
Towards an algebraic theory of typed mobile
processes?

Yuxin Deng1 and Davide Sangiorgi2

1 INRIA and Université Paris 7, France
2 Università di Bologna, Italy

Abstract. The impact of types on the algebraic theory of the π-calculus
is studied. The type system has capability types. They allow one to
distinguish between the ability to read from a channel, to write to a
channel, and both to read and to write. They also give rise to a natural
and powerful subtyping relation.
Two variants of typed bisimilarity are considered, both in their late and
in their early version. For both of them, proof systems that are sound and
complete on the closed finite terms are given. For one of the two variants,
a complete axiomatisation for the open finite terms is also presented.

1 Introduction

The π-calculus is the paradigmatic calculus for mobile processes. Its theory has
been studied in depth [8, 12]. Relevant parts of it are the algebraic theory and the
type systems. Most of the algebraic theory has been developed on the untyped
calculus; the results include proof systems or axiomatisations that are sound and
complete on finite processes for the main behavioral equivalences: late and early
bisimilarity, late and early congruence [9, 5, 6], open bisimilarity [11], testing
equivalence [1]. Much of the research on types has focused on their behavioral
effects. For instance, modifications of the standard behavioral equivalences have
been proposed so as to take types into account [10, 12].

In this paper, we study the impact of types on the algebraic theory of the π-
calculus. Precisely, we study axiomatisations of the typed π-calculus. Although
algebraic laws for typed calculi for mobility have been considered in the literature
[12], we are not aware of any axiomatisation or proof system.

The type system that we consider has capability types (sometimes called I/O
types) [10, 4]. These types allow us to distinguish, for instance, the capability of
using a channel in input from that of using the channel in output. A capability
type shows the capability of a channel and, recursively, of the channels carried by
that channel. For instance, a type a : iobT (for an appropriate type expression
T) says that channel a can be used only in input; moreover, any channel received
at a may only be used in output — to send channels which can be used both in
input and in output. Thus, process a(x).x̄b.b(y).b̄y.0 (sometimes the trailing 0
is omitted) is well-typed under the type assignment a : iobT, b : bT . We recall
? Work supported by EU project PROFUNDIS

that āb.P is the output at a of channel b with continuation P , and that a(x).P
is an input at a with x a placeholder for channels received in the input whose
continuation is P .

On calculi for mobility, capability types have emerged as one of the most
useful forms of types, and one whose behavioral effects are most prominent.
Capabilities are useful for protecting resources; for instance, in a client-server
model, they can be used for preventing clients from using the access channel to
the server in input and stealing messages to the server; similarly they can be used
in distributed programming for expressing security constraints [4]. Capabilities
give rise to subtyping : the output capability is contravariant, whereas the input
capability is covariant. As an example, we show a subtyping relation in Fig. 1,
where an arrow indicates the subtyping relation between two related types. The
depth of nesting of capabilities is 1 for all types in diagram (a), and 2 for all types
in diagram (b). (The formal definitions of types and subtyping relation will be
given in Section 2.) Subtyping is useful when the π-calculus is used for object-

ooTibT

bbT

(b)

 b<oT,bT>b<iT,bT>oiT

boT

 obT

biT

oTiT

bT

(a)

iiT ioT

Fig. 1. Subtyping relation, with T = unit

oriented programming, or for giving semantics to object-oriented languages.
To see why the addition of capability types has semantic consequences, con-

sider
P

def= νc bc.a(y).(y | c) Q
def= νc bc.a(y).(y.c+ c.y)

These processes are not behaviorally equivalent in the untyped π-calculus. For
instance, if the channel received at a is c, then P can terminate after 2 inter-
actions with the external observer. By contrast, Q always terminates after 4
interactions with the observer. However, if we require that only the input capa-
bility of channels may be communicated at b, then P and Q are indistinguishable
in any (well-typed) context. For instance, since the observer only receives the
input capability on c, it cannot resend c along a: channels sent at a require at
least the output capability (cf: the occurrence of y). Therefore, in the typed

2

setting, processes are compared w.r.t. an observer with certain capabilities (i.e.,
types on channels). Denoting with ∆ these capabilities, then typed bisimilarity
between P and Q is written P ∼∆ Q.

In the untyped π-calculus, labelled transition systems are defined on pro-
cesses; the transition P

α−→ P ′ means that P can perform action α and then
become P ′. In the typed π-calculus, the information about the observer capabil-
ities is relevant because the observer can only test processes on interactions for
which the observer has all needed capabilities. Hence typed labelled transition
systems are defined on configurations, and a configuration ∆]P is composed of
a process P and the observer capabilities ∆ (we sometimes call ∆ the external
environment). A transition ∆]P

α−→ ∆′]P ′ now means that P can evolve into
P ′ after performing an action α allowed by the environment ∆, which in turn
evolves into ∆′.

