
A

Yuxin Deng
Shanghai Jiaotong University
yuxindeng@sjtu.edu.cn

Abstract

This paper presents a simple but uniform completeness proof for the ax-
iomatisations of five weak behavioural equivalences: branching congruence,
η-congruence, delay congruence, quasi-branching congruence, and weak
congruence in the basic CCS without recursion. For the first three congru-
ences, our result improves van Glabbeek and Weijland’s completeness proof
of using graph rewriting by a more direct proof that is fully equational. For
quasi-branching congruence, our completeness result is, to the best of our
knowledge, new.

1 Introduction
Strong bisimilarity, the widely used notion of equivalence for process algebra [7],
provides a definition of equality that can capture similarities between processes
without forcing them to be syntactically the same. The idea is to match any tran-
sition in one process with a transition, labelled by the same action, in the other
process.

An important feature in process algebra is abstraction, which deems some of
the actions in a process invisible or silent. Consequently, any consecutive execu-
tion of invisible transitions is not observable. It turns out that there exist many
possibilities for extending strong bisimilarity with invisible transitions. The first
extension is Milner’s weak bisimilarity [7], which resembles strong bisimilarity,
but allows arbitrary sequences of invisible τ-transitions to be inserted before or
after an atomic transition. Van Glabbeek and Weijland have introduced branch-
ing bisimilarity [11] as an equivalence on processes that preserves the branch-
ing structure of processes. It distinguishes slightly more processes than weak

yuxindeng@sjtu.edu.cn

bisimilarity. Situated between the two equivalences are two incomparable bisim-
ilarities: η-bisimilarity and delay bisimilarity [11]. Cherief [3] has characterised
quasi-branching bisimilarity (which is slightly coarser than branching bisimilar-
ity) as the coarsest equivalence that is preserved under refinement and finer than
η-bisimilarity and delay bisimilarity.

Unlike strong bisimilarity, all the five weak notions of bisimilarity are not
closed under the summation operator, but for each of them one can define a corre-
sponding congruence relation in a standard way. In the framework of basic CCS,
where processes are built from inaction, prefixing, and summation operators, both
strong bisimilarity and weak congruence can be completely axiomatised in an el-
egant way. The completeness property for strong bisimilarity is easy to prove. For
weak congruence (that is called observation congruence in [7]), the completeness
proof is also not difficult, thanks to a result attributed to Hennessy in [7], called
the Hennessy Lemma which says that if P ≈ Q then either τ.P ' Q or P ' Q or
P ' τ.Q, for weak bisimilarity ≈ and weak congruence '. For all the weak notions
of congruences mentioned above, except for quasi-branching congruence, com-
plete axiomatisations are proposed in [11]. The completeness proof for branching
congruence is achieved by using an advanced graph rewriting technique due to
Bergstra and Klop [2]. The basic idea is to establish a graph rewriting system on
finite process graphs, which is confluent and terminating. Then one proves that:
(i) two normal forms of the graph rewriting system are bisimilar iff they are equal
(i.e., isomorphic), (ii) every rewriting step in the system preserves bisimilarity,
and (iii) every rewriting step corresponds to a proof step of the axiom system in
question. The completeness proofs for delay, weak, and η-congruence are then
derived from the proof for branching congruence in a uniform way. As far as
finite processes are concerned, this technique seems a bit heavy and discourag-
ing to non-experts in process algebra. One may wonder whether it is possible to
give a simpler completeness proof which is uniform for all congruences but only
involves equational reasoning similar to that in [7].

In this paper we give a positive answer to the above question and we are able
to add quasi-branching congruence into the picture; we present a simple but uni-
form completeness proof that works for all the five weak notions of congruence.
Our proof is very simple because it involves direct equational reasoning instead of
graph rewriting. Our result is also very uniform in the sense that by mild modifi-
cations to the completeness proof for branching congruence we obtain the proofs
for other four congruences. We also find a subtle difference between weak be-
havioural equivalences that are to some extent sensitive to the branching struc-
ture of processes (e.g. branching bisimilarity, quasi-branching bisimilarity and
η-bisimilarity) and that are insensitive (e.g. delay bisimilarity and weak bisimi-
larity): the Hennessy Lemma is valid for delay bisimilarity and weak bisimilarity
but not for branching bisimilarity, quasi-branching bisimilarity and η-bisimilarity.

