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Divergence and nondeterminism play a fundamental role in the theory of computation.

Their combined effect on computational equality deserves further study. By looking at

the issue from the point of view of both computation and interaction, one is led to a

canonical equality for nondeterministic computation, revealing its rich algebraic

structure. The structure is studied in three ways. Firstly a complete equational system

for finite state nondeterministic computation is constructed. The challenge with such a

system is to find an equational alternative to the fixpoint induction à la Milner. A

negative result, the non-existence of a finite equational system for the canonical equality

of nondeterministic computation, is established to support our approach. Secondly

infinite state nondeterministic computation is investigated in the light of definability. It

is shown that every recursively enumerable set is generated by an unobservable process.

Thirdly it is proved that, as far as computation is concerned, the effect produced jointly

by divergence and nondeterminism is model independent for a large class of process

models. In all the studies C-graphs, which are themselves interesting, are used as

abstract representations of the computational objects.

1. Introduction

Our conception of computation is independent of individual mental power since the

concept is supported by physical realizability. A Turing machine, or its physical imple-

mentation, with an input written on its storage tape, constitutes a computational object.

An execution of the computational object, driven by physical laws, either terminates in

a final computational object, which is the machine with the result value placed on its

storage tape, or does not terminate. In a more abstract model, say the λ-calculus (Baren-

dregt 1984), there is no distinction between machine and datum. Computational objects

can take many different shapes and forms. The essence of a computational object is that

it can be physically implemented and can be executed by resorting to physical laws. The
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two kinds of computational objects we have just mentioned are dramatically different.

From the point of a user, a terminating computation, or execution, provides a result,

whereas a divergent, or nonterminating, computation can never do him/her any good. In

the physical world, a divergent computation is bound to go bankrupt, at least theoreti-

cally, before it exhausts all the energy of the universe. A model theoretical treatment to

computation must distinguish these two kinds of computational objects from the outset.

Modern computing environments feature interactions. What comes with interaction

is nondeterminism. In such an environment a computational object may be capable of

producing a result, and at the same time it also has the potential to diverge. The choice

between the two actions is nondeterministic. This computational object differs from a

terminating computational object and a divergent computational object in both the

human world and the physical world. In fact the situation is far more complicated.

Nondeterminism and divergence can be combined in a very complex way. It is not at all

clear if anything can be said about these computational objects.

This paper sets out to study the nondeterministic computational objects. Our objective

is to answer the following questions:

— What is the right notion of equality for the nondeterministic computational objects? A

reasonable answer to the question is the starting point for subsequent investigations.

— What are the structures of the nondeterministic computational objects? More specif-

ically are there any characterizations of the equivalence classes of these objects?

— What are the nondeterministic computational objects defined in a computation or

interaction model? Do they differ from one model to another?

We document in this paper the results we have obtained by looking into these problems.

Our contributions are summarized as follows:

— We will present a coherent account of the following interrelated concepts: Church-

Turing thesis, bisimulation, computation, interaction, divergence, nondeterminism,

computational equality, observational equivalence, Turing completeness. The equality

for the nondeterministic computational objects will emerge from the uniform account.

— We will construct a complete equational system for the equality we introduced on

finite state computational objects. The system contains a few axiom schemata. We

will prove a negative result saying that there does not exist any finite axiom system

for the finite state computational objects.

— We will study infinite state computations from the point of view of definability. A

general definability result will be established.

— We will show that the nondeterministic structure of computation is model indepen-

dent for a general class of models.

The rest of the paper is organized as follows. Section 2 discusses equality properties

for deterministic computation. Section 3 extends these properties to take into account of

interaction. Section 4 characterizes finite state computational objects. Section 5 investi-

gates infinite state computational objects. Section 6 establishes the model independence

property of the nondeterministic computational objects. Section 7 points out some fur-

ther research issues.
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2. Church-Turing Thesis and Bisimulation

Our understanding of effective calculability was greatly enhanced in the 1930’s by the

study of computation models (Kleene 1981). Church’s simple and elegant model, the well-

known λ-calculus (Church 1936; Cardone and Hindley 2009), turned out to be extremely

expressive from the programming point of view. Gödel’s recursive functions (Gödel 1931;

Davis 1965), known as primitive recursive functions after (Kleene 1936a), evolved to

Herbrand-Gödel’s general recursive functions (see Gödel’s 1934 lecture notes reprinted

in (Davis 1965)), although at the time Gödel himself wasn’t very sure that general recur-

sion captures all possible effective calculability. The year 1936 was when the foundation

of computation theory began to take shape. Kleene (Kleene 1936a) provided a charac-

terization of general recursive functions in terms of primitive recursive functions and

the least number operator (the µ-operator). Church (Church 1936) and Kleene (Kleene

1936b) showed that the general recursive functions are in fact the same as the λ-definable

functions. Turing, having worked independently on his machine model (Turing 1936;

Turing 1937b) and having learnt about the work on λ-definability and general recursion,

gave a proof of the equivalence between Turing computability and λ-definability (Turing

1937a). These equivalence results led researchers, in particular Gödel, to believe in the

Church-Turing Thesis (called Church Thesis in (Kleene 1952)). Later it was pointed out

by Kleene (Kleene 1938) that the thesis also covers the situation of partially defined

recursion. Turing remarked in (Turing 1937a) that the λ-calculus is more convenient.

What he couldn’t say at the time is that, owing to this simplicity, the λ-calculus plays a

foundational role among (functional) programming languages (Abramsky 1988). Gödel

was reported as saying that Turing machines offer the most convincing formalization of

mechanical procedures (Davis 1965). It came as no surprise that the physical feasibility

of Turing machines is exploited in the influential von Neumann architecture. After the

discoveries of the 1930’s, models of computation with different emphases were proposed

and proved equivalent to the earlier models of Gödel, Church, Kleene and Turing. Post

Systems (Post 1943) and Markov Algorithms (Markov 1960) can be seen as language

models, while counter machines (like Minsky Machines (Minsky 1967) and the Unlim-

ited Register Machines of Shepherdson and Sturgis (Shepherdson and Sturgis 1965)) and

Random Access Machines (Cook and Reckhow 1973) are members of the class of register

machines.

Our understanding of effective calculability can be further enhanced by revealing the

hidden depth of the Church-Turing Thesis. The thesis was originally formulated in terms

of computable functions. It is normally stated as follows:

CTT-I. The set of functions definable in a model of computation is precisely the set of com-

putable functions.

According to the thesis, the computable functions are precisely those definable by the

partial recursive functions (Rogers 1987). The equivalence proofs since the 1930’s that

support the Church-Turing Thesis reveal a lot more than CTT-I. In all cases there is

actually an effective translation from one computation model to another that preserves

and reflects computations. To describe the general phenomenon in a model independent

way, we need to be a bit more formal about computation models and translations be-
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tween them. We assume that every model is a pair 〈CA,→A〉, where CA is the set of

computational objects, or configurations, and →A, whose subscript will be omitted, is

the one step computation relation. Let C be the class of all computation models, ranged

over by A,B. The reflexive and transitive closure of → will be denoted by →∗. Now

suppose T is a translation from A to B and M → M ′ is a one step computation in A.

The preservation property of T requires that T (M)→ N1 → N2 → . . .→ Nk, for some

computational objects N1, . . . , Nk of B, such that the sequence of transitions from T (M)

simulates M → M ′. One difficulty in proving the correctness of T is in showing that

Nk is essentially the same as T (M ′). This requires the introduction of an equivalence

on the computational objects of B, which would complicate the issue from the outset.

An elegant way to bypass this problem is to think of T as a recursive relation rather

than as a recursive function. To make the following account simpler, we abuse notation

by identifying CA with the set of the Gödel indices of the computational objects of A.

A translation from A to B can then be regarded as a binary relation on the set N of

natural numbers. For every computational object M of A, the interpreter should be able

to generate effectively the interpretations of M . Suppose N is one interpretation of M

and N → N ′. The correctness of the interpreter also requires that it should be capable

of effectively finding a computational object M ′ in A such that M →∗ M ′ and N ′ is

an interpretation of M ′. This is usually called reflection property. These remarks lead

to Definition 1 introduced below. Henceforth the set N is ranged over by i, j, k. Sup-

pose S is a binary relation. The infix notation xSy stands for the membership predicate

(x, y) ∈ S, and S−1 denotes the reverse relation {(y, x) | xSy}. The domain d(S) of

S is {x | ∃y.xSy} and the range r(S) of S is {y | ∃x.xSy}. The relation S is total if

∀x.∃y.xSy.

Definition 1. A relation S ⊆ N×N is recursive if the following are valid:

1 Both d(S) and r(S) are recursive.

2 There are (partial) recursive functions s+, s− : N→ N, called encoding and decoding

functions respectively, such that d(s+) = d(S) and d(s−) = r(S).

3 ∀x ∈ d(S).s−(s+(x)) = x.

By definition the composition of two recursive relations is a recursive relation. To appre-

ciate the above definition, notice that the condition (3) of the above definition rules out

nonsensical translations like the one translating every divergent Turing machine config-

uration to (λx.xx)(λx.xx) and every terminating Turing machine configuration to λx.x.

Studies in complexity theory and programming activities in the real world have led us to

believe that the translation overheads, as well as the simulation costs, between compu-

tation models are actually polynomially bounded (van Emde Boas 1990; Wegener 2005).

In this paper we ignore this quantitative aspect of the Church-Turing Thesis.

We are now in a position to define in a model independent manner translations from one

computation model to another, formalizing a number of proposals summarized in (van

Emde Boas 1990).

Definition 2. Suppose A,B are computation models. A relation T from CA to CB is an

effective reduction of A to B if the following statements are valid:
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1 T is total.

2 T is recursive.

3 If MT N , then ∃M ′.M →∗ M ′T N ′ whenever N → N ′, and ∃N ′.N →∗ N ′T −1M ′
whenever M →M ′.

4 If MT N , then there is an infinite sequence of computation starting from M if and

only if there is an infinite sequence of computation starting from N .

We write A ≤e B if there is an effective reduction from A to B.

As we have alluded to in the above, Definition 2 makes little sense without condition 2.

Condition (3) is the weak bisimulation property (Park 1981; Milner 1989a) well-known in

logic and process theory (Sangiorgi 2009). We will come back to this point later. Condi-

tions (2) and (3) are the fundamental qualitative properties of T . Condition (4), usually

referred to as the termination preservation condition, says that a computational object

of A is undefined if and only if its interpretation in B is undefined. There are other ways

to deal with undefinedness. But the identification of undefinedness with nontermination,

or divergence as it is normally called, is the simplest model independent treatment for

undefinedness. It is important to realize that if Definition 2 is strengthened by adding the

quantitative condition saying that the length of a simulating sequence is polynomial on

the length of the computation sequence being simulated, then condition (4) is a corollary

of condition (3) if both A and B are deterministic. In a quantitative approach terminat-

ing computations must be interpreted by terminating computations, and consequently

divergent computations must be interpreted by divergent computations. Termination

preservation is subordinate to condition (3) in a quantitative framework.