Capability types have been introduced in [10]. A number of variants and
extensions have then been proposed. We follow Hennessy and Riely’s system
[4], in which, in contrast with the system in [10]: (i) there are partial meet and
join operations on types; (ii) the typing rule for the matching construct (the
construct used for testing equality between channels) is very liberal, in that it
can be applied to channels of arbitrary types (in [10] only channels that possess
both the input and the output capability can be compared). While (i) only
simplifies certain technical details, (ii) seems essential. Indeed, the importance
of matching for the algebraic theory of the π-calculus is well-known (it is the
main reason for the existence of matching in the untyped calculus).

Typed bisimilarity and the use of configurations for defining typed bisimi-
larity have been introduced in [2]. We follow a variant of them put forward by
Hennessy and Rathke [3], because it uses the type system of [4].

The main results in this paper are an axiomatisation and a proof system for
typed bisimilarity (∼). The axiomatisation is for all finite processes. The proof
system has a simple correctness proof but only works on the closed terms. The
bisimilarity ∼ is a variant of that in [3]. For the typed bisimilarity in [3] we
provide a proof system for the closed terms, and an indirect axiomatisation of
all terms that exploits the system of ∼. We have not been able to give a direct
axiomatisation: the main difficulties are discussed in Section 5.1. All results are
given for both the late and the early versions of the bisimilarities.

The axiomatisation and the proof systems are obtained by modifying some of
the rules of the systems for the untyped π-calculus, and by adding a few new laws.
The proofs of soundness and completeness, although follow the general schema
of the proofs of the untyped calculus, have quite different details. An example
of this is the treatment of fresh channels in input actions and the closure under
injective substitutions, that we comment on below.

In the untyped π-calculus, the following holds:

If P ∼ Q and σ is injective on fn(P,Q), then Pσ ∼ Qσ.

Hence it is sufficient to consider all free channels in P,Q and one fresh channel
when comparing the input actions of P and Q in the bisimulation game. This

3

result is crucial in the algebraic theory of untyped calculi. For instance, in the
proof system for (late) bisimilarity the inference rule for input is:

If P{b/x} = Q{b/x} for all b ∈ fn(P,Q, c), where c is a fresh channel,
then a(x).P = a(x).Q.

For typed bisimilarity the situation is different. Take the processes

P
def= a(x : obT).x̄c.c̄ Q

def= a(x : obT).x̄c

and compare them w.r.t. an observer ∆. Consider what happens when the vari-
able x is replaced by a fresh channel b, whose type in ∆ is S. By the constraint
imposed by types, S must be a subtype of the type obT for x (see Fig. 1 (b)).
Now, different choices for S will give different results. For instance, if S is obT
itself, then the observer has no input capability on b, thus can not communicate
with P and Q at b. That is, from the observer’s point of view the output bc is
not observable and the two derivative processes are equivalent. Similarly if S is
boT then the output c is not observable. However, if S is bbT then b̄c.c̄ is not
equivalent to b̄c, since all outputs become observable. This example illustrates
the essential difficulties in formulating proof systems for typed bisimilarities:

1. Subtyping appears in substitutions and changes the original type of a variable
into one of its subtypes.

2. The choice of this subtype is relevant for behavioral equivalence.
3. Different subtypes may be incompatible (have no common subtype) with

one another (for instance, boT and bbT in the example above; they are both
subtypes of obT).

A consequence of (2) and (3), for instance, is that there is not a “best subtype”,
that is a single type with the property that equivalence under this type implies
equivalence under any other types.

Another example of the consequences brought by types in the algebraic the-
ory is the congruence rule for prefixes: we have to distinguish the cases in which
the subject of the prefix is a channel from the case in which the subject is a
variable. This is a rather subtle and technical difference, that is discussed in
Section 3.

2 The typed π-calculus

In this section we review the π-calculus, capability types, and typed bisimilarity.
We assume an infinite set of channels, ranged over by a, b, . . ., and an infinite set
of variables, ranged over by x, y, We write ∗ for the unit value (we shall use
unit as the only base type). Channels, variables and ∗ are the names, ranged
over by u, v, Below is the syntax of finite π-calculus processes.

P,Q ::= 0 | τ.P | u(x : T).P | ūv.P | P +Q | P | Q | (νa : T)P | ϕPQ
ϕ ::= [u = v] | ¬ϕ | ϕ ∨ ψ

4

Here ϕPQ is an if-then-else construct on the boolean condition ϕ. We omit the
else branch Q when it is 0; also, [u = v] is called a match, and ¬[u= v], abbrevi-
ated as [u 6= v], is called a mismatch. Binding names (in input and restriction)
are annotated with their types. We write fn(P) and fv(P) for the set of free
names and the set of free variables, respectively, in P . When ϕ has no variables,
[[ϕ]] denotes the boolean value of ϕ. In the calculus, the distinction between
channels and variables simplifies certain technical details; see for instance the
discussion on the rules for substitutivity of prefixes in Section 3: the rules are
different depending on whether the prefixes use channels or variables. (This is
not the case in the untyped case: for instance, [9] does not distinguish between
variables and channels, but it is quite straightforward to adapt the work to the
case where there is such a distinction.)