Due to the difference, our proof schema for completeness deviates from that given
in [7]: instead of using the Hennessy Lemma, we exploit a Promotion Lemma
which says that if P ≈ Q then τ.P = τ.Q is provably in some axiom system. The
Promotion Lemma is less demanding than Hennessy Lemma and thus valid for all
the five bisimilarities, based upon which we achieve a uniform proof.

This paper highlights the power of the Promotion Lemma because it shows an-
other situation where the Hennessy Lemma fails but the Promotion Lemma leads
to completeness. Similar phenomenon has already occurred in the π-calculus [6]
and probabilistic process algebra [5], but none of the weak equivalences investi-
gated in those papers is sensitive to the branching structure of processes.

2 Weak behavioural equivalences
Following [11], we consider a simple language, the basic CCS. But the result in
this paper can be easily generalised (see the discussions in Section 5). Processes
are built from inaction (0), prefixing (α.P), and summation (P + Q). The opera-
tional semantics of processes is standard. We write P =⇒ P′ if there are processes
P0, ..., Pn with n ≥ 0 and P ≡ P0

τ
−→ P1

τ
−→ ...

τ
−→ Pn ≡ P′. If in that sequence

n ≥ 1 then we write P
τ
=⇒ P′.

We recall the definitions of several weak notions of bisimulation appeared in
the literature (see e.g. [7, 11]).

Definition 2.1. A binary relation R over processes is a branching simulation if
PRQ implies that whenever P

α
−→ P′ then

(Cτ): either α = τ and P′RQ

(Cb): or there exist Q′,Q′′ such that Q =⇒ Q′′
α
−→ Q′ with PRQ′′ and P′RQ′.

The relation R is a branching bisimulation if both R and R−1 are branching simu-
lations. Two processes P and Q are branching bisimilar, denoted P ≈b Q, if there
exists a branching bisimulation relating P and Q.

There are some variants of the above matching conditions:

(C s
τ): either α = τ and there exists Q′ such that Q =⇒ Q′ with PRQ′ and P′RQ′

(Cq
τ): either α = τ and there exists Q′ such that Q =⇒ Q′ with P′RQ′

(Cη): or there exist Q′,Q′′ such that Q =⇒ Q′′
α
−→=⇒ Q′ with PRQ′′ and P′RQ′

(Cd): or there exists Q′ such that Q =⇒
α
−→ Q′ with P′RQ′

(Cw): or there exists Q′ such that Q =⇒
α
−→=⇒ Q′ with P′RQ′

Semi-branching bisimilarity (≈s) is defined in terms of (C s
τ) and (Cb).

Quasi-branching bisimilarity (≈q) is defined in terms of (Cq
τ) and (Cb).

η-bisimilarity (≈η) is defined in terms of (Cτ) and (Cη).
Delay bisimilarity (≈d) is defined in terms of (Cτ) and (Cd).
Weak bisimilarity (≈w) is defined in terms of (Cτ) and (Cw).

It can be checked that all the bisimilarities defined above are indeed equiv-
alence relations. In [11] it is shown that ≈s coincides with ≈b, the inclusions
≈b⊆≈q⊆≈η⊆≈w and ≈b⊆≈q⊆≈d⊆≈w are strict, but ≈η and ≈d are incomparable.

It turns out that all the bisimilarities defined above are not congruences with
respect to the operator +. The classical counterexample is that τ.a ≈x a but τ.a +
b 6≈x a + b for x ∈ {b, q, η, d,w}. A typical way of obtaining congruences from
bisimilarities is to require that both processes make essential moves at the first
step [7, 11]. For instance, we define quasi-branching congruence as follows.