The equivalence proofs that substantiate CTT-I suggest that every one of the well-

known (deterministic) computation models can be regarded as an initial model. From the

point of view of this paper it is most convenient to take a Counter Machine Model as the

initial model R. A CM consists of a finite number of registers r1, . . . , rk′ and a program, the

latter being a finite sequence of instructions L1, . . . , Lk with the line numbers 1, 2, . . . , k

respectively. An instruction is in one of three forms: Succ(rj) increments the number in

rj by one before moving to the next instruction; DecJump(rj , s) decreases the number

in rj by one if it is not zero, or it jumps to the s-th instruction; and End stops the

execution of the program. Without loss of generality we assume that an instruction of

a program is End if and only if it is the last instruction of the program. The set CR
of the computational objects of R is a CM configuration 〈n1, . . . , nk′ ; i〉, where nj , for

j ∈ {1, . . . , k′}, is the current number stored in the j-th register and i is the location

of the current instruction. The one step computation 〈n1, . . . , nk′ ; i〉 → 〈n′1, . . . , n′k′ ; i′〉
indicates the change of configuration after the execution of the current instruction.

We can now reformulate CTT-I in terms of the effective reduction.

CTT-II. ∀A∈C.R ≤e A.

Conditions (3,4) of Definition 2 are formulated for deterministic computation. This is

not really a restriction for CTT-II since R is deterministic. We shall see in the next

section how ≤e can be strengthened so that it applies to every pair of determinis-

tic/nondeterministic computation models.
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3. Church-Turing Thesis and Process Equality

Let’s now turn to nondeterministic computations. In a semantic setting, nondeterminism

is about state change. Suppose M is a configuration of a nondeterministic Turing machine

and that M may in one step evolve nondeterministically to two distinct configurations

M ′,M ′′. If M ′ and M ′′ always lead to final configurations with the same numbers in the

output tapes, one may think of these two configurations as semantically equivalent. In

this case the nondeterminism is fake. True nondeterminism comes into the picture when

M ′,M ′′ are not semantically equivalent. This is the situation in which it is possible for

M ′ for instance to reach a final configuration with a number on the output tape whereas

M ′′ can never reach a final configuration with the same output number.

Nondeterminism is not a concept about effectiveness. One can never argue in favour

of it from the point of view of effective calculability. Nondeterminism is inevitable if

computations are defined in an interactive framework. In the broader picture of modern

computing (distributed and mobile computing), everything is about interaction (Milner

1993) and computation is a special form of interaction (Milner 1992; Cai and Fu 2011).

Milner pioneered the study of interaction models with his work on the well-known process

calculus CCS (Milner 1989a). A major contribution of the study of process calculi is

the theory of observational equivalence. Before explaining the relationship between the

observational theory and the Church-Turing Thesis, we need to introduce the CCS model.

Crucial to the definition of CCS is the notion of (channel) name. We summarize the

relevant terminology concerning names and name variables below.

— The countable set N of names is ranged over by a, b, c, d, e, f, g, h.

— The set N of co-names is {a | a ∈ N}.
— The set of actions A = N∪N∪{τ} is ranged over by λ and its decorated versions. The

notation τ stands for an internal action. It is different from any name and co-name.

— The set Nv of name variables is ranged over by u, v, w, x, y, z.

— The union N ∪Nv is ranged over by l,m, n, o, p, q.

— The set L = A ∪Nv ∪ {x | x ∈ Nv} is ranged over by `.

A finite sequence of names c1, . . . , ck for example is sometimes abbreviated to c̃.

The set of CCS terms is generated by the following grammar:

T := S | T |T ′ | (c)T | D(n1, . . . , nk),

S := 0 | `.T | S + S′.

In `.T we say that ` is a prefix of T . The term `1.T1+`2.T2+. . .+`n.Tn will be called a Σ-

term or a choice term. We will write
∑

1≤i≤n `i.Ti for `1.T1 +`2.T2 + . . .+`n.Tn. We have

omitted the brackets in `1.T1 + `2.T2 + . . .+ `n.Tn since the operator ‘+’ is commutative

and associative. The notation
∑
i∈I `i.Ti will also be used, where the indexing set I is

finite. If the indexing set I is empty,
∑
i∈I `i.Ti is understood as 0. A trailing 0 will often

be omitted. The operator ‘|’ composes two terms into one, allowing the components

to interact. In the localization term (c)T the name c is bound. For simplicity we will

abbreviate (c1) . . . (ck)T to (c1 . . . ck)T . We avail ourselves of the α-conversion, which

says that a local name in a term can be renamed to a fresh name without changing

the syntax of the term. The α-conversion is used whenever it is necessary to prevent
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name capture. The term D(n1, . . . , nk) is the instantiation of a parametric definition

D(x1, . . . , xk) at n1, . . . , nk. A k-ary parametric definition D(x1, . . . , xk) is given by an

equation

D(x1, . . . , xk) = T (1)

such that the set of the name variables appearing in T is a subset of {x1, . . . , xk}.
The instantiation of D(x1, . . . , xk) at n1, . . . , nk is T{n1/x1, . . . , nk/xk}. We will write

A,B,C,D for processes defined by parametric definition. In (1) the parameters x1, . . . , xk
are bound. A name variable is free if it is not bound. A CCS process is a CCS term

that does not contain any free variables. The set of processes will be ranged over by

L,M,N,O, P,Q.

The labeled transition semantics of CCS is generated by the following rules.

Action

λ.T
λ−→ T

S1
λ−→ S′1

S1 + S2
λ−→ S′1

S2
λ−→ S′2

S1 + S2
λ−→ S′2

Composition

T0
λ−→ T ′0

T0 |T1
λ−→ T ′0 |T1

T0
a−→ T ′0 T1

a−→ T ′1

T0 |T1
τ−→ T ′0 |T ′1

T1
λ−→ T ′1

T0 |T1
λ−→ T0 |T ′1

T0
a−→ T ′0 T1

a−→ T ′1

T0 |T1
τ−→ T ′0 |T ′1

Localization

T
λ−→ T ′

(c)T
λ−→ (c)T ′

c does not appear in λ.

Recursion

T{n1/x1, . . . , nk/xk}
λ−→ T ′

D(n1, . . . , nk)
λ−→ T ′

D(x1, . . . , xk) = T.

In the recursion rule T{n1/x1, . . . , nk/xk} is the term obtained from T by substituting

n1, . . . , nk for x1, . . . , xk simultaneously.

If T
a−→ T1, meaning that T can evolve into T1 by performing the external action

a, and T ′
a−→ T ′1, meaning that T ′ can turn into T ′1 by performing the external co-

action a, then T and T ′ may interact at the channel a, resulting in an internal action

T ′ |T τ−→ T ′1 |T1. The relation
τ−→ is in fact the one-step computation relation. For

example τ.a
τ−→ a is a deterministic computation step, whereas τ.a + τ.b

τ−→ a is a

nondeterministic computation step. The reflexive and transitive closure of
τ−→ is denoted

by =⇒. The composition =⇒ λ−→=⇒ is abbreviated to
λ

=⇒.

Among the several variants of CCS used by Milner (Milner 1989a), the one with the

fixpoint operator is relevant to the present work. The grammar of this model is given by

T := X | S | T |T ′ | (c)T | µX.T,
S := 0 | λ.T | S + S′.
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In the fixpoint term µX.T the free term variable X in T gets bound in µX.T . Notice

that in this variant, henceforth denoted by CCSµ, there is no need for name variables.

The semantics of the fixpoint term is defined by the following rule

T{µX.T/X} λ−→ T ′

µX.T
λ−→ T ′

In CCS the fixpoint term µX.T can be simply defined by D = T{D/X}. So we can use

the fixpoint notation in CCS. In (Fu and Lu 2010) it is shown that CCSµ is strictly less

expressive than CCS. In fact CCS is Turing complete (Busi, Gabbrielli and Zavattaro

2003; Busi, Gabbrielli and Zavattaro 2004) whereas CCSµ is not even Turing complete (Fu

and Lu 2010). Milner in his book (Milner 1989a) used another variant, the one with

dynamic binding, that is equivalent to CCS (Giambiagi, Schneider and Valencia2004).

We shall use CCSµ to characterize the finite state computation, and use CCS to study

the infinite state computation. A more restricted recursion is given by the replication

operator. A replication term is of the form !λ.T , whose semantics is given by the rule

!λ.T
λ−→ T | !λ.T

Clearly !λ.T can be defined by µX.λ.(T |X).

Had the development of process theory paralleled that of computation theory, one

would have seen the introduction of ‘reduction’ between process calculi at an early stage.

This is not what happened in reality. The truth is that the equivalence relation, a rela-

tively simple concept in computation theory, becomes the most intriguing issue in process

theory (Milner 1980). And it has remained one of the major concerns throughout the

development of process theory (Milner 1989a; Hennessy 1988; Baeten and Weijland 1990;

Sangiorgi and Walker 2001). This is understandable since one would not know how to

define a reduction between two process calculi if one did not know how to define an equiv-

alence on one process calculus. After all an equivalence can be seen as a reduction from

one process calculus to itself (Fu 2012). For a long time Milner’s weak bisimilarity (Milner

1989a) was the main tool to identify the interactive behaviors of processes (Milner 1993).

The relation was originally defined in terms of both internal and external actions. Milner

and Sangiorgi (Milner and Sangiorgi 1992) pointed out later that the bisimulation prop-

erty for the external actions is a derivable property. In other words, bisimulation is about

computation. To guarantee that a bisimulation equivalence is observational, it should at

least be closed under interactive environment and preserve the ability to interact. Hence

the next two definitions.

Definition 3. A relation R on processes is extensional if the following statements are

valid: (c)P R (c)Q if PRQ; and (P |P ′) R (Q |Q′) if PRQ and P ′RQ′.

Definition 4. A process P is observable, notation P⇓, if P =⇒ λ−→ for some λ 6= τ . A

process P is unobservable, notation P 6⇓, if ¬(P⇓). A relation R on processes is equipollent

if (P⇓)⇔ (Q⇓) whenever PRQ.

The equipollence is the barbed condition of Milner and Sangiorgi (Milner and Sangiorgi
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1992). We now define Milner’s weak bisimilarity (Milner 1989a) in the style of barbed

bisimulation.

Definition 5. The Milner equality ≈ is the largest relationR that validates the following

statements:

1 R is reflexive.

2 R is extensional and equipollent.

3 R is a weak bisimulation. In other words the following statements are valid:

— If MRN τ−→ N ′ then M =⇒M ′RN ′ for some M ′.

