈l F then by definition E{a1/X1, . . . , an/Xn} ≈l F{a1/X1, . . . , an/Xn}. Now suppose that
E

λ−→ E′ where λ is not a higher order output. Then

E{a1/X1, . . . , an/Xn}
λ{a1/X1,...,an/Xn}−→ E′{a1/X1, . . . , an/Xn}

by Lemma 4. This action must be matched up by

F{a1/X1, . . . , an/Xn}
λ{a1/X1,...,an/Xn}=⇒ F ′{a1/X1, . . . , an/Xn}

By Lemma 5, one has that F λ=⇒ F ′. Now E′{a1/X1, . . . , an/Xn} and F ′{a1/X1, . . . , an/Xn} are
related by local bisimilarity, which must imply that E′ and F ′ are related by the local bisimilarity using
Theorem 21. For higher order output actions the argument is similar.

The above proposition implies that the late simulation of higher order output actions stated as clause
(iv’) on page 11 is equivalent to early simulation defined in (iv) of Definition 10.

In the rest of the paper we shall write ≈ for any of the bisimilarities defined in Definition 9, Defini-
tion 10 and Definition 25.

Having worked out the definition and the properties of the bisimilarity for the linear higher order
processes, we are in the position to study the congruence induced by the bisimilarity. The definition of
congruence is standard.

Definition 27. E and F are congruent, notation E ' F , if E ≈ F and the following properties hold for
every first order substitution σ:
(i) If Eσ τ−→ E′ then Fσ τ=⇒ F ′ ≈ E′ for some F ′;
(ii) If Fσ τ−→ F ′ then Eσ τ=⇒ E′ ≈ F ′ for some E′.

21

An interesting point about the above definition is that there is no explicit requirement that ' is closed
under substitution of variables. This is not necessary.

Lemma 28. The relation ' is closed under substitution of names and variables.

Proof. By definition ' is closed under substitution of names. Now suppose E ' F and

E{H1/X1, . . . ,Hn/Xn}
τ−→ E′

is caused by Hi
τ−→ H ′

i. Then E{H1/X1, . . . , a.H
′
i/Xi, . . . ,Hn/Xn} | a

τ−→ E′ for a fresh a. Therefore

F{H1/X1, . . . , a.H
′
i/Xi, . . . ,Hn/Xn} | a

τ=⇒ F ′ ≈ E′

for some F ′. Consequently F{H1/X1, . . . ,Hi/Xi, . . . ,Hn/Xn}
τ=⇒ F ′ ≈ E′. If

E{H1/X1, . . . ,Hn/Xn}
τ−→ E′

is caused by E then E′ ≡ E1{H1/X1, . . . ,Hn/Xn} and E
τ−→ E1. Consequently F

τ=⇒ F1 ≈ E1 for
some F1. But then F{H1/X1, . . . ,Hn/Xn}

τ=⇒ F1{H1/X1, . . . ,Hn/Xn} ≈ E1{H1/X1, . . . ,Hn/Xn} by
Lemma 4.

The relation ' is indeed a congruence relation.

Proposition 29. Suppose E ' F . Then the following equalities hold:
(i) a(x).E ' a(x).F , ax.E ' ax.F ;
(ii) E |G ' F |G, G |E ' G |F , (x)E ' (x)F and [x=y]E ' [x=y]F ;
(iii) a(X).E ' a(X).F ;
(iv) a[H].E ' a[H].F , a[E].H ' a[F].H;
(v) E+G ' F+G, G+E ' G+F ;
(vi) fixX.E ' fixX.F .

Proof. (i) through (v) are proved by extending the proof of Lemma 15 with the help of Lemma 28. (vi)
is subsumed by Proposition 42.

It is easy to axiomatize the congruence property stated in Proposition 29. However these axioms are
not strong enough to derive equalities involving the localization operator in the most general form. Let’s
take a look at one example. Suppose (x)(ax |E) ≈ (x)(ax |F) where a 6∈ fn(E |F). It is not difficult
to see that (x)(ax | c(z).E) ≈ (x)(ax | c(z).F). This equivalence holds even if c = x. In some sense this
is a local congruence property: If E and F are equivalent in a local context (x)(ax |) then c(z).E and
c(z).F are equivalent in the same local context. For the congruences defined in [8] the local congruence
is a derived property. Since from the equivalence between (x)(ax |E) and (x)(ax |F) one could derive
the equivalence between (x)(ax | c(z).E) and (x)(ax | c(z).F). For the congruence defined in this paper as
well as the (quasi) open congruence studied in [14, 16], the local congruence property does not seem to be
equivalent to the global congruence property. For algebraic studies we need a theory of local congruence.
The following lemmas are all about the local congruence property.

Lemma 30. If (x̃)(b̃x |E) ' (x̃)(b̃x |F) for pairwise distinct fresh b̃, then (x̃)(b̃x |E |G) ' (x̃)(b̃x |F |G).

Proof. Suppose x̃ ∩ fn(G) = {xi1 , . . . , xin}. Let ai1 , . . . , ain be fresh and let H be

bi1(xi1).(. . . .(bin(xin).(G | bi1xi1 | . . . | binxin) + ain) . . .) + ai1

It is clear that (x̃)(b̃x |E) |H =⇒∼ (x̃)(b̃x |E |G) is simulated by

(x̃)(b̃x |F) |H =⇒∼ (x̃)(b̃x |F |G) =⇒≈ (x̃)(b̃x |E |G)

Similarly (x̃)(b̃x |E |G) =⇒≈ (x̃)(b̃x |F |G). The result follows from Bisimulation Lemma.

Corollary 31. If (x̃)(b̃x |E) ' (x̃)(b̃x |F) for pairwise distinct fresh b̃, then (x̃)(E |G) ' (x̃)(F |G) for
every process expression G.

22

Proof. By Lemma 30 one has (x̃)(b̃x |E |G) ' (x̃)(b̃x |F |G). Use the context b1(x1).bn(xn) to

consume b̃x and use the Bisimulation Lemma to complete the argument.

The most interesting local congruence property is to do with prefix operations.

Lemma 32. Suppose (x̃)(b̃x |E) ' (x̃)(b̃x |F) for pairwise distinct fresh b̃. The followings hold:

(i) (x̃)(b̃x | τ.E) ' (x̃)(b̃x | τ.F);

(ii) (x̃)(b̃x | a(z).E) ' (x̃)(b̃x | a(z).F) whenever z 6∈ x̃;
(iii) (x̃)(b̃x | az.E) ' (x̃)(b̃x | az.F);

(iv) (x̃)(b̃x | a(X).E) ' (x̃)(b̃x | a(X).F);

(v) (x̃)(b̃x | aH.E) ' (x̃)(b̃x | aH.F).

Proof. Let R be the following relation:((x̃)(ỹ)(O |λ.E), (x̃)(ỹ)(O |λ.F))

∣∣∣∣∣∣∣∣∣
(x̃)(b̃x |E) ' (x̃)(b̃x |F)
where b̃ are fresh names
λ binds and localizes none of x̃
ỹ = y1, . . . , ym are pairwise distinct

∪ '

The relation R is closed under substitution of names and of variables. It is a bisimulation up to ∼ by
Corollary 31.

In Lemma 32, λ should not be an input prefix that binds one of x̃. For instance (x)(bx | [x=y]0) '
(x)(bx | [x=y]y). But (x)(bx | y(x).[x=y]0) 6' (x)(bx | y(x).[x=y]y). On the other hand, from (x̃)(b̃x |E) '
(x̃)(b̃x |F) one could derive (x̃)(b̃x | a(xi).E) ' (x̃)(b̃x | a(xi).F) for every xi ∈ x̃. This is because

(x̃)(b̃x |E) ' (x̃)(b̃x |F) implies (x̃)(b̃x | axi.E) ' (x̃)(b̃x | axi.F), which in turn implies that

(x̃)(b1x1 | . . . | bi−1xi−1 | bi+1xi+1 | . . . | bnxn | axi.E)

and
(x̃)(b1x1 | . . . | bi−1xi−1 | bi+1xi+1 | . . . | bnxn | axi.F)

are congruent by Corollary 31. Therefore

(x1 . . . xi−1xi+1 . . . xn)(b1x1 | . . . | bi−1xi−1 | bi+1xi+1 | . . . | bnxn | a(xi).E)

and
(x1 . . . xi−1xi+1 . . . xn)(b1x1 | . . . | bi−1xi−1 | bi+1xi+1 | . . . | bnxn | a(xi).F)

are congruent. Hence (x̃)(b̃x | a(xi).E) ' (x̃)(b̃x | a(xi).F).
Using the above arguments one could prove the following two lemmas about localization.

Lemma 33. If (x̃)(z)(b̃x | b′z |E) ' (x̃)(z)(b̃x | b′z |F) for pairwise distinct fresh b̃, b′, then it follows that

(x̃)(b̃x | (z)E) ' (x̃)(b̃x | (z)F).

Lemma 34. If (x̃)(b̃x |E) ' (x̃)(b̃x |F) for pairwise distinct fresh b̃, then (x̃)(b̃x | (z)E) ' (x̃)(b̃x | (z)F).

The next two lemmas are about the local properties for choice and match operations.

Lemma 35. If (x̃)(b̃x |E) ' (x̃)(b̃x |F) and (x̃)(b̃x |G) ' (x̃)(b̃x |H) for pairwise distinct fresh b̃, then

(x̃)(b̃x | (E+G)) ' (x̃)(b̃x | (F+H)).

Proof. Let R be the following relation:((x̃)(O | (E+G)), (x̃)(O | (F+H)))

∣∣∣∣∣∣∣
(x̃)(b̃x |E) ' (x̃)(b̃x |F)

(x̃)(b̃x |G) ' (x̃)(b̃x |H)
where b̃ are fresh names

∪ '

It is clearly closed under substitution of names. It is a simple exercise to show that R is a bisimulation
up to ∼.

23

Lemma 36. If (x̃)(b̃x |E) ' (x̃)(b̃x |F) for pairwise distinct fresh b̃, then (x̃)(b̃x |ϕE) ' (x̃)(b̃x |ϕF) for
every condition ϕ that does not contain any of b.

Proof. By the L-rules and their derived rules, we may assume that none of x̃ appears in ϕ. The equality
(x̃)(b̃x |ϕE) ' (x̃)(b̃x |ϕF) follows essentially from the fact that (x̃)(b̃x |E) ' (x̃)(b̃x |F) is closed under
substitution of names.

The next three lemmas discuss the local congruence issue for the higher order features of the calculus.