Definition 2.2. P and Q are quasi-branching congruent, written P 'q Q, if

1. whenever P
α
−→ P′ then

(a) either α = τ and there exists Q′ such that Q
τ
=⇒ Q′ and P′ ≈q Q′,

(b) or there exists Q′ such that Q
α
−→ Q′ and P′ ≈q Q′;

2. symmetric to clause 1 by exchanging the roles of P and Q.

The other four congruences can be defined in a similar way.
The next two lemmas report simple properties that hold for all the five bisimi-

larities studied in this paper. We shall exploit them to prove Lemma 3.3.

Lemma 2.3. For x ∈ {b, q, η, d,w}, if τ.P + Q ≈x P then P + Q ≈x P.

Proof. We make use of “bisimulation up to” techniques to construct appropriate
bisimulations. See [4] for a detailed proof. �

Lemma 2.4. For x ∈ {b, q, η, d,w}, if P ≈x Q then one of the three cases holds:

1. there exists some P′ such that P
τ
−→ P′ and P′ ≈x Q;

2. there exists some Q′ such that Q
τ
−→ Q′ and P ≈x Q′;

3. P 'x Q.

Proof. See [4]. �

For ≈d and ≈w, we have the following result, where the part on ≈w is known as
the original Hennessy Lemma in CCS.

Lemma 2.5. For x ∈ {d,w}, P ≈x Q iff (τ.P 'x Q or P 'x Q or P 'x τ.Q).

Proof. For ≈w, a proof is given in [7]. It can be adapted for ≈d easily. �

Remark 2.6. The above property does not hold for ≈b, ≈q and ≈η. For a coun-
terexample, consider the two processes τ.(a + b) + a and a + b. Let x ∈ {b, q, η}, it
is true that τ.(a + b) + a ≈x a + b. However,

τ.(τ.(a + b) + a) 6'x a + b (i)
τ.(a + b) + a 6'x a + b (ii)
τ.(a + b) + a 6'x τ.(a + b) (iii)

In (i) an action b from the right hand side cannot be matched up by any action
from the left hand side of the inequality. Similar for (ii). In (iii) an action a from
the left hand side cannot be matched up by any action from the right hand side.

3 Axiomatisations
In this section we consider complete axiomatisations of branching congruence,
quasi-branching congruence, η-congruence, delay congruence, and weak congru-
ence. For all the axiomatisations, the soundness properties are quite easy to show,
thus we omit them. So we focus on the completeness properties and provide a
uniform but simple completeness proof that works for the five congruences.

All the axioms that we need are displayed in Figure 1. It is shown in [7] that
S1-4 form a complete axiom system for strong bisimilarity. By adding the three
τ-laws T1-3, Milner has obtained a complete axiom system for weak congruence.
In [11] van Glabbeek and Weijland have established a complete axiomatisation of
branching congruence by adding B to S1-4. Two other congruences 'η and 'd are
also axiomatised in [11], just by adding {B,T3} and T1-2, respectively, to S1-4.
The axiom T3′ is the special case of T3 when α = τ, and it is derivable from T2
and S4. We shall show that 'q can be axiomatised by adding {B,T3′} to S1-4. We
use the following abbreviations for the axiom systems of the five congruences.

Ab = {S1-4,B}
Aq = {S1-4,B,T3′}
Aη = {S1-4,B,T3}
Ad = {S1-4,T1-2}
Aw = {S1-4,T1-3}

S1 P + 0 = P
S2 P + Q = Q + P
S3 P + (Q + R) = (P + Q) + R
S4 P + P = P

B α.(τ.(P + Q) + Q) = α.(P + Q)

T1 α.τ.P = α.P
T2 τ.P + P = τ.P
T3 α.(P + τ.Q) + α.Q = α.(P + τ.Q)

T3′ τ.(P + τ.Q) + τ.Q = τ.(P + τ.Q)

Table 1: All the axioms

Note that B implies T1 and is derivable from T1-2. So we can also use T1 when
doing equational reasoning in Ab,Aq,Aη, and use B in Ad,Aw. We write A `
P = Q if P = Q can be derived from the equations inA.

The following saturation properties, clauses 1 and 4 in particular, are well-
known in CCS. Here we also consider two special cases of the transition relation
=⇒

α
−→=⇒:

α
−→=⇒ and =⇒

α
−→, in clauses 2 and 3, respectively.