We recall the capability types, as from [3, 4]. The subtyping relation <: and
the typing rules for processes are displayed in Table 1. We write T :: TYPE to
mean that T is a legal type. There are three forms of types for channel names:
iT, oS and b〈T, S〉. They give names the ability to receive values of type T ,
send values of type S, or to do both. We often abbreviate b〈T, T 〉 to bT . We
refer to [4] for the definition of the two partial operators meet (u) and join (t).
Intuitively, the meet (resp. join) of two types is the union (resp. intersection) of
their capabilities.

Types:

unit :: TYPE

T :: TYPE

iT, oT :: TYPE

T, S :: TYPE S <: T

b〈T, S〉 :: TYPE

Subtyping:

T <: T

T <: T ′

iT <: iT ′
T <: T ′

oT ′ <: oT

T <: T ′

b〈T, S〉 <: iT ′
T <: T ′

b〈S, T ′〉 <: oT

T <: T ′ S <: S′

b〈T, S′〉 <: b〈T ′, S〉

Typing rules:

Γ (u) <: T

Γ ` u : T

Γ ` P Γ ` Q
Γ ` P +Q

Γ, x : T ` P Γ ` u : iT

Γ ` u(x : T).P

Γ ` 0

Γ, a : T ` P
Γ ` (νa : T)P

Γ ` P Γ ` v : T Γ ` u : oT

Γ ` ūv.P

Γ ` P
Γ ` τ.P

Γ ` P Γ ` Q
Γ ` P | Q

Γ ` P Γ ` Q n(ϕ) ⊆ dom(Γ)

Γ ` ϕ P Q

Table 1. Types and typing rules

We use ∆ and Γ for type environments. A type environment ∆ is a partial
function from channels and variables to types; we write ∆c and ∆v for the

5

channel and variable parts of∆, respectively. A type environment is undefined on
infinitely many channels and variables (to make sure it can always be extended).
We often view, and talk about, ∆c as a set of assignments of the form a : T .
Similarly for ∆v. We write dom(∆) for the channels and variables on which ∆
is defined (dom(∆) can be infinite). Using the partial meet operation, we can
extend a type environment ∆ to ∆uu : T , which is just ∆,u : T if u 6∈ dom(∆),
otherwise it differs from ∆ at name u because the capability of this name is
extended to be ∆(u) u T (if ∆(u) u T is undefined, then so is ∆ u u : T). When
dom(∆) ∩ dom(∆′) = ∅, we use ∆,∆′ to represent the union of ∆ and ∆′.
Subtyping is extended to type environments, but only considering the types of
channels. So Γ <: ∆ means that Γv = ∆v, dom(∆c) ⊆ dom(Γc) and Γc(a) <:
∆c(a) for all a ∈ dom(∆c). The intuition is that channels are capabilities while
variables are obligations of the environment. The environment is obligated to
fill in the variables at the specified types. Therefore we cannot allow weakening
on variables as this would weaken the obligations. On the other hand we cannot
use contravariant weakening because then the process would not type. That’s
why variables are invariant. If ∆(u) is defined and takes the form iT or b〈T, S〉,
then the predicate ∆(u)↓i holds and we write ∆(u)i for T , otherwise we write
∆(u)6↓i, indicating that ∆ has no input capability on u. Similarly for ∆(u)o and
∆(u)↓o (output capability). The typing rules follow [10, 4, 3].

Definition 1. A configuration is a pair ∆]P which respects some type environ-
ment Γ , i.e., Γ <: ∆ and Γ ` P .

The transition system for configurations is in Table 2. Bound names, names
and the subject of a prefix α, written bn(α), n(α) and subj (α) respectively, are
defined in the usual way. We identify terms up to alpha conversion and assume
bn(P) ∩ dom(∆) = ∅ for any configuration ∆]P . In the premise of rule Red,
P

τ−→ P ′ stands for the normal reduction relation of the untyped π-calculus. In
rule Out, the process sends channel b to the environment, so the latter should
be dynamically extended with the capability on b thus received. For this, we use
the meet operator, and exploit the following property on types:

R <: T and R <: S imply T u S defined and R <: T u S

for any type T, S and R. (This property does not hold for the capability types
as in [10].)

P ∼∆ Q reads “P and Q are bisimilar under type environment ∆”. The
type environment ∆ is used as follows: ∆c shows the channels that are known
to the external observer testing the processes in the bisimulation game, and the
types with which the observer is allowed to use such channels. By contrast, ∆v

shows the set of variables that may appear free in the processes and the types for
these variables show how the observer can instantiate such variables (in closing
substitutions). Therefore: the channels of ∆c are to be used by the observer, with
the types indicated in ∆c; the variables in ∆v are to be used by the processes,
but the observer can instantiate them following the types indicated in ∆v.

