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Abstract. We provide both modal- and relational characterisations ofmay- and
must-testing preorders for recursive CSP processes with divergence, featuring
probabilistic as well as nondeterministic choice. May testing is characterised in
terms of simulation, and must testing in terms of failure simulation. To this end we
develop weak transitions between probabilistic processes, elaborate their topolog-
ical properties, and express divergence in terms of partialdistributions.

1 Introduction

It has long been a challenge for theoretical computer scientists to provide a firm math-
ematical foundation for process-description languages that incorporate both nondeter-
ministic and probabilistic behaviour in such a way that processes are semantically dis-
tinguished just when they can be told apart by some notion of testing.

In our earlier work [3, 1] a semantic theory was developed forone particular lan-
guage with these characteristics, a finite process calculuscalledpCSP: nondeterminism
is present in the form of the standard choice operators inherited from CSP [7], that is
P ⊓ Q andP 2 Q, while probabilistic behaviour is added via a new choice operator
P p⊕ Q in which P is chosen with probabilityp andQ with probability 1−p. The
intensional behaviour of apCSP process is given in terms of a probabilistic labelled
transition system [14, 3], or pLTS, a generalisation of labelled transition systems [12].
In a pLTS the result of performing an action in a given state results in aprobability dis-
tribution over states, rather than a single state; thus the relationss α−→ t in an LTS are
replaced by relationss α−→ ∆, with ∆ a distribution. ClosedpCSP expressionsP are
interpreted as probability distributions[P ℄ in the associated pLTS. Our semantic theory
[3, 1] naturally generalises the two preorders of standard testing theory [5] topCSP:

– P ⊑pmay Q indicates thatQ is at least as good asP from the point of view of
possiblypassing probabilistic tests; and

– P ⊑pmustQ indicates instead thatQ is at least as good asP from the point of view
of guaranteeingthe passing of probabilistic tests.
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The most significant result of [1] was an alternative characterisation of these preorders
as particular forms of coinductively definedsimulationrelations,⊑S and⊑FS , over the
underlying pLTS. We also provided a characterisation in terms of a modal logic.

The object of the current paper is to extend the above resultsto a version ofpCSP

with recursive process descriptions: we add a constructrec x. P for recursion, and
extend the intensional semantics of [1] in a straightforward manner. We restrict our-
selves tofinitarypCSP processes, those having finitely many states and displayingfinite
branching.
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Fig. 1.The pLTSs of processesQ1 andQ2

The simulation relations
⊑S and ⊑FS in [1] were
defined in terms of weak
transitions τ̂

=⇒ between dis-
tributions, obtained as the
transitive closure of a rela-
tion τ̂−→ between distribu-
tions that allows one part
of a distribution to make a
τ -move with the other part
remaining in place. This
definition is however inade-
quate for processes that can
do an unbounded number
of τ -steps. The problem is
highlighted by the process
Q1 = rec x. (τ.x 1

2

⊕ a. 0) illustrated in Figure 1(a). ProcessQ1 is indistinguishable,
using tests, from the simple processa. 0: we haveQ1 ≃pmay a. 0 andQ1 ≃pmust a. 0.
This is because the processQ1 will eventually perform the actiona with probability 1.
However, the action[a. 0 ℄ a−→ [ 0 ℄ can not be simulated by a corresponding move[Q1℄ τ̂

=⇒ a−→. No matter which distribution∆ we obtain from executing a finite se-
quence of internal moves[Q1℄ τ̂

=⇒ ∆, still part of it is unable to subsequently perform
the actiona.

To address this problem we propose a new relation∆ =⇒ Θ, that indicates thatΘ
can be derived from∆ by performing an unbounded sequence of internal moves; we
call Θ aweak derivativeof ∆. For example[a. 0 ℄ will turn out to be a weak derivative
of [Q1℄, [Q1℄ =⇒ [a. 0 ℄, via the infinite sequence of internal moves[Q1℄ τ−→ [Q1 1

2

⊕ a. 0 ℄ τ−→ [Q1 1

22
⊕ a. 0 ℄ τ−→ . . . [Q1 1

2n
⊕ a. 0 ℄ τ−→ . . . .