Lemma 37. Suppose b̃, c and d are pairwise distinct fresh names. If

(x̃)(b̃x | (ỹ)(c.(G+d) |E)) ≈ (x̃)(b̃x | (z̃)(c.(H+d) |F))

then (x̃)(b̃x | (ỹ)a[G].E) ' (x̃)(b̃x | (z̃)a[H].F).

Proof. Observe that for each process expression O[X] such that ỹ ∩ fn(O[X]) = ∅, it follows from

(x̃)(b̃x | (ỹ)(c.(G+d) |E)) ≈ (x̃)(b̃x | (z̃)(c.(H+d) |F))

and Lemma 30 that

(x̃)(b̃x | (ỹ)(c.(G+d) |O[c] |E)) ≈ (x̃)(b̃x | (z̃)(c.(H+d) |O[c] |F)) (13)

By applying Lemma 23 to (13) one obtains that

(x̃)(b̃x | (ỹ)(O[G] |E)) ≈ (x̃)(b̃x | (z̃)(O[H] |F)) (14)

The equivalence (14) makes it clear that{
((x̃)(O | (ỹ)a[G].E), (x̃)(O | (z̃)a[H].F))

∣∣∣∣∣ (x̃)(b̃x | (ỹ)(c.(G+d) |E)) ≈ (x̃)(b̃x | (z̃)(c.(H+d) |F))
where b, c, d are fresh names

}
∪ '

is a bisimulation up to ∼.

Lemma 38. If (x̃)(b̃x |E) ≈ (x̃)(b̃x |F) for pairwise distinct fresh names b̃, then (x̃)(b̃x | a[E].H) '
(x̃)(b̃x | a[F].H).

Proof. By Lemma 30, Lemma 32 and Lemma 35, one has that

(x̃)(b̃x | (c.(E+d) |H)) ' (x̃)(b̃x | (c.(F+d) |H))

We are done by applying Lemma 37.

Lemma 39. If (x̃)(b̃x |E[X]) ' (x̃)(b̃x |F [X]) and (x̃)(b̃x |G) ' (x̃)(b̃x |H) for pairwise distinct fresh

names b̃, then (x̃)(b̃x |E[G]) ' (x̃)(b̃x |F [H]).

Proof. By Lemma 32 and Lemma 38,

(x̃)(b̃x | a(X).E[X]) ' (x̃)(b̃x | a(X).F [X])

and
(x̃)(b̃x | a[G]) ' (x̃)(b̃x | a[H])

for a fresh a. It follows from Lemma 30 that

(x̃)(b̃x | a(X).E[X] | a[G]) ' (x̃)(b̃x | a(X).F [X] | a[H])

It is then routine to derive (x̃)(b̃x |E[G]) ' (x̃)(b̃x |F [H]) using Bisimulation Lemma.

The results stated in the above lemmas and in Proposition 42 to be proved in the next section can be
summarized by the following theorem.

Theorem 40 (Local Congruence). Suppose (x̃)(b̃x |E) ' (x̃)(b̃x |F) for pairwise distinct fresh names b̃.

Then (x̃)(b̃x |C[E]) ' (x̃)(b̃x |C[F]) for every full context C[] that neither contains any of b̃ nor binds
any of x̃.

24

6 Recursion

Whatever the equivalence relation one introduces for the calculus, one needs to make sure that it is well-
behaved with regards to the fundamental operator of the calculus. The fix-operator is a fundamental
operator. To establish the closure property for the fix-operator, we need to carry out inductions on the
height of derivations, making full use of the fact that, no matter what, the height of a derivation tree is
finite. One consequence of this finitary property is that if fixX.E λ−→ A then there is a natural number
i no greater than the height of the derivation of fixX.E λ−→ A such that

E[E[. . . [E︸ ︷︷ ︸
i times

[fixX.E]] . . .]] λ−→ A

Moreover some λ′ and E′[X] exist such that λ = λ′{fixX.E/X}, A ≡ A′{fixX.E/X} and

E[E[. . . [E︸ ︷︷ ︸
i times

[F]] . . .]]
λ′{F/X}−→ E′[F] (15)

for all F . Intuitively F does not participate in the action of (15). The action in (15) is caused solely by
the process expression E[E[. . . [E︸ ︷︷ ︸

i times

[X]] . . .]]. By Lemma 4 the reduction in (15) is subsumed by

E[E[. . . [E︸ ︷︷ ︸
i times

[X]] . . .]] λ′

−→ E′[X] (16)

This fact is a crucial observation about the operational semantics of the recursive process expressions. It
underlines almost all the properties of the recursively defined processes.

Lemma 41. Suppose G[fixX.E] λ−→ K. Then the following two properties hold:
(i) K ≡ G′[fixX.E] for some process expression G′[X] and λ ≡ λ′{fixX.E/X} for some λ′;

(ii) There exists some natural number i such that G[E[E[. . . [E︸ ︷︷ ︸
i times

[X]] . . .]]] λ′

−→ G′[X] and i is no greater

than the height of the derivation G[fixX.E] λ−→ K.

Proof. We prove the lemma by induction on the height of the derivation G[fixX.E] λ−→ K. For that
purpose we need to take a look at the structure of G:

• G ≡ X. By the operational semantics one must have E[fixX.E] λ−→ K with a shorter derivation.
In this case we can simply apply the induction hypothesis.

• G ≡ G1 |G2. Either X 6∈ fv(G1) or X 6∈ fv(G2). Suppose X 6∈ fv(G2). If for example the
transition G[fixX.E] λ−→ K is caused by G1[fixX.E] λ1−→ K1 and G2

λ2−→ K2. By induction
hypothesis some i1, λ′1 and G′1[X] exist such that λ1 = λ′1{fixX.E/X}, K1 ≡ G′1[fixX.E] and

G1[E[. . . [E︸ ︷︷ ︸
i1 times

[X]] . . .]]
λ′

1−→ G′1[X]

It follows that
G[E[. . . [E︸ ︷︷ ︸

i1 times

[X]] . . .]] λ′

−→ (ṽ)(G′1[X] |K2)

for some λ′, ṽ. Now let G′[X] be (ṽ)(G′1[X] |K2). Then G[E[. . . [E︸ ︷︷ ︸
i1 times

[X]] . . .]] λ′

−→ G′[X].

• G ≡ fixY.G1[X,Y]. It follows from fixY.G1[fixX.E, Y] λ−→ K that

G1[fixX.E,fixY.G1[fixX.E, Y]] λ−→ K

25

is derivable with a shorter derivation. Let G2[X] be G1[X,fixY.G1[X,Y]]. Then by induction
hypothesis one sees that some i, λ′, G′[X] exist such that λ = λ′{fixX.E/X}, G′[fixX.E] ≡ K and

G2[E[. . . [E︸ ︷︷ ︸
i times

[X]] . . .]] λ′

−→ G′[X]

It follows that G[E[. . . [E︸ ︷︷ ︸
i times

[X]] . . .]] λ′

−→ G′[X].

• The other cases are simpler.

This completes the proof.

One could prove a similar result for the replicator: If !E λ−→ K then K ≡ E′ | !E and there is a
natural number i, no greater than the height of the derivation of !E λ−→ K, such that

E | . . . |E︸ ︷︷ ︸
i times

|X λ−→ E′ |X

The above lemma provides a powerful tool to reason about the recursive processes. One of its implica-
tions is the congruence property of the fix-operator. This property has been established in the framework
of CCS by Milner ([7]). Milner’s proof has been simplified by Ying ([23]). We prove below a localized
version. We believe that our proof is more instructive.

Proposition 42. Suppose b̃ are pairwise distinct fresh names. The congruence (x̃)(b̃x |E) ' (x̃)(b̃x |F)

implies the congruence (x̃)(b̃x |fixX.E) ' (x̃)(b̃x |fixX.F).

Proof. Let R be the following relation:((x̃)(b̃x |G1[fixX.E]), (x̃)(b̃x |G2[fixX.F]))

∣∣∣∣∣∣∣
(x̃)(b̃x |E) ' (x̃)(b̃x |F)

(x̃)(b̃x |G1) ' (x̃)(b̃x |G2)
where b̃ are distinct fresh names


We prove that R is a bisimulation up to ∼. Consider for instance the higher order output actions. By
Lemma 41 we may assume for example that

(x̃)(b̃x |G1[fixX.E])
(fx′

1)(ey)cR[fixX.E]
−→ (x̃′′1)(b̃x |G′[fixX.E])

for some x̃′1 and x̃′′1 such that x̃′1x̃
′′
1 = x̃. Again by Lemma 41 it holds for some natural number i that

(x̃)(b̃x |G1[E[. . . [E︸ ︷︷ ︸
i times

[X]]] . . .])
(fx′

1)(ey)cR[X]
−→ (x̃′′1)(b̃x |G′[X])

By Lemma 39 one has that

(x̃)(b̃x |G1[E[. . . [E[X]] . . .]]) ≈ (x̃)(b̃x |G2[F [. . . [F [X]] . . .]])

Therefore some z̃, S,H ′, x̃′2, x̃
′′
2 exist such that x̃′2x̃

′′
2 = x̃ and

(x̃)(b̃x |G2[F [. . . [F︸ ︷︷ ︸
i times

[X]] . . .]])
(fx′

2)(ez)cS[X]
=⇒ (x̃′′2)(b̃x |H ′[X])

and
(x̃′1)(ỹ)(K[R[X]] | (x̃′′1)(b̃x |G′[X])) ≈ (x̃′2)(z̃)(K[S[X]] | (x̃′′2)(b̃x |H ′[X]))

for every process expressions K[X]. Therefore

(x̃)(b̃x | (ỹ)(K[R[X]] |G′[X])) ≈ (x̃)(b̃x | (z̃)(K[S[X]] |H ′[X]))

26

Define

G′1[X] def= (ỹ)(K[R[X]] |G′[X])

G′2[X] def= (z̃)(K[S[X]] |H ′[X])

Clearly (x̃)(b̃x |G′1[fixX.E]) R (x̃)(b̃x |G′2[fixX.F]). Other cases can be proved similarly.

Another interesting issue about recursion is the uniqueness of the solution to the equation X ' E[X].
The uniqueness does not come for free. An obvious counter example is that every process expression is the
solution of X ' X. On the other hand the equation X ' a.X has a unique solution. But X ' X+a.X
has many solutions of the form A+fixX.(A+a.X). Similarly X ' X | a.X has for example solutions of
the form !B |fixX.a.X. In the framework of higher order processes the uniqueness of solution is more
intriguing. Take for instance the equation

X ' a[X] (17)

The solution fixX.a[X] is capable of repeatedly exporting itself through channel a. Does (17) have a
unique solution? The answer is not obvious. There is however a standard result giving a sufficient
condition to guarantee the uniqueness, the condition being that X must be both sequential and guarded
in E[X].