Lemma 3.1 (Saturation). 1. if P
τ
=⇒ P′ then {S1-4,T3′} ` P = P + τ.P′;

2. if P
α
−→=⇒ P′ then {S1-4,T3} ` P = P + α.P′;

3. if P =⇒
α
−→ P′ then {S1-4,T2} ` P = P + α.P′;

4. if P =⇒
α
−→=⇒ P′ then {S1-4,T2-3} ` P = P + α.P′.

Proof. By transition induction. As an example, we show the second clause.
Basis step: P

α
−→ P′. Then the conclusion holds by S4.

Induction step: P
α
−→=⇒ P′′

τ
−→ P′. Then we infer

{S1-4,T3} ` P = P + α.P′′ by induction
= P + α.(P′′ + τ.P′) by S4
= P + α.(P′′ + τ.P′) + α.P′ by T3
= P + α.P′

�

As usual we use the notion of normal form. P is in normal form if it is of the
form

∑n
i=1 αi.Pi, where each Pi is also in normal form.

Lemma 3.2. For each P, there is a normal form P′ such that {S1-4} ` P = P′.

We now introduce the important promotion lemma. It relates operational se-
mantics to equational rewriting. Its proof is achieved by induction on the sizes of
processes. We define the size, size(P), of process P as follows.

size(0) = 0
size(α.P) = 1 + size(P)

size(P + Q) = size(P) + size(Q)

Lemma 3.3 (Promotion). 1. If P ≈b Q thenAb ` τ.P = τ.Q;

2. If P ≈q Q thenAq ` τ.P = τ.Q;

3. If P ≈η Q thenAη ` τ.P = τ.Q;

4. If P ≈d Q thenAd ` τ.P = τ.Q;

5. If P ≈w Q thenAw ` τ.P = τ.Q.

Proof. By Lemma 3.2, we can assume that P and Q are in normal form.

1. We carry out the proof by induction on size(P + Q).

Basis step If size(P + Q) = 0, then it is straightforward to see that Ab `

P = Q = 0, thusAb ` τ.P = τ.Q.

Induction step Suppose size(P + Q) > 0. Since P ≈b Q, by Lemma 2.4
we can distinguish three cases.

(a) There exists some P′ such that P
τ
−→ P′ and P′ ≈b Q. To have the

strong transition P
τ
−→ P′, P must be of the form τ.P′ + R for some

process R. Since τ.P′ + R ≈b Q ≈b P′, it follows from Lemma 2.3 that
P′ + R ≈b P′ ≈b Q. Note that size(P′ + R + Q) < size(τ.P′ + R + Q)
and size(P′ +Q) < size(τ.P′ + R +Q). By induction hypothesis, it can
be inferred that

Ab ` τ.(P′ + R) = τ.Q = τ.P′. (1)

So we derive

Ab ` τ.P = τ.(τ.P′ + R)
= τ.(τ.(P′ + R) + R) by (1)
= τ.(P′ + R) by B
= τ.Q by (1)

(b) There exists some Q′ such that Q
τ
−→ Q′ and P ≈b Q′. This case is

symmetric to case 1 by exchanging the roles of P and Q.

(c) P 'b Q. We aim to prove that each summand of P can be absorbed
by Q. Let α.P′ be a summand of P, which gives rise to a transition
P

α
−→ P′. Correspondingly, there exists some Q′ such that Q

α
−→ Q′

and P′ ≈b Q′. Clearly we can derive

Ab ` Q = Q + α.Q′ (∗)

by the axiom S4. Note that size(P′+Q′) < size(P+Q). So by induction
hypothesis we obtain

Ab ` τ.P′ = τ.Q′. (2)

So we derive

Ab ` Q + α.P′ = Q + α.τ.P′ by T1
= Q + α.τ.Q′ by (2)
= Q + α.Q′ by T1
= Q by (*)

In summary, Ab ` Q + P = Q and symmetrically Ab ` P + Q = P.
ThereforeAb ` τ.P = τ.(P + Q) = τ.Q.