One of our contributions here is the significant use of “sub distributions” that sum tono
more thanone [8, 11]. For example, the empty subdistributionε elegantly represents the
chaotic behaviour of processes that in CSP and in must-testing semantics is tantamount
to divergence, because we haveε α−→ ε for any actionα, and a process likerec x. x
that diverges via an infiniteτ path gives rise to the weak transitionrec x. x =⇒ ε.
So the processQ2 = Q1 1

2

⊕ rec x. x illustrated in Figure 1(b) will enable the weak
transition[Q2℄ =⇒ 1

2 [a. 0 ℄, where intuitively the latter is a proper subdistribution
mapping the statea. 0 to the probability1

2 . Our weak transition relation=⇒ can be
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regarded as an extension of theweak hyper-transitionfrom [10] to partial distributions;
the latter, although defined in a very different way, can be represented in terms of ours
by requiring weak derivatives to be total distributions.

We end this introduction with a brief glimpse at our proof strategy. In [1] the char-
acterisations for finitepCSP processes were obtained using a probabilistic extension of
the Hennessy-Milner logic [12]. Moving to recursive processes, we know that process
behaviour can be captured by a finite modal logic only if the underlying LTS is finitely
branching, or at least image-finite [12]. Thus to take advantage of a finite probabilistic
HML we need a property of pLTSs corresponding to finite branching in LTSs: this is
topological compactness, whose relevance we now sketch.

Subdistributions over (derivatives of) finitarypCSP processes inherit the standard
(complete) Euclidean metric. One of our key results is that

Theorem 1. For every finitarypCSP processP , the set{∆ | [P ℄ =⇒ ∆ } is convex
and compact.

Indeed, using techniques from Markov Decision Theory [13] we can show that the
potentially uncountable set{∆ | [P ℄ =⇒ ∆ } is nevertheless the convex closure of a
finiteset of subdistributions, from which Theorem 1 follows.

This key result allows aninductivecharacterisation of the simulation preorders⊑S

and⊑FS , here defined using our novel weak derivation relation=⇒. We first construct
a sequence of approximations⊑k

S for k ≥ 0 and, using Theorem 1, we prove

Theorem 2. For every finitarypCSP processP , and for everyk ≥ 0, the set{∆ |[P ℄ ⊑k
S ∆ } is convex and compact.

This in turn enables us to use theFinite Intersection Propertyof compact sets to prove

Theorem 3. For finitarypCSP processes we haveP ⊑S Q iff P ⊑k
S Q for all k ≥ 0.

Our main characterisation results can then be obtained by extending the probabilistic
modal logic used in [1], so that for example

– it characterises⊑k
S for everyk ≥ 0, and therefore it also characterises⊑S

– every probabilistic modal formula can be captured by a may-test.

Similar results accrue for must testing and the new failure simulation preorder⊑FS :
details are given in Section 6.

Due to lack of space, we omit proofs, and most examples: they are reported in [2].

2 The LanguagepCSP

Let Act be a set of visible actions which a process can perform, and let Var be an
infinite set of variables. The languagepCSP of probabilistic CSP processes is given by
the following two-sorted syntax, in whichp ∈ [0, 1], a∈Act andA ⊆ Act:

P ::= S | P p⊕ P
S ::= 0 | x ∈ Var | a.P | P ⊓ P | S 2 S | S |A S | rec x. P .
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a.P a−→ [P ℄ rec x.P τ−→ [P [x 7→ rec x.P ]℄
P ⊓ Q τ−→ [P ℄ P ⊓ Q τ−→ [Q℄
s1