Definition 43. X is sequential in E[X] if either E[X] ≡ 0, or E[X] ≡ λ.E′[X] such that X 6∈ fv(λ)
and X is sequential in E′[X], or E[X] ≡ E1[X]+E2[X] and X is sequential in E1[X] and E2[X]. X is
guarded in E[X] if every occurrence of X is in a sub-term λ.E′ of E[X] such that X 6∈ fv(λ) and λ 6= τ .

The reason to introduce sequentiality and guardedness is the following lemma. The proof of this
lemma depends crucially on the sequentiality.

Lemma 44. Suppose X is guarded and sequential in G[X]. If G[E] λ−→ H then the followings hold:
(i) If λ = τ then H ≡ G′[E] for some G′[X] in which X is guarded and G[X] λ−→ G′[X].
(ii) If λ 6= τ then H ≡ G′[E] for some G′[X] and G[X] λ−→ G′[X].

In the following proof we need to employ technique of the bisimulations up to ≈. See [15] for a
discussion on the technique.

Definition 45. A symmetric relation R on processes is a bisimulation up to ≈ if it is closed under
substitution of names and of variables and whenever ERF then the following properties hold:
(i) If E τ=⇒ E′ then F ′ exists such that F =⇒ F ′ ≈ R ≈ E′.
(ii) If E αx=⇒ E′ then F ′ exists such that F αx=⇒ F ′ ≈ R ≈ E′.

(iii) If E
a(x)
=⇒ E′ then F ′ exists such that F

a(x)
=⇒ F ′ and (x)(E′ |O) ≈ R ≈ (x)(F ′ |O) for all O.

(iv) If E aX=⇒ E′ and X 6∈ fv(E |F), then F ′ exists such that F aX=⇒ F ′ ≈ R ≈ E′.

(v) If E
(ex)aG
=⇒ E′ then some x̃′,H, F ′ exist such that F

(ex′)aH
=⇒ F ′ and (x̃)(K[G] |E′) ≈ R ≈ (x̃′)(K[H] |F ′)

for every process expression K[X] such that x̃x̃′ ∩ fn(K[X]) = ∅.

The usefulness of the definition is witnessed by the following lemma. The proof also makes reference
to the Bisimulation Lemma.

Lemma 46. If R is a bisimulation up to ≈ then R ⊆≈.

Proof. The proof makes use of the results from the previous section. The idea is to prove that ≈ R ≈
is a bisimulation. Now suppose that E ≈ R ≈ F and E

(ey)aG−→ E′. By definition some E1, F1 exist

such that E ≈ E1 R F1 ≈ F . According to Definition 10 some ỹ′, G′, E′
1 exist such that E1

(ey′)aG′

=⇒ E′
1

and (ỹ)(K[G] |E′) ≈ R ≈ (ỹ′)(K[G′] |E′
1) for every process expression K[X]. By Definition 45 some

z̃′,H ′, F ′1 exist such that F1
(ez′)aH′

=⇒ F ′1 and (ỹ′)(K[G′] |E′
1) ≈ R ≈ (z̃′)(K[H ′] |F ′1). Now assume that

F1 =⇒ F ′2
(ez′)aH′

−→ F ′3 =⇒ F ′1

Then the followings hold:

27

• F =⇒ F2 ≈ F ′2 for some F2;

• F2
(ez)aH
=⇒ F3 for some z̃, H, F3 such that (z̃′)(b[H ′] |F ′3) ≈ (z̃)(b[H] |F3) for a fresh b;

• and consequently (z̃)(b[H] |F3) =⇒ (z̃)(b[H] |F ′) ≈ (z̃′)(b[H ′] |F ′1) for some F ′.

By Theorem 24, (z̃)(K[H] |F ′) ≈ (z̃′)(K[H ′] |F ′1) for every K[X] such that z̃z̃′ ∩ fn(K[X]) = ∅. In

summary F
(ez)aH
=⇒ F ′ and (z̃)(K[H] |F ′) ≈ (ỹ)(K[G] |E′) for all K[X] such that z̃z̃′ ∩ fn(K[X]) = ∅.

We are now ready to prove the Fixpoint Theorem for LHOπ. The proof of the theorem follows the
general methodology. Our contribution is in showing that the general methodology applies, thanks to
the Bisimulation Lemma.

Theorem 47 (Fixpoint). Suppose X is guarded and sequential in G[X]. If E ' G[E] and F ' G[F]
then E ' F .

Proof. Define R to be the following relation:{
(H[E],H[F])

∣∣∣∣ E ' G[E] and F ' G[F]
X is guarded and sequential in G[X] and H[X]

}

Suppose H[E]
(ey)aJ
=⇒ K. By Lemma 44, some H1[X],H2[X] exist such that the following properties hold:

• H[E] =⇒ H1[E]
(ey)aJ−→ H2[E] =⇒ K;

• X is guarded in H1[X];

• H[F] =⇒ H1[F]
(ey)aJ−→ H2[F];

Now E ' G[E] implies H2[E] ' H2[G[E]]. Since X is guarded in H2[G[X]], Lemma 44 implies that
H2[G[E]] =⇒ H ′[E] ≈ K for some H ′[X] in which X is guarded and that H2[G[F]] =⇒ H ′[F]. It follows

from H2[F] ' H2[G[F]] that H2[E] =⇒ L ≈ H ′[E] for some L. Conclude that H[F]
(ey)aJ
=⇒ L and that

(ỹ)(N [J] |K) ≈ R ≈ (ỹ)(N [J] |L) for every N [X] such that ỹ ∩ fn(N [X]) = ∅. This should be enough
to convince the reader that R is a bisimulation up to ≈. By Lemma 46 one has that G[E] ≈ G[F]. But
clearly G[E] ' G[F]. Hence E ' G[E] ' G[F] ' F .

The Fixpoint Theorem was first studied by Milner for CCS ([7]). Ying and Wirsing studied in [24]
the fixpoint property for the strong congruence on HOCCS processes. Using the Bisimulation Lemma
we are able to prove a more general result in this paper.

It should be remarked that sequentiality and guardedness are sufficient conditions, but neither is
necessary. A counter example is given by the equation in (17). Now X is neither sequential nor guarded
in a[X]. We will argue informally that it has a unique solution. Suppose A is a solution. That is

A ' a[A] (18)

Consider the equivalence
B ≈ a[A] (19)

What can be said about the behaviour of B? The following observations provide part of the answer:

• If B τ−→ B′ then B′ ≈ a[A] according to (19).

• IfB
(ex)aB′

−→ B′′ then (i) (x̃)(B′ |B′′) ≈ A ≈ a[A] according to (18,19) and (ii) theB′′ in (x̃)(E[B′] |B′′)
can not perform any observable actions.

• B can only perform these two forms of actions.

28

Now suppose B participates in the action E[B] τ−→ F by performing the action B
(ex)aB′

−→ B′′. Then F must
be of the form E′[(x̃)(E′′[B′] |B′′)]. If B′ is not in a fire-able position then neither B′ nor B′′ can have
any observable actions. If B′ is in a fire-able position then E′[(x̃)(E′′[B′] |B′′)] ∼ E′[E′′[(x̃)(B′ |B′′)]].
The implication of these facts is that E[B] and E[fixX.a[X]] can simulate each other by doing essentially
the same actions. Hence A ≈ fixX.a[X] and A ' a[A] ' fixX.a[X].

It is worth remarking that the Fixpoint Theorem fails for ≈. Here is a counter example: Suppose
G[X] is a.(b+X) + τ.a.(b+X). Let A be fixX.a.(b+X) and B be fixX.τ.a.(b+X). Clearly

A ≈ G[A] ≡ a.(b+A) + τ.a.(b+A)
B ≈ G[B] ≡ a.(b+B) + τ.a.(b+B)

However A 6≈ B. This is because the only way to simulate the action sequence

B
τ−→ a.(b+B) a−→ b+B τ−→ a.(b+B)

by A had to be
A

a−→ b+A

But b+A 6≈ a.(b+B) since the next action of a.(b+B) can not be b.

7 Open Bisimulation

Sangiorgi proposed the open bisimulations in [14]. One advantage of the open bisimilarity is that it is more
amenable to inductive analysis than the other bisimulation equivalences. In [16] the open bisimulations
are criticized for being a little too strong. The counter example Sangiorgi and Walker presented in [16]
is this: Intuitively b(z).(a(x)+a(x).P+a(x).[x=z]P) should be bisimilar to b(z).(a(x)+a(x).P). However
they are not open bisimilar. This example has led Sangiorgi and Walker to introduce the quasi open
bisimulations. This section takes a sketchy look at the (quasi) open bisimulations for LHOπ.

In what follows, z̃ ⊆f N means that z̃ is a finite subset of N . The next definition introduces a crucial
definition.

Definition 48. A substitution σ respects z̃ if (∀x ∈ z̃.σ(x) = x) ∧ (∀x 6∈ z̃.σ(x) 6∈ z̃).

A family {Rez}
ez⊆fN of relations on LHPE is closed under respectful substitution if, for each finite set

z̃ of names, the validity of ERezF implies the validity of EσRezFσ for all substitutions σ that respect z̃.
It will soon become clear that it is better to introduce the quasi open bisimulations before the open

bisimulations.

Definition 49. A family {Rez}
ez⊆fN of symmetric relations on LHPE is a quasi open bisimulation if it

is closed under the respectful substitution of names and the substitution of variables, and the following
properties hold whenever ERezF :
(i) If E τ−→ E′ then F ′ exists such that F =⇒ F ′RezE′.
(ii) If E αx−→ E′ then F ′ exists such that F αx=⇒ F ′RezE′.

(iii) If E
a(x)−→ E′ then F ′ exists such that F

a(x)
=⇒ F ′RezxE′.

(iv) If E aX−→ E′ and X 6∈ fv(E |F) then F ′ exists such that F aX=⇒ F ′RezE′.

(v) If E
(ex)aG−→ E′ then some x̃′,H, F ′ exist such that F

(ex′)aH
=⇒ F ′ and (x̃)(K[G] |E′) Rez (x̃′)(K[H] |F ′)

for every process expression K[X] such that x̃x̃′ ∩ fn(K[X]) = ∅.
The quasi open bisimilarity {≈ez}

ez⊆fN is the largest quasi open bisimulation. We write ≈qo for ≈∅.

Sangirogi and Walker have showed in [16] that ≈qo is equivalent to the open barbed bisimilarity for
the first order π-calculus. In [4], Fu has proved that ≈qo is the same as the local bisimilarity for the
first order π-calculus. It is routine to extend the result of [4] to the higher order scenario of this paper.
Without further ado we state the coincidence result.

