
Thesis for Interaction
Yuxi Fu

BASICS, Shanghai Jiao Tong University
fu-yx@cs.sjtu.edu.cn

Abstract—A thesis for interaction model is proposed as a
foundation for interactive solvability. It formulates the minimal
content computability and the maximal channel computability of
all interaction models by fixing a minimal model and a maximal
model. It is shown that the interactive extensions of the recursive
function model, the Turing machine model and the λ-calculus
model all fall within the realm of the thesis. A major technical
contribution is the design, in the maximal model, of interpreters
for the models that fit in the thesis.

I. Introduction

“The theory of computation has traditionally been studied
almost entirely in the abstract, as a topic in pure mathematics.
This is to miss the point of it. Computers are physical objects,
and computations are physical processes. What computers can
or cannot compute is determined by the laws of physics alone,
and not by pure mathematics.” — David Deutsch

Physical implementability is the very foundation of com-
puter science. Church-Turing Thesis states that the functions
implementable by physical devices are precisely those defin-
able by the mathematical models of computation [12], [3],
[36], [16]. The thesis has two sides of a story. One is about
definability, pointing out that the mathematical models offer
a formulation of the minimal capacity of computing devices.
Digital computers built with von Neumann structure are physi-
cal devices that enjoy the minimal computing power. The other
is to do with unsolvability, postulating that the mathematical
models characterize the maximal power of computing devices
in all shapes and forms. There has been an increasing interest
in the mathematical model of computation based on quantum
mechanics [22]. Leaving the implementation detail aside, it has
been shown that such a model is equivalent to Turing machine
model as far as computability is concerned. All experiments
indicate that the world is quantum mechanical in that all physi-
cal phenomena can be explained by quantum mechanics. If we
believe what physicists believe, then the unsolvability theory
based on Church-Turing Thesis is a consequence of the laws of
physics. Many other mathematical models of computation have
been studied. The probabilistic Turing machine model [32]
for example, believed by many to give a broader picture of
efficient computation [10], is equivalent to Turing machine
model in computability. Physical implementability emphasizes
another property of computation, that of observability. For a
computing device to be useful, it should be able to fetch input
data from some medium and make the result of computation
deliverable. In other words both inputs and outputs ought to
be observable. The observability rules out models that deal
with general functions on the field of real number.

The physical implementability remains a fundamental con-
straint if one switches from models of computation to models
of interaction. In a concurrent system processes communicate
through channels; and channels are of physical nature. A
frequently asked question about interaction models is if they
are more powerful than computation models. What is the
expressiveness of distributed computing? How about Inter-
net computing? For closed systems of interactive processes
Church-Turing Thesis already provides the answer to these
questions, even though our everyday encounter with modern
computing technology prompts us to think otherwise. The
point is that a model is meant to define closed systems, and
that if one is interested in open systems, there is a standard
approach using oracles. Human interventions in Internet com-
puting for example are best explained as interactions with
oracles. Let’s see an example. Is there a process that admits
the following deterministic interactive behaviour

O
a
−→ . . .

a
−→︸ ︷︷ ︸

i1

b
−→

a
−→ . . .

a
−→︸ ︷︷ ︸

i2

b
−→ (1)

such that i1 < i2 < . . . and {i1, i2, . . .} is the set of total
recursive functions? For a closed system that is immune from
any external force (1) is an impossibility for otherwise there
would be a process that answers deterministically if an input
function is total. We can of course think of O as an oracle and
study the consequence of admitting it into our system. From
the point of view of Church-Turing Thesis there is nothing
new about interaction models. What is new is that processes
have access to channels. They can choose to communicate, or
not to communicate at a particular channel. They can also send
the identify of a channel to other processes. To what extent
manipulations on channels should be allowed? It is this aspect
of interaction that has not been under scrutiny in the light
of Church-Turing Thesis. But once we have raised the issue,
we immediately know the answer. Because the computational
behaviour of a process is constrained by Church-Turing Thesis,
a process can only make reference to channels in a computable
manner. This strongly suggests, according to the discussion in
the previous paragraph, to define a mathematical model that
formalizes the maximal capacity of channel manipulation.

Channels are meant to be vehicles for messages. Church-
Turing Thesis implies that the messages produced by processes
are all encodable by natural numbers, no matter how the
messages may look like. Once again some kind of maximality
emerges. There are two points need be discussed here. One is
about the rational behind our design decision to take as atomic
a communication of a number whose size is unbounded. Ob-

serve that this is consistent with the design of Turing machines.
The input and the output tapes of a machine are unbounded
in length. This is so because a machine is able to take inputs
of any length and may output a string of any length. When
we turn Turing machines into interactive machines, the input
and output tapes become channels. But isn’t it more natural
to take the token-by-token communications as atomic? In the
interactive machine example, is it better to let the content of
a communication be just a symbol from an alphabet? The
answer is definitely negative. In an interleaving semantics
there is no guarantee that a piece of information can reach its
destination in integrity if it is broken down into packets. At
the theoretical level a process calculus with a token-passing
communication mechanism is not very much different from
CCS, and runs the risk of not being a complete model [8].
It is at the right level of abstraction that a complete piece of
information is transmitted in an atomic interaction. The second
point is concerned with dynamic creation of private channels.
Since we cannot restrict the number of global channels a
process need to make use of, it is again at the right level of
abstraction to assume the availability of a potentially infinite
number of global channels. How about private channels? Take
a look at the process !a(x).(p)(p(y).S | b(z).p[z].T). Every time
an interaction with the process occurs, a new private channel
p is generated. If p is a physical wire, it would mean that
computation can cause the creation of a new physical wire.
From a physical implementation point of view, the idea that a
single process is always in need of a new private channel is
debatable. Fortunately there is an alternative interpretation of
private channel. In (p)(p(y).S | b(z).p[z].T) the scope operator
(p) translates to saying that “it does not matter which channel
p(y).S and p[z].T are going to use to interact, neither of them
is allowed to communicate with anybody else in the next step”.
This is the view we shall adopt in our universal model.

After fifty years of concurrency theory [25], we are still
in a situation where we are expected to define everything
from scratch. We cannot go very far that way. The lack of
a definability/unsolvability theory of processes is the prime
reason. Ultimately this is due to the absence of a fundamental
thesis for theory of interaction. Our understanding of concur-
rency theory must reach to a stage when new results are built
from known results and the whole theory is based upon a firm
foundation. In this paper we attempt to postulate such a thesis
with the motivation described in the above.

The rest of the paper is organized as follows. Section II
defines the principal model of the paper, a functional model for
concurrency. Section III reviews the preliminaries of the theory
of interaction developed in [8], and apply them to the principal
model. Section IV defines the minimal model and the maximal
model and postulates a thesis for interaction models in terms of
the two models. It is pointed out that the interactive versions of
the recursive function model and the Turing machine models
are admitted by the thesis. In Section V and Section VI it is
proved that the functional model and the π-calculus fall within
the reign of the thesis. A theory of definability/unsolvability
is outlined in Section VII. Section VIII concludes.

II. A Concurrent FunctionalModel

Church’s λ-calculus [1] is a prototypical higher order model
for functional computation. It is of higher order in the sense
that both an input and an output of a λ-term are themselves
λ-terms. In concurrency theory an important issue has been
to look for the model that plays the role of being the “λ-
calculus” for concurrent computation. Early works [21], [2],
[34], [35] addressed this issue by introducing the higher order
mechanism into CCS [17]. A crucial shift from the functional
paradigm to an object-oriented paradigm, initiated by the work
of [4], was fully investigated by Milner, Parrow and Walker
with the π-calculus [19]. The model is a channel-passing
calculus. Our presentation of the model distinguishes syntac-
tically private channels from global channels. The following
notational convention will be maintained throughout the paper.

• Cg is the set of global channels. The elements of Cg are
denoted by a, b, c, d, e, f , g, h.

• Cp is the set of private channels. The elements of Cp are
denoted by l,m, n, o, p, q.

• Cv is the set of channel variables. The elements of Cg are
denoted by u, v,w, x, y, z.

We write for example p̃ for a finite sequence of private
channels. The set Cg ∪ Cp ∪ Cv will be ranged over by µ, ν,
and the set Cg ∪ Cp by α, β.