a−→ ∆

s1 2 s2
a−→ ∆

s2
a−→ ∆

s1 2 s2
a−→ ∆

s1
τ−→ ∆

s1 2 s2
τ−→ ∆ 2 s2

s2
τ−→ ∆

s1 2 s2
τ−→ s1 2 ∆

s1
α−→ ∆ α 6∈A

s1 |A s2
α−→ ∆ |A s2

s2
α−→ ∆ α 6∈A

s1 |A s2
α−→ s1 |A ∆

s1
a−→ ∆1, s2

a−→ ∆2 a∈A

s1 |A s2
τ−→ ∆1 |A ∆2

Fig. 2. Operational semantics ofpCSP

This is essentially the finite language of [1, 3] plus the recursive constructrec x. P in
which x is a variable andP a term. The notions of free- and bound variables are stan-
dard; byQ[x 7→ P ] we indicate substitution of termP for variablex in Q, with renam-
ing if necessary. We writepCSP for the set of closedP -terms defined by this grammar,
andsCSP for its state-basedsubset of closedS-terms.

Following [3, 1], we interpret the language as aprobabilistic labelled transition
system. A (discrete) probabilitysubdistributionover a setS is a function∆ : S → [0, 1]
with

∑

s∈ S ∆(s) ≤ 1; thesupportof such a∆ is ⌈∆⌉ := { s∈S | ∆(s) > 0 }, and its
mass|∆| is

∑

s∈⌈∆⌉ ∆(s). A subdistribution is a (total, or full)distribution if |∆| = 1.
The point distributions assigns probability1 to s and0 to all other elements ofS, so
that ⌈s⌉ = {s}. With Dsub(S) we denote the set of subdistributions overS, and with
D(S) its subset of full distributions.

Let {∆k | k ∈ K} be a set of subdistributions, possibly infinite. Then
∑

k∈K ∆k is
the real-valued function inS → R defined by(

∑

k∈K ∆k)(s) :=
∑

k∈K ∆k(s). This
is a partial operation on subdistributions because for somestates the sum of∆k(s)
might exceed1. If the index set is finite, say{1..n}, we often write∆1 + . . . + ∆n.
For p a real number from[0, 1] we usep ·∆ to denote the subdistribution given by
(p ·∆)(s) := p ·∆(s). Finally we useε to denote the everywhere-zero subdistribution
that thus has empty support. These operations on subdistributions do not readily adapt
themselves to distributions; yet if that

∑

k∈K pk = 1 for some collection ofpk ≥ 0,
and the∆k are distributions, then so is

∑

k∈K pk ·∆k. In general when0≤p≤1 we
write xp⊕ y for p ·x+(1−p)·y where that makes sense, so that for example∆1 p⊕ ∆2

is always defined, and is full if∆1 and∆2 are.
The expected value

∑

s∈S ∆(s)·f(s) over a distribution∆ of a bounded non-
negative functionf to the reals or tuples of them is written Exp∆(f), and the image
of a distribution∆ through a functionf is written Imgf (∆) — the latter is the distribu-
tion over the range off given by Imgf (∆)(t) :=

∑

f(s)=t ∆(s).
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Definition 1. A probabilistic labelled transition system(pLTS) is a triple〈S, L,→〉,
where

(i) S is a set of states,
(ii) L is a set of transition labels,

(iii) relation→ is a subset ofS × L ×D(S).

A (non-probabilistic) labelled transition system (LTS) may be viewed as a degenerate
pLTS — one in which only point distributions are used. As withLTSs, we writes α−→ ∆
for (s, α, ∆)∈→, as well ass α−→ for ∃∆ : s α−→ ∆ ands→ for ∃α : s α−→. A pLTS is
finitely branchingif the set{∆ | s α−→ ∆, α∈L} is finite for all statess; if moreover
S is finite, then the pLTS isfinitary. A subdistribution∆ in an arbitrary pLTS isfinitary
if restricting the state set to the states reachable from∆ yields a finitary sub-pLTS.

The operational semantics ofpCSP is defined by a particular pLTS〈sCSP, Actτ ,→〉
in whichsCSP is the set of states andActτ := Act∪{τ} is the set of transition labels; we
let a range overAct andα overActτ . We interpretpCSP processesP as distributions[P ℄ ∈ D(sCSP) via the function[ ℄ : pCSP → D(sCSP) defined by[s℄ := s for s∈ sCSP, and [P p⊕ Q℄ := [P ℄p⊕ [Q℄ .