— If NR−1M τ−→M ′ then N =⇒ N ′R−1M ′ for some N ′.

The equivalence ≈↓ is the largest reflexive, extensional, equipollent weak bisimulation

that satisfies the termination preservation property:

4 If MRN , then there is an infinite sequence of τ actions starting from M if and only

if there is an infinite sequence of τ actions starting from N .

The resemblance between Definition 2 and Definition 5 deserves comment. The totality

condition of the former turns into the reflexivity condition of the latter. This is because

the former is a relation on two models, while the latter is a relation on one model.

Condition (2) of Definition 2, which is an intensional requirement, becomes condition

(2) of Definition 5, which is an observational requirement. The analogy brings out the

following criticisms to ≈:

1 As we have said, weak bisimulation is essentially a property about deterministic com-

putation. It does not really fit in a definition that is supposed to take good care of

the nondeterminism caused by interaction.

2 The condition (4) of Definition 2 is completely ignored by ≈. This is a deficiency if

process calculi are seen to subsume computation models.

One may cast similar doubts on the equivalence ≈↓.
3 The condition (4) of Definition 2 is formulated for the deterministic computations.

Does it still make sense in the presence of nondeterminism?

A well known example that showcases the problem of ≈ is given by the equality

τ.(a+ τ.b) + c ≈ τ.(a+ τ.b) + τ.b+ c.

The one-step nondeterministic computation

τ.(a+ τ.b) + τ.b+ c
τ−→ b (2)

is simulated by the two-step nondeterministic computation

τ.(a+ τ.b) + c
τ−→ a+ τ.b

τ−→ b. (3)

The intermediate state a+ τ.b is bisimilar to neither τ.(a+ τ.b) + c nor b. At state a+ τ.b

the environment may well intervene to disrupt the simulation. It is debatable if (3) can

really be seen as a simulation of (2). In computation theory the distinction between deter-

ministic computations and nondeterministic computations is of fundamental importance.

The issue raised by this example should be properly addressed.
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van Glabbeek and Weijland (van Glabbeek and Weijland 1989) proposed a more dis-

criminating approach to nondeterminism. The branching bisimulations they discovered is

based on the following Computation Lemma (Fu and Lu 2010), called Stuttering Lemma

in (van Glabbeek and Weijland 1989).

Lemma 1. Let P be either the weak bisimilarity or the absolute equality to be defined

later. If P1
τ−→ P2

τ−→ . . .
τ−→ Pn P P1, then P1 P P2 P . . . P Pn.

The lemma implies that if P1
τ−→ P2

τ−→ . . .
τ−→ Pk

τ−→ Pk+1 such that Pk+1 is not

equivalent to Pk, then Pk+1 is not equivalent to Pi for any i < k. The philosophy of

the branching bisimulation of van Glabbeek and Weijland (van Glabbeek and Weijland

1989) is that a state-change internal action (nondeterministic computation step) is so

dramatic that it has to be bisimulated in a one-to-one fashion, and that a state-preserving

internal action (deterministic computation step) has so little consequence that it can be

completely ignored. In the following definition we leave out the adjective ‘branching’.

Definition 6. R is a bisimulation if the following statements are valid:

— If PRQ τ−→ Q′ then one of the following statements is valid:

– P =⇒ P ′ for some P ′ such that P ′RQ and P ′RQ′.
– P =⇒ P ′′RQ for some P ′′ such that ∃P ′.P ′′ τ−→ P ′RQ′.

— If QR−1P τ−→ P ′ then one of the following statements is valid:

– Q =⇒ Q′ for some Q′ such that Q′R−1P and Q′R−1P ′.
– Q =⇒ Q′′R−1P for some Q′′ such that ∃Q′.Q′′ τ−→ Q′R−1P ′.

Let’s now turn to the second criticism. The equivalence ≈ does not differentiate

Ω
def
= µX.τ.X (4)

from 0. One way to strengthen the weak bisimulation is to impose the termination preser-

vation property (Walker 1990; Aceto and Hennessy 1992), as we have done to ≈↓. While

this condition distinguishes between Ω and 0, it identifies the following processes.

D1 = µX.(τ.(X | d) + τ.X + τ), (5)

D2 = µX.(τ.(X | d) + τ). (6)

The equivalence ≈↓ allows an infinite sequence of deterministic computations

D1
τ−→ D1

τ−→ . . .
τ−→ D1

τ−→ . . .

to be simulated by an infinite sequence of nondeterministic computations

D2
τ−→ D2 | d

τ−→ . . .
τ−→ D2 | d | d

τ−→ . . . ,

which cannot be justified since the former produces nothing, whereas the latter keep

offering the environment the possibility to interact at channel d.

It is not difficult to see how to modify the termination preservation condition to take

nondeterminism into account. Suppose P0 ≈ Q0 and

P0
τ−→ P1

τ−→ . . .
τ−→ Pi

τ−→ . . . (7)
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is an infinite computation sequence. If (7) contains an infinite number of nondetermin-

istic computation steps, the bisimulation property guarantees that (7) is bisimulated by

an infinite computation. However bisimulation fails to achieve that if (7) contains only

a finite number of nondeterministic computation steps. The additional requirement is

captured by the condition introduced next.

Definition 7. A relation R is codivergent if the following statements are valid:

— If P0RQ0
τ−→ Q1 . . .

τ−→ Qn
τ−→ . . ., then ∃P1.∃j > 0.P0

τ
=⇒ P1RQj .

— If P0R−1Q0
τ−→ Q1 . . .

τ−→ Qn
τ−→ . . ., then ∃P1.∃j > 0.P0

τ
=⇒ P1R−1Qj .

The property described in Definition 7 was introduced by Priese (Priese 1978). It has

been rediscovered in different contexts (van Glabbeek, Luttik and Trčka 2009; Fu and

Lu 2010).

At last we reach the model independent definition of process equality. We assume that

all process models have both the concurrent composition operator and the restriction

operator.

Definition 8. The absolute equality =M of a process model M is the largest binary

relation on M processes that validates the following statements:

1 The relation is reflexive.

2 The relation is extensional and equipollent.

3 The relation is a codivergent bisimulation.

The definition of the absolute equality is uniform for all models. We shall often omit the

subscript in =M. For more motivation for absolute equality the reader may consult (Fu

2012). Let’s see an interesting equality about unobservable processes.

Lemma 2. P |Ω = Ω for every unobservable process P .

Proof. Let R be {(P0, P1) | ∀i∈{0, 1}.Pi ≡ Ω ∨ (P |Ω =⇒ Pi and P is unobservable)}
and let R◦ be the least relation satisfying the following: (i) R ⊆ R◦; (ii) R◦ is reflexive;

(iii) if PR◦Q then (P |O)R◦(Q |O) and (O |P )R◦(O |Q) for every process O; (iv) if

PR◦Q then (c)PR◦(c)Q for every name c. The relation R◦ is a reflexive, extensional,

equipollent, codivergent bisimulation.

We can now formally define the terminology we have informally used so far.

— T → T ′ if T
τ−→ T ′ = T . We say that T → T ′ is a deterministic computation step

since T and T ′ must have the same input/output capacities.

— T
ι−→ T ′ if T

τ−→ T ′ 6= T . We say that T
ι−→ T ′ is a nondeterministic computation

step for the reason that either T and T ′ have different input/output behaviors or they

have different divergent behaviors.

In the presence of the bisimulation condition, the codivergence condition is equivalent to

the termination preserving condition for deterministic computations. So the two condi-

tions are equivalent when we deal with deterministic computation models.

Let’s come back to the examples (5) and (6). One has D1 ≈↓ D2. However D1 6= D2
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since D1 can perform an infinite sequence of deterministic computation steps whereas

D2 cannot. It is the codivergence condition that tells them apart.

After Definition 8 we can now define effective translations between computation models

that admit nondeterminism.

Definition 9. A relation R from a model A to a model B is an effective subbisimilarity

if the following statements are valid:

1 R is total.

2 R is recursive.

3 R is a codivergent bisimulation.

We write A ve B if there is an effective subbisimilarity from A to B.

The terminology “subbisimilarity” is introduced for the fact that, if A ve B then there

is a bisimulation from A to B that reveals a submodel relationship between A and B.

The relation ve applies to a more general situation than ≤e. Obviously R ve A implies

R ≤e A. So CTT-II can be strengthened in terms of the more informative relation ve.
CTT-III. ∀A∈C.R ve A.

CTT-III applies to both computation models and interaction models. We say that a

model A is Turing complete if R ve A. The transitivity of ve allows one to conclude that

B is Turing complete after showing R ve A ve B.

The following particular instance of CTT-III is relevant to the present work. Apart

from the argument for the recursiveness the proof is from (Busi, Gabbrielli and Zavattaro

2003).

Proposition 1. R ve CCS.

Proof. The j-th register rj with the initial value 0 is interpreted by Zj defined by

Zj = zeroj .Zj + incj .(c)(Sj(c) | c.Zj), (8)

Sj(x) = decj .x+ incj .(c)(Sj(c) | c.Sj(x)). (9)

The value of the register can be increased and decreased by interacting at channel

incj and decj respectively. The standard form of the interpretation of rj with value i

is the process (ci−1 . . . c0)(Sj(ci−1) | ci−1.Sj(ci−2) | . . . | c2.Sj(c1) | c1.Sj(c0) | c0.Zj). Sup-

pose L1, L2, . . . , Lk is the program of a CM. For each i ∈ {1, . . . , k − 1} the instruction

Li is interpreted by

Ii =

{
incj .Ii+1 if Li = Succ(rj),

decj .Ii+1 + zeroj .Is if Li = DecJump(rj , s).
(10)

The last instruction, which is End, is simply interpreted as 0. To achieve recursiveness we

use a fixed countable set of names {c0, c1, c2, . . .}. We also need the following commutative

and associative rewriting system:

0 |T 7→ T,

(ci)(T |T ′) 7→ T | (ci)T ′, if ci does not appear in T ;

(ci)T 7→ T, if ci does not appear in T ;

(ci)(ci | ci.T |T ′) 7→ (ci)(T |T ′), if ci does not appear in T ′.
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The reflexive and transitive closure of 7→ is denoted by 7→∗. Suppose CM is a CM. The

canonical interpretation of CM is the tuple

〈N1, . . . , Nk′ , Ij , D(L1), . . . , D(Lk)〉,

where L1, . . . , Lk is the program of CM, D(L1), . . . , D(Lk) are the parametric defini-

tions interpreting the instructions, Ij is the interpretation of the current instruction, and

N1, . . . , Nk′ are the normal forms interpreting the values of the registers of CM. Let R
be the set of the pairs of the form 〈CM, 〈N ′1, . . . , N ′k′ , Ij , D(L1), . . . , D(Lk)〉〉 such that

N ′1 7→∗ N1, . . . , N ′k′ 7→∗ Nk′ , where 〈N1, . . . , Nk′ , Ij , D(L1), . . . , D(Lk)〉 is the canonical

interpretation of CM. Busi, Gabbrielli and Zavattaro’s proof can be strengthened to show

that R is total, codivergent and bisimilar. The recursiveness is due to the following facts:

1 It is decidable if a CCS process is the interpretation of a CM configuration.

2 Given a CCS interpretation of a CM configuration, it is algorithmically feasible to

recover the CM configuration.