Theorem 50. E ≈ex F if and only if (x̃)(b̃x |E) ≈ (x̃)(b̃x |F) for pairwise distinct fresh b̃.

29

Proof. Section 5 essentially proves that {Rex}
ex⊆fN , where

Rex def=

{
(E,F)

∣∣∣∣∣ (x̃)(b̃x |E) ≈ (x̃)(b̃x |F)
b̃ pairwise distinct fresh

}
is a quasi open bisimulation. On the other hand

R def=
{

((x̃)(b̃x |E), (x̃)(b̃x |F))
∣∣∣∣ E ≈ex F
b̃ pairwise distinct fresh

}
is a bisimulation. See [4] for more details of the proof in the first order case.

Corollary 51. The equivalences ≈qo and ≈ are the same.

In [8] the authors studied two equivalences for the first order π-calculus: the early equivalence ≈e and
the late equivalence ≈l. The difference between the two equivalences is to do with the simulations of the
input actions. For the late equivalence the simulation is defined by the following clause:

If Q ≈l P
ax−→ P ′ for some x 6∈ fn(P |Q) then Q′ exists such that Q ax=⇒ Q′ and Q′{y/x} ≈l

P ′{y/x} for all y.

The distinction between the early and late equivalences persists through the open semantics. In [6] it is
pointed out that in the presence of the mismatch operator the inclusion of the late open bisimilarity and
the early open bisimilarity is strict. In the rest of this section we shall establish an interesting result that
the late version of ≈qo is actually the open bisimilarity. The next definition is new.

Definition 52. A family {Rez}
ez⊆fN of symmetric relations on LHPE is a late quasi open bisimulation if

it is closed under the respectful substitution of names and the substitution of variables, and the following
properties hold whenever ERezF :
(i) If E τ−→ E′ then F ′ exists such that F =⇒ F ′RezE′.
(ii) If E ax−→ E′ then F ′ exists such that F ax=⇒ F ′RezE′.
(iii) If E ax−→ E′ and x 6∈ fn(E |F) then F ′ exists such that F ax=⇒ F ′ and F ′{y/x}RezE′{y/x} for all y.

(iv) If E
a(x)−→ E′ then F ′ exists such that F

a(x)
=⇒ F ′RezxE′.

(v) If E aX−→ E′ and X 6∈ fv(E |F) then F ′ exists such that F aX=⇒ F ′RezE′.

(vi) If E
(ex)aG−→ E′ then some x̃′,H, F ′ exist such that F

(ex′)aH
=⇒ F ′ and (x̃)(K[G] |E′) Rez (x̃′)(K[H] |F ′)

for every process expression K[X] such that x̃x̃′ ∩ fn(K[X]) = ∅.
The late quasi open bisimilarity {≈ezl }ez⊆fN is the largest late quasi open bisimulation. Write ≈lqo for ≈∅l .

We leave out the algebraic investigations of the equivalence ≈lqo. The interested reader is referred
to [4]. Notice that ≈lqo⊆≈qo is strict since b(z).(a(x)+a(x).P+a(x).[x=z]P) 6≈lqo b(z).(a(x)+a(x).P).

To continue we define the notion of distinction.

Definition 53. A finite binary relation D on N is a distinction if it is symmetric and irreflexive. The
set of distinctions is denoted by D.

A distinction postulates the perpetual difference among some names. A substitution σ respects D ∈ D
if σ(x) 6= σ(y) whenever (x, y) ∈ D. A distinction indexed family of relations {RD}D∈D is closed under
the respectful substitution if, for each D ∈ D, EσRDFσ whenever ERDF and σ respects D.

Definition 54. A family {RD}D∈D of symmetric relations on LHPE is an open bisimulation if it is
closed under the respectful substitution of names and the substitution of variables, and the following
properties hold whenever ERDF :
(i) If E τ−→ E′ then F ′ exists such that F =⇒ F ′RDE′.
(ii) If E αx−→ E′ then F ′ exists such that F αx=⇒ F ′RDE′.

(iii) If E
a(x)−→ E′ then F ′ exists such that F

a(x)
=⇒ F ′RD′

E′ where D′ is D ∪ {x} × (fn(E |F) ∪ D) ∪
(fn(E |F) ∪D)× {x}.
(iv) If E aX−→ E′ and X 6∈ fv(E |F) then F ′ exists such that F aX=⇒ F ′RDE′.

(v) If E
(ex)aG−→ E′ then some x̃′,H, F ′ exist such that F

(ex′)aH
=⇒ F ′ and (x̃)(K[G] |E′) RD (x̃′)(K[H] |F ′)

for every process expression K[X] such that x̃x̃′ ∩ fn(K[X]) = ∅.
The open bisimilarity {≈D}D∈D is the largest open bisimulation. We write ≈opn for ≈∅.

30

Due to space limitation, we do not report on the investigation of the open bisimulations. The interested
reader is referred to [14, 6].

Now suppose F ≈D E
ax−→ E′ for some fresh name x. By definition F

ax=⇒ F ′ ≈D E′ for some F ′

and F ′{y/x} ≈D E′{y/x} for every name y whatsoever, since {y/x} respects D. This property draws
similarity to the clause (iii) of Definition 52. This observation leads immediately to the following theorem.

Theorem 55. E ≈ezl F if and only if E ≈D F where D is {(x, y), (y, x) | z̃ 3 x 6= y ∈ z̃ ∪ fn(E |F)}.

Proof. For each D ∈ D, let RD be defined by

RD def=
{

(E,F)
∣∣∣∣ E ≈ezl F and
D = {(x, y), (y, x) | z̃ 3 x 6= y ∈ z̃ ∪ fn(E |F)}

}
∪ ≈D

The family {RD}D∈D is an open bisimulation. For each finite set z̃ of names, let Sez be defined by

Sez def=
{

(E,F)
∣∣∣∣ E ≈D F and
D = {(x, y), (y, x) | z̃ 3 x 6= y ∈ z̃ ∪ fn(E |F)}

}
∪ ≈ez

The family {Sez}
ez⊆fN is a late quasi open bisimulation.

Corollary 56. The equivalences ≈lqo and ≈opn coincide.

In other words, the open bisimilarity is the late quasi open bisimilarity. This remark puts the quasi
open bisimilarity and the open bisimilarity in a right order. It is our opinion that Definition 52 is an
improvement of Definition 54. The former is slightly easier to deal with.

8 Head Normal Form

The finite process expressions, those containing no fix-operator, admit only finite computations. It makes
sense to discuss algorithms that decide if any two given finite process expressions are equivalent. One
standard approach to provide such an algorithm is to design an equational system that is sound and
complete with respect to the congruence on the finite process expressions. In this section we propose an
equational system for LHOπ. An important law that underlines the whole approach is the well-known
Expansion Law:

E |F =
∑
i∈I

φiλi.(Ei |F) +
∑
j∈J

φjλj .(E |Fj)

+
λi=ai(x), λj=bjyj∑

i∈I,j∈J

φiφj [ai=bj]τ.(Ei{yj/x} |Fj)

+
λi=aiyi, λj=bj(x)∑

i∈I,j∈J

φiφj [ai=bj]τ.(Ei |Fj{yi/x})

+
λi=ai(X), λj=(ex)bjHj∑

i∈I,j∈J

φiφj [ai=bj]τ.(x̃)(Ei{Hj/X} |Fj)

+
λi=(ex)aiHi, λj=bj(X)∑

i∈I,j∈J

φiφj [ai=bj]τ.(x̃)(Ei |Fj{Hi/X})

where E is
∑

i∈I φiλi.Ei and F is
∑

j∈J φjλj .Fj .
In the first order π-calculus the axioms concerning the parallel composition is not necessary since every

process can be reduced equationally to one without the parallel composition operator. The Expansion
Law plays a crucial role in this procedure. In the higher order calculus however the parallel composition
can not be removed. A simple instance is for example the process a(X).(X | bb). This fact also suggests
that the laws for the higher order processes should be defined on process expressions rather than on

31

L1 (x)0 = 0
L2 (x)X = X
L3 (x)λ.E = λ.(x)E if x does not appear in λ
L4 (x)λ.E = 0 if x is the subject name of λ
L5 (x)(E |F) = E | (x)F if x is not free in E
L6 (x)(y)E = (y)(x)E
L7 (x)[y=z]E = [y=z](x)E if x 6∈ {y, z}
L8 (x)[x=y]E = 0 if x 6= y
L9 (x)(E+F) = (x)E+(x)F
M1 φE = ψE if φ⇔ ψ
M2 [x=y]E = [x=y]E{y/x}
M3 [x=y](E+F) = [x=y]E+[x=y]F
S1 E+0 = E
S2 E+F = F+E
S3 E+(F+G) = (E+F)+G
S4 [x=y]E+E = E
T1 λ.τ.E = λ.E
T2 E + τ.E = τ.E
T3 λ.(E + τ.F) = λ.(E + τ.F) + λ.F
T4 τ.E = τ.(E + [x=y]τ.E)

Figure 1: Axioms for LHOπ

processes. In Figure 1 the standard laws for the mobile processes are listed. Most of the axioms appear
in [7, 8, 10]. The law T4 was proposed by Fu. In [6] it is proved that T4 is equivalent to

τ.E = τ.(E +
∑
i∈I

ψiτ.E) (20)

More derived laws can also be found in [10, 6]. In this paper we shall use these derived laws without
any further comment. Let AS stand for the set of axioms defined in Figure 1. We write AS ` E = F if
E = F can be inferred from the axioms in AS and the axioms for congruence and equivalence.

One important role of an equational system is to rewrite a process to a normal form. For a higher
order calculus there are two choices for the normal forms. One is that the normal forms are defined
for process expressions. At the moment it is not clear how to reason about the normal forms in the
presence of variables and composition operator. The other is to define head normal forms which ignore
the structures of the process expressions underneath a prefix operation. Using the latter approach all
processes can be rewritten to a head normal form.

Definition 57. A process expression E is a head normal form if E is of the form
∑

i∈I ψiλi.Ei.

Clearly a substitution does not change the shape of a head normal form.

Lemma 58. If E is a head normal form then Eσ is a head normal form.