6

Red P
τ−→ P ′

∆] P
τ−→ ∆] P ′ Out

∆(a)↓i
∆] āb.P

āb−→ ∆ u b : ∆(a)i] P

In
∆(a)↓o

∆] a(x : T).P
a(x:T)−→ ∆,x : T] P

Open
∆] P

āb−→ ∆′] P ′ a 6= b

∆] (νb : T)P
ā(b:T)−→ ∆′] P ′

Res
∆] P

α−→ ∆′] P ′ a 6∈ n(α)

∆] (νa : T)P
α−→ ∆′] (νa : T)P ′ Sum

∆] P
α−→ ∆′] P ′

∆] P +Q
α−→ ∆′] P ′

True
[[ϕ]] = True ∆] P

α−→ ∆′] P ′

∆] ϕPQ
α−→ ∆′] P ′ False

[[ϕ]] = False ∆] Q
α−→ ∆′] Q′

∆] ϕPQ
α−→ ∆′] Q′

Par
∆] P

α−→ ∆′] P ′ bn(α) ∩ fn(Q) = ∅
∆] P | Q α−→ ∆′] P ′ | Q

Table 2. Typed transition system

A process is closed if it does not have free variables; similarly a type en-
vironment is closed if it is only defined on channels. Otherwise, processes and
type environments are open. We first define ∼∆ on the closed terms, then on the
open terms. We write |α | for the action α where its type annotations have been
stripped off. Bisimilarity is given in the “late” style [12]; we consider the “early”
style in Section 5.2.

Definition 2. A family of symmetric binary relations over closed terms, indexed
by type environments, and written {R∆}∆, is a typed bisimulation whenever
P R∆ Q implies that, for two configurations ∆]P and ∆]Q,

1. if ∆]P α−→ ∆′]P ′ and α is not an input action, then for some Q′, ∆]Q
β−→

∆′]Q′, |α |=|β | and P ′ R∆′ Q′.

2. if ∆]P
a(x:T)−→ ∆′]P ′, then for some Q′, ∆]Q

a(x:S)−→ ∆′′]Q′ and for all b with
∆c ` b : ∆(a)o it holds that P ′{b/x} R∆ Q′{b/x}.

Two processes P and Q are typed ∆-bisimilar, written P ∼∆ Q, if there exists
a typed bisimulation {R∆}∆ such that P R∆ Q.

The difference w.r.t. typed bisimilarity as in [2, 3] is that, in the input clause,
the type environment ∆ is not extended. In other words, the knowledge of the
external observer does not change through interactions with the process in which
the value transmitted is supplied by the observer itself (by contrast, the knowl-
edge does change when the value is supplied by the process; cf. rule Out in
Table 2). We discuss the alternative equivalence (where the environment can be
extended) in Section 5.1.

Definition 3. Two processes P and Q are bisimilar under the environment ∆,
written P ∼∆ Q, if fv(P,Q) ⊆ dom(∆v) and, for all b̃ with ∆c ` b̃ : T̃ , it holds
that P{b̃/x̃} ∼∆ Q{b̃/x̃}.

7

Since all processes are finite, and we do not use recursive types, in P ∼∆ Q,
the environment ∆ can always be taken to be finite (i.e., defined only on a finite
number of channels and variables): it is sufficient that ∆ has enough names fresh
w.r.t. P and Q, for all relevant types. This can be proved with a construction
similar to that in Lemma 2. In the remainder of the paper all type environments
are assumed to be finite.

3 Axioms for typed bisimilarity

The axiom system A for typed bisimilarity is in Table 3. Whenever we write
P =∆ Q it is intended that both ∆]P and ∆]Q are configurations. The rules
are divided into seven groups, namely those for: substitutivity, sums, looking
up the type environment, conditions, restrictions, the expansion law and alpha-
conversion. The rules that are new or different w.r.t. those of the untyped π-
calculus are marked with an asterisk. As in the untyped case [9], other rules
involving conditions, such as

C8 [ϕ ∨ ψ]P =∆ ϕP + ψP

are derivable. Tin* shows that an input prefix is not observable if the observer
has no output capability on the subject of the input. Tout* is the symmetric
rule, for output. Twea* gives us weakening for type environments. Tvar* shows
that a variable can only be instantiated with channels that in the type environ-
ment have types compatible with that of the variable. Tpre* is used to replace
names underneath a match. (In the untyped setting, the rule has no side condi-
tion. Here we need one to ensure well-typedness of the process resulting from the
substitution, since the names in the match can have arbitrary — and possibly
unrelated — types. Similarly for the conditions on types in the expansion law
E.) In Ires*, different types T1, T2 are used for the processes in the conclusion.
We cannot replace Ires* with two simpler rules such as

If P =∆ Q then (νa : T)P =∆ (νa : T)Q
(νa : T1)P =∆ (νa : T2)P ,

for equalities like

(νb : biT)āb.b(x : iT).0 =a:iobT (νb : boT)āb.b(x : oT).0

could not be derived (due to the constraints given by the well-typedness of
processes). Similarly for rule Iin*.