Both (1) and (2) make use of the rewriting system.

Just as CTT-I allows one to use a recursive function without worrying about how

it is defined, CTT-III asserts that in a Turing complete model a process with certain

behavior must exist and we may refer to it without explicitly defining it. Let’s illustrate

this point by an example. Suppose f(x) is a unary computable function and A is a CCS
process A. Then there exists a parametric definition, notation Cf(x, u, y, v, z, w).A, such

that F
def
= Cf(in, end, out, stop, dec, zero).A behaves as follows: If f(k) is undefined, then

F →∗ in−→ . . .→∗ in−→︸ ︷︷ ︸
k

end−→ = Ω;

if f(k) is defined, then F →∗ in−→ . . .→∗ in−→︸ ︷︷ ︸
k

end−→ →∗ out−→ . . .→∗ out−→︸ ︷︷ ︸
f(k)

stop−→ = A | JkKzerodec ,

where JkKzerodec ≡ dec. · · · .dec︸ ︷︷ ︸
k

.zero. For those who have not built up strong confidence in

the interactive version of Turing completeness, we point out that formally the parametric

definition Cf(x, u, y, v, z, w).A is given by

(ab)(ak0)(ak1)(zr)(ic)(dc)(ic1)(R |Z0 | JfKzr,ic,dca | a.b.ak1.A | b.Cp(dc, zr, y, v) |R1),

where

R = u.ak0 + x.(c)(S(c) | c.R),

S(z) = u.ic.ic1.z.u+ x.(c)(S(c) | c.S(z)),

Z0 = ak0.zr + ic.(c)(S0(c) | c.Z0),

S0(x) = ak0.dc.x.ak0 + ic.(c)(S0(c) | c.S0(z))),

R1 = ak1.w + ic1.(c)(S1(c) | c.R1),

S1(x) = ak1.z.x.ak1 + ic1.(c)(S1(c) | c.S1(z))),

Cp(dc, zr, y, v) = zr.v + dc.(c)(Sc(c) | c.R),

Sc(z) = zr.y.z.zr + dc.(c)(Sc(c) | c.Sc(z)),



Nondeterministic Structure of Computation 14

and JfKzr,ic,dca is the process that calculates f with the input number stored in the register

with access channels zr, ic, dc. The process indicates the termination of the calculation

by performing the action a, which can be achieved by interpreting the End instruction

by a. In summary the process F inputs the number k at channels in, end, and then

calculates f(k); if f(k) is undefined, then it loops forever; otherwise it outputs the number

f(k) at channels out, stop and copy the number k at channel dec, zero before it starts A.

The number k is kept because later calculation may well need it. It is easily seen how

to generalize from Cf(x, u, y, v, z, w).A to Cf(x̃, ũ, y, v, z̃, w̃).A for a k-ary computable

function.

We are now in a position to define reductions between process calculi. Suppose R is an

effective reduction from M to N and that PRP ′ and QRQ′. If P and Q are codivergent

bisimilar, then P ′ and Q′ are codivergent bisimilar by the definition of R. In other words

equal computational objects are translated to equal computational objects by R. We

need to promote this soundness condition from the level of computation to the level of

interaction.

Definition 10. A relation from the set of M-processes to the set of N-processes is sound

if PRP ′, QRQ′ and P =M Q implies P ′ =N Q
′.

The next definition should be compared to Definition 2 and Definition 8.

Definition 11. A relation from the set of M-processes to the set of N-processes is a

subbisimilarity if it validates the following statements:

1 It is total and sound.

2 It is extensional and equipollent.

3 It is a codivergent bisimulation.

We write M v N if there is a subbisimilarity from M to N.

Intuitively M v N means that N is at least as expressive as M. In this paper there

are only a few simple references to v. So we shall not elaborate on the relation. See (Fu

2012) for a full exposition of the expressiveness relation.

We now fix the class M of interaction models we are concerned with in this paper. The

running theme of this paper is that an interaction model is a computation model if the

interactive capacity of the model is ignored. Thus M ⊆ C. When thinking of a process

model M as a computational model the following assumptions on M are general enough

to cover all models of our interest.

— There is an effective bijection between N and the set of the M-processes. In other

words the M-processes are Gödel enumerable.

— All computations in M are finite branching.

— There is an algorithm that, given an M-process P , calculates all the one-step compu-

tations of the form P
τ−→ P ′.

These effective conditions have been used to study structural operational semantics, giv-

ing rise to effective operational semantics (Vaandrager 1993). Variants of these conditions

are proposed in a number of papers (Baeten, Bergstra and Klop 1987; de Simone 1985;

Darondeau 1990; Bloom, Istrail and Meyer 1995).
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Our interaction models are expressive enough so that (i) they are Turing complete and

(ii) they are at least as expressive as CCS. By Proposition 1, (i) is subsumed by (ii).

Hence the next definition.

Definition 12. An interaction model M rendering true the above three statements is

called a Turing-Milner model if CCS vM.

In a Turing-Milner model the execution tree of an unobservable process can be al-

gorithmically generated. The finite branching versions of the well-known complete pro-

cess calculi are Turing-Milner models. These include the π-calculus (Milner, Parrow and

Walker 1992; Sangiorgi and Walker 2001) and the value-passing calculus (Hennessy and

Ingólfsdóttir 1993; Hennessy and Lin 1995; Fu 2013). Proving that a model is not a

Turing-Milner model is generally a tricky issue. We know however that CCSµ is not a

Turing-Milner model since it is not even complete (Fu 2012).

From now on M denotes the class of Turing-Milner models. For a model M in M, we

write P ∈M to indicate that P is an M-process.

What we have done so far is a condensed account of the journey starting from the

original formulation of the Church-Turing Thesis, via Milner and Park’s notion of weak

bisimulation and van Glabbeek and Weijland’s discovery of the branching bisimulation,

reaching to a technical formalization of the thesis. Our journey was led by the fact that it

is in the theory of interaction that the full picture of the nondeterministic computations

can be unveiled. It is against this background that Definition 8 emerges as a canonical

equality for both interactive objects and computational objects. The purpose of this paper

is to start investigating the rich structures of nondeterministic computations revealed by

this equality.

4. Finite State Computation

In this section we shall use a variant of CCSµ that admits only τ actions. The finite state

terms are generated from the following grammar:

T := X | S | ∆(T ) | µX.T,
S := 0 | τ.T | S + S.

The ∆ operator is introduced by Hennessy and Milner (Hennessy 1981), where it is called

a delay operator and is denoted by δ. It plays an important role in the algebraic theory of

SCCS (Milner 1983). The term ∆(T ) either behaves as T or evolves to itself. A finite state

computational object is a finite state term that does not contain any free term variables.

The semantics of the ∆-operator is defined by the following two rules:

∆(T )
τ−→ ∆(T )

T
τ−→ T ′

∆(T )
τ−→ T ′

We call the transition ∆(T )
τ−→ ∆(T ) a self-loop. We write T  T ′ if T → T ′, that is

T
τ−→ T ′ = T , and the transition T

τ−→ T ′ is not caused by a self-loop. If there does

not exist any T ′ such that T → T ′ then we write T 9. The notation T 6 is defined

similarly.
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The simplest terminating computational object is of course 0, and the simplest diver-

gent computational object is Ω defined in (4). All the other finite state computational

objects have potential both to terminate and to diverge. The execution of ∆(τ) can be

described by the following labeled tree:

• ι−→ ◦
↓
◦ ι−→ ◦
↓
◦ ι−→ ◦
...

where the node indicated by ‘•’ is the root of the tree. The object τ + τ.Ω is an internal

choice between 0 and Ω. Its execution tree is

· · · ◦ ← ◦ ← ◦ ι←− • ι−→ ◦

The execution tree of ∆(τ + τ.Ω) is

· · · ◦ ← ◦ ← ◦ ι←− • ι−→ ◦
↓

· · · ◦ ← ◦ ← ◦ ι←− ◦ ι−→ ◦
↓

· · · ◦ ← ◦ ← ◦ ι←− ◦ ι−→ ◦
...

Using the codivergence condition it is easy to see that the above five computational

objects are pairwise unequal.

The finite state computational objects would not be very interesting if there are only

finitely many of them. We now construct an infinite sequence of finite state computational

objects that are pairwise unequal. The first three in the sequence are defined as follows:

Υ0 = 0,

Υ1 = ∆(τ.0),

Υ2 = τ.0 + τ.Ω.

Starting from Υ3 the sequence is defined recursively by (11) and (12), where i > 0:

Υ2i+1 = ∆(τ.0 + τ.Υ2i), (11)

Υ2i+2 = τ.0 + τ.Ω + τ.Υ2i+1. (12)

The next theorem says that the processes Υ0,Υ1,Υ2, . . . are pairwise unequal.

Theorem 1. ∀i > 0.∀j < i. Υj 6= Υi.

Proof. The natural induction is as follows:

— It is clear that Υ0,Υ1,Υ2 are pairwise unequal and none of them is equal to any Υk

for every k ≥ 3.
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— Suppose k ≤ 2i. By the induction hypothesis the self loop Υ2i+1 → Υ2i+1 cannot be

bisimulated by Υk if k is even. If k is odd Υ2i+1
τ−→ Υ2i cannot be bisimulated by

Υk according to the induction hypothesis. So the process Υ2i+1 is not equal to any

Υk with k ≤ 2i.

— Suppose k ≤ 2i + 1. The action Υ2i+2
ι−→ Ω cannot be matched up by any action

of Υk whenever k is odd. If k is even, Υ2i+2
τ−→ Υ2i+1 cannot be bisimulated by Υk

according to the induction hypothesis. So the process Υ2i+2 is not equal to any Υk

with k ≤ 2i+ 1.

We are done.

4.1. Algebraic Properties

Since a computational object never interacts, the absolute equality over the computa-

tional objects is simply the largest codivergent bisimulation on these objects. We will

also use the so called strong bisimilarity (Milner 1980; Park 1981).

Definition 13. The Milner-Park equality ∼ is the largest relation R that validates the

following strong bisimulation property:

— If PRQ τ−→ Q′, then P
τ−→ P ′RQ′ for some P ′.