In the following proofs we need a metrics measuring the structural complexity of the process expres-
sions. The basic idea for such a metric function is that it should assign to the higher order prefixes bigger
weight than the first order prefixes. The function defined below maps a process expression onto a binary
tuple whose first value is the maximum number of the nested higher order prefixes and the second value

32

records the maximum number of the nested first order prefixes:

d(0) def= 〈0, 0〉

d(X) def= 〈0, 0〉

d(a(x).E) def= d(E) + 〈0, 1〉

d(ax.E) def= d(E) + 〈0, 1〉

d(a(X).E) def= d(E) + 〈1, 0〉

d(aH.E) def= d(H) + d(E) + 〈1, 0〉

d(E |F) def= d(E) + d(F)

d((x)E) def= d(E)

d([x=y]E) def= d(E)

d(E+F) def= max{d(E), d(F)}

where 〈m0,m1〉+ 〈n0, n1〉 is defined to be 〈m0 + n0,m1 + n1〉. The partial order � is defined as follows:
〈m0,m1〉 � 〈n0, n1〉 if and only if (m0 < n0) ∨ (m0 = n0) ∧ (m1 ≤ n1). The following lemma says that
the degree of a process is not increased when rewriting a process to a head normal form.

Lemma 59 (Normalization). For each finite linear higher order π-process P there is a head normal form
P ′ such that the followings hold:
(i) AS ` P = P ′;
(ii) d(P ′) � d(P);
(iii) and for every substitution σ, Pσ λ−→ P ′′ if and only if P ′σ λ−→ P ′′.

Proof. The proof is carried out by structural induction:

• If P is of prefix form then P is already in head normal form.

• P ≡ P1 |P2. By induction hypothesis there are head normal forms
∑

i∈I φiλi.P
i
1 and

∑
j∈J ψjλj .P

j
2

such that the following properties hold:

– AS ` P1 =
∑

i∈I φiλi.P
i
1 and d(

∑
i∈I φiλi.P

i
1) � d(P1);

– AS ` P2 =
∑

j∈J ψjλj .P
j
2 and d(

∑
j∈J ψjλj .P

j
2) � d(P2);

– P1σ and (
∑

i∈I φiλi.P
i
1)σ have the same derivatives;

– P2σ and (
∑

j∈J ψjλj .P
j
2)σ have the same derivatives.

It follows that d(
∑

i∈I φiλi.P
i
1 |
∑

j∈J ψjλj .P
j
2) � d(P1 |P2). We are done by applying the Expan-

sion Law. Notice that the Expansion Law keeps the degree unchanged.

Other cases are all simple.

9 Saturation

Normalization is about syntactical conversion of processes. Saturation on the other hand provides an
equational characterization of the operational semantics. In order to discuss the saturation property
for the higher order actions we need rules that allow us to derive equalities involving the higher order
prefixes. In Figure 2, two rules are defined. In Concretion Rule the names b̃, c, d must be distinct and
fresh. The Concretion Rule generates an equality between two process expressions with higher order
output prefixes. The Abstraction Rule enables us to reason about the process variables. The two rules
are sound by Concretion Theorem (Theorem 24) and Abstraction Theorem (Theorem 21).

Let ASLHOπ be AS ∪ {CR,AR}. In ASLHOπ we are able to prove the saturation properties for all
forms of actions.

33

Concretion Rule

(x̃)(b̃x | (ỹ)(c.(H+d) |E)) = (x̃)(b̃x | (z̃)(c.(G+d) |F))

(x̃)(b̃x | (ỹ)a[H].E) = (x̃)(b̃x | (z̃)a[G].F) CR

Abstraction Rule
E{c/X} = F{c/X} c 6∈ fn(E |F)

E = F
AR

Figure 2: Higher Order Rules for LHOπ

Lemma 60 (Saturation). Suppose σ is a substitution induced by ψ. The following properties hold:
(i) If Eσ τ=⇒ E′ then ASLHOπ ` E = E + ψτ.E′.
(ii) If Eσ ax=⇒ E′ then ASLHOπ ` E = E + ψax.E′.

(iii) If Eσ
a(x)
=⇒ E′ then ASLHOπ ` E = E + ψa(x).E′.

(iv) If Eσ ax=⇒ E′, for x 6∈ fn(Eσ), then ASLHOπ ` E = E + ψa(x).E′.
(v) If Eσ aX=⇒ E′ for X 6∈ fv(E) then ASLHOπ ` E = E + ψa(X).E′.

(vi) If Eσ
(ey)aH
=⇒ E′ then ASLHOπ ` E = E + ψ(ỹ)aH.E′.

Proof. By Lemma 4, Lemma 5 and the Abstraction Rule we may assume that E contains no variables.
(i) Suppose Pσ τ−→ P ′′σ =⇒ P ′. By Lemma 59 some head normal form P1 exists such that ASLHOπ `

P = P1 and P1σ
τ−→ P ′′σ. Suppose that P1σ

τ−→ P ′′σ is caused by the summand ϕτ.P ′′. Then clearly
ψ ⇒ ϕ and ASLHOπ ` P1 = P1 + ϕτ.P ′′σ = P1 + ψτ.P ′′σ = P1 + ψτ.P ′′. By induction hypothesis,
ASLHOπ ` P ′′ = P ′′ + ψτ.P ′. Therefore

P = P1

= P1 + ψτ.P ′′

= P + ψτ.(P ′′ + ψτ.P ′)
T2= P + ψτ.P ′

(v) Suppose that Pσ =⇒ P1σ
a[b]−→ E2{b/X}σ =⇒ E′{b/X} for fresh b. By Lemma 59 there exist

some head normal forms P ′1, P
′
2 such that ASLHOπ ` P1 = P ′1, P

′
1σ

a[b]−→ E2{b/X}σ,

ASLHOπ ` E2{b/X} = P ′2 (21)

and P ′2σ =⇒ E′{b/X}. By Lemma 58 both P ′1σ and P ′2σ are head normal forms. Hence ASLHOπ ` P ′1 =
P ′1 + ψa(X).E2. Now

ASLHOπ ` P ′2 = P ′2 + ψτ.E′{b/X} (22)

by (i). It follows from (21) and (22) that

ASLHOπ ` E2{b/X} = E2{b/X}+ ψτ.E′{b/X}

Using Abstraction Rule one gets that ASLHOπ ` E2 = E2 + ψτ.E′. Putting all these together, one has

P = P + ψτ.P1

= P + ψτ.P ′1

= P + ψτ.(P ′1 + ψa(X).E2)
= P + ψτ.(P ′1 + ψa(X).(E2 + ψτ.E′))
= P + ψτ.(P ′1 + ψa(X).(E2 + ψτ.E′)) + ψa(X).E′

= P + ψa(X).E′

34

E | (F+λ.G) = E | (F+λ.G) + λ.(E |G)

Figure 3: Saturation Axiom

We are done by observing that Eσ
a[b]
=⇒ E′{b/X} for fresh b if and only if Eσ aX=⇒ E′ for X 6∈ fv(E).

(vi) Suppose that Pσ =⇒ P1σ
(ey)aA−→ P2σ =⇒ P ′. By Lemma 59 there are head normal forms P ′1, P

′
2

such that ASLHOπ ` P1 = P ′1, P
′
1σ

(ey)aA−→ P2σ, ASLHOπ ` P2 = P ′2 and P ′2σ =⇒ P ′. Then

P = P + ψτ.P1

= P + ψτ.P ′1

= P + ψτ.(P ′1 + ψ(ỹ)aA.P2)
= P + ψτ.(P ′1 + ψ(ỹ)aA.P ′2)
= P + ψ(ỹ)aA.P ′2
= P + ψ(ỹ)aA.(P ′2 + ψτ.P ′)
= P + ψ(ỹ)aA.P ′

The rest of the proof is the same as the proof in the first order π-calculus. The additional care is that
one need to convert a process to head normal form after each action.

The above proof makes use of Normalization Lemma and Abstraction Rule. One way to bypass the
Normalization Lemma is to use the Saturation Axiom defined in Figure 3 using the Expansion Law. It is
not difficult to see that Saturation Axiom is derivable in ASLHOπ. It should be a routine to check that
the saturation properties can be established in AS ∪ {Saturation Axiom}.

10 Completeness

LHOπ is the first order π-calculus plus the linear higher order communication mechanism. The main
result of this section can be interpreted in the following way:

The Abstraction Rule and the Concretion Rule promote a complete system for the first order
π-calculus to a complete system for LHOπ.

To make this point we will carry out a completeness proof for 'opn on the finite LHOπ-process expres-
sions. The reason we opt for 'opn instead of ' is that the former has a simpler completeness proof for
the first order fragment of the calculus.

A completeness proof for 'opn calls for more machinery than the proof of the Saturation Lemma. The
standard congruence rules no longer suffice. We should be able to derive say (x)(bx | az.E) = (x)(bx | az.F)
from (x)(bx |E) = (x)(bx |F). This inference is not supported by the congruence rule for prefix. We need
some local congruence rules! In Figure 4 some local congruence rules are formulated. In these rules the
names b̃, b′ are fresh. Notice that the local congruence rules imply the global congruence rules. Let the
equational system ASopn

LHOπ be obtained from ASLHOπ by adding the rules defined in Figure 4.
According to Theorem 40, the rules PR, LR, MR and SR are sound for ', as well as 'opn. The rule

IR is valid for 'opn, but fails for '.

Lemma 61. The following rules are admissible in ASopn
LHOπ:

(i) If (x̃)(b̃x |E) = (x̃)(b̃x |F) then (x̃)(b̃x | a.E) = (x̃)(b̃x | a.F) provided that a 6= b;

(ii) If (x̃)(z)(b̃x | b′z |E) = (x̃)(z)(b̃x | b′z |F) then (x̃)(b̃x |E) = (x̃)(b̃x |F) provided that z 6∈ fn(E |F).

We now turn to the completeness proof. Such a proof is usually stratified in two steps. First a weaker
form of completeness, the promotion lemma, is established. Second the completeness is proved using the
promotion lemma. The promotion lemma we present in this paper is a localized version of the usual
promotion lemma.

35

Input Rule

∀y ∈ x̃z.(x̃)(b̃x |E{y/z}) = (x̃)(b̃x |F{y/z})
(x̃)(b̃x | a(z).E) = (x̃)(b̃x | a(z).F) IR

Prefix Rule

(x̃)(b̃x |E) = (x̃)(b̃x |F) λ = az ∨ λ = aH ∨ λ = a(X)

(x̃)(b̃x |λ.E) = (x̃)(b̃x |λ.F) PR

Localization Rule

(x̃)(z)(b̃x | b′z |E) = (x̃)(z)(b̃x | b′z |F)

(x̃)(b̃x | (z)E) = (x̃)(b̃x | (z)F) LR

Match Rule

(x̃)(b̃x |E) = (x̃)(b̃x |F)

(x̃)(b̃x | [y=z]E) = (x̃)(b̃x | [y=z]F) MR

Summation Rule

(x̃)(b̃x |E) = (x̃)(b̃x |F) (x̃)(b̃x |G) = (x̃)(b̃x |H)

(x̃)(b̃x | (E+G)) = (x̃)(b̃x | (F+H)) SR

Figure 4: Local Open Congruence Rules

Lemma 62 (Promotion). Suppose b1, . . . , bn are pairwise distinct fresh names. If

(x1 . . . xn)(b1x1 | . . . | bnxn |E) ≈opn (x1 . . . xn)(b1x1 | . . . | bnxn |F)

then ASopn
LHOπ ` (x1 . . . xn)(b1x1 | . . . | bnxn | τ.E) = (x1 . . . xn)(b1x1 | . . . | bnxn | τ.F).