2. The arguments are the same as in the proof of clause 1 except that we change
all the notationsAb and ≈b intoAq and ≈q, and replace the two underlined
parts with “either Q

α
−→ Q′ or α = τ and Q

τ
=⇒ Q′” and “either the axiom

S4 or Lemma 3.1(1)” respectively.

3. The arguments are the same as in the proof of clause 1 except that we change
all the notationsAb and ≈b intoAη and ≈η, and replace the two underlined
parts with Q

α
−→=⇒ Q′ and Lemma 3.1(2) respectively.

4. The arguments are the same as in the proof of clause 1 except that we change
all the notationsAb and ≈b intoAd and ≈d, and replace the two underlined
parts with Q =⇒

α
−→ Q′ and Lemma 3.1(3) respectively.

5. The arguments are the same as in the proof of clause 1 except that we change
all the notationsAb and ≈b intoAw and ≈w, and replace the two underlined
parts with Q =⇒

α
−→=⇒ Q′ and Lemma 3.1(4) respectively.

�

Remark 3.4. In the induction step of the above proof, we have distinguished three
independent cases by Lemma 2.4, and in the first two cases Lemma 2.3 plays
an important role. Nevertheless, for behavioural equivalences that are insensi-
tive to the branching structure of processes such as ≈d and ≈w, the proof of the
above lemma can be simplified. For instance, in the case of ≈w, one just needs
to consider two possibilities: (i) P

τ
−→ P′ with P′ ≈w Q, (ii) P

α
−→ P′ with

Q =⇒
α
−→=⇒ Q′ and P′ ≈w Q′. In the particular case of (ii), one can prove

the property (*) by Lemma 3.1(4). This proof schema is adopted in [6] to show
the promotion property of all the behavioural equivalences considered in that pa-
per. It is also adapted to a probabilistic setting in [5] where probabilistic weak
bisimilarity is investigated. However, the proof schema does not apply to weak be-
havioural equivalences that are to some extent sensitive to the branching structure
of processes, such as ≈b, ≈q and ≈η. The reason is that for these equivalences the
τ-transitions before the α-transition in (ii) cannot be simply absorbed. Otherwise,
the branching structure of processes would not be observable.

With the saturation and promotion properties we are now ready to establish
the following completeness theorem.

Theorem 3.5 (Completeness). 1. If P 'b Q thenAb ` P = Q;

2. If P 'q Q thenAq ` P = Q;

3. If P 'η Q thenAη ` P = Q;

4. If P 'd Q thenAd ` P = Q;

5. If P 'w Q thenAw ` P = Q.

Proof. 1. Similar to the proof Lemma 3.3(1) we assume P,Q in normal form
and proceed by induction on size(P+Q). The basis step is trivial, so we only
consider the induction step. Let α.P′ be a summand of P. Then P

α
−→ P′

must be matched up by Q
α
−→ Q′ for some Q′ such that P′ ≈b Q′. Clearly

we can derive
Ab ` Q = Q + α.Q′ (∗∗)

by the axiom S4. By Promotion Lemma,

Ab ` τ.P′ = τ.Q′. (3)

Therefore

Ab ` Q + α.P′ = Q + α.Q′ by T1 and (3)
= Q by (**)

Hence we haveAb ` Q+P = Q. SymmetricallyAb ` P+Q = P. Therefore
Ab ` P = Q.

2. The arguments are the same as in the proof of clause 1 except that we change
all the notationsAb and ≈b intoAq and ≈q, and replace the two underlined
parts with “either Q

α
−→ Q′ or α = τ and Q

τ
=⇒ Q′” and “either the axiom

S4 or Lemma 3.1(1)” respectively.

3. The arguments are the same as in the proof of clause 1 except that we change
all the notationsAb and ≈b intoAη and ≈η, and replace the two underlined
parts with Q

α
−→=⇒ Q′ and Lemma 3.1(2) respectively.

4. The arguments are the same as in the proof of clause 1 except that we change
all the notationsAb and ≈b intoAd and ≈d, and replace the two underlined
parts with Q =⇒

α
−→ Q′ and Lemma 3.1(3) respectively.