— If QR−1P τ−→ P ′, then Q
τ−→ Q′R−1P ′ for some Q′.

Obviously ∼ ( = ( ≈.

An equality on processes can be extended to an equality on terms in the standard

manner. For instance T = T ′ if T{P1/X1, . . . , Pn/Xn} = T ′{P1/X1, . . . , Pn/Xn} for all

processes P1, . . . , Pn.

Let’s now take a look at the algebraic properties of the fixpoint terms modulo the

equalities ∼, =, ≈. The following equality is the defining property of the fixpoint µX.T :

µX.T ∼ T{µX.T/X}. (13)

The term T{µX.T/X} is said to be the unfolding of µX.T . The following beautiful

axioms of Bloom and Ésik (Bloom and Esik 1994) are also valid with respect to the

Milner-Park equality.

µX.T{T ′/X} ∼ T{µX.T ′{T/X}/X}, (14)

µX.µY.T ∼ µY.T{Y/X}. (15)

Thinking of µX.T{T ′/X} as a tree, it is an infinite alternation of the part defined by T

and the part defined by T ′, which explains (14). It should be clear that (13) is a special

case of (14). If we admit the unguarded choice terms of the form T + T ′, we have the

following equalities:

µX.(X+T ) ∼ µX.T, (16)

µX.(τ.X+T ) ≈ µX.τ.T, (17)

µX.(τ.(X+T )+T ′) = µX.(τ.X+T+T ′). (18)
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The equalities (16), (17) and (18) are the famous axioms of Milner (Milner 1989b) for

the finite states. They help to remove the unguarded occurrences of a bound variable so

that the following fixpoint induction rule can be applied.

T ′ = T{T ′/X}
T ′ = µX.T

X is guarded in T. (19)

By ‘X is guarded in T ’ we mean that every occurrence of X in T is guarded by at least

one non-τ prefix.

The equalities (13) through (18) have all been used as axioms in equational systems

for the finite state behaviours. If we intend to construct an equational proof system for

the absolute equality = on the finite state computational objects, none of (16), (17) and

(18) would be useful. This is because (16) and (18) make essential use of the unguarded

choice operator and (17) is not even valid for the termination preservation bisimilarity.

Needless to say the fixpoint induction rule (19) is also irrelevant in the present context

since we have ignored all non-τ actions.

Let’s now turn to the algebraic properties of divergence. Milner’s approach to obtaining

complete axiom systems for finite state behaviours heavily relies on the fixpoint induction

rule. If we try to apply it to tackle the divergent problem of the finite state processes,

we would face the following dilemma:

— All divergence is essentially caused by the unguarded occurrences of bound variables.

— The side condition of (19) rules out any possibility to reason about divergence using

fixpoint induction.

An ingenious solution that bypasses this dilemma is given by Lohrey, D’Argenio and

Hermanns (Lohrey, D’Argenio and Hermanns 2002; Lohrey, D’Argenio and Hermanns

2005). Their key observation is that for finite state behaviours all forms of divergence are

caused by τ -loops, and that all τ -loops can be reduced to self-loops. An induced operator

that helps rewrite all τ -loops to self-loops is therefore important. Using the unguarded

choice operator it can be defined by

∆(T )
def
= µX.(τ.X+T ), (20)

where the variable X does not appear in T . Some useful equalities about the ∆-operator

follow immediately from definition (20). For example

∆(T ) ∼ τ.∆(T ) + T ∼ ∆(T ) + T ∼ τ.∆(T ) + ∆(T ).

In this paper we cannot use (20) to define ∆ because we do not use the general choice

operator. This is why we have introduced ∆ as a primitive operator. The equalities

studied in (Lohrey, D’Argenio and Hermanns 2002; Lohrey, D’Argenio and Hermanns

2005) are all weaker than the absolute equality. But some of their laws are valid for =.

Here are two examples.

µX.(∆(X+T ) + T ′) = µX.∆(T+T ′), (21)

µX.(τ.(X+T ) + T ′) = µX.(τ.∆(T+T ′) + T ′). (22)

Again these laws make use of the unguarded choice.
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Let’s summarize the issues we must resolve in order to produce an equational sys-

tem. First of all most laws concerning the µ-operator and the ∆-operator are no longer

available. We need to come up with some alternatives. Secondly we need to find an

equational replacement for the fixpoint induction. The fixpoint induction allows one to

prove the equality between a short term and a very long term. An example is µX.a.X =

µX.a . . . a︸ ︷︷ ︸
k times

.X where k > 0. It is proved in (Sewell 1994; Sewell 1997) that no pure equa-

tional system is strong enough to derive this equality for all k > 0. We will give a similar

non-existence result in Section 4.3. Our solution is to use axiom schemata. For that

purpose one needs to use C-contexts.

Definition 14. A C-context is either [ ], or τ.C[ ]+S, or S+τ.C[ ], or ∆(C[ ]), or µX.C[ ]

whenever C[ ] is a C-context.

The next lemma states three useful schemata with the help of C-contexts.

Lemma 3. The following equalities are valid:

1 µX.C[τ.(τ.X+S1)+S2] = µX.C[τ.X+S1+S2];

2 µX.C[∆(X)] = µX.C[τ.X];

3 µX.C[∆(τ.X+S)] = µX.C[τ.X+S].

Proof. All the three equalities can be established using Computation Lemma.

4.2. Axioms for Finite State Computation

To simplify the description of the computational objects, we have introduced the prefixed

version of the binary choice operator and the ∆-operator. The tradeoff is that the absolute

equality is no longer a congruence. It is well known that the binary choice operator does

not preserve =. One has that 0 = τ , yet 0 + τ.Ω 6= τ + τ.Ω. The ∆-operator does not

preserve = either. The processes τ and 0 are equal. But clearly ∆(τ) 6= ∆(0). The largest

congruence contained in the absolute equality can be defined in the standard manner.

Definition 15. P and Q are congruent, notation P � Q, if the following are valid:

1 If P
τ−→ P ′ then Q

τ−→ Q′ = P ′ for some Q′.

2 If Q
τ−→ Q′ then P

τ−→ P ′ = Q′ for some P ′.

Suppose P ≡
∑
i∈I τ.Ti and Q ≡

∑
j∈J τ.Tj with ≡ being the syntactic equality, and

neither P nor Q contains any occurrences of the µ-operator. If Q = P
ι−→ P ′ and Q′ 6= P ′

for all Q′ such that Q
τ−→ Q′, then it is easily seen that P + τ.Υk 6= Q+ τ.Υk for some

large enough k. This explains why clause (1) of the above definition cannot be replaced

by “If P
τ−→ P ′ then Q→∗ τ−→ Q′ = P ′ for some Q′”. The proof of the next proposition

is standard.

Proposition 2. The equivalence � is the largest congruence contained in =.

The proof system AC for finite state computational objects consists of the axioms

defined in Fig. 1. We write AC ` T = T ′ to indicate the fact that the equality T = T ′
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S1 0 + S = S

S2 S1 + S2 = S2 + S1

S3 (S1 + S2) + S3 = S1 + (S2 + S3)

S4 S + S = S

F1 µX.T = T{µX.T/X}
F2 µX.X = 0

F3 µX.(τ.X+S) = ∆(µX.S)

F4 µX.C[τ.(τ.X+S1)+S2] = µX.C[τ.X+S1+S2]

F5 µX.C[∆(X)] = µX.C[τ.X]

F6 µX.C[∆(τ.X+S)] = µX.C[τ.X+S]

D1 ∆(∆(T )) = ∆(T )

D2 ∆(S) = S + τ.∆(S)

T τ.T = τ.τ.T

C τ.(S+S′) = τ.(S+τ.(S+S′))

Fig. 1. Axioms for Computation

can be derived by repetitive use of the equivalence laws, the congruence laws and the

laws of AC.

The axiom C is related to the B law of van Glabbeek and Weijland (van Glabbeek and

Weijland 1989) by restricting to τ -prefix. The T law is a special case of Milner’s first tau

law. A special case of C is

τ.S = τ.(S + τ.S). (23)

F2 deals with bound variables that are not prefixed. F3 and F4 can be applied to get

rid of a prefixed bound variable. F5 and F6 help to remove a ∆-operator outside a

bound variable. These axioms and axiom schemata should be compared to the laws (21)

and (22) of Lohrey, D’Argenio and Hermanns (Lohrey, D’Argenio and Hermanns 2002;

Lohrey, D’Argenio and Hermanns 2005). For the above system the fixpoint unfolding law

F1 can be simplified to

µX.T = T

with the side condition that X does not appear in T . The axiom D1, appeared in Hen-

nessy’s work more than 30 years ago (Hennessy 1981), is weaker than the following axiom

of Lohrey, D’Argenio and Hermanns:

∆(∆(T ) + T ′) = τ.(∆(T ) + T ′). (24)

The equality (24) fails the codivergence condition.

Proposition 3. If AC ` T = T ′ then T � T ′.

Proof. F3 is obviously valid if X does not appear in S. If X occurs in S then µX.(τ.X+

S) � µX.S. So clearly F3 also holds in this case. F4, F5 and F6 are valid by Lemma 3.

D1 and D2 are actually true of the Milner-Park equality.
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Fig. 2. Two D-Graphs

The following equality follows from F3, F1, S1 and S2.

∆(0) = µX.τ.X. (25)

An instance of F5 is

µX.∆(X) = µX.τ.X. (26)

The law D2 is as it were a divergent counterpart of the C law. It implies the equality

∆(0) = τ.∆(0). (27)

4.2.1. D-Normal Form The finite state computational objects can be visualized as graphs.

Conversely finite graphs of a certain type can be coded up by the finite state computa-

tional objects. It is trivial to generalize the finite graphs that represent the finite state

computational objects to infinite graphs.

Definition 16. A directed graph is a D-graph if the following hold:

1 There is a special node called the root of the D-graph.

2 There is at most one edge from one node to another node. A self-loop is an edge from

a node to itself.

3 Every node is reachable from the root.

The two diagrams in Fig. 2 are D-graphs. A root is indicated by a ‘•’. If the root self-

loops, a ‘�’ is placed right below the ‘•’. If a node is not a root, it is indicated by a ‘◦’;
and if it self-loops, it is simply indicated by a ‘�’.

Definition 17. A D-graph is definable in a process model if there is an unobservable

process P of that model that is codivergent bisimilar to the root of the D-graph. In this

case we say that the D-graph represents the process. We write d(P ) for the D-graph

generated by P .

Every finite D-graph is definable by a finite state computational object. We start by

introducing a variable for each node of a given finite D-graph. If the D-graph has n

nodes, we define a set of n equations of the form:

X0 = T0, . . . , Xn−1 = Tn−1.