Proof. By Abstraction Theorem and Abstraction Rule, we only need to consider processes. Suppose that

(x1 . . . xn)(b1x1 | . . . | bnxn |P) ≈opn (x1 . . . xn)(b1x1 | . . . | bnxn |Q)

and that P ≡
∑

i∈I ϕiλi.Ei and Q ≡
∑

j∈J ψjλj .Fj . Using the L-laws and their derivatives we may
assume that x does not appear in

∨
i∈I ϕi ∨

∨
j∈J ψj . We establish the result by induction on the sum

of the degrees of P and Q. Let σ be induced by ϕi. There are quite a few cases. These cases can be
classified into two groups. The first group consists of all such summands ϕiλi.Ei of P that the subject
name of λi is not in x̃.

• λi = τ . The action (x̃)(b̃x |Pσ) τ=⇒ (x̃)(b̃x |Eiσ) can be simulated by Qσ in two fashions:

– (x̃)(b̃x |Qσ) τ=⇒ (x̃)(b̃x |F ′iσ) ≈opn (x̃)(b̃x |Eiσ). By induction hypothesis one has that

ASopn
LHOπ ` (x̃)(b̃x | τ.Eiσ) = (x̃)(b̃x | τ.F ′iσ). SoASopn

LHOπ ` (x̃)(b̃x |ϕiτ.Eiσ) = (x̃)(b̃x |ϕiτ.F
′
iσ)

by Match Rule. ThusASopn
LHOπ ` (x̃)(b̃x |ϕiτ.Ei) = (x̃)(b̃x |ϕiτ.F

′
i). Moreover (x̃)(b̃x |Qσ) τ=⇒

(x̃)(b̃x |F ′iσ) is obviously due to Qσ τ=⇒ F ′iσ. Thus ASopn
LHOπ ` Q = Q+ϕiτ.F

′
iσ = Q+ϕiτ.F

′
i

by Saturation Lemma.

– The simulation is vacuous. In this case ASopn
LHOπ ` (x̃)(b̃x |ϕiτ.Ei) = (x̃)(b̃x |ϕiτ.Q).

• λi = ai(z). First observe that following correspondences hold by Corollary 56:

(x̃)(b̃x |Pσ) ≈opn (x̃)(b̃x |Qσ) iff (x̃)(b̃x |Pσ) ≈lqo (x̃)(b̃x |Qσ) iff Pσ ≈exl Qσ.

Therefore the action (x̃)(b̃x |Pσ)
σ(ai)z−→ (x̃)(b̃x |Eiσ) is simulated by (x̃)(b̃x |Qσ)

σ(ai)z=⇒ (x̃)(b̃x |F ′iσ)

such that (x̃)(b̃x |F ′iσ{y/z}) ≈opn (x̃)(b̃x |Eiσ{y/z}) for all y ∈ x̃z. By induction hypothesis one

36

has that ASopn
LHOπ ` (x̃)(b̃x | τ.Eiσ{y/z}) = (x̃)(b̃x | τ.F ′iσ{y/z}). So ASopn

LHOπ ` (x̃)(b̃x | a(z).Eiσ) =

(x̃)(b̃x | a(z).F ′iσ) by Input Rule. Hence

ASopn
LHOπ ` (x̃)(b̃x |ϕia(z).Ei) = (x̃)(b̃x |ϕia(z).F ′i)

by Match Rule. By Saturation Lemma one also has ASopn
LHOπ ` Q = Q+ ϕiai(z).F ′i .

• λi = aizi and zi 6∈ x̃. This case is similar to the previous one.

• λi = aixi. Let x̃′ be x1, . . . , xi−1, xi+1, . . . , xn. Now the action (x̃)(b̃x |Pσ)
σ(ai)(xi)−→ (x̃′)(b̃x |Eiσ)

can be simulated by (x̃)(b̃x |Qσ)
σ(ai)(xi)=⇒ (x̃′)(b̃x |F ′iσ) for some F ′i such that

(xi)(b′xi | (x̃′)(b̃x |F ′iσ)) ≈opn (xi)(b′xi | (x̃′)(b̃x |Eiσ))

for some fresh b′. It follows from (iii) of Lemma 17 that (x̃)(b̃x |Eiσ) ≈opn (x̃)(b̃x |F ′iσ). By

induction hypothesis one has that ASopn
LHOπ ` (x̃)(b̃x | τ.Eiσ) = (x̃)(b̃x | τ.F ′iσ). So

ASopn
LHOπ ` (x̃)(b̃x |ϕiaixi.Ei) = (x̃)(b̃x |ϕiaixi.F

′
i)

by Prefix and Match Rules. Again ASopn
LHOπ ` Q = Q+ ϕiaixi.F

′
i by Saturation Lemma.

• λi = ai(z) and z 6∈ x̃. In this case (x̃)(b̃x |Pσ)
σ(ai)(z)−→ (x̃)(b̃x |Eiσ) is simulated by the action

(x̃)(b̃x |Qσ)
σ(ai)(z)
=⇒ (x̃)(b̃x |F ′iσ) such that (z)(b′z | (x̃)(b̃x |Eiσ)) ≈opn (z)(b′z | (x̃)(b̃x |F ′iσ)) for a

fresh name b′. The equivalence is the same as (x̃)(z)(b̃x | b′z |Eiσ) ≈opn (x̃)(z)(b̃x | b′z |F ′iσ). By

induction hypothesis, ASopn
LHOπ ` (x̃)(z)(b̃x | b′z | τ.Eiσ) = (x̃)(z)(b̃x | b′z | τ.F ′iσ). Therefore

ASopn
LHOπ ` (x̃)(z)(b̃x | b′z |ϕiaiz.Ei) = (x̃)(z)(b̃x | b′z |ϕiaiz.F

′
i)

by Prefix Rule, Match Rule and T1. Then ASopn
LHOπ ` (x̃)(b̃x |ϕiai(z).Ei) = (x̃)(b̃x |ϕiai(z).F ′i) by

Localization Rule. According to Saturation Lemma, ASopn
LHOπ ` Q = Q+ ϕiai(z).F ′i .

• λi = ai(X). Then (x̃)(b̃x |Pσ)
σ(ai)X−→ (x̃)(b̃x |Eiσ). Some F ′i must exist such that (x̃)(b̃x |Qσ)

σ(ai)X=⇒
(x̃)(b̃x |F ′iσ) ≈opn (x̃)(b̃x |Eiσ). Let v be fresh. Then (x̃)(b̃x |F ′iσ{v/X}) ≈opn (x̃)(b̃x |Eiσ{v/X}).
It should be clear that the sum of the degrees of Eiσ{v/X} and F ′iσ{v/X} is strictly smaller than
that of the degrees of P and Q since one higher order input prefix has been removed. By induction
hypothesis ASopn

LHOπ ` (x̃)(b̃x | τ.Eiσ{v/X}) = (x̃)(b̃x | τ.F ′iσ{v/X}). By Abstraction Rule

ASopn
LHOπ ` (x̃)(b̃x | τ.Eiσ) = (x̃)(b̃x | τ.F ′iσ)

By Prefix Rule and Match Rule,

ASopn
LHOπ ` (x̃)(b̃x |ϕiai(X).Ei) = (x̃)(b̃x |ϕiai(X).F ′i)

It is obvious that Qσ
σ(ai)X=⇒ F ′iσ. Thus ASopn

LHOπ ` Q = Q+ ϕiai(X).F ′i by Saturation Lemma.

• λi = (ỹ)ai[Ai]. Then (x̃)(b̃x |Pσ)
(fx1)(ey)σ(ai)[Aiσ]−→ (x̃2)(b̃x |Eiσ), where x̃1x̃2 = x̃. Let c, d be fresh.

By definition z̃, Bi, F
′
i exist such that (x̃)(b̃x |Qσ)

(fx′
1)(ez)σ(ai)[Biσ]

=⇒ (x̃′2)(b̃x |F ′iσ), where x̃′1x̃
′
2 = x̃,

and the following equivalences hold:

(x̃1)(ỹ)(c.(Aiσ+d) | (x̃2)(b̃x |Eiσ)) ≈opn (x̃′1)(z̃)(c.(Biσ+d) | (x̃′2)(b̃x |F ′iσ))

(x̃1)(ỹ)((Aiσ+d) | (x̃2)(b̃x |Eiσ)) ≈opn (x̃′1)(z̃)((Biσ+d) | (x̃′2)(b̃x |F ′iσ))

37

These equivalences are the same as the following ones:

(x̃)(b̃x | (ỹ)(c.(Aiσ+d) |Eiσ)) ≈opn (x̃)(b̃x | (z̃)((c.(Biσ+d) |F ′iσ))

(x̃)(b̃x | (ỹ)((Aiσ+d) | τ.Eiσ)) ≈opn (x̃)(b̃x | (z̃)((Biσ+d) | τ.F ′iσ))

Now the sum of the degrees of (ỹ)(c.(Aiσ+d) |Eiσ) and (z̃)(c.(Biσ+d) |F ′iσ), as well as that of
(ỹ)((Aiσ+d) | τ.Eiσ) and (z̃)((Biσ+d) | τ.F ′iσ), is strictly less than that of P and Q since one higher
order output prefix is replaced by a first order prefix. By applying induction hypothesis to the above
equivalences, one gets

(x̃)(b̃x | τ.(ỹ)(c.(Aiσ+d) |Eiσ)) = (x̃)(b̃x | τ.(z̃)(c.(Biσ+d) |F ′iσ)) (23)

(x̃)(b̃x | τ.(ỹ)((Aiσ+d) | τ.Eiσ)) = (x̃)(b̃x | τ.(z̃)((Biσ+d) | τ.F ′iσ)) (24)

Now applying (i) of Lemma 61 to (24) gives us the following equality:

(x̃)(b̃x | c.(ỹ)((Aiσ+d) | τ.Eiσ)) = (x̃)(b̃x | c.(z̃)((Biσ+d) | τ.F ′iσ)) (25)

Using the Summation Rule and the Expansion Law, one gets from (23) and (25) that

ASopn
LHOπ ` (x̃)(b̃x | (ỹ)(c.(Aiσ+d) | τ.Eiσ)) = (x̃)(b̃x | (z̃)(c.(Biσ+d) | τ.F ′iσ)) (26)

Using the Concretion Rule one derives from (26) that

ASopn
LHOπ ` (x̃)(b̃x | (ỹ)σ(ai)[Aiσ].Eiσ) = (x̃)(b̃x | (z̃)σ(ai)[Biσ].F ′iσ)

Hence by Match Rule

ASopn
LHOπ ` (x̃)(b̃x |ϕi(ỹ)ai[Ai].Ei) = (x̃)(b̃x |ϕi(z̃)ai[Bi].F ′i)

It follows from Qσ
(ez)σ(ai)[Biσ]

=⇒ F ′iσ that ASopn
LHOπ ` Q = Q+ ϕi(ỹ)ai[Ai].F ′i .