We start by fixing the grammar of the minimal π-calculus.

T := 0 | µ(x).T | µµ′.T | T |T ′ | (p)T | !µ(x).T.

We will use the standard abbreviation µ(p).T ≡ (p)µp.T . The
labeled transition semantics is defined by the following rules.

α(x).T
αα′

−→ T {α′/x} αα′.T
αα′

−→ T

T
αp
−→ T ′

(p)T
α(p)
−→ T ′

T0
αα′

−→ T ′0 T1
αα′

−→ T ′1

T0 |T1
τ
−→ T ′0 |T

′
1

T0
αp
−→ T ′0 T1

α(p)
−→ T ′1

T0 |T1
τ
−→ (p)(T ′0 |T

′
1)

!α(x).T
αα′

−→ T {α′/x} | !α(x).T

T0
λ
−→ T ′0

T0 |T1
λ
−→ T ′0 |T1

T
λ
−→ T ′

(p)T
λ
−→ (p)T ′

p is not in λ.

The symmetric rules are systematically omitted. The last two
rules are structural rules. They are common to all models and
will be omitted in the definition of a new model. We shall use
standard notations like =⇒,

λ
=⇒ and

λ1...λk
−→ .

The π-calculus has been successful for many reasons. It
is powerful enough to simulate many process calculi and is
capable of modelling a wide range of phenomena arising
from concurrent programming [39], [29], [30], [37]. Milner’s
encoding of the lazy λ-calculus into the π-calculus [18]
confirms that the object-oriented paradigm is powerful enough
to encapsulate the functional computation. The relationship to
the λ-calculus is seen as a qualification test for a model to

claim the “λ-calculus” status. The object-oriented style of π-
programming is evident from the following encoding of the
lazy λ-calculus given by Milner:

~x�u = xu,

~λx.M�u = u(x).u(v).~M�v,

~MN�u = (p)(~M�p | p(w).pu.!w(z).~M�z).

Every λ-term in the π-calculus is accessible at some channel.
A term is invoked only when it is needed, and the simulation
is indirect. A natural question asks if there is a more direct
interpretation of the λ-calculus in a concurrent model?

We propose in this section an alternative candidate for the
“λ-calculus” of concurrent computation. It is a higher order
functional model, denoted by F, with a direct interpretation
of the lazy λ-calculus. The following syntactical class is
necessary for the definition of the model.
• V is the set of abstraction variables. The elements of Cg

are denoted by U,V,W, X,Y,Z.
The set of F-terms is generated by the following grammar:

T := 0 | γ.T | T |T | (p)T | A(µ, ν),
A := X | (x, y)T, where f c(T) ⊆ {x, y} ∧ oc(T) = ∅,

γ := µ(X) | µ[A].

An abstraction is either an abstraction variable or of the
form (x, y)T . In (x, y)T the channel variables x, y are bound.
A channel variable is free if it is not bound. We write
f c(T) for the set of the free channel variables appearing
in T . If y does not appear in S , we abbreviate (x, y)T to
(x)T . If A = (x, y)T , then the instantiation of A at µ, ν is
A(µ, ν) = T {µ/x, ν/y}. If A = (x)T , then the instantiation A(µ)
of A at µ is A(µ, µ) = T {µ/x}. We will write Aµν for A(µ, ν)
and Aµ for A(µ) to improve readability. The set of abstractions
will be ranged over by A, B,C,D. The nil process 0 and the
composition term T |T ′ are standard. A trailing 0 is often
omitted. A prefix term γ.T is either an input term of the form
µ(X).T or an output term of the form µ[A].T . The abstraction
variable X in µ(X).T is bound. A (abstraction) variable is
free if it is not bound. We write f v(T) for the set of free
variables appearing in T . We shall abbreviate µ(X).T to µ.T if
X does not appear in T . Similarly we shall abbreviate p[A].T
to p.T in a context where A can never be received by others.
We will abbreviate for example a(X).a(Y).T to a(X,Y).T and
a[A].a[B].T to a[A, B].T . We will call a(X) a global input
guard, a[A] a global output guard, p(X) a local input guard,
and p[A] a local output guard. A τ prefix term τ.t can be
defined by (p)(p.T | p) where p < f c(T). In localization term
(p)T the private channel p is localized. A private channel is
open if it is not localized. We write oc(T) for the set of the
open private channels appearing in T .

An F-process is an F-term in which all channel variables
are bound, all private channels are local, and all abstraction
variables are bound. We write L,M,N,O, P,Q for processes.

We try to keep the model as small as possible. The com-
position and localization are basic operations necessary in all

interaction models. Prefix terms introduce sequential actions.
We insist that all abstractions have two parameter variables.
We think of an abstraction as a concurrent generalization
of function. Two parameters are necessary and sufficient to
specify the input and the output interface of a function. We
believe that the model would be far less expressive if all
abstractions have only one parameter, although currently we
have not formally proved this. Working with fixed number
parameter abstractions saves us from introducing a type system
for channels. Abstraction-passing higher order calculi have
been studied in literature [30], [37]. It is a more faithful
extension of the higher order mechanism of the λ-calculus than
strict process-passing calculi. Strict process-passing calculi are
not expressive enough since a receiving process has no control
over a received process [8]. One can enhance the expressive
power of process-passing calculi by introducing relabeling
operator. The problem with the relabeling operator is that it
interferes with congruence property.

Using the action set {α(A), | α ∈ Cg∪Cp}∪ {τ}, where τ is a
label for all internal actions, the simple operational semantics
of F can be defined by the prefix rules

α(X).T
α(A)
−→ T {A/X} α[A].T

α(A)
−→ T

and the interaction rule

T0
α(A)
−→ T ′0 T1

α(A)
−→ T ′1

T0 |T1
τ
−→ T ′0 |T

′
1

The side condition on the grammar of abstraction simplifies
the operational semantics. There is no name extrusion.

We need to make sure that the side condition on abstraction
is maintained.

Lemma 1. If T is an F-term and T
λ
−→ T ′, T ′ is an F-term.

Proof: Suppose λ = a(A). If A lands in an output prefix,
then speaking from that output position it can be instantiated
by neither a free variable channel nor an open private channel.

Let’s see how recursion is defined in F. The counterpart
of the λ-term xx is (p)(p[X] | Xp). The infinite behaviour of
(λx.xx)(λx.xx) is simulated by the process

Ω
def
= (p)(p[D] |Dp)

where the abstraction D is (z)z(Z).(p[X] | Xp). A term that
inputs an abstraction at µ and then immediately outputs
it at ν can be defined as (p)(p[C] |Cp)), where C =

(z)µ(X).ν[X].z(Z).(z[Z] |Zz). This example can be generalized.
We will use the following guarded recursion throughout the
paper.

!γ1 . . . γk†T = γ1 . . . γk. (T | (p)(p[C] |Cp)) , (2)

where C = (z)γ1 . . . γk.z(Z).(T | z[Z] |Zz) and p does not appear
in T . Intuitively !γ1 . . . γk†T is a recursively defined procedure,
each recursive call of the body T must be preceded by actions
prescribed by γ1, . . . , γk. We will abbreviate !γ1 . . . γk†0 to
!γ1 . . . γk.

III. Equality and Submodel

Milner-Park’s bisimulation approach [17], [24] to observa-
tional equivalence has been a standard in concurrency theory.
Two refinements of the idea have played an important role in
recent studies of interaction models. The branching bisimula-
tion of van Glabbeek and Weijland [38] imposes the condition
that a change-of-state internal action must be bisimulated. The
barbed bisimulation of Milner and Sangiorgi [20] provides for
the first time a model independent equivalence for processes.
Central to barbed bisimulation is the requirement that it is
closed under composition and that it preserves observability.

Definition 2. P is observable at a, notation P⇓a, if P
λ
−→ P′

for some P′ and some action λ at channel a.

In addition to the bisimulation property we shall pay partic-
ular attention to divergence. Our translations between models
are supposed to be divergence sensitive. The criterion we adopt
for divergence sensitivity was introduced by Priese [27].