The first is the head equation corresponding to the root. If the i-th node has no out-

going edges then we have Xi = 0, and if the node has a self-loop then we introduce

the equation Xi = ∆(0). If the i-th node has k children Xm1 , . . . , Xmk
, then the i-th

equation is Xi = τ.Xm1
+ . . .+τ.Xmk

. If in addition the i-th node has a self-loop, the i-th

equation is Xi = ∆(τ.Xm1 + . . .+ τ.Xmk
). Using the standard method (Milner 1984) we

can easily construct solutions to the equation system. The solution to X0 is represented

by the D-graph.
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We now describe a procedure that converts a finite computational object to one that

corresponds to a D-graph. For that purpose we introduce D-normal forms.

Definition 18. A term T is a D-normal form, or D-nf, if it satisfies the following:

1 T is a variable;

2 If T is a Σ-term, say
∑
i∈I τ.Ti, then Ti must be a D-nf for every i ∈ I; in particular

0 is a D-nf;

3 If T is a ∆-term then it must be either of the form ∆(X) or of the form ∆(S) such

that S is a D-nf;

4 If T is a µ-term then it must be of the form µX.S such that S is a D-nf and X appears

in S;

5 T contains no subterm of the form ∆(X) for any bound variable X.

The finite state µX.µY.(τ.X+τ.Y ) for example is equal to µX.(∆(µY.τ.X)) by F3, which

is in turn converted to µX.(∆(τ.X)) by F1, which can be further reduced to µX.τ.X by

F6. We conclude that AC ` µX.µY.(τ.X + τ.Y ) = µX.τ.X = ∆(µX.X) = ∆(0) by F2,

F3, S1 and S2.

A D-nf is a CCS process notation for a finite D-graph. The process 0 is the trivial one-

node D-graph, and Ω is the D-graph with only one node and the self-loop. The Σ-process∑
1≤i≤n τ.Ti defines the D-graph whose root has n out-going edges pointing to the roots

of the D-graphs defining T1, . . . , Tn respectively. The ∆-process ∆(S) corresponds to the

D-graph whose root has a self-loop. The µ-process µX.S is obtained from the D-graph

of S{0/X} by adding the obvious edges pointing to the root.

Lemma 4. For each term T , there is a D-nf T ′ such that AC ` T = T ′.

Proof. According to the structural definition of D-nf, a subterm of a D-nf is a D-nf

and if T, T ′ are in D-nf then T{T ′/X} is a D-nf. The proof of the lemma is given by the

following structural induction.

— T ≡ 0 or T ≡ X. There is nothing to prove.

— T ≡ τ.T ′. We apply the induction hypothesis to T ′.

— T ≡
∑
i∈I τ.Ti. We apply the induction hypothesis to each Ti. Notice that we can

apply S1 to remove redundant 0 from a Σ-term.

— T ≡ ∆(T ′). By the induction hypothesis some D-nf T ′′ exists such that AC ` T ′ = T ′′.

If T ′′ is a ∆-term, we apply D1 to remove the extra ∆-operator. If T ′′ is a µ-term,

we apply F1 to unfold it.

— T ≡ µX.T ′. By the induction hypothesis, AC ` T ′ = T ′′ for some D-nf T ′′. If X does

not occur in T ′′, we get rid of the µ-operator by applying F1. If T ′′ is X, we apply

F2 to get 0. If T ′′ is ∆(X), we apply (26) to get Ω. If T ′′ is a µ-term, we apply F1

to unfold it. If T ′′ is of the form ∆(S), then we apply F6 to remove the ∆-operator.

Finally use F5 to remove the ∆-operator in all occurrences of ∆(X).

We are done.

4.2.2. C-Normal Form Two nodes in a D-graph are said to be equal if they are codi-

vergent in the sense of Definition 7 and bisimilar in the sense of Definition 6. The left
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Fig. 3. C-Graphs with Four Nodes

D-graph in Fig. 2 has two pairs of equal nodes; the right D-graph has one pair of equal

nodes. The structure of computations is given by the D-graphs containing no equal nodes.

Definition 19. A C-graph is a D-graph in which no two nodes are equal.

The eight D-graphs in Fig. 3 are C-graphs with four nodes.

It follows from definition that a C-graph does not contain any loops larger than a

self-loop. In particular the root of a C-graph does not have any incoming edges apart

from a possible self-loop.

Let G be the set of C-graphs, ranged over by f, g, h, i. The letter f will stand for a finite

C-graph and i an infinite one. For each k > 0 let Fk be the set of the finite C-graphs with

k-nodes. The C-graph representing Υk has precisely k + 1 nodes. So Fk is a nonempty

finite set for each k > 0.

Lemma 5. The roots of two C-graphs are equal if and only if the C-graphs are isomor-

phic.

Proof. Suppose g0, g1 are C-graphs. If they are isomorphic, then one can construct a

codivergent bisimulation by paring all the corresponding nodes. Conversely suppose the

roots of the graphs are equal. Given any node N in g0, a unique path from the root to N

exists. Using the bisimulation property one can construct a unique corresponding path

in g1. The end node of this path corresponds to N . This gives rise to a function from

the set of nodes of g0 to the set of nodes of g1. By induction one easily sees that it is an

isomorphic map.

According to Lemma 5, the C-graph representation of an unobservable process P is

unique. Consequently we can talk about equality between C-graphs. We write c(P ) for

this unique C-graph.

We are now going to single out the set of finite state computational objects that

correspond to finite C-graphs. The correspondence is not as close as that between the D-

nf’s and the finite D-graphs. In the process algebraic notation there is no way to remove

all the repetitive occurrences of a subterm.

Definition 20. A D-nf T is a C-normal form, or C-nf, if the following are valid:

1 T does not contain any occurrences of the µ-operator;

2 One of the following statements is true:

(a) T ≡ X or T ≡ ∆(X) for some term variable X;

(b)T ≡
∑
i∈I τ.Ti such that, for each i ∈ I, the term Ti is a C-normal form; moreover

∀j, k ∈ I.j 6= k ⇒ Tj 6= Tk and ∀i ∈ I.Ti 6= T ;

(c) T ≡ ∆(
∑
i∈I τ.Ti) such that

∑
i∈I τ.Ti is a C-nf and ∀i ∈ I.Ti 6= T .
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Conditions (2a,2b) make sure that T 6 , meaning that T contains no loops other than

self-loops. If T1, T2 are C-normal forms then T1 � T2 is almost the same as T1 ∼ T2. This

suggests that the C-nf’s should play an important role in the completeness proof. The

next proposition states a pre-completeness result.

Proposition 4. Suppose T1, T2 are C-nf’s and T1 = T2. The following are valid:

1 If both T1 and T2 are Σ-terms, then AC ` τ.T1 = τ.T2.

2 If both T1 and T2 are ∆-terms, then AC ` T1 = T2.

Proof. The proof is carried out by simultaneous structural induction. Since a ∆-term

loops while a Σ-term that is also a C-nf does not loop, T1, T2 must be both Σ-terms or

both ∆-terms.

— T1 ≡
∑
i∈I τ.T

i
1 and T2 ≡

∑
j∈J τ.T

j
2 with I 6= ∅ 6= J . The action T1

τ−→ T i1 must be

matched by T2
τ−→ T j2 = T i1 for some T j2 , according to the definition of C-nf. By the

induction hypothesis AC ` τ.T i1 = τ.T j2 . It follows that AC ` T2 +τ.T i1 = T2 +τ.T j2 =

T2. We conclude by induction and symmetry that AC ` T1 = T1 + T2 = T2.

— T1 ≡ ∆(
∑
i∈I τ.T

i
1) and T2 ≡ ∆(

∑
j∈J τ.T

j
2 ). Since both

∑
i∈I τ.T

i
1 and

∑
j∈J τ.T

j
2

are C-nf’s, it follows easily by a bisimulation argument that
∑
i∈I τ.T

i
1 =

∑
j∈J τ.T

j
2 .

So AC `
∑
i∈I τ.T

i
1 =

∑
j∈J τ.T

j
2 by the induction hypothesis. Hence AC ` T1 = T2.

We are done.

We will reach our goal if we can prove a normalization result, stating that every term

is provably equal to a C-nf. This is indeed the case to a large extent.

Proposition 5. The following statements are valid:

1 For every Σ-term T there is some C-nf T ′ such that AC ` τ.T = τ.T ′.

2 For every ∆-term T there is some C-nf T ′ such that AC ` T = T ′.

Proof. Observe that we may remove all occurrences of µ-operator in a term by using

the F-laws. The following is an algorithm that removes the fixpoint operator in µX.T .

— If X does not appear in T , apply F1 and exit.

— If T ≡ X, apply F2 and exit.

— Suppose X appears in T and T 6≡ X.

– Replace every occurrence of ∆(X) by τ.X using F5.

– Now every occurrence of X must appear in some subterm τ.X of T . We can remove

all occurrences of X in the following manner:

• Apply F4 and F6 to remove all τ -prefixes and ∆’s in front of the subterm.

• If the subterm τ.X is not guarded by any τ and ∆, apply F3.

Notice that the transformation does not create any new occurrence of X.

It follows from the observation and the proof of Lemma 4 that we may assume that T is

a D-normal form containing no occurrences of the µ-operator. The following argument

is by structural induction.

— T ≡ 0 or T ≡ X. There is nothing to prove.
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— T ≡
∑
i∈I τ.Ti. For each i ∈ I there is by the induction hypothesis a C-nf T ′i such

that

AC ` τ.Ti = τ.T ′i . (28)

If T ′i = T ′j for some j 6= i then AC ` τ.T ′i = τ.T ′j according to Proposition 4. So we

may remove one of them using S4. Without loss of generality, we assume that for all

i, i′ ∈ I, T ′i 6= T ′i′ whenever i 6= i′. Now suppose∑
i∈I

τ.T ′i = T ′k (29)

for some k ∈ I. If I is a singleton set, then

AC ` τ.T = τ.τ.T ′k = τ.T ′k

by the T-law. Now suppose the size of I is greater than 1. There are two subcases.

– T ′k is a Σ-term. For every j ∈ I \{k} there is some D-nf T jk such that T ′k
τ−→ T jk =

T ′j . So we have

AC ` τ.T jk = τ.T ′j (30)

by Proposition 4. It follows from (28), (30), S4 and C that

AC ` τ.T = τ.

τ.T ′k +
∑

j∈I\{k}

τ.T ′j


= τ.

τ.
T ′k +

∑
j∈I\{k}

τ.T jk

+
∑

j∈I\{k}

τ.T jk


= τ.

T ′k +
∑

j∈I\{k}

τ.T jk


= τ.T ′k.