To illustrate rule Ipar* we need to introduce some notations. We define the
depth, d(T), of a type T , to be the maximum number of nesting of capabilities
in it. Let Γ ` P . Each name in P has a type, either recorded in the syntax of P
or in Γ . If T1, . . . , Tn are all such types, d(Γ, P) is max{d(Ti) | 1 ≤ i ≤ n}.
Now, if ∆]Pi is a configuration, for i = 1, 2, then there are type environ-
ments Γi such that Γi <: ∆ and Γi ` Pi. In this case, we set d(P1, P2, Γ1, Γ2)
as max{d(Γ1, P1), d(Γ2, P2)}. There are only finitely many different types with

8

depth less than or equal to d(P1, P2, Γ1, Γ2), say S1, . . . , Sm, and ∆v is defined on
finitely many variables, say x1, . . . , xk. We can pick up n fresh (hitherto unused)
channels ai1, . . . , ain for each Si, with n the larger value between k and the size
of P1 + P2, and construct a type environment

Env(∆,P1, P2, Γ1, Γ2) = {aij : Sij | 0 < i ≤ m, 0 < j ≤ n}.

Rule Ipar* says that if ∆ cannot distinguish P from Q, then it cannot
distinguish P | R from Q | R either, provided that: (i) ∆ contains enough fresh
channels; (ii) R requires no capabilities beyond the knowledge of ∆. Note that
we cannot do without the first condition, i.e., the rule cannot be simplified as:

For any ∆, if P =∆ Q and ∆ ` R then P | R =∆ Q | R

which is unsound for ∼. The point is that when comparing P | R and Q | R, the
observer may first increase his knowledge by interacting with R, then distinguish
P from Q by the new knowledge. For example, let ∆ def= a : bT, e : bT, b : T and

P
def= a(x : T).[x 6= b]τ Q

def= a(x : T).0 R
def= (νc : T)ēc.

It is easy to see that P ∼∆ Q and ∆ ` R but P | R 6∼∆ Q | R. After the
interaction with R, the environment evolves into ∆, c : T . Later the new channel
c may be used to instantiate x, thus validating the condition x 6= b and liberating
the prefix τ .

Iin* and Iout* are the rules for substitutivity for input and output prefixes.
In Iin*, well-definedness of the configurations ∆]a(x : T1).P and ∆]a(x : T2).Q
implies the condition: ∆(a)o <: Ti for i = 1, 2. (Similarly for rules Iv1, Iin and
Iin′ below.) In Iout*, the observer knowledge of the type of b may increase
when the processes emit b themselves (for the type under which b is emitted is
composed with the possible type of b in ∆). Both in Iin* and in Iout*, the
free names of the input and output prefixes are channels rather than variables.
Below we discuss:

1. the unsoundness of the rules in which (some or all) the channels are replaced
by variables;

2. other rules, that are valid for variables;
3. why these other rules are not needed in the axiom system.

Intuitively the reason for (1) is the different usages of channels and variables
that appear in a type environment: the information on channels tells us how these
channels are to be used by the external environment, while the information on
variables tells us how these variables are to be instantiated inside the tested
processes.

To see that Iin* is unsound when the subject of the prefix is a variable, take
∆c

def= a : boT, b : oT and ∆ def= ∆c, x : b〈oT, bT 〉. Then we have

[y = b]τ ∼∆,y:∆(x)o 0

9

Iin* If P =∆,x:∆(a)o Q then a(x : T1).P =∆ a(x : T2).Q
Iout* If P =∆ub:∆(a)i Q then āb.P =∆ āb.Q
Itau If P =∆ Q then τ.P =∆ τ.Q
Isum If P =∆ Q then P +R =∆ Q+R
Ires* If P =∆ Q then (νa : T1)P =∆ (νa : T2)Q a 6∈ dom(∆)
Icon If P =∆ Q then ϕP =∆ ϕQ
Ipar* Assume ∆0]P respects Γ1, ∆0]Q respects Γ2, and ∆ = ∆0, Env(∆0, P,Q, Γ1, Γ2).

If P =∆ Q and ∆ ` R then P | R =∆ Q | R

S1 P + 0 =∆ P
S2 P + P =∆ P
S3 P +Q =∆ Q+ P
S4 P + (Q+R) =∆ (P +Q) +R

Tin* If ∆(a)6↓o then a(x : T).P =∆ 0
Tout* If ∆(a)6↓i then āu.P =∆ 0
Twea* If P =∆ Q and ∆ <: ∆′ then P =∆′ Q
Tvar* [x 6= a1] · · · [x 6= am]P =∆ 0 if {b ∈ dom(∆c) | ∆(b) <: ∆(x)} ⊆ {a1, · · · , am}
Tpre* [x = a]α.P =∆ [x = a](α{a/x}).P if ∆(a) <: ∆(x)

C1 ϕ P =∆ ψ P if ϕ⇐⇒ ψ
C2 [a = b]P =∆ [a = b]Q if a 6= b
C3 ϕ P P =∆ P
C4 ϕ P Q =∆ ¬ϕ Q P
C5 ϕ(ψP) =∆ [ϕ ∧ ψ]P
C6 ϕ (P1 + P2) (Q1 +Q2) =∆ ϕ P1 Q1 + ϕ P2 Q2