5. The arguments are the same as in the proof of clause 1 except that we change
all the notationsAb and ≈b intoAw and ≈w, and replace the two underlined
parts with Q =⇒

α
−→=⇒ Q′ and Lemma 3.1(4) respectively.

�

Remark 3.6. For x ∈ {d,w}, there exists a even simpler completeness proof that
does not rely on the Promotion Lemma. The reason is that Lemma 2.5 helps
to lift P ≈x Q to either τ.P 'x Q or P 'x Q or P 'x τ.Q, thus allowing the
induction hypothesis to apply when proving (3) in the last proof. For instance, this
is the method adopted in [7] for showing that Aw constitutes a complete axiom
system for 'w. For x ∈ {b, q, η}, however, this method cannot be used because the
Hennessy Lemma fails for them (cf. Remark 2.6).

4 Related work
Van Glabbeek pointed out to us some related work, notably the paper [1] which
uses an approach very close to ours. In that paper, Aceto et al. gave complete
axiomatisations for branching, delay, weak, and η-congruences in the basic CCS
augmented with prefix iteration. A careful comparison between [1] and this paper
shows the following similarities and differences.

1. The completeness results in [1] are a bit stronger than ours because they
are valid for open terms in the basic CCS with prefix iteration. However,
to make our ideas as net as possible, in this paper we only consider closed
terms in the basic CCS.

2. The main proof strategy of [1] is similar to that adopted in [11], i.e., one
shows a completeness result for branching congruence, from which the

completeness results for delay, weak, and η-congruences are derived. How-
ever, since one of our aims is to obtain uniformity, we have adopted the strat-
egy of setting up a general proof schema that gives us a direct completeness
proof for all the congruences as well as quasi-branching congruence.

3. In [1] the completeness proof for branching congruence relies on a key re-
sult which states that (with a change of notations)

If P ≈b Q thenAb ` α.P = α.Q for all α ∈ Aτ. (†)

This is very similar to our Promotion Lemma for branching bisimilarity
(Lemma 3.3(1)), though the statement looks different. Moreover, in view
of the axiom T1, the two results are essentially equivalent. The difference
is that our statement appears more concise, and more importantly we have
extended the result to all other congruences, which allows us to give direct
(and mutually independent) proofs of completeness for all weak behavioural
equivalences. In contrast, the completeness proofs for delay, weak, and η-
congruences in [1] are indirect because they depend on the proof for branch-
ing congruence.

4. We treat delay, weak, and η-bisimilarity in a way different from [1]. We
do saturation by means of some “preprocessing” jobs (Lemma 3.1) before
showing the quite general Promotion Lemma, whereas Aceto et al. do it
by means of some “postprocessing” jobs ([1] Proposition 4.7) that reduce
the completeness proofs for delay, weak, and η-congruences to the proof for
branching congruence.

5. We show the Promotion Lemma in a very simple way, but we use the
property Lemma 2.3 whose proof is not trivial. So in fact we have trans-
ferred some complexity in proving the Promotion Lemma to the proof of
Lemma 2.3. Nevertheless, [1] does not need a property like Lemma 2.3 in
showing (†), at the price of a less concise proof.

The notion of “branching bisimulation up to” first appears in [12], which ax-
iomatises branching congruence over processes with finite-state behaviours (so
the axiomatisation of branching congruence over finite processes is treated as a
special case). The completeness proofs use, in the same style as [8], a unique
solution theorem.

We may consider Theorem 3.7 in [11] as the semantic version of our Promo-
tion Lemma. It states that P ≈x Q iff τ.P 'x τ.Q for x ∈ {b, η, d,w}. It is also
remarked in [11] that the Hennessy Lemma holds for delay and weak bisimilarity,
but not for branching and η-bisimilarity. Nevertheless, in [11] the usefulness of
the above theorem in completeness proofs is not investigated.