The relations α−→ are defined in Figure 2 which extends the rules used in [3, 1] for finite
processes with a new rule for recursion. External choice andparallel composition use an
abbreviation for distributing an operator over a distribution: for example∆ 2 s is the
distribution given by(∆ 2 s)(t) := ∆(s′) if t is s′ 2 s and0 otherwise. We sometimes
write τ.P for P ⊓ P , thus givingτ.P τ−→ [P ℄.

Note that this pLTS is finitely branching and for eachP ∈ pCSP the distribution[P ℄
has finite support. However, it is possible for there to be infinitely many states reachable
from [P ℄. If only finitely many states are reachable from[P ℄, thenP is calledfinitary.

3 Testing Probabilistic Processes

We follow the approach of [3, 1] to the testing of probabilistic processes. Atestis simply
a process from the languagepCSP except that it may use extra visible actionsωi 6∈Actτ ,
which are assumed to be fresh, for reporting success. Given aset of test actionsΩ,
we write pCSP

Ω for the set ofpCSP expressions using actions fromΩ ∪ Actτ , and
sCSPΩ for the set of state-basedpCSPΩ expressions. To apply testT to processP we
form the processT |Act P in which all visible actions except theωi must synchronise,
leaving only actionsτ andωi, and as in [3, 1] we extract testing outcomes from them.
However, as processesT |Act P are in general not of finite depth, we can no longer do
this inductively. Below we outline two alternative methodsthat for finitary systems will
turn out to be equivalent. The first one is slightly easier to explain, whereas the second
one extends the work of [15, 14, 4] and is needed in establishing our results.

3.1 Extremal Testing

For the first method we assume that tests may use only asinglesuccess actionω. We
view the unit interval[0, 1] ordered in the standard manner as a complete lattice; this
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induces a complete lattice on the set of functionssCSPΩ → [0, 1]. Now consider the
functionRmin : (sCSPΩ→[0, 1]) → (sCSPΩ→[0, 1]) defined by

Rmin(f)(s) :=











1 if s ω−→

0 if s 6→

min{Exp∆(f) | s α−→ ∆ } otherwise.

In a similar fashion we define the functionRmax which usesmax in place ofmin. Both
these functions are monotonic, and therefore have least fixed points which we callVmin,
Vmax respectively.

Now for a testT and a processP we have two ways of defining the outcome of the
application ofT to P :

Ae
min(T, P ) := Exp[T |ActP℄(Vmin)

Ae
max(T, P ) := Exp[T |ActP℄(Vmax) .

HereAe
min(T, P ) returns a single probabilityp, estimating the minimum probability of

success; it is a pessimistic estimate. On the other handAe
max(T, P ) is optimistic, in that

it gives the maximum probability of success.

Definition 2. Themay-andmustpreorders are given by

– P ⊑e
pmay Q if for every testT we haveAe

max(T, P ) ≤ Ae
max(T, Q)

– P ⊑e
pmustQ if for every testT we haveAe

min(T, P ) ≤ Ae
min(T, Q).

3.2 Resolution-based Testing

In the second method we useΩ-testsfor any given collectionΩ of success actions
disjoint fromActτ ; hereω will be a variable ranging over the individual success actions
of Ω. We calculate the result of applying testT to processP in terms of theresolutions
of the combined processT |Act P , where intuitively a resolution represents arun of a
process and, as such, gives exactly one probability for eachsuccess action. So in general
the application ofT to P will yield a set of vectorsof probabilities.

We define the resolutions of a processT |Act P in terms of the distribution[T |Act P ℄
in the pLTS〈sCSPΩ |Act sCSP, Ωτ ,→〉 obtained by restricting attention to states of
the formt |Act s with t∈ sCSPΩ ands∈ sCSP. Note that all transitions in this pLTS
have labelsτ or ω ∈Ω. Following [5, 15, 3, 1], and unlike [14, 4], this paper employs
state-basedtesting [4, 1], meaning that transitionss ω−→ ∆ are merely expedients to
mark the states as anω-success state — the target distribution∆ is wholly ignored.
Hence the pLTS can also be regarded as having justτ -labels and moreover state markers
ω ∈Ω. Intuitively, a resolution of a distribution in such a pLTS is obtained by pruning
away multipleτ -transitions from a state until only a single choice remains, possibly
introducing some linear combinations in the process.