C7 ϕ (α.P) =∆ ϕ (α.ϕP) if bn(α) ∩ n(ϕ) = ∅

R1 (νa : T)(νb : S)P =∆ (νb : S)(νa : T)P
R2 (νa : T)(P +Q) =∆ (νa : T)P + (νa : T)Q
R3 (νa : T)α.P =∆ α.(νa : T)P if a 6∈ n(α)
R4 (νa : T)α.P =∆ 0 if subj(α) = a
R5 (νa : T)[a = u]P =∆ 0 if a 6= u
R6 (νa : T)[u = v]P =∆ [u = v](νa : T)P if a 6= u, v

E Assume P ≡ Σiϕiαi.Pi and Q ≡ Σjψjβj .Qj where no αi (resp. βj) binds a name
free in Q (resp. P). Let Γ ` P | Q. Then infer:

P | Q =∆

∑
i ϕiαi.(Pi | Q) +

∑
j ψjβj .(P | Qj) +

∑
αi opp βj

[ϕi ∧ ψj ∧ (ui = vj)]τ.Rij

where αi opp βj , ui, vj and Rij are defined as follows:
1. αi is ūiw, βj is vj(x : T) and Γ (w) <: T ; then Rij is Pi | Qj{w/x};
2. αi is ūi(w : S), βj is vj(x : T) and S <: T ; then Rij is (νw : S)(Pi | Qj{w/x});
3. the converse of (1) or (2).

A P =∆ Q if P alpha-equivalent to Q

Table 3. The axiom system A
10

because ∆(x)o = bT and no c in ∆ satisfies the condition ∆c ` c : bT and can
therefore instantiate y. However,

x(y : oT).[y = b]τ 6∼∆ x(y : oT).0.

To see this, let us look at the possible closing substitutions. In dom(∆c), a is
the only channel satisfying ∆c ` a : ∆(x), and so the only substitution we need
to consider is {a/x}. After applying this substitution, the resulting closed terms
are not bisimilar:

a(y : oT).[y = b]τ 6∼∆ a(y : oT).0

This holds because the observer can send b along a and, after the communication,
y is instantiated to be b, thus validating the condition y = b and liberating the
prefix τ . When the subject of the prefix is a variable, the following rule is needed
in place of Iin*:

Iv1 If P =∆,y:∆(x)i Q then x(y : T1).P =∆ x(y : T2).Q

In rule Iout*, both the subject and object of the output prefix are channels.
The rule is also valid when the object is a variable. However, it is not valid if
the subject is a variable. As a counterexample, let ∆c

def= a : iT ,b : bbT and
∆

def= ∆c, x : b〈iT, bT 〉. Then we have

a ∼∆ua:iT 0

but
x̄a.a 6∼∆ x̄a.0

because, under the substitution {b/x},

b̄a.a 6∼∆ b̄a.0.

When the subject of the prefix is a variable, we need the following rule:

Iv2 If P =∆uv:∆(x)o Q then x̄v.P =∆ x̄v.Q

We show, by means of an example, why rules Iin* and Iout* are sufficient
in the axiom system (rules Iv1 and Iv2 are derivable). Consider the equality

x(y : iiT).y ∼∆ x(y : ioT).0

where ∆ def= a : bibT, b : ibT, x : bibT . First, we infer

y =∆′ 0 for ∆′ = ∆, y : ibT (1)

proceeding as follows (we only report the main rules used in the reasoning; rule
C8 is the derived rule given at the beginning of this section):

11

y =∆′ [y = b]y + [y 6= b]y C8
=∆′ [y = b]y Tvar∗
=∆′ [y = b]b Tpre∗
=∆′ [y = b]0 Tin∗, Icon
=∆′ 0 C3

Then we derive x(y : iiT).y =∆ x(y : ioT).0 in a similar way:

x(y : iiT).y
=∆ [x = a]x(y : iiT).y + [x 6= a]x(y : iiT).y C8
=∆ [x = a]x(y : iiT).y Tvar∗
=∆ [x = a]a(y : iiT).y Tpre∗
=∆ [x = a]a(y : ioT).0 (1), Iin∗, Icon
=∆ x(y : ioT).0 Tpre∗,Tvar∗,C8

Theorem 1 (Soundness and Completeness of A). A ` P =∆ Q iff P ∼∆

Q.

The schema of the completeness proof is similar to that for the untyped π-
calculus [9]. The details, however, are quite different. An example of this is the
manipulation of terms underneath input and output prefixes mentioned above.
We discuss below another example, related to the issue of invariance of bisimi-
larity under injective substitutions.