Definition 3. A symmetric relation R on processes is a bisim-
ulation if one of the following is valid whenever QR P

λ
−→ P′:

1) λ = τ and Q =⇒ Q′ R P and Q′ R P′ for some Q′;
2) Q =⇒ Q′′ R P and Q′′

λ
−→ Q′ R P′ for some Q′′,Q′.

It is codivergent if PRQ
τ
−→ Q1

τ
−→ . . .

τ
−→ Qi

τ
−→ . . .

implies that P
τ

=⇒ P′ RQk for some k ≥ 1 and some process
P′. It is extensional if (P | P′)R (Q |Q′) whenever PRQ and
P′ RQ′. It is equipollent if PRQ implies P⇓a ⇔ Q⇓a for all
a ∈ Cg.

The four properties defined in Definition 3 apply to all
models. This is because they do not refer to any particularity
of external actions. Internal actions are basically the same in
all models [7] and is therefore model independent.

A. Process Equality

Putting together all the conditions introduced in Defini-
tion 3, we get the process equality we shall use in this paper.

Definition 4. The equality =M on M-processes is the largest
reflexive, codivergent, extensional, equipollent bisimulation.

It is a standard exercise to show that the largest reflexive, co-
divergent, extensional and equipollent bisimulation exists [8],
hence the well-definedness of =M. Notice that we need the
reflexivity for the proof of the existence of =M. Without the
reflexivity the binary relation {(!τ | !a, !τ | !a) | a ∈ Cg} would be
a codivergent, extensional, equipollent bisimulation. We shall
often omit the subscript in =M. The equality =M is introduced
in [8], based on previous studies on the relative expressiveness
of CCS variants and π variants [9]. In [8] the private channels
and the global channels are syntactically the same, following
the standard practice in process algebra [17], [19], [31].
Consequently the extensionality condition is supposed to be
closed under localization operator. In the present paper this is
unnecessary since all private channels in processes are bound.
The effectiveness of the equality =M has been demonstrated

by the proof of a number of general results. See [8] for a
systematic study.

A number of equivalences for higher order calculi have been
proposed and studied, notably by Thompsen [34], [35] and
Sangiorgi [29], [30]. These are weak bisimilarities without
any consideration to divergence. Divergence is important for
us since we shall discuss divergence sensitive interpretation
between models. Divergence is also important for the inter-
pretation of computational models, say the lazy λ-calculus.

Proving that two processes are absolutely equal is often not
so straightforward. In many places of this paper we can use
the stronger but much easier equality defined next.

Definition 5. A symmetric codivergent bisimulation R is a
T-bisimulation if the following hold whenever PRQ:

1) If P
a(A)
−→ P′, then Q =⇒ Q′′

a(A)
−→ Q′ for some Q′,Q′′

such that Q′′RP and Q′RP′.
2) If P

a(A)
−→ P′, then Q =⇒ Q′′

a(B)
−→ Q′ for some Q′,Q′′

such that Q′′RP and Q′RP′ and A(a, b)R B(a, b) for all
a, b ∈ Cg.

The T-bisimilarity 'T is the largest T-bisimulation.

The proof that 'T is included in =F is not difficult.

B. Direct Interpretation of λ-Calculus

The syntax of the λ-calculus is given by

M := x | λx.M | MM′.

A λ-term is either a variable x, or an abstraction term λx.M,
or an application term MM′. The variable x in λx.M is bound.
A variable is free if it is not bound. A term is closed if all
variables appearing in it are bound. The operational semantics
of the lazy λ-calculus is defined by the following two rules:

(λx.M)N → M{N/x},

MN → M′N, if M → M′.

The equivalence closure of the one step lazy reduction → is
the β-conversion =β. The lazy reduction of a λ-term is unique.
It either terminates in an abstraction term, or terminates in a
term of the form xM1 . . . Mk, or diverges.

Given an injective function from the set of λ variables to
the set V of abstraction variables, a λ-term M is interpreted
as an abstraction according to the following definition.

~x� = X,

~λx.M� = (uv)u(X).v[~M�],
~MN� = (uv)(mq)(~M�m,q |m[~N�].q(Z).Zu,v).

The process ~M�a,b is a “function” that inputs a “λ-term” at
channel a and output the result “λ-term” at channel b. The
correctness of the interpretation is guaranteed by the following
lemmas and corollary. We omit the routine proofs.

Lemma 6. If ~x� = X then ~M�{~N�/X} = ~M{N/x}�.

Lemma 7. M → N if and only if ~M�a,b →→ =F ~N�a,b.

Corollary 8. For closed M,N, M =β N implies ~M� =F ~N�.

C. Relative Expressiveness

Another fundamental relationship in computer science is
the relative expressiveness between models. For such a re-
lationship to be useful at all it must be defined in a model
independent way. Intuitively we regard M as a submodel of N
if for every process P of the former there is some process Q
of the latter such that Q is equal to P as it were; and moreover
the equality =M should be a subrelation of the equality =N. At
the technical level the definition of the expressiveness should
be a routine once the definition of equality has been fixed.
The reflexivity condition of Definition 4 must be generalized
to conditions on processes from two different models.

Definition 9. A binary relation ∝ from M-processes to N-
processes is total if for every M-process P there is an N-
process Q such that P ∝ Q. It is sound if P ∝ Q, P′ ∝ Q′ and
P =M P′ imply Q =N Q′.

The soundness condition refers to both the equality of the
source model M and the equality of the target model N. For
the condition to make the best sense of it the two equalities
ought to be the same as it were. In our situation they are the
same equality on two different models. The basic idea of the
next definition is that the expressiveness relation is also the
same equality, albeit on the processes of two models.

Definition 10. A binary relation ∝ from M-processes to N-
processes is a subbisimilarity if it is a total, sound, codiver-
gent, extensional, equipollent bisimulation.

We write M v N if there is a subbisimilarity from M to N.
The notation M v N stands for the formal statement that M is
a submodel of N. For example it is easy to see that CCS v π.
We write M @ N if M v N and N @ M. In [8] the sub-
bisimilarity relationship has been used to classify the relative
expressiveness of several well-known models. Our criteria are
stronger than most criteria proposed in literature [23], [11].

IV. Thesis on Interaction

With the requirement on physical implementability comes
the spatial operator “|”, the concurrent composition operator,
that allows processes to interact on shared channels. This is
a let-it-happen combinator to which we do not and should
not assign any extra computational meaning. The semantics
of this operator is fixed; it is model independent. In literature
one sees several variants of this combinator. We take the
view that there variants are all derived operators. This will be
formalized in our thesis. Without any hierarchical structure in
space the spatial operator would be much less useful, hence the
private channels and the localization operator. The localization
operator is a scope operator without any extra computational
meaning either. Its semantics is essentially model independent.

The other operators of an interaction model are intensional.
They define computational features pertain to particular mod-
els. An interaction model differs from another interaction
model in that they have different set of intensional operators.
These are the principles for the introduction of the absolute
equality and the subbisimilarity.

Following these principles it is easy to extend a computation
model to an interaction model. Suppose we would like to
define interactive Turing machine model. We let each machine
to have the capacity to input and output data at a finite
number channels. There could be many variations on the
choice of instruction set. But the model is basically the
same. In this model we can form systems by composing
individual machines. For instance we have a system or a
process of the form (p)(M0 | (q)(M1 |M2)) where M0,M1,M2
are interactive machines. The particularity of this model is that
the configuration of a system never changes. For a particular
formalization of the model, the reader is referred to [8]. We
shall denote this model by T.

The contents of communications in T are numbers. Formally
we use Presburger Arithmetic to reason about numbers. Pres-
burger Arithmetic [26] is the first order theory of arithmetic
with three functional constructors (the nullary function “0”,
the unary function successor “+1”, and the binary function
addition “+”) and two relations (“=” and “<”). We will always
abbreviate say “((0 + 1) + 1) + 1” to “3”. We will write
` ϕ to mean that the Presburger formula ϕ is provable. It
is well known that the provability of the first order formula in
Presburger Arithmetic is decidable [26]. Throughout the paper
i, j, k stand for natural numbers.

A. Computability Model

The starting point to formulate a thesis for interaction is to
turn the computable functions into an interaction model. This
model is called computability model and denoted by C. The
C-processes are generated from the following grammar.

P := 0 | Ω | Fb
a(f(x)) | a(i) | P | P.