The second group consists of all such summands ϕiλi.Ei of P that the subject name of λi is one of x̃.
The proofs are basically the same as those for the corresponding ones in the first group. We take a look
at one case:

• λi = (ỹ)xi[Ai]. Write x̃′ for x1, . . . , xi−1, xi+1, . . . , xn and b̃′ for b1, . . . , bi−1, bi+1, . . . , bn. Let c, d, e
be fresh. Define O to be the process e+ xi(X).(c.(X+d) | bixi). Then

bi(xi).O | (x̃)(b̃x |Pσ) τ−→ (xi)(O | (x̃′)(b̃′x′ |Pσ))
τ−→ (xi)(ỹ)(c.(Aiσ+d) | bixi | (x̃′)(b̃′x′ |Eiσ))

∼ (x̃)(b̃x | (ỹ)(c.(Aiσ+d) |Eiσ))

The above reduction has to be matched up by bi(xi).(xi(X).c.(X+d) + e) | (x̃)(b̃x |Qσ). So by
definition z̃, Bi, F

′
i exist such that

bi(xi).O | (x̃)(b̃x |Qσ) τ=⇒ (xi)(O | (x̃′)(b̃′x′ |Q′σ))
τ=⇒ (xi)(z̃)(c.(Biσ+d) | bixi | (x̃′)(b̃′x′ |F ′iσ))

∼ (x̃)(b̃x | (z̃)(c.(Biσ+d) |F ′iσ))

≈opn (x̃)(b̃x | (ỹ)(c.(Aiσ+d) |Eiσ))

Clearly Qσ
(ez)xi[Biσ]

=⇒ F ′iσ. The rest of the argument is as before.

38

In summary what we have established is this: There are disjoint subsets I0, I1 of I such that I0 ∪ I1 = I.
For each i ∈ I1 there exists F ′i such that

ASopn
LHOπ ` (x̃)(b̃x |ϕiλi.Ei) = (x̃)(b̃x |ϕiλi.F

′
i) (27)

and
ASopn

LHOπ ` Q = Q+ ϕiλi.F
′
i (28)

For each i ∈ I0, λi = τ and

ASopn
LHOπ ` (x̃)(b̃x |ϕiτ.Ei) = (x̃)(b̃x |ϕiτ.Q) (29)

Symmetrically there are disjoint subsets J0, J1 of J such that J0 ∪ J1 = J . For each j ∈ J1 there exists
E′

j such that

ASopn
LHOπ ` (x̃)(b̃x |ψjλj .Fj) = (x̃)(b̃x |ψjλj .E

′
j) (30)

and
ASopn

LHOπ ` P = P + ψjλj .E
′
j (31)

For each j ∈ J0, λj = τ and

ASopn
LHOπ ` (x̃)(b̃x |ψjτ.Fj) = (x̃)(b̃x |ψiτ.P) (32)

Putting all the equations together, one has by the Summation Rule

(x̃)(b̃x |P +Q)
(27,29)

= (x̃)

(
b̃x

∣∣∣∣∣ (∑
i∈I0

ϕiτ.Q+
∑
i∈I1

ϕiλi.F
′
i +Q)

)
(28)
= (x̃)

(
b̃x

∣∣∣∣∣ (∑
i∈I0

ϕiτ.Q+Q)

)

Similarly

(x̃)(b̃x |Q+ P)
(30,31,32)

= (x̃)

b̃x
∣∣∣∣∣∣ (
∑
j∈J0

ψjτ.P + P)


Therefore

(x̃)

b̃x
∣∣∣∣∣∣ (
∑
j∈J0

ψjτ.P + P)

 = (x̃)

(
b̃x

∣∣∣∣∣ (∑
i∈I0

ϕiτ.Q+Q)

)

It follows from the Prefix Rule that

(x̃)

b̃x
∣∣∣∣∣∣ τ.(

∑
j∈J0

ψjτ.P + P)

 = (x̃)

(
b̃x

∣∣∣∣∣ τ.(∑
i∈I0

ϕiτ.Q+Q)

)

We conclude by (20) that ASopn
LHOπ ` (x̃)(b̃x | τ.P) = (x̃)(b̃x | τ.Q).

It is well-known that the proof of the Completeness Theorem is a minor modification of the proof of
the Promotion Lemma. We omit the routine proof.

Theorem 63 (Completeness Theorem). Suppose that neither E nor F contains any fix-operators. Then
E 'opn F if and only if ASopn

LHOπ ` E = F .

39

11 Algorithm

The Completeness Theorem lays down a foundation for an algorithm of checking the equivalence of two
finite linear higher order π-process expressions. Figure 5 describes an algorithm ECHECK that returns
true if the two inputs are congruent process expressions in FLHPE , the set of the finite linear higher
order π-process expressions, and returns false otherwise. Due to the recursive nature of the algorithm,
the two input process expressions are assumed to take the form (x̃)(b̃x |E), which is general enough since
the length of b̃ could be zero. In the description of the algorithm we have used the terminology “saturated
head normal form” whose definition is given below.

Definition 64. A head normal form
∑

i∈I ϕiλi.Ei is saturated if, for each i ∈ I, whenever

(
∑
i∈I

ϕiλi.Ei)σϕi

λ=⇒ E′

then there is a summand ϕi′λi′ .Ei′ of
∑

i∈I ϕiλi.Ei such that ϕi′ ⇔ ϕi, λi′σϕi
= λ and Ei′σϕi

≡ E′.

Using Lemma 59 and Lemma 60 one can easily prove the following result.

Lemma 65. For each finite linear higher order π-process P there is a saturated head normal form∑
i∈I ϕiλi.Ei such that the followings hold:

(i) ASLHOπ ` P =
∑

i∈I ϕiλi.Ei;
(ii) d(

∑
i∈I ϕiλi.Ei) � d(P);

(iii) and for every i ∈ I, Pσϕi

λ=⇒ P ′′ if and only if (
∑

i∈I ϕiλi.Ei)σϕi

λ−→ P ′′.

The step 4 of the algorithm is validated by the above lemma. It is straightforward to prove by
induction that the algorithm terminates.

12 LHOCCS

We could repeat the above investigation for LHOCCS. In this section we state the main definitions and
results. The proofs of these results are omitted since they are the simpler version of the proofs in LHOπ.
Formally the set of LHOCCS expressions LHCE is generated by the following BNF:

E := X
a.E
a.E
a(X).E
aE.E′

E |E′

(x)E
E[a7→b]
E+E′

fixX.E where X is isolated in E

The process expression E[a7→b] is of relabelling form. Notice that the match operator is not included in
LHOCCS. The operational semantics of LHOCCS inherits from that of LHOπ. The additional rules
are to do with the relabelling operator.

Prefix

a.E
a−→ E a.E

a−→ E a(X).E aH−→ E{H/X} aH.E
aH−→ E

Composition

E
λ−→ E′ bn(λ) ∩ fn(F) = ∅

E |F λ−→ E′ |F
E

a−→ E′ F
a−→ F ′

E |F τ−→ E′ |F ′
E

aH−→ E′ F
(ex)aH−→ F ′

E |F τ−→ (x̃)(E′ |F ′)

40

ECHECK(Y : FLHPE , Z : FLHPE) : Bool =

begin

1. ECHECK(Y, Z) := true;

2. Suppose Y and Z are initiated respectively with (z̃)(b̃z |E[X1, . . . , Xn]) and

(z̃)(b̃z |F [X1, . . . , Xn]), where b̃ = b1, . . . , bn are pairwise distinct fresh names
and z̃ = z1, . . . , zn are pairwise distinct;

3. Instantiate (z̃)(b̃z |E[X1, . . . , Xn]) and (z̃)(b̃z |F [X1, . . . , Xn]) with pairwise
distinct fresh names c1, . . . , cn;

4. Convert E[c1, . . . , cn] and F [c1, . . . , cn] respectively to saturated head normal
forms

∑
i∈I ϕiλi.Ei and

∑
j∈J ψjλj .Fj ;

5. if I = ∅ = J then return;
6. repeat for each i ∈ I begin

case λi of
• a(x):

if some j ∈ {j ∈ J | ϕi ⇒ ψj ∧ λiσϕi = λjσϕi} exists such that

ECHECK((z̃)(b̃z |Eiσϕi
{y/x}), (z̃)(b̃z |Fjσϕi

{y/x})) = true
for all y ∈ z̃x
then skip
else begin ECHECK(Y,Z) := false; return end

• ax | a(X):
if some j ∈ {j ∈ J | ϕi ⇒ ψj ∧ λiσϕi

= λjσϕi
} exists such that

ECHECK((z̃)(b̃z |Eiσϕi
), (z̃)(b̃z |Fjσϕi

)) = true
then skip
else begin ECHECK(Y,Z) := false; return end

• a(z′):
if some j ∈ {j ∈ J | ϕi ⇒ ψj ∧ λiσϕi

= λjσϕi
} exists such that

ECHECK(E′, F ′) = true for a fresh b′, where

E′ ≡ (z′)(z̃)(b̃z | b′z′ |Eiσϕi)

F ′ ≡ (z′)(z̃)(b̃z | b′z′ |Fjσϕi)

then skip
else begin ECHECK(Y,Z) := false; return end

• (ũ)a[H]:
if some j in {j ∈ J | ϕi ⇒ ψj} exists such that λjσϕi

= (ṽ)a[G]
and ECHECK(E′, F ′) = true where, for some fresh d, e

E′ ≡ (z̃)(b̃z | (ũ)(d.(H+e) |Eiσϕi))

F ′ ≡ (z̃)(b̃z | (ṽ)(d.(G+e) |Fjσϕi))

then skip
else begin ECHECK(Y,Z) := false; return end

end;
7. Repeat step 6 by exchanging the roles of

∑
i∈I ϕiλi.Ei and

∑
j∈J ψjλj .Fj

end

Figure 5: The Checking Algorithm

41

Localization
E

λ−→ E′ x 6∈ n(λ)

(x)E λ−→ (x)E′

E
(ex)aH−→ E′ y ∈ fv(H) \ x̃a

(y)E
(y)(ex)aH−→ E′

Relabelling

E
λ−→ E′ a 6∈ subj(λ)

E[a7→b] λ−→ E′[a7→b]

E
a−→ E′

E[a7→b] b−→ E′[a7→b]

E
a−→ E′

E[a7→b] b−→ E′[a7→b]

E
aH−→ E′

E[a7→b] bH−→ E′[a7→b]

E
aH−→ E′

E[a7→b] bH−→ E′[a7→b]
Recursion

E{fixX.E/X} λ−→ E′

fixX.E λ−→ E′

What should be emphasized about the operational semantics is that according to the definition the
relabelling operator is a static binder. The bisimulation equivalence for LHOCCS is defined in a similar
fashion, the difference from Definition 25 is that closure under the substitution of names is not required.