In the untyped case, the process x | a is equal to x.a + a.x + τ when x is
instantiated to a, to x.a+a.x otherwise. This can be expressed by expanding the
process by mean of conditions: that is, using conditions to make a case analysis
on the possible values that the variable may take. Thus, x | a is expanded to
[x= a](x | a) + [x 6= a](x | a). Now, underneath [x= a] we know that x will be
a, and therefore x | a can be rewritten as x.a + a.x + τ , whereas underneath
[x 6= a] we know that x will not be a and therefore x | a can be rewritten as
x.a+ a.x. In general, the expansion of a process with a free variable x produces
a summand [x 6= a1] · · · [x 6= an]P where a1, · · · , an are all channels (different from
x) that appear free in P . The mismatch [x 6= a1] · · · [x 6= an] tells us that x in P
will be instantiated to a fresh channel, which is sufficient for all manipulations
of P involving x, since bisimulation is invariant under injective substitutions. In
the typed calculus, by contrast, knowing that x is fresh may not be sufficient:
we may also need the information on the type with which x will be instantiated.
This type may be different from the type T of x in the type environment: x could
be instantiated to a fresh channel whose type is a subtype of T (the behavioral
consequences of this type information can be seen in the example at the end of
Section 5.1). We have therefore adopted a strategy different from that in the
proof for untyped calculi: rather than manipulating processes that begin with
“complete” sequences of mismatches — as in the untyped case — we try to
cancel them, using rule Tvar*; further, the conditional expansion of a process
takes into account also the names that appear in the type environment.

12

4 A proof system for the closed terms

The system of Section 3 can be simplified if we limit ourselves to proving equali-
ties on closed terms. With one caveat: the substitutivity rule for input is replaced
by an inference rule, where (possibly several) instantiations of the bound vari-
able of the input are considered. We call P the system of rules; it is presented
in Table 4.

Rules Tin*, Tout*, Iout*, Itau, Isum, Ires*, Ipar*, Twea*, S1-4,
R1-4, E, A as in Table 1, plus the following ones:

Iin If P{b/x} =∆ Q{b/x} for all b s.t. ∆c ` b : ∆(a)o then
a(x : T1).P =∆ a(x : T2).Q.

Ca ϕ P Q =∆ P if [[ϕ]] = True
Cb ϕ P Q =∆ Q if [[ϕ]] = False

R (νa : T)0 =∆ 0

Table 4. The proof system P for the closed terms

Note that rules Icon, Tvar*, Tpre*, R5-6 are not needed, and that the
set of rules C1-7 for conditions is cut down to just Ca-b. In the previous system
A, axiom R was redundant in view of C3 and R5.

Theorem 2 (Soundness and completeness of P). P ` P =∆ Q iff P ∼∆ Q,
where P and Q are closed.

Also the proofs of soundness and completeness are simpler. The two main
problems in the proofs of Section 3 (manipulations of conditions and of open
terms underneath prefixes) do not arise now, because all terms are closed and
because conditions are removed as soon as possible, by means of Ca-b, without
any conditional expansion. Compared with proof systems for untyped π-calculus
[9], Tin* and Tout* are the main differences.

5 Other equivalences

5.1 Hennessy and Rathke’s typed bisimilarity

In the input clause of ∼ (Definition 2), the type environment ∆ is not extended.
By contrast, extensions are allowed in the bisimilarity used in [3]. We denote
with �∆ the variant of ∼∆ which allows extension; its definition is obtained
from that of ∼∆ by using the following input clause:

13

– if ∆]P
a(x:T)−→ ∆′]P ′, then for some Q′, ∆]Q

a(x:S)−→ ∆′′]Q′ and ∆,∆′ ` b :
∆(a)o implies P ′{b/x} R∆,∆′ Q′{b/x}, for any channel b and closed type
environment ∆′ with dom(∆′) ∩ (fn(P,Q) ∪ dom(∆)) = ∅.

Similarly, ∆ can be extended in the definition on open terms.
In �∆, the environment collects the knowledge of the observer relative to

the tested processes, in the sense that the environment only tells us what the
observer knows of the free channels of the processes. In contrast, in ∼∆, the en-
vironment collects the absolute knowledge of the observer, including information
on channels that at present do not appear in the tested processes, but that might
appear later — if the observer decides to send them to the processes. The main
advantage of �∆ is that the environment is smaller. On the other hand, ∼∆

allows us to express more refined interrogations on the equivalence of processes,
for it gives us more flexibility in setting the observer knowledge. Indeed, while
�-equivalences can be expressed using ∼ (Lemma 1), the converse is false. For
instance, the processes

P
def= a(x : boT).[x = y]τ Q

def= a(x : boT).0

are in the relation ∼∆, for ∆ def= a : oboT, b : bbT, y : obT . However, they are
not in a relation �Γ , for any Γ : the observer can always create a new channel of
type boT , and use it to instantiate both x and y, thus validating the condition
[x= y].

Lemma 1. If P �∆ Q then P ∼∆ Q.

We can derive a proof system for � with a simple modification of that for ∼
in Section 4. Let P ′ be the system obtained from P by replacing rule Iin with
Iin′:

Iin′ If – P{b/x} =∆ Q{b/x} for all b with ∆(b) <: ∆(a)o, and
– given c 6∈ fn(P,Q) ∪ dom(∆),
P{c/x} =∆,c:T Q{c/x} for all T <: ∆(a)o,

then a(x : T1).P =∆ a(x : T2).Q.