The process Ω can only diverge. The functional process
Fb

a(f(x)) inputs a number, say i, at channel a, carries out the
computation of f(i), and outputs the result at channel b if the
computable function f is defined at i. The output process a(i)
simply outputs i at channel a. The semantics is defined by the
following rules, in which f(i)↑ means f is undefined on i.

Fb
a(f(x))

a(i)
−→ b(j)

if f(i) = j
a(i)

a(i)
−→ 0

Fb
a(f(x))

a(i)
−→ Ω

if f(i)↑
Ω

τ
−→ Ω

P
a(i)
−→ P′ Q

a(i)
−→ Q′

P |Q
τ
−→ P′ |Q′

(3)

Definition 4 can be readily applied to the C-processes. The
equality =C has a simple characterization. Let the structural
congruence ≡C be the least equivalent and congruent relation
that satisfies the following equalities: (i) 0 | P ≡C P, (ii)
P |Q ≡C Q | P, (iii) O | (P |Q) ≡C (O | P) |Q, (iv) Ω |Ω ≡C Ω,
and (v) Fb

a(f(x)) = Fb′
a (f(x)) if f(x) is nowhere defined. The

following lemma is from [8].

Lemma 11. The two equalities =C and ≡C coincide.

B. Universal Model

The model C introduces a minimal expressive power on the
interaction models, the content computability. In the other di-
rection our universal interaction model imposes a constraint on
all interaction models, which we call channel computability.
The model is an extension of the value-passing calculus VPC
of Hoare [15] and Milner [17]. To understand the role of VPC
it suffices to say that VPC is to the recursion theory what F
is to the λ-calculus. The syntax of the model is given by

T := 0 | α(x).T | α(t).T | T |T | (p)T | if ϕ then T | !α(x).T.

In the conditional term if ϕ then T the expression ϕ is a
Presburger formula. The replication operator “!” only applies
to input terms. We may define !α(x).T by (p)(p | !p.α(x).p.T).

The semantics is standard. In addition to the concurrent
composition rules defined in (3) there are following rules.

α(x).T
α(i)
−→ T {i/x}

T
λ
−→ T ′

if ϕ then T
λ
−→ T ′

` ϕ

α(t).T
α(i)
−→ T

` t = i
!α(x).T

α(i)
−→ T {i/x} | !α(x).T

A detailed exposure of VPC can be found in [6].
The universal model V differs from VPC in that the former

has a naming function µ : N → Cg that assigns a distinct
number to each global channel. For a number i we will write µi

for µ(i). The bijective function is meant to capture the intuition
that global channels can and must be accessed in a computable
way. The function µ gives rise to an enumeration µ0, µ1, . . . of
the global channels. When we write a global channel a for
example we mean that a = µk for some number k. The syntax
of V is almost the same as VPC, except that the former has
additional prefix terms of the form µz(x).T and µz(t).T . The
semantics of V is the same as that of VPC. The process
a(x).if decode(x) = k then µk(t) for instance decodes the
number received at channel a and if the decoded number is the
key then it outputs t at the secret channel. We will prove that
the processes definable in V can simulate the channel-passing
communication mechanism. We get a better understanding of
the channel computability from the following abbreviation.

µs(x).T = (p)(p(s) | p(z).µz(x).T),
µs(t).T = (p)(p(s) | p(z).µz(t).T).

In V there is a maximal process 1 as it were defined by I |O,
where

I = (p)(p(0) | !p(x).p(x + 1) | p(y).(p(0) | µy(z))),
O = (pq)(p(0) | !p(x).p(x + 1) | q(0) | !q(x).q(x + 1)

| p(y).q(z).(p(0) | q(0) | µy(z))).

Intuitively 1 is the process that can do any input action and
any output action in a perpetual fashion.

The two-leg conditional term if ϕ then S else T is defined
by if ϕ then S | if ¬ϕ then T . For clarity the term

if t = i0 then T0 else if . . . else if t = ik then Tk

will be written as case t of i0 ⇒ T0; . . . ; ik ⇒ Tk end case.

C. Models of Interaction

We have said enough motivations for the thesis, and we
have defined the minimal model C and the maximal model V.
Let’s spell it out without further ado.

Thesis on Interaction. ∀M.C v M v V.
The formulation of the thesis depends crucially on the model
independence of the absolute equality and the subbisimilarity
relationship. One may cast doubt on the thesis by pointing out
that there are other model independent equalities and submodel
relationships. Does that mean that there are many theses for
interaction? Our answer has to be that for mathematical models
of interaction the equality and the submodel relationship are
unique for the reason that the observability of numbers is a
model independent notion. The definition of =, and that of
v as well, is discovered; it is not invented. This remark also
applies to Church-Turing Thesis. There has been no dispute
about the extensional equality of function to which Church-
Turing Thesis refers.

We call M complete if C v M and sound if M v V.
Intuitively a complete model is Turing powerful, and a com-
plete and sound model is Turing equivalent, if one ignores the
interactional aspect of the model. The model C is the starting
point for the theory of definability of M, and V provides the
theory of unsolvability for all interaction models.

In [8] we established the completeness of T and VPC,
exploiting the simplification offered by Lemma 11.

Theorem 12. C v T v V and C v VPC v V.

Proof: The embedding function from VPC to V witnesses
VPC v V. The validity of T v V is due to the fact that Turing
machines can be interpreted by recursive functions.

We will prove in the following section that the functional
model F is also complete and sound. So our most influential
computation models can all be lifted to interaction models.
We will also show that the π-calculus satisfies the Thesis on
Interaction.

V. Completeness of FunctionalModel

We prove in this section that F is complete. The proof is
typical of the completeness proofs. We shall explain it in some
detail. The reader should pay attention to the role played by
Lemma 11.

The first step to define the computable functions in F is
to fix an encoding in F of the natural numbers. Let A+

abbreviate (xy)x[A]. The numbers are defined by the following
abstractions:

0̂ = (xy)y,
k̂ + 1 = (̂k)+.

If we try to code up the recursive functions in F, we soon
realize that we need to define in F the conditional term

if ϕ then T else T ′, (4)

where the validity of ϕ is decidable. This is where the
Presburger Arithmetic comes into the picture.

A. Definability of Presburger Condition

In this subsection we look at the case where ϕ is a
Presburger formula containing no occurrences of quantifier. In
other words, ϕ is either an atomic formula of the form s = t,
or an atomic formula of the form s < t, or φ ∧ ψ, or φ ∨ ψ or
¬φ inductively. The general definition of (4) in which ϕ is a
decidable predicate will follow from Theorem 15.

The process if ϕ ∧ ϕ′ then T else T ′ can be defined by

if ϕ then (if ϕ′ then T else T ′) else T ′.

Similarly if ϕ ∨ ϕ′ then T else T ′ and if ¬ϕ then T else T ′

can be defined by conditional processes involving simpler
boolean formulae. It is therefore sufficient to define (4) for
atomic formulae. Firstly we define the auxiliary process if A =

B then T else T ′ by

(lm)(l[A].m[B] | !l(X).m(Y)†(nopq)T ?).

where T ? stands for(
Xno |Y pq | n(U).(p(V).l[U].m[V] | q.T ′) | o.(p(V).T ′ | q.T)

)
.

So if A and B are abstractions encoding the same number, then
if A = B then T else T ′ is equal to T , otherwise it is equal to
T ′. Secondly we interpret Presburger arithmetic term t as ~t�o

which is supposed to release the value of t at channel o. The
structural definition of ~t�o is given in Fig. 1. To define ~x�o

we fix a bijective correspondence between the term variables
of the Presburger Arithmetic and the abstraction variables. We
assume that the capital X corresponds to the small x. Finally
we define the process if s = t then T else T ′ by

(pq)(~s�p | ~t�q | p(X).q(Y).if X = Y then T else T ′).

The conditional process if s < t then T else T ′ is defined in
similar fashion.