– T ′k is ∆(Sk) for some C-nf Sk. Using a similar argument one can show that

AC `
∑

j∈I\{k}

τ.T ′j = Sk. (31)

It follows from (31) that

AC ` T = τ.T ′k +
∑

j∈I\{k}

τ.T ′j

= τ.∆(Sk) + Sk

= ∆(Sk)

= T ′k,

where the second last equality is due to D2. Hence AC ` τ.T = τ.T ′k.

— T ≡ ∆(
∑
i∈I τ.Ti) where

∑
i∈I τ.Ti is a C-nf. Suppose ∆(

∑
i∈I τ.Ti) = Tk for some

k ∈ I. Since Tk is a C-nf, it must be a ∆-term. Let Tk be ∆(Sk). Using the above
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argument we can show that

AC ` Sk = Sk +
∑

j∈I\{k}

τ.Tj

=
∑

j∈I\{k}

τ.Tj .

Therefore

AC ` T = ∆

τ.∆(Sk) +
∑

j∈I\{k}

τ.Tj


= ∆ (τ.∆(Sk) + Sk)

= ∆(∆(Sk))

= ∆(Sk),

where the third equality holds by D2 and the fourth equality holds by D1.

This completes the proof.

4.2.3. Completeness We are now in a position to prove the completeness result.

Theorem 2. T ′ � T ′′ if and only if AC ` T ′ = T ′′.

Proof. Suppose T ′, T ′′ are C-nf’s and T ′ � T ′′. The proof is a structural induction.

— If T ′ is 0 then T ′′ must be 0. Similarly if T ′ is X then T ′′ must be X.

— If T ′, T ′′ are ∆-terms, then AC ` T ′ = T ′′ by Proposition 4 and Proposition 5.

— Suppose T ′ ≡
∑
i∈I τ.Ti � ∆(S) ≡ T ′′. By Proposition 5 and the C law we may

assume that ∆(S) and all Ti’s are C-nf’s. By definition there is some k ∈ I such that

Tk = ∆(S). Therefore Tk � ∆(S) since both Tk and ∆(S) are C-nf. If I \ {k} is

nonempty, then it is easy to see that
∑
i∈I\{k} τ.Ti � S. So

AC `
∑

i∈I\{k}

τ.Ti = S

by induction. Hence

AC `
∑
i∈I

τ.Ti = τ.∆(S) +
∑

i∈I\{k}

τ.Ti = τ.∆(S) + S = ∆(S),

where the last equality is due to D2. Suppose I \ {k} is empty. Then τ.Tk � ∆(S).

By codivergence Tk = ∆(S). Since both Tk and ∆(S) are C-nf, one must have Tk �
∆(S). If S ≡ 0 then we can use (27) to finish the proof. If S is not 0, it must be a

proper choice term. By a bisimulation argument and induction one easily sees that

AC ` Tk = τ.∆(S) + S = ∆(S).

— If both T ′, T ′′ are Σ-terms, then AC ` T ′ = T ′′ follows from Proposition 4, Proposi-

tion 5 and the C law.

The proof is complete.
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It can be easily verified that µX.∆(T ) � ∆(µX.T{∆(X)/X}). So Theorem 2 implies

AC ` µX.∆(T ) = ∆(µX.T{∆(X)/X}). Using this equality we can push all occurrences

of ∆ up to the root and down to the leaves.

4.3. Nonaxiomatisability

One may feel a little unhappy about the C-contexts which appear in the axiomatic system

defined in Fig. 1. The fact is, however, that the use of such contexts is unavoidable. The

situation reminds one of Sewell’s remarkable result (Sewell 1994; Sewell 1997) on the

nonexistence of a finite purely equational system for finite state processes. We shall

establish a nonexistence result concerning finite pure axiom systems. In our setting a

pure axiom system is a recursive set of equations between the finite state computational

objects. The equations in a pure axiom system are pure as it were since schematic axioms

like F4, F5 and F6 are banned.

The proof of Sewell’s negative result is highly nontrivial. Fortunately we have a simple

proof of a nonexistence result in the present case. The intuition is that for every finite

pure axiom system there is a large enough number k such that

µX.(τ.(τ.(. . . τ.(τ.X + τ.Υ1) + . . .) + τ.Υk−1) + τ.Υk) = ∆(τ.Υ1 + . . .+ τ.Υk) (32)

is not provable in the system.

Theorem 3. There does not exist any sound and complete finite pure axiom system for

� on the finite state terms.

Proof. For the purpose of this proof, let’s define the size of a term as the maximum

number of nested τ prefixes that guard a variable. Given any finite pure axiom system

ACp there is a number k such that the size of the term on the left/right hand side of any

axiom of ACp is less than k. Now suppose

µX.(τ.(τ.(. . . τ.(τ.X + τ.Υ1) + . . .) + τ.Υk−1) + τ.Υk) = T ′. (33)

We prove by induction on derivation that T ′ must be a µ-term whose size is at least

k. If (33) is derived by the transitive rule, we apply the induction hypothesis. If (33) is

derived by an application of an axiom in ACp then, since the size of the axiom is less

than k, the term T ′ must be of the form µX.Tc for some Tc and we must have

ACp ` τ.(τ.(. . . τ.(τ.X + τ.Υ1) + . . .) + τ.Υk−1) + τ.Υk = Tc.

The variable X must appear in Tc for otherwise we could instantiate the X on the left

hand side by a term with sufficiently many nested τ prefixes such that a computation

sequence from the left hand side cannot be matched up by any computational sequences

from the right hand side. We claim that every occurrence of X in Tc is prefixed by τ at

least k times. If not then

Tc
τ−→ . . .

τ−→︸ ︷︷ ︸
j times

X (34)
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Fig. 4. An Infinite C-Graph

for some j < k. Assume that (34) was bisimulated by

τ.(τ.(. . . τ.(τ.X + τ.Υ1) + . . .) + τ.Υk−1) + τ.Υk
τ−→ . . .

τ−→︸ ︷︷ ︸
j′ times

Td

for some Td and some j′ ≤ j such that

Td = X. (35)

It is apparent that (35) is a contradiction. Either Td does not contain any occurrence of

X or every occurrence of X in Td is prefixed by at least one τ . In either case Td cannot

be equal to X. We conclude that if (33) is derivable from ACp then T ′ must be of the

form µX.Tc such that the size of Tc is at least k. It follows from induction that (32) is

not provable in ACp.

Theorem 3 adds considerable weight to the system defined in Fig. 1. For further study

one could carry out an investigation of the system using the approach of Mendler and

Lüttgen (Mendler and Lüttgen2010).

5. Infinite State Computation

We take a look at infinite C-graphs in this section. Our first infinite C-graph is given in

Fig. 4. The reader might have noticed that this example is motivated by the sequence

Υ0,Υ1,Υ2, . . .. Starting from the root, the computation can travel as high as it is neces-

sary. Once it takes a horizontal move, it reaches a node whose number of descendants is

finite. Two distinct nodes on the left vertical chain are unequal since the one nearer to

the root can make a move to the right, which cannot be bisimulated by the other. The

nodes on the right vertical chain are pairwise distinct because they represent essentially

the sequence Υ0,Υ1,Υ2, . . .. A node on the left chain is unequal to a node on the right

chain for the reason that the former can engage in an infinite computation composed

of nondeterministic steps whereas the latter cannot do that. As this example shows the

nodes in an infinite C-graph can be classified into two categories, those that admit an

infinite sequence of nondeterministic computations and those that do not.
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Fig. 5. Construction of a General Infinite C-Graph

Definition 21. A node in a C-graph is finite if the number of the nodes it can reach

is finite. The rank of a finite node N is the size of {N ′ | N τ
=⇒ N ′}. An infinite node

is a node that is not finite. A finite node is extremal if there is an arrow going from an

infinite node to the finite node.

The rank of a finite C-graph is the rank of its root. For example the rank of Υk is k for

each k ≥ 0.

Suppose i is an infinite C-graph. Let iω denote the subgraph of i consisting of all the

infinite nodes of i. The following lemma follows immediately from definition.

Lemma 6. Suppose i is an infinite C-graph. If none of the nodes of i has an infinite

number of outgoing edges pointing to extremal nodes, then every finite path in iω can be

extended.

Proof. The assumption of the lemma simply says that iω is nonempty. The conclusion

of the lemma follows from the fact that every infinite node has at least one child and all

of its children in iω are infinite.

Obviously a finite branching infinite C-graph satisfies the property described in the above

lemma.

Can an infinite C-graph contain only a finite number of finite nodes? Before answering

the question we explain a general construction of an infinite C-graph demonstrated in

Fig. 5. Suppose f0, f1, f2, . . . is an infinite sequence of finite C-graphs such that there is

an infinite number of pairwise unequal finite C-graphs, each occurring only finitely often

in the sequence. Imagine that the k-th vertical arrow points to the root of fk. As it

stands, the diagram of Fig. 5 is an infinite D-graph. If we coerce all the equal nodes in

the D-graph we get an infinite C-graph. We need to argue that the nodes in the infinite

computation • → ◦ → ◦ → . . . do not shrink to finite nodes. For that purpose let’s name

these nodes N0, N1, N2, N3, . . .. For each i ≥ 0 the node Ni can reach some root of fj
that occurs a finite number of times in f0, f1, f2, . . .. Let k be large enough such that fj
no longer appears in fk, fk+1, fk+2, . . .. Clearly Ni is not equal to Nk. If f0, f1, f2, . . . are

pairwise distinct, then they are pairwise unequal according to Lemma 5. In this case the

nodes in • → ◦ → ◦ → . . . are pairwise unequal. Once we know that • → ◦ → ◦ → . . .

does not shrink to a finite sequence, we immediately know that for each k ≥ 0 the node

Nk is not equal to any nodes in any of f0, f1, f2, . . . since the former admits an infinite

nondeterministic computation whereas the latter does not.

Theorem 4. An infinite C-graph has an infinite number of extremal nodes.

Proof. Suppose towards a contradiction there is an infinite C-graph i containing a finite

number of extremal nodes. Then none of the nodes of i has an infinite number of outgoing
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edges pointing to the extremal nodes. It follows from Lemma 6 that every path of iω can

be extended to an infinitely long path from the root. Suppose the finite C-graphs rooted

by these extremal nodes are f1, f2, . . . , fk. Let’s say that fi, where 1 ≤ i ≤ k, belongs to

a node N of iω if there is a path N
ι−→ . . .

ι−→ N ′ in iω such that N ′ has an outgoing

edge pointing to the root of fi. Now define the subgraphs iω0 , i
ω
1 , . . . , i

ω
k of iω successively

by the following induction:

— Let iω0 be iω;

— For i ∈ {1, . . . , k}, if there is some node Ni in iωi−1 to which fi does not belong, then

let iωi be the subgraph of iωi−1 rooted by Ni; otherwise let iωi be iωi−1.