The quantification on T in the premises is finite: any type has only finitely-
many subtypes.

Theorem 3. P ′ ` P =∆ Q iff P �∆ Q, where P and Q are closed.

By contrast, we have tried and failed to obtain the counterpart of Theorem 1
for �. The encountered problem is discussed at the end of this subsection. Using
Lemma 2, that relates � to ∼, we however obtain an indirect axiomatisation of
�.

We say that P1 �∆ P2 under Γ1, Γ2 if Γi <: ∆ and Γi ` Pi (i = 1, 2).

Lemma 2. P1 �∆ P2 under Γ1, Γ2 iff P1 ∼∆,Env(∆,P1,P2,Γ1,Γ2) P2.

As a consequence of this lemma, we obtain the following theorem.

14

Theorem 4. P1 �∆ P2 under Γ1, Γ2 iff A ` P1 =∆,Env(∆,P1,P2,Γ1,Γ2) P2.

Directly axiomatizing � appears far from straightforward due to complica-
tions entailed by subtyping. We consider an example. Let T def= unit and

∆
def= a : oboT, y : obT

R
def= τ.((νc : bT)ȳc.c̄+ a(x : boT).[x = y]τ)

R1
def= τ.((νc : bT)ȳc.0 + a(x : boT).[x = y]τ)

R2
def= τ.((νc : bT)ȳc.c̄+ a(x : boT).0).

It holds that
R+R1 +R2 �∆ R1 +R2.

Here y can be instantiated by channels with subtypes of obT , which can be seen
in Fig. 1 (b). When y is instantiated by a channel with type boT , we can simulate
R with R1. For other subtypes of obT , we can simulate R with R2. That is, we
have two equivalent processes, say P and Q, with a free variable y, and the
actions from a summand of P have to be matched by different summands of Q,
depending on the types used to instantiate y. It appears hard to capture this
relationship among terms using axioms involving only the standard operators of
the π-calculus.

5.2 Early bisimilarity

All bisimilarities considered so far in the paper are in the “late” style [12]. As
usual, the “early” versions are obtained by commuting the quantifiers in the
input clause of bisimilarity. As in the untyped case, the difference between late
and early equivalences is captured by the axiom SP [9]:

SP a(x : T1).P + a(x : T2).Q
=∆ a(x : T1).P + a(x : T2).Q+ a(x : T3).([x = u]PQ)

All results in the paper also hold for the early versions of the equivalences, when
rule SP is added.

6 Future work

As future work, the following problems need to be solved.

– Due to the difficulty discussed at the end of Section 5.1 we are only able to
give an indirect axiomatisation of�. We are not clear whether it is possible to
directly axiomatize the equivalence in the language considered in the current
paper.

– In our type system we allow matching names to have arbitrary types. It is
not clear how to relax our use of matching. Limiting matching to names of
compatible types would pose a problem for subject reduction. On the other

15

hand, allowing matching only on names with types of the form bT , as in [10],
would seem difficult, for matching plays an important role in axiomatisations.
For example, one would not be able to rewrite x | ȳ as x.ȳ + ȳ.x+ [x = y]τ
under the type environment ∆ = x : iT, y : oT . In [3], a particular typing
rule for matching was presented, which allowed meet of types on successful
matches. It might be interesting to know whether the presence of this typing
rule would affect the validity of our proof systems.

– For the variant bisimilarity �, as well as the typed bisimilarity defined in
[12], there are results that relate them to contextual equivalences such as
barbed equivalence. It would be interesting to see what kind of contextual
equivalence (if any) corresponds to ∼.

– Another issue is axiomatisations of typed weak bisimilarities. In this case,
however, types may not be so central, in that the addition of the usual tau
laws [7] might be sufficient.

Acknowledgements We are grateful to Catuscia Palamidessi, Pierre-Louis Curien
and the anonymous referees for comments on a preliminary version of the paper.

References

1. M. Boreale and R. De Nicola. Testing equivalences for mobile processes. Journal
of Information and Computation, 120:279–303, 1995.

2. M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi without match-
ing. In Proceedings of LICS ’98. IEEE, Computer Society Press, 1998.

3. M. Hennessy and J. Rathke. Typed behavioural equivalences for processes in the
presence of subtyping. Mathematical Structures in Computer Science, 14:651–684,
2004.

4. M. Hennessy and J. Riely. Resource access control in systems of mobile agents.
Journal of Information and Computation, 173:82–120, 2002.

5. H. Lin. Symbolic bisimulation and proof systems for the π-calculus. Technical
Report 7/94, School of Cognitive and Computing Sciences, University of Sussex,
UK, 1994.

6. H. Lin. Complete inference systems for weak bisimulation equivalences in the
π-calculus. Journal of Information and Computation, 180(1):1–29, 2003.

7. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
8. R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-

versity Press, 1999.
9. J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi. Journal

of Information and Computation, 120(2):174–197, 1995.
10. B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Math-

ematical Structures in Computer Science, 6(5):409–454, 1996.
11. D. Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informatica, 33:69–

97, 1996.
12. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.

16