B. Interpretability of Recursive Functions

With the help of the conditional processes, we are now able
to fix an interpretation of the recursive functions. To start with
we define copy process Cµν by the following process

µ(X).(mno)
(
m[̂0] | !o(X)†m[X] | (l)(l[X] |C)

)
,

where

C = !l(X)†(pq)(Xpq |m(Z).(p(Y).o[Z+].l[Y] | q.ν[Z])). (5)

The process Cab intends to input an abstraction, which is
supposed to be a number, at channel a and to output the
number at channel b. If the imported number is corrupted,
the copy process either terminates or interprets the imported
abstraction as some number and outputs it. It is typically
used as a prefix operation. Let the notation Cµν.T stand for
the process obtained from Cµν by substituting q.(T | ν[X]) for
q.ν[X] in (5). The role of Cµν in Cµν.T is to prevent malicious
code from ever getting into T .

We define a map ~ �c that interprets every recursive func-
tion by an abstraction. Constant function λx1 . . . λxk.i, succes-
sor function λx.x+1 and projection function λx1 . . . λxk.xi are
interpreted respectively by the following abstractions.

Cni
k = (uv)(p1 . . . pk)(Cup1 . . .Cupk | pi(X).v[̂i]),

S r = (uv)(p)(Cup | p(X).v[X+]),
P jik = (uv)(p1 . . . pk)(Cup1 . . .Cupk | pi(X).v[X]).

Suppose G0 = ~g0�c for an i-ary recursive function g0 and
G1 = ~g1�c, . . . , Gi = ~gi�c for some k-ary recursive functions
g1, . . . , gi. Let

T j = p1(X1) . . . pk(Xk).(p1[X1] . . . pk[Xk] |G j(X1, . . . , Xi)),

where G j(X1, . . . , Xk) = (q)(q[X1] . . . q[Xk] |G j
qoi). The term T j

inputs the numbers at channels p1, . . . , pk consecutively and
then must release these numbers in the same order so that they
can be used elsewhere. Let CPG0,G1,...,Gi be defined by

(o1 . . . oi)(T1 | . . . |Ti | o1(Z1) . . . oi(Zi).(n)(n[Z1] . . . n[Zi] |G0
nv)).

The interpretation ~g0(g1, . . . , gi)�c of the composition func-
tion g0(g1, . . . , gi) is defined by

(uv)(p1 . . . pk)(Cup1 . . .Cupk |CPG0,G1,...,Gi).

Next we consider recursion and minimization. Let g, h, f be
respectively a (k+2)-ary recursive function, a k-ary recursive
function, and a (k+1)-ary recursive function, and let G, H, F be
their interpretations. The recursion function rec(g, h) defined
from g and h is calculated by the following equations:

rec(g, h)(i1, .., ik, 0) = h(i1, .., ik),
rec(g, h)(i1, .., ik, i + 1) = g(i1, .., ik, i, rec(g, h)(i1, .., ik, i)).

The interpretation ~rec(g, h)�c defined in Fig. 2 uses an in-
ductive algorithm. In the recursive call of !o(Y,Z,V)† (), the
parameter records the intermediate value rec(g, h)(i1, . . . , ik, y);
Z is the (k+1)-th input; Y is y when the algorithm calcu-
lates rec(g, h)(i1, . . . , ik, y). The inductive algorithm terminates
when Y reaches the (k+1)-th input value. The interpretation of
the minimization function mu(f), given in Fig. 2, makes use of
the standard algorithm. The definition of all recursive functions
is now complete.

The minimization function introduces undefinedness. Our
interpretation treats undefinedness as divergence. The sound-
ness of our interpretation is the following lemma.

Lemma 13. Suppose f is a k-ary recursive function. For all
i1, . . . , ik, (p)(p[î1, . . . , îk] | ~f�c(p, ν)) =F ν[̂ j] if f(i1, . . . , ik) = j,
and (p)(p[î1, . . . , îk] | ~f�c(p, ν)) =F Ω if f(i1, . . . , ik)↑.

Proof: The notation Ω stands for the divergent process
(p)(p | !p†p). The proof is by simple structural induction. The
internal manipulations are all state preserving.

~k�o = o[̂k],
~x�o = (pq)(Xpq | (p(U).o[U+] | q.o[̂0])),
~t+1�o = (p)(~t�p | p(U).o[U+]),

~s+t�o = (pq)(~s�p | ~t�q | p(X).q(Y).(ln)(l[Y].n[X] | !l(V)†(pq)(V pq | (p(U).n(Z).l[U].n[Z+] | q.n(W).o[W])))).

Fig. 1. Encoding of Presburger Terms.

~rec(g, h)�c = (uv)(p1 . . . pk)(Cup1 . . .Cupk .Cup | (no)p1(X1) . . . pk(Xk).p(Z).(n[X̃] | o[̂0,Z, 0̂]
| !o(Y,Z,V)† if Y = 0̂ ∧ Z = 0̂ then Hnv

else if Y = 0̂ ∧ 0̂ < Z then (l)(Hnl | l(V).o[̂1,Z,V])
else if Y > 0̂ ∧ Y < Z then n(X̃).(n[X̃] | (lq)(q[X̃,Y,V] |Gql | l(V).o[Y+,Z,V]))
else if Y > 0̂ ∧ Y = Z then n(X̃).(n[X̃] | (q)(q[X̃,Y,V] |Gqv)).

~mu(f)�c = (uv)(p1 . . . pk)(Cup1 . . .Cupk .Cup | (no)p1(X1) . . . pk(Xk).p(Z).(n[X̃] | o[̂0]
| !o(Z)† n(X̃).(n[X̃] | (l)(l[X̃,Z] | Flq | q(V).if V = 0̂ then v[Z] else o[Z+])))).

Fig. 2. Encoding of Recursion and Minimization Functions.

C. Completeness and Definability

We need another technical lemma for the main result of the
section.

Lemma 14. Suppose f, g are equivalent recursive processes.
Then ~f�c(ab) =F ~g�c(ab) for all a, b.

Proof: In the light of Lemma 13, we only have to look
at the case ~f�cab

a(A)
−→ L where A is not a number. This has

been taken care of because the copy process will check if A
is a number, and if not it will not proceed. And ~g�cab does
the same.

Every computable function corresponds to an infinite num-
ber of equal recursive functions. For each computable function
f(x) let’s fix a recursive function fr(x) that computes it. We now
define a straightforward encoding ~ �~ of C into F.

~0�~ = 0,
~Ω�~ = Ω,

~Fb
a(f)�~ = ~fr�c(ab),

~a(i)�~ = a(̂i),
~P |Q�~ = ~P�~ | ~Q�~. (6)

According to Lemma 13, the encoding is independent of the
choice of the recursive functions. Let ∝~ be the composition
of ~ �~ followed by =F. More specifically

∝~=
{
(P,Q) | P is a C process, and ~P�~ =F Q

}
.

It is a subbisimilarity from the C-processes to the F-processes.

Theorem 15. C v F.

Proof: The total relation ∝~ is extensional by (6). It is an
equipollent, codivergent bisimulation according to Lemma 13.
Suppose P =C Q, P ∝~ P′ and Q ∝~ Q′. By Lemma 11,
one has P ≡C Q. It follows from the definition of ≡C, (6),
the definition of ∝~ and the equivalence property of =F that
P′ =F Q′.

VI. V-Interpreter

This section serves two purposes. One is to show how to
construct a V-process that acts as an interpreter for F. The
other is to prove the soundness of F by exploiting the power
of the interpreter. For the interpreter to work, there should be
a way to translate an F-process to a number, and vice versa.
This is what Gödel encoding is about.

A. Gödel Index

For each k let 〈 , . . . ,︸ ︷︷ ︸
k

〉 : N × . . . × N︸ ︷︷ ︸
k

→ N be an

effective tupling function, where N denotes the set of natural
numbers. The corresponding projection functions are denoted
by ()k

0, . . . , ()k
k−1. We often write zi for the j-th projection

when k is understood from context. For notational clarity we
even abbreviate ((z)k

i)k′
j to zi, j. For every k we define rk, dk by

rk(z) def
=

{
0, if z = 0,
i, if 1 ≤ i ≤ k and ∃ j.z = k ∗ j + i,

dk(z) def
=

{
0, if z = 0,
j, if z = k ∗ j + rk(z).