5 Concluding remarks
This paper presents a simple but uniform completeness proof for the axiomatisa-
tions of branching congruence, quasi-branching congruence, η-congruence, delay
congruence, and weak congruence over finite processes. Compared with the com-
pleteness proof of [11] that employs a graph rewriting technique, our proof by
direct equational reasoning is more accessible to non-experts in process algebra.
This paper also shows a setting where the Hennessy Lemma fails but the Promo-
tion Lemma leads to completeness.

For convenience of presentation, we have focused on the basic CCS where pro-
cesses are built from the operators of inaction, prefixing, and summation. Other
operators, for example, restriction, relabelling, and parallel composition, can be
incorporated while preserving the proof schema presented in this paper. It is also
straightforward to extend our results from closed terms to open terms. However,
since our completeness proof proceeds by induction on the size of processes, we
are not able to handle recursion, which requires other machinery (e.g., the unique
solution theorem investigated in [8]).

For future work, it is interesting to extend our results to the π-calculus [9, 10].
In that setting, one has the freedom to consider late vs. early style of weak be-
havioural equivalences. For example, we could define a late branching bisimula-
tion and an early branching bisimulation. Here is a potential candidate:

Definition. A symmetric binary relation R is a late branching bisimulation if
whenever PRQ and P

α
−→ P′ then

1. either α = τ and P′RQ,

2. or the following property holds:

(a) if α is not an input action then some Q′,Q′′ exist such that
Q =⇒ Q′′

α
−→ Q′ with PRQ′′ and P′RQ′;

(b) if α = a(x) then some Q′,Q′′ exist such that Q =⇒ Q′′
α
−→ Q′ with

PRQ′′ and P′{y/x} R Q′{y/x} for every name y.

To define early branching bisimulation, we just need to change clause 2(b) in
the above definition into the following one:

if α = a(x) then for every name y some Q′,Q′′ exist such that
Q =⇒ Q′′

α
−→ Q′ with PRQ′′ and P′{y/x} R Q′{y/x}.

It is easy to check that the largest late/early branching bisimulation is an equiv-
alence relation. For the corresponding congruences and their axiomatisations, the
results in this paper and [6] would be useful.

Acknowledgements We thank Rob J. van Glabbeek for helpful comments on
some related work. We also acknowledge the support of the National Nature
Science Foundation of China (60703033).

References
[1] L. Aceto, R. J. van Glabbeek, W. Fokkink, and A. Ingólfsdóttir. Axiomatizing prefix

iteration with silent steps. Information and Computation, 127(1):26–40, 1996.

[2] J. A. Bergstra and J. W. Klop. A complete inference system for regular processes
with silent moves. In Proceedings of Logic Colloquium 1986, pages 21–81. North
Holland, Amsterdam, 1988.

[3] F. Cherief. Contributions à la sémantique du parallélisme: Bisimulations pour le
raffinement et le vrai parallélisme. PhD thesis, Institut National Polytechnique de
Grenoble, 1992.

[4] Y. Deng. A simple completeness proof for the axiomatisations of weak be-
havioural equivalences, 2007. Full version of the current paper. Available at
http://basics.sjtu.edu.cn/∼yuxin/publications/branch.ps.

[5] Y. Deng and C. Palamidessi. Axiomatizations for probabilistic finite-state behaviors.
Theoretical Computer Science, 373(1-2):92–114, 2007.

[6] Y. Fu and Z. Yang. Tau laws for pi calculus. Theoretical Computer Science, 308:55–
130, 2003.

[7] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[8] R. Milner. A complete axiomatisation for observational congruence of finite-state
behaviours. Information and Computation, 81:227–247, 1989.

[9] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, 1999.

[10] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-
bridge University Press, 2001.

[11] R. J. van Gabbeek and W. P. Weijland. Branching time and abstraction in bisimula-
tion semantics. Journal of the ACM, 43(3):555–600, 1996.

[12] R. J. van Glabbeek. A complete axiomatization for branching bisimulation congru-
ence of finite-state behaviours. In Proceedings of the 18th International Symposium
on Mathematical Foundations of Computer Science, volume 711 of Lecture Notes
in Computer Science, pages 473–484. Springer, 1993.

	Introduction
	Weak behavioural equivalences
	Axiomatisations
	Related work
	Concluding remarks