By assumption iωk is infinite. It is easy to see that the relation consisting of all the pairs

of the nodes of iωk is a codivergent bisimulation. In other words all the nodes of iωk are in

fact equal. This is a contradiction.

5.1. Definability

Let’s now turn to the issue of definability. Is the behavior of the infinite C-graph in

Fig. 4 definable in CCS? The answer is positive. Consider the process Centipeda defined

as follows:

Centipeda = (inc)(dec)(odd)(even)(Cp |Cnt | even.E | odd.O),

where

Cp = τ.Υ0 + τ.(τ.Υ1 + τ.(even | !even.inc.odd | !odd.inc.even)),

Cnt = inc.(d)(A(d) | d), (36)

A(x) = dec.x+ inc.(d)(A(d) | d.A(x)), (37)

O = µX.(τ.X + τ + dec.E), (38)

E = τ + τ.Ω + dec.O. (39)

The component Cp is the main process of Centipeda. It admits an infinite computation.

At each point of the infinite computation it may branch into a computational object equal

to Υk for some k > 0. The part odd | !odd.inc.even | !even.inc.odd either increments the

value of the one-time counter Cnt, or fires O or E depending on the parity of the current

value of Cnt. Once O (or E) has started, the counter can only decrements. The local

name dec is used to control the depth of the recursive calls of E and O. The recursive

definition given by (38) and (39) makes clear the relationship to (11) and (12).

Conceivably a C-graph of a computational nature is definable. In what follows we

substantiate this intuition.

Definition 22. The number set n(g) of a C-graph g is defined as follows: A natural

number k is in n(g) if and only if there is an extremal node of g that is of rank k. A set

of natural number is generated by an unobservable CCS process P , denoted by n(P ), if

it is the set n(c(P )).

The number sets of C-graphs do not really capture any nondeterminism. Nonetheless

they can be used to indicate the richness of the nondeterministic structures of C-graphs.
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. . .

Fig. 6. Construction of a General Infinite Branching C-Graph

Theorem 5. Every recursively enumerable set containing zero is generated by an unob-

servable CCS process represented by a finitely branching C-graph.

Proof. Suppose R is a recursively enumerable set containing zero and χ is the partial

characteristic function of R. By definition x ∈ R if and only if χ(x) is defined and is

equal to 1. Let G be the process given by the following parametric definitions.

G = (in)(end)(dec)(odd)(even)(f)(Reo |F | even.E | odd.O),

Reo = (e)(o)(in.in.e | !e.in.o | !o.in.e | e.end.f.even | o.end.f.odd),

F = (out)(stop)(zero)Cχ(in, end, out, stop, dec, zero).f ,

where E and O are defined in (38) and (39) respectively, and F is defined in terms of

the general construction described on page 13. The role of Reo is to randomly generate a

number greater than one and record the parity of the number. The process F simulates

the calculation of the function χ. When the simulation terminates, it invokes either O

or E. Finally let Gr be either τ.Ω + τ.(τ.Υ1 + τ.G) or τ.Ω + τ.G, depending on whether

1 ∈ R or not. Clearly the process Gr generates the set R.

5.2. Infinite Branching C-Graph

If we coerce all the equal nodes of a finite branching infinite D-graph, we may get an

infinite branching C-graph. That is why a D-graph is not required to be finite branching.

A typical construction of a finite branching D-graph equivalent to an infinite branching

C-graph is described in Fig. 6. By the Computation Lemma all the nodes in • � ◦ �
◦� . . . are equal.

Theorem 6. There are infinite branching C-graphs definable in CCS.

Proof. Suppose {k0, k1, k2, . . .} is a recursively enumerable set. Then there is a unary

total recursive function f such that the range of f is {k0, k1, k2, . . .} and that for each j ≥ 0

there are infinite number of i’s such that f(i) = kj . Let F be (a)(b)Cf(in, end, out, zr, a, b),

where Cf(x, u, y, v, z, w) is the parametric definition introduced on page 13. Let Qng be

(c)(c | !c.in.c | c.end). The process Qng is a quasi number generator since it may never

stop. Let Cq be the process

zr.Υ0 + out.(zr.Υ1 + out.(e)(o)(e | !e.dec.(zr.even+out.o) | !o.dec.(zr.odd+out.o))).

Finally the process Fr is defined by

(odd)(even)(dec)(out)(zr)(in)(end)(Qng |F |Cq | even.E | odd.O),

where O and E are defined in (38) and (39) respectively. The process Fr does not reach

any finite node before F performs any action. After F has done an action, the system
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turns into a state equal to Υki for some ki. Clearly Fr generates the set {k0, k1, k2, . . .}.
Let Tr be the infinite path caused by Qng starting from the root of the D-graph of Fr.

It follows from the assumption on f that for every i ≥ 0 and every node in Tr there is

a path from the node to the root of Υki consisting solely of deterministic computation

steps. Using the proof technique of Theorem 4, one can easily prove that all the nodes

in Tr are equal. This says that the root of c(Fr) points to the root of every graph in

Υk0 ,Υk1 ,Υk2 , . . .. We conclude that the root of c(Fr) is infinite branching.

The proof of the above theorem also implies the following result.

Theorem 7. Each recursively enumerable set is generated by an unobservable CCS
process.

6. Church-Turing Thesis and Nondeterminism

Do the unobservable processes defined in one model differ from those definable in another

model? More specifically is there a C-graph definable in the π-calculus (Milner, Parrow

and Walker 1992) that is not definable in CCS? It is tempting to start one’s investigation

by trying to answer the second question. It turns out however that the technique allow-

ing one to answer the specific question also help answer the general question to one’s

satisfaction. The following theorem tells us that the unobservable processes definable in

one Turing-Milner model are definable in another Turing-Milner model.

Theorem 8. ∀M∈M.∀P∈M.(P 6⇓ ⇒ ∃Q∈CCS.(Q6⇓ ∧Q = P )).

Proof. Suppose M ∈ M. The relation CCS v M immediately implies that for each

unobservable CCS process P there is some unobservable M-process Q that is codivergent

bisimilar to P . We have the computable functions and the corresponding CCS processes

described below:

— Let n be the unary computable function that, given the Gödel index of an unobservable

M-process P , outputs the number of the one-step computations of the form P
τ−→ P ′.

Let Cn(x, u, b, e, c, f).A be obtained from the general construction defined on page 13.

— Let p be the binary function that, given a number i and the Gödel index of an

unobservable M-process P , produces the Gödel index of the M-process P ′ such that

P
τ−→ P ′ is the i-th one-step computation of P . Let the CCS process

Cp(h1, h2, c, f, a, d, b
+, e+, c, f).A

be obtained from the general construction defined on page 13, where the pair h1, h2
and the pair c, f are used to access the input numbers, a, d are used to deliver the

result, and b+, e+, c, f keep the input numbers.

— Let C0(b+, e+) be the CCS process whose sole function is to output the number ‘0’

at channels b+, e+.

— Let C+1(b+, e+, b, e, h1, h2, b, e).g2 be the CCS process that increments the number

at channels b+, e+ by one if the number stored at b+, e+ is less than the number

stored at channels b, e, and then puts the result at channels h1, h2 before firing A.

The number at channels b, e is kept unchanged.
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Now the parametric definition S(x, u) is given by

S(x, u) = (becf)Cn(x, u, b, e, c, f).(g)(g1g2)(h1h2)(b+e+)(g | g1 |C0(b+, e+)

| !g1.C+1(b+, e+, b, e, h1, h2, b, e).g2

| !g2.(ad)Cp(h1, h2, c, f, a, d, b
+, e+, c, f).g1.g.S(a, d)).

Suppose k is the Gödel index of an M-process P . Let JkKzerodec be the CCS encoding of the

number k. The process S(dec, zero) in

(dec)(zero)(JkKzerodec |S(dec, zero)) (40)

reads the number k at channels dec, zero, and then calculates the number i of P ′ such

that P
τ−→ P ′ is a distinct transition. If i = 0 then the process halts. If i > 0 then

the process executes the while-command defined by the two replication processes. In the

j-th loop of the execution, where 0 < j ≤ i, the Gödel index kj of the j-th child of P is

calculated and stored at the local names a, d. By the end of the execution the following

situation occurs:

(g)
(
g | (ad)(Jk1Kda | g.S(a, d)) | . . . | (ad)(JkiKda | g.S(a, d))

)
. (41)

The computation from the process in (40) to the process in (41) is mainly arithmetical.

The two processes are equal. Clearly the CCS process in (41) has i transitions, simulating

all the one-step computations of the M-process P .

Theorem 8 should be interpreted as saying that, from the perspective of the Church-

Turing Thesis, the nondeterministic structure of computation is model independent. This

result tells us a number of things. Firstly if we want to study nondeterminism of compu-

tation, we may choose any Turing-Milner model without losing any generality. Secondly a

Turing-Milner model differs from another Turing-Milner model in that they have different

sets of external actions. A model is more expressive than another if the external actions

of the former are more expressive than those of the latter. Finally the approach to define

the universal equality = and the universal expressiveness relation v in terms of internal

actions (computations) is justified. Theorem 8 can be seen as a formal justification of

Definition 8 and Definition 11.

Our careful choice of the equality has paid off. The nondeterministic structures of

computations revealed by the absolute equality are rich, and at the same time remain

invariant in a general class of models. Such a theory is impossible had we used the weak

bisimilarity or termination preserving weak bisimilarity. Weak bisimilarity identifies all

computational objects. The termination preserving weak bisimilarity tells apart the three

computational objects 0, Ω and τ.0 + τ.Ω, but identifies any other computational object

to one of the three.

Before ending this section we mention that investigations similar to those in Section 5

and this section have been carried out for effective operational semantics (de Simone

1984; de Simone 1985; Vaandrager 1993). Further studies are necessary to see if there is

any connection between their work and the present work.
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7. Remark

Our understanding of the nondeterminism for both finite-state and infinite-state com-

putations has been improved. There is an algorithm to check if a finite D-graph is a

C-graph, based on which one can design a brute force algorithm to enumerate all the

elements of Fk for every k > 0. However we do not know any closed formula to calculate

the size of Fk at the moment. Although this is a problem belonging to enumerative com-

binatorics, trying to solve the problem will definitely improve our understanding of the

finite state computations. The problem of checking the equivalence of two unobservable

CCS processes is likely beyond the arithmetical hierarchy (Srba 2004a). Checking the

equality between an unobservable CCS process and a finite C-graph poses a much less

hard challenge (Srba 2004b). A related problem is the regularity problem, which asks if

an unobservable CCS process is equal to some finite C-graph. Further study is necessary

to clear up these equivalence checking issues. A problem that deserves further investiga-

tion is a complete characterization of the C-graphs definable in Turing-Milner models.

In the light of Theorem 8, it is worth the effort to work out the answer to the question.
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