The Gödel encoding is based on two bijective functions.
The function ς : V → N provides a countable enumeration
{X0, X1, . . .} of the abstraction variables. The bijective map

σ : Cv ∪ Cg ∪ Cp → N

is defined by

σ(µ) =


3(i − 1) + 3, if µ = xi,
3i + 1, if µ = µi,
3i + 2, if µ = pi,

(7)

assuming an enumeration {p0, p1, . . .} of the private channels
and an enumeration {x0, x1, . . .} of the channel variables, and
making use of the naming function µ.

The encoding function ~ �f for terms is defined below.

~0�f
def
= 0,

~µ(X).T�f
def
= 5 ∗ 〈σ(µ), ς(X), ~T�f〉 + 1,

~µ[A].T�f
def
= 5 ∗ 〈σ(µ), ~A�f, ~T�f〉 + 2,

~T |T ′�f
def
= 5 ∗ 〈~T�f, ~T ′�f〉 + 3,

~(p)T�f
def
= 5 ∗ 〈σ(p), ~T�f〉 + 4,

~A(µ, ν)�f
def
= 5 ∗ 〈σ(µ), σ(ν), ~A�f〉 + 5,

and

~A�f
def
=

{
2 ∗ (ς(X) − 1) + 2, if A = X,
2 ∗ 〈σ(x), σ(y), ~T�f〉 + 1, if A = (x, y)T.

Given an F-term T , we call ~T�f the Gödel index of T .
Similarly we call ~A�f the Gödel index of A. For the interpreter
to work properly, every natural number is understood as the
index of some abstraction. If k is not ~A�f for any abstraction
A, it is deemed as an index of (x0, x1)0.

B. Interpreter

An interpreter Iα at α inputs a number at channel α,
interprets it as the Gödel index of some F-process, and then
simulates the F-process. The process Iα consists of a parser
and a simulator. It is the process

α(x).(lilol1l0mimomno) (Pn(x) | S n |mi(0) |mo(0) |m(kx) | Li | Lo) .

The locks Li, Lo are necessary to prevent the simulator from
running into deadlock. The processes mi(0),mo(0),m(kx) pro-
vide the initial values of three counters accessible at mi,mo,m
respectively. The symbol kx stands for the maximum of the
indices of private channels appearing in x. The parser Pn(x)
parses a number imported at channel α to see if it is a Gödel
index of some F-process. It needs to check the following:

1) Are all channel variables bound?
2) Are all private channels localized?
3) Are all abstraction variables bound?

If the input number is the Gödel index of some F-process P,
Pn(x) sends the index to the simulator through channel n. The
operations performed by Pn(x) are arithmetical. So it must be
definable by the completeness of F.

The simulator S n defined in Fig. 3 receives the index at
channel n and simulates the operations of P on-the-fly. For
clarity the recursive definition of In(y) and Out(y) are defined
recursively. They can be easily implemented in terms of the
replication operator. The simulator makes use of the naming
function to simulate transmissions at global channels. The
simulation of an interaction at a private channel is a bit
involved. Each process of the form (q)T is translated to a
V-process, called a dominion, of the form

(o)
(
In(u) |Out(u) | n

(
[u/ς(q)]~T�f

))
,

where [u/ς(q)]~T�f denotes the result obtained by substituting
u for ς(q) in ~T�f. Different dominions make use of the
same symbol o for private channels with disjoint scopes. In

other words all private channels of an F-process are translated
syntactically to o. Since the simulator S n can only refer to a
finite number of symbols, this is essentially the only choice.
The component n([u/ς(q)]~T�f) invokes the simulator S n

recursively, which may take [u/ς(q)]~T�f out of the dominion
it initially stays. The continuation of [u/ς(q)]~T�f typically
wanders through different dominions. The question is then
how to ensure that the private channel q appearing in T and its
continuations is correctly interpreted. Our solution is to attach
to every dominion a distinct number u. If a continuation of
[u/ς(q)]~T�f tries to communicate at the private channel q, it
must first of all move to the dominion where n([u/ς(q)]~T�f)
originally stays before the action can be enabled. The move-
ments have to be regulated so that no deadlock can occur.

We now explain the execution of S n in some detail. After
receiving the index z of an F-process, S n checks the type of
the process.

1) If r5(z) = 1 then the number codes up an input process.
There are two subcases:
(a) r3(d5(z)0) = 1. That is the process intends to input
something at the global channel µd3(d5(z)0). If h is received
at channel µd3(d5(z)0), then S n simulates the process with
the index [h/d5(z)1]d5(z)2 obtained by replacing d5(z)1
by h throughout the index d5(z)2.
(b) r3(d5(z)0) = 2. This is the process ready to input
a channel at the private channel with code number
d3(d5(z)0). This is reciprocal to Case 2(b).

2) If r5(z) = 2, it is an output process. There are two cases:
(a) r3(d5(z)0) = 1. In this case the process is ready to
output the index of an abstraction at the global channel
µd3(d5(z)0). After simulating this action, S n is invoked with
the index d5(z)2.
(b) r3(d5(z)0) = 2. In this case a private channel is used
to communicate a piece of information. The simulator
sets the output lock Locko and then starts locating the
dominion in which the private channel gets interpreted.
Before the output lock is released no other output actions
at any private channel will be considered by the simu-
lator. This is perfectly fine in an interleaving semantics.
The locating procedure interacts with a process of the
form Out(u), where u is the number associated to a
dominion and it appears as an index for a distinct private
channel. The simulator checks if Out(u) is in the right
dominion. If not S n continues to interact with another
process of the form Out(). This procedure should be
neither divergent nor deadlocked. The guard l0 blocks
Out(u) with wrong u once it has been examined. That
removes the possibility of generating infinite loops. The
right Out() must be eventually reached. When that
happens, the blocked Out()’s are freed. The number
stored at mo indicates how many Out()’s are still
blocked. The lock Locko is released at the same time
the last blocked Out() is released. Had Locko been
released while some Out()’s are blocked, it would be
possible that a deadlock occurs. After the right dominion

S n = (pq)!n(z). case r5(z) of
1 ⇒ case r3(d5(z)0) of 1⇒ µd3(d5(z)0)(x).n([x/d5(z)1]d5(z)2); 2⇒ li.p(z) end case;

2 ⇒ case r3(d5(z)0) of 1⇒ µd3(d5(z)0)(d3(d5(z)1)).n(d5(z)2); 2⇒ lo.q(z) end case;
3 ⇒ n(d5(z)0) | n(d5(z)1);
4 ⇒ m(u). (m(u + 3) | (o)(In(u) |Out(u) | n([u/d5(z)0]d5(z)1)));
5 ⇒ n ([d5(z)0/d2(d5(z)2)0, d5(z)1/d2(d5(z)2)1] d2(d5(z)2)2);

end case;

In(y) = p(z). if d5(z)0 = y then mi(v).
(
if v > 0 then l1.mi(v).In(y) else li.(I(z) | In(y))

)
else mi(v).pz.mi(v+1).l1.mi(v).

(
if v > 1 then l1.mi(v−1).In(y) else li.(I(z) | In(y))

)
,

I(z) = o(x).n([x/d5(z)1]d5(z)2);

Out(y) = q(z). if d5(z)0 = y then mo(v).
(
if v > 0 then l0.m0(v).Out(y) else lo.(O(z) |Out(y))

)
else mo(v).qz.mo(v+1).l0.mo(v).

(
if v > 1 then l0.m0(v−1).Out(y) else lo.(O(z) |Out(y))

)
,

O(z) = o(d5(z)1).n(d5(z)2).

Li = li.li.Li,

Lo = lo.lo.Lo;

Fig. 3. Simulator S n.

is found the simulator can simulate the output action by
performing o(d5(z)1) in that dominion.

3) If r5(z) = 4 then the number codes up a localization
process. A dominion is declared to which is attached
a number larger than any number associated to any
dominion created so far. In this way it is guaranteed
that every dominion gets a distinguished number.

This completes the explanation of the simulator.

C. Correctness

An output action say a[A] of an F-process is bisimulated
by the output action a(~A�f) of the interpretation. Once the
deadlock prevention mechanism defined by Out(y) and In(y) is
understood, the interpretation is easy to justify. It is sufficient
to give an outline of how a subbisimilarity from F to V is
constructed using the interpretation.