Definition 66. A symmetric relation R on LHCE is a bisimulation if it is closed under substitution of
variables, and whenever ERF then the following properties hold:
(i) If E τ−→ E′ then F ′ exists such that F =⇒ F ′RE′.
(ii) If E α−→ E′ then F ′ exists such that F α=⇒ F ′RE′.
(iii) If E aX−→ E′ and X 6∈ fn(E |F) then F ′ exists such that F aX=⇒ F ′RE′.

(iv) If E
(ex)aG−→ E′ then some x̃′,H, F ′ exist such that F

(ex′)aH
=⇒ F ′ and (x̃)(K[G] |E′) R (x̃′)(K[H] |F ′)

for every process expression K[X] such that x̃x̃′ ∩ fn(K[X]) = ∅.
E is bisimilar to F , notation E ≈LHOCCS F , if there exists a bisimulation R such that (E,F) ∈ R.

The congruence 'LHOCCS is defined in the standard manner. The Expansion Law for LHOCCS is
much simpler than the one for LHOπ:

E |F =
∑
i∈I

λi.(Ei |F) +
∑
j∈J

λj .(E |Fj)

+
λi=ai, λj=bj , ai=bj∑

i∈I,j∈J

τ.(Ei |Fj) +
λi=ai, λj=bj , ai=bj∑

i∈I,j∈J

τ.(Ei |Fj)

+
λi=ai(X), λj=(ex)bjHj , ai=bj∑

i∈I,j∈J

τ.(x̃)(Ei{Hj/X} |Fj)

+
λi=(ex)aiHi, λj=bj(X), ai=bj∑

i∈I,j∈J

τ.(x̃)(Ei |Fj{Hi/X})

where E ≡
∑

i∈I λi.Ei and F ≡
∑

j∈J λj .Fj . A process expression of the form
∑

i∈I λi.Ei is a head
normal form. The axioms for LHOCCS, given in Figure 6, is obtained from Figure 1 by removing those
axioms concerning the match operator. Let ASLHOCCS be the set of axioms defined in Figure 6 and the
Concretion Rule and the Abstraction Rule defined below:

(ỹ)(c.(H+d) |E) = (z̃)(c.(G+d) |F)
(ỹ)a[H].E = (z̃)a[G].F

E{c/X} = F{c/X} c 6∈ fn(E |F)
E = F

where c and d are fresh. The two rules help to reduce the higher order equivalence checking to the first
order equivalence checking. One can show that every LHOCCS process can be rewritten to a head
normal form using axioms and rules of ASLHOCCS . Without further ado we state the completeness
result.

Theorem 67. ASLHOCCS is sound and complete for 'LHOCCS on the finite LHOCCS processes.

Proof. Using the R-rules, it is easy to see that all the relabelling operations of an LHOCCS process can
be pushed underneath the outermost prefix operators.

42

L1 (x)0 = 0
L2 (x)X = X
L3 (x)λ.E = λ.(x)E if x does not appear in λ
L4 (x)λ.E = 0 if x is the subject name of λ
L5 (x)(E |F) = E | (x)F if x is not free in E
L6 (x)(y)E = (y)(x)E
L7 (x)(E+F) = (x)E+(x)F
R1 (λ.E)[a7→b] = λ.E[a7→b] a 6∈ subj(λ)
R2 (a.E)[a7→b] = b.E[a7→b]
R3 (a.E)[a7→b] = b.E[a7→b]
R4 (a(X).E)[a7→b] = b(X).E[a7→b]
R5 (aH.E)[a7→b] = bH.E[a7→b]
R6 (E |F)[a7→b] = E[a7→b] |F [a7→b]
R7 ((x)E)[a7→b] = (x)E[a7→b] x 6∈ {a, b}
R8 (E+F)[a7→b] = E[a7→b]+F [a7→b]
S1 E+0 = E
S2 E+F = F+E
S3 E+(F+G) = (E+F)+G
S4 E+E = E
T1 λ.τ.E = λ.E
T2 E + τ.E = τ.E
T3 λ.(E + τ.F) = λ.(E + τ.F) + λ.F

Figure 6: Axioms for LHOCCS

13 Remark

We have achieved the goal set out at the beginning of the paper, that is to provide an equational system
for the finite linear higher order π-processes that is sound and complete for the bisimulation congruence.
As far as we know, this is the first of such results on the completeness of an equational system for and the
decidability of the higher order process calculi. We have advanced previous results on several aspects:

• We have proposed a general approach to investigate the higher order process calculi. Our method-
ologies apply to the general weak bisimulations rather than the delayed bisimulations. This is an
advancement over the work of [21, 13]. Results like Abstraction Theorem and Concretion Theorem
play important roles in our theory. Bisimulation Lemma is used extensively.

• Using the general approach we have improved some results on higher order calculi. One such
improvement is described in Section 6. Our Fixpoint Theorem holds for the weak bisimilarity
whereas the result in [23] is only valid for the strong congruence.

• We have demonstrated how to derive a complete system for a congruence on the finite LHOπ-
processes from a complete system for the same congruence on the finite first order π-processes. The
additional rules to accomplish the transition are the Abstraction Rule and the Concretion Rule.

How much of the theory developed in this paper can be transplanted to the nonlinear higher order
π-calculus? The decidability of the equivalence checking seems lost when moving from the linear scenario
to the nonlinear one. For example, (x)a[x].x.b and (x)a[x].x.b.x.b are bisimilar in LHOπ, but they are
not bisimilar in HOπ. The problem is due to the higher order output prefix operator. Suppose a[A].E
and a[A].F are linear higher order processes. To check the equivalence of a[A].E and a[B].F , one needs
to check the equivalence of G[A] |E and G[B] |F for every process expression G[X], which is unlikely to
be decidable. Apart from the decidability result, most of the results actually hold for HOπ. Section 3
through Section 6 can be redone for HOπ. The only exception is Theorem 24. The clause (ii’) of the
theorem is not valid. The approach advocated in this paper can be applied to study other aspects of the
higher order calculi.

Acknowledgement We thank Dr Xiaoju Dong and Mr Xian Xu for many helpful discussions.

43

References

[1] L. Cardelli and A. Gordon, Mobile Ambients, Theoretical Computer Science, 240: 177-213, 2000.

[2] Y. Fu, A Proof Theoretical Approach to Communications, ICALP’97 , Lecture Notes in Computer
Science 1256: 325-335, 1997.

[3] Y. Fu, Variations on Mobile Processes, Theoretical Computer Science, 221: 327-368, 1999.

[4] Y. Fu, On Quasi Open Bisimulation, Theoretical Computer Science, 338: 96-126, 2005.

[5] Y. Fu and Z. Yang, Understanding the Mismatch Combinator in Chi Calculus, Theoretical Computer
Science, 290: 779-830, 2003.

[6] Y. Fu and Z. Yang, Tau Laws for Pi Calculus, Theoretical Computer Science, 308: 55-130, 2003.

[7] R. Milner, Communication and Concurrency , Prentice Hall, 1989.

[8] R. Milner, J. Parrow and D. Walker, A Calculus of Mobile Processes, Information and Computation,
100: 1-40 (Part I), 41-77 (Part II), 1992.

[9] R. Milner and D. Sangiorgi, Barbed Bisimulation, ICALP’92 , Lecture Notes in Computer Science
623: 685-695, 1992.

[10] J. Parrow and D. Sangiorgi, Algebraic Theories for Name-Passing Calculi, Information and Compu-
tation, 120: 174-197, 1995.

[11] D. Sangiorgi, Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms,
PhD thesis, Department of Computer Science, University of Edinburgh, 1992.

[12] D. Sangiorgi, From π-Calculus to Higher Order π-Calculus–and Back, TAPSOFT’93 , Lecture Notes
in Computer Science 668: 151-166, 1993.

[13] D. Sangiorgi, Bisimulation for Higher Order Process Calculi.

[14] D. Sangiorgi, A Theory of Bisimulation for π-Calculus, Acta Informatica, 3: 69-97, 1996.

[15] D. Sangiorgi and R. Milner, Techniques of “Weak Bisimulation Up To”, CONCUR’92 , Lecture Notes
in Computer Science 630, 1992.

[16] D. Sangiorgi and D. Walker, On Barbed Equivalence in π-Calculus, CONCUR’01, 2001.

[17] D. Sangiorgi and D. Walker, The Pi Calculus–A Theory of Mobile Processes, CUP, 2001.

[18] B. Thomsen, A Calculus of Higher Order Communicating Systems, POPL’89 , 143-154, 1989.

[19] B. Thomsen, Calculi for Higher Order Communicating Systems, PhD Thesis, Department of Com-
puting, University of London, 1990.

[20] B. Thomsen, Plain CHOCS–A Second Generation Calculus for Higher Order Processes, Acta In-
formatica, 30: 1-59, 1993.

[21] B. Thomsen, A Theory of Higher Order Communicating Systems, Information and Computation,
116: 38-57, 1995.

[22] R. J. van Gabbeek and W. P. Weijland, Branching Time and Abstraction in Bisimulation Semantics,
Journal of ACM , 43: 555-600, 1996.

[23] M. Ying, A Shorter Proof to Uniqueness of Solutions of Equations, Theoretical Computer Science,
216: 395-397, 1999.

[24] M. Ying and M. Wirsing, Recursive Equations in Higher Order Process Calculi, Theoretical Computer
Science, 266: 839-852, 2001.

44

	Motivation
	Linear Higher Order -Calculus
	Bisimulation
	Prefix and Continuation
	Localization Theorem
	Abstraction Theorem
	Concretion Theorem

	Local Congruence
	Recursion
	Open Bisimulation
	Head Normal Form
	Saturation
	Completeness
	Algorithm
	LHOCCS
	Remark