A local context C[. . .] is defined as follows:

1) A hole [] is a local context;
2) (p)C[. . .] is a local context if C[. . .] is;
3) C0[. . .] |C1[. . .] is a local context if C0[. . .], C1[. . .] are.

If C[. . .] is a local context with k holes, C[T1, . . . ,Tk] is the
term obtained by filling the holes by terms T1,T2, . . . ,Tk. We
define inductively a binary relation R between the set of F-
processes and the set of V-processes in terms of local contexts.
Starting from the empty set, we throw a pair (P,Q) into R if
the following statements are valid:

1) P = C[S k1 , . . . , S k j] for some local context C[] in F
and some F-terms S k1 , . . . , S k j .

2) Q = (lilol1l0mimomno) (S n |mi(h) |mo(h) |m(g) | Li | Lo |O),
where O = (pq)D[Tk1 , . . . ,Tk j], for some local context
D[] in V and some V-terms Tk1 , . . . ,Tk j .

3) D[. . .] is obtained from C[. . .] as follows: If C[. . .] =

(q′)C′[. . .] then D[. . .] = (o)(In(ki′) |Out(ki′) |D′[. . .])
for some ki′ ∈ {i1, . . . , i j} and D′[. . .] is obtained from
C′[. . .] in the same way. If C[. . .] = C0[. . .] |C1[. . .]
then D[. . .] = D0[. . .] |D1[. . .] and D0[. . .],D1[. . .] are
obtained from C0[. . .],C1[. . .] in the same way.

4) For each ki′ ∈ {k1, . . . , k j}, Tki′ = n[[ki′/σ(q′)]~S ki′ �f]
with appropriate q′.

Now let R= be the composition R; =V. The relation R= is
equipollent because the capacity to perform actions at a
particular global channel is preserved by the relation. Since
all arithmetic calculations are state-preserving operations and
the encoding does not introduce any new divergence, it
is both codivergent and bisimular. It is also extensional
because ()(|mi(h) |mo(h) |O) | ()(|mi(h′) |mo(h′) |O′) =

()(|mi(h+h′+1) |mo(h+h′+1) |O′′) for a suitable term O′′.
The soundness condition is also met because every number is
the index of some abstraction. Hence the soundness of F.

Theorem 16. F v V.

Formally an interpretation ~ �V of F-processes in V is a
function from the F-processes to the V-processes such that it
is contained in a subbisimilarity from F to V. By letting

~P�V = (p)(p[~P�f] | Ip),

we get an interpretation such that PR=~P�V. In other words
Ip is an interpreter of F at channel p.

D. Soundness of Mobile Calculus

The completeness of the π-calculus is proved in [8]. The
soundness of the π-calculus can be established in similar way
the soundness of F is proved.

Using the bijective function defined in (7), the Gödel index
of a π-term is defined routinely as follows.

~0�π
def
= 0,

~µ(x).T�π
def
= 5 ∗ 〈σ(µ), σ(x), ~T�π〉 + 1,

~µµ′.T�π
def
= 5 ∗ 〈σ(µ), σ(µ′), ~T�π〉 + 2,

~T |T ′�π
def
= 5 ∗ 〈~T�π, ~T ′�π〉 + 3,

~(p)T�π
def
= 5 ∗ 〈σ(p), ~T�π〉 + 4,

~!µ(x).T�π
def
= 5 ∗ 〈σ(µ), σ(x), ~T�π〉 + 5.

Using this Gödel encoding a V-interpreter of the π-calculus
can be constructed by basically recycling the idea of the
algorithm defined in Fig. 3. The so called name extrusion does
not cause any problem. Hence the following.

Theorem 17. C v π v V.

VII. Towards a Theory of Definability

The existence and the power of universal processes were
investigated in [5]. The study was carried out in VPC with
parametric definition. For the universal model V we can do
much better.

Definition 18. Fix a Gödel encoding of V-terms, a universal
process Ua for V at a is a V-process such that (i) Ua can
only perform input actions at a; and (ii) whenever Ua

a(i)
−→ P,

then P =V Pi, where Pi is the V-process with Gödel index i.

The uniqueness of the universal process is an obvious
corollary of the definition. Its existence can be demonstrated
using the techniques developed in Section VI.

Theorem 19. There is a unique universal process at a.

Proof: If Ua and U′a are two universal processes accessi-
ble at a, then Ua =V U

′
a by definition. This is the uniqueness.

The construction of Ua is similar to the construction of the
interpreter Iα.

An interesting corollary of Theorem 19 is the following.

Corollary 20. V is equivalent to a submodel of V with a finite
set of symbols for private channel.

While we are on the subject we point out that the techniques
used in the construction of the universal process can be used
to answer a question posed in [5]. It asks if the value-
passing calculus with parametric definition is strictly stronger
than the value-passing calculus with replication. A parametric
definition is defined by an equation

D(x1, . . . , xk) = T, (8)

where x1, . . . , xk are variables for natural numbers. T con-
tains no more free variables than x1, . . . , xk and may contain
instantiated occurrences of D of the form D(t1, . . . , tk). We

say that D(x1, . . . , xk) is a k-ary parametric definition defined
by (8). A parametric definition is a parameterized process.
The parameters can be values, as in our case, or channels.
In the presence of the naming function the former subsumes
the latter. The semantics of D(x1, . . . , xk) is defined by the
following.

T {t1/x1, . . . , tk/xk}
λ
−→ T ′

D(t1, . . . , tk)
λ
−→ T ′

We call D(t1, . . . , tk) the instantiation of the parametric def-
inition at t1, . . . , tk. The unfolding of a parametric definition
admits dynamic binding in the sense that a private channel
may be captured by a localization operator. The so called α-
conversion is disowned in our setting. Two k-ary paramet-
ric definitions D(x1, . . . , xk) and D′(x1, . . . , xk) are equal if
D(i1, . . . , ik) =V D′(i1, . . . , ik) for all numbers i1, . . . , ik.

Replication can be defined in terms of parametric definition.
Using the encoding of parametric terms defined in [5] and the
technique of Section VI, we can prove the following result
that provides a positive answer to the question left in [5].

Theorem 21. VPC with parametric definition can be inter-
preted in VPC with replication.

A posteori Theorem 21 has to be true if V is a universal
model. Extending V with parametric definition adds no addi-
tional power to V for the same reason.

Corollary 22. Parametric definition is admissible in V.

Theorem 19 lays down the foundation for a theory of
definability of V. We now give an outline of the theory.
By Corollary 22 we may as well let parametric definitions
be the first class citizens in V. In a straightforward manner
we define for each k > 0 a Gödel encoding for the k-ary
parametric definitions. Using standard technique it is routine to
prove the V-version of the fundamental theorems of recursion
theory [28], [33].

1) Enumeration Theorem. There is a k+1-ary parametric
definition Dk(x, x1, . . . , xk) such that Dk(i, x1, . . . , xk) is
equal to the i-th k-ary parametric definition for all i.

2) S-m-n Theorem. There is an injective primitive recursive
k+1-ary function s such that Dk(x1, . . . , xm, . . . , xm+n) is
equal to Ds(k,x1,...,xm)(xm+1, . . . , xm+n).

3) Recursion Theorem. Let f be a total computable func-
tion. There is a number n such that Dn(x) = D f (n)(x).

Using these theorems a familiar argument shows that there
exists a V-process that outputs at a particular channel the
Gödel index of itself. This example brings back one of the
starting points of this paper. In a majority of cases we do
not care about the explicit definition of a process of certain
functionality. All we need to know is the existence of such a
process. The theory of definability, which can be developed in
the spirit of recursion theory, is concerned with what can be
defined by interaction models.

Thesis on Interaction provides the foundation for the theory
of nondefinability of interaction models. No process can
exhibit the behavior specified in (1) in any interaction model

because such a process can not be defined in V. Nondefin-
ability or unsolvability is an avenue of research that calls for
further efforts.

We may extend V to a formalism that admits non-
definable processes. Let C be an m-ary parametric defi-
nition and D be an n-ary parametric definition. We say
that C is D-definable if there is a V-term T such that
C =V (x1 . . . xm)(q1 . . . qn)(T |D(q1, . . . , qn)), where q1, . . . , qn

are private channels that do not appear in D. In other words,
C is reducible to D. As another direction for future study
one may look for a theory of degrees of unsolvability in the
interactive framework.

VIII. Conclusion

Axiom of Completeness (∀M. C v M) was proposed as
a foundational postulate in [8]. However a model satisfying
Axiom of Completeness could be too powerful to be imple-
mentable. This open-ended view is replaced by a closed world
view in present paper. Thesis on Interaction prevents us from
introducing models that are not physically implementable.
What we have done in this paper is to provide evidence for the
universal validity of the thesis. The three classical computation
models can all be lifted to interaction models in a natural
way. The λ-calculus can be promoted in two different ways,
resulting in a functional model and an object oriented one.
Needless to say the thesis need be further examined.

Being a very powerful model, V has very few primitives.
The prefix operator is necessary to define (sequential) com-
putation. The concurrent composition operator is a let-it-
happen extensional combinator that disowns any intensional
meaning. The localization operator goes with the composition
operator. The conditional operator is a natural programming
construct. In V nondeterminism is solely due to interaction. No
intensional nondeterminism is admitted in any form. It is easy
to convince oneself that a guarded choice, say a(0).P+b(1).Q,
cannot be defined in V without introducing divergence. This is
not to say that V is not universal enough. What it really indi-
cates is that the guarded choice operator is not implementable.
The match and the mismatch operators in the π-calculus are
implementable. Our V-interpreter of the minimal π-calculus
can be easily extended to account for these operators.

From a programming language viewpoint a subbisimilarity
M v N is often given by an encoding. Formally an encoding
fromM to N is an effective function e from theM-processes to
the N-processes such that e;vN is a subbisimilarity. Let’s write
M ve N if there is an encoding from M to N. A programming
practitioner would believe the following.

Effective Thesis on Interaction. ∀M.C ve M ve V.
This is the extension of the Effective Church-Turing Thesis.
Now suppose there is an encoding e from a complete model
M to V. Then there is a V-process that translates the index
of an M-process to the index of a V-process. Composing this
translation with the universal process for V one gets a V-
interpreter of M. So in the programming world a complete
model is sound if and only if it has a V-interpreter.

Acknowledgment

The support from the National Science Foundation of China
(61472239, ANR 61261130589, 91318301) is acknowledged.

References

[1] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-
Holland, 1984.

[2] G. Boudol. Towards a Lambda Calculus for Concurrent and Commu-
nicating Systems. TAPSOFT’89, Lecture Notes in Comuter Science 351,
149-161, 1989.

[3] A. Church. An Unsolvable Problem of Elementary Number Theory.
American Journal of Mathematics, 58:345-363, 1936.

[4] U. Engberg and M. Nielsen. A Calculus of Commincating Systems with
Label Passing, Report DAIMI PB-208, Computer Science Department,
University of Aarhus, 1986.

[5] Y. Fu. The Universal Process. To appear in Logical Methods in Computer
Science, 2017.

[6] Y. Fu. The Value-Passing Calculus. In Theories of Programming and
Formal Methods, Lecture Notes in Computer Science 8051, 166-195, 2013.

[7] Y. Fu. Nondeterministic structure of computation. Mathematical Struc-
tures in Computer Science, 25:1295-1338, 2015.

[8] Y. Fu. Theory of Interaction. Theoretical Computer Science, 611:1-49,
2016.

[9] Y. Fu and H. Lu. On the Expressiveness of Interaction. Theoretical
Computer Science, 411:1387-1451, 2010.

[10] J. Gill. Computational Complexity of Probabilistic Turing Machines.
SIAM Journal Computing, 6:675-695, 1977.

[11] D. Gorla. Towards a unified approach to encodability and separation
results for process calculi. In: CONCUR 2008. Lecture Notes in Computer
Science 5201, 492-507, 2008.

[12] K. Gödel. Über Formal Unentscheidbare Sätze der Principia Mathemat-
ica und Verwandter Systeme. Monatshefte für Mathematik und Verwandter
Systeme I, 38:173-198, 1931.

[13] M. Hennessy and A. Ingólfsdóttir. A theory of communicating processes
with value-passing. Information and Computation 107, 202-236, 1993.

[14] Hennessy, M., Lin, H. Symbolic bisimulations. Theoretical Computer
Science 138, 353-369, 1995.

[15] C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[16] S. Kleene. General Recursive Functions of Natural Numbers. Mathe-

maticsche Annalen, 112:727-742, 1936.
[17] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[18] R. Milner. Functions as Processes. Mathematical Structures in Computer

Science, 2:119-146, 1992.
[19] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes.

Information and Computation, 100:1-40 (Part I), 41-77 (Part II), 1992.
[20] R. Milner and D. Sangiorgi. Barbed bisimulation. In: ICALP’92, Lecture

Notes in Computer Science 623. 685-695, 1992.
[21] F. Nielsen. The Typed λ-Calculus with First Class Processes, Report

ID-TR:1988-43, Institute for Datateknik, Tekniske Hojskole, Denmark,
Computer Science Department, University of Aarhus, 1986.

[22] M. Nielsen and I. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, 2000.

[23] Palamidessi, C. Comparing the expressive power of the synchronous
and the asynchronous π-calculus. Mathematical Structures in Computer
Science 13:685-719, 2003.

[24] D. Park. Concurrency and Automata on Infinite Sequences. In Theoret-
ical Computer Science, Lecture Notes in Computer Science 104, 167-183,
1981.

[25] C. Petri. Communication with Automata. Dissertation, Darmstadt Tech-
nical University, 1962.

[26] M. Presburger. Über die Vollständigkeit eines Gewissen Systems der
Arithmetik Ganzer Zahlen, in welchem die addition als einzige operation
hervortritt. In Warsaw Mathematics Congress, 395:92-101, 1929.

[27] L. Priese. On the Concept of Simulation in Asynchronous, Concurrent
Systems. Progress in Cybernatics and Systems Research, 7:85-92, 1978.

[28] H. Rogers. Theory of Recursive Functions and Effective Computability.
MIT Press, 1987.

[29] D. Sangiorgi. Expressing mobility in process algebras: First order and
higher order paradigm. Ph.D. thesis, Department of Computer Science,
University of Edinburgh, 1992.

[30] D. Sangiorgi. From π-Calculus to Higher Order π-Calculus – and Back.
In Proc. TAPSOFT’93, Lecture Notes in Computer Science668, 151-166,
1993.

[31] D. Sangiorgi and D. Walker. The π Calculus: A Theory of Mobile
Processes. Cambridge University Press, 2001.

[32] E. Santos. Computability by Probabilistic Turing Machines. Trans.
American Mathematical Society, 159:165-184, 1971.

[33] R. Soare. Recursively Enumerable Sets and Degrees: A Study of
Computable Functions and Computably Generated Sets. Springer-Verlag,
Heidelberg, 1987.

[34] B. Thomsen. A calculus of higher order communicating systems. In:
Proc. POPL’89. 143-154, 1989.

[35] B. Thomsen. A theory of higher order communicating systems. Infor-
mation and Computation 116, 38-57, 1995.

[36] A. Turing. On Computable Numbers, with an Application to the
Entsheidungsproblem. Proceedings of the London Mathematical Society,
42:230-265, 1936.

[37] X. Xu. Distinguishing and relating higher-order and first-order processes
by expressiveness. Acta Informatica, 49:445-484, 2012.

[38] R. van Glabbeek and W. Weijland. Branching Time and Abstraction
in Bisimulation Semantics. In Information Processing’89, pages 613-618.
North-Holland, 1989.

[39] D. Walker. Objects in the π-calculus. Information and Computation,
116:253-271, 1995.

	Introduction
	A Concurrent Functional Model
	Equality and Submodel
	Process Equality
	Direct Interpretation of -Calculus
	Relative Expressiveness

	Thesis on Interaction
	Computability Model
	Universal Model
	Models of Interaction

	Completeness of Functional Model
	Definability of Presburger Condition
	Interpretability of Recursive Functions
	Completeness and Definability

	V-Interpreter
	Gödel Index
	Interpreter
	Correctness
	Soundness of Mobile Calculus

	Towards a Theory of Definability
	Conclusion
	Acknowledgment
	References