Definition 3. A pLTS 〈R, L,→〉 is deterministicif for every r∈R and everyα∈L
there is at most oneΘ ∈Dsub(R) such thatr α−→ Θ.

A resolutionof a subdistribution∆∈Dsub(S) in a pLTS 〈S, Ωτ ,→〉 is a triple
〈R, Θ,→′〉where〈R, Ωτ ,→′〉 is a deterministic pLTS andΘ∈Dsub(R), such that there
exists aresolving functionf ∈ R → S satisfying
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1. Imgf (Θ) = ∆
2. if r α−→′ Θ′ for α ∈ Ωτ thenf(r) α−→ Imgf (Θ′)
3. if f(r) α−→ for α ∈ Ωτ thenr α−→′ .

By analogy with the functionsRmin andRmax of Section 3.1, we define the function
R : (R→[0, 1]Ω) → (R→[0, 1]Ω) for a deterministic pLTS〈R, Ωτ ,→〉 as

R(f)(r)(ω) :=











1 if r ω−→

0 if r 6ω−→ andr 6τ−→

Exp∆(f)(ω) if r 6ω−→ andr τ−→ ∆.

Once more this function has a least fixed point, which we denote byV〈R,Ωτ ,→〉.
Now letAΩ(T, P ) denote the set of vectors

{ExpΘ(V〈R,Ωτ ,→〉) | 〈R, Θ,→〉 is a resolution of[T |Act P ℄ } .

We compare two vectors of probabilities component-wise, and two sets of vectors of
probabilities via the Hoare- and Smyth preorders:

X ≤Ho Y iff ∀x ∈ X : ∃y ∈ Y : x ≤ y
X ≤Sm Y iff ∀y ∈ Y : ∃x ∈ X : x ≤ y .

Definition 4. Given twopCSP processesP andQ,
– P ⊑Ω

pmay Q if for everyΩ-testT , we haveAΩ(T, P ) ≤Ho AΩ(T, Q)
– P ⊑Ω

pmustQ if for everyΩ-testT , we haveAΩ(T, P ) ≤Sm AΩ(T, Q).
These preorders are abbreviated toP ⊑pmay Q andP ⊑pmustQ when|Ω|= 1.

3.3 Equivalence of Testing Methods

In this section we compare the two approaches of testing introduced in the previous
two subsections. First of all, we recall the result from [4] which says that when testing
finitary processes it suffices to use a single success action rather than multiple ones.1

Theorem 4. For finitary processes:

P ⊑Ω
pmay Q iff P ⊑pmay Q and P ⊑Ω

pmustQ iff P ⊑pmustQ.

The following theorem states that, for finitary processes, extremal testing yields the
same preorders as resolution-based testing with a single success action.

Theorem 5. For finitary processes

P ⊑e
pmay Q iff P ⊑pmay Q and P ⊑e

pmustQ iff P ⊑pmustQ.

Neither result in Theorem 5 is true in the general (non-finitary) case, as counterexamples
in [2, App. A] demonstrate. Although Theorem 4 suggests thatwe could have avoided
multiple success actions in the resolution-based definition of testing, our completeness
proof (Theorem 15) makes essential use of a countable set of them.

1 The result in [4] is stated foraction-basedtesting, meaning that it is the actual execution of a
success action rather than reaching a success state that constitutes success, but, as mentioned
in the conclusion of [4], it also holds in our current state-based setting.
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4 A Novel Approach to Weak Derivations

In this section we develop a new definition of what it means fora recursive process
to evolve by silent activity into another process; it allowsthe simulation and failure-
simulation preorders of [1] to be adapted to characterise the testing preorders for at least
finitary probabilistic processes. The key technical generalisation is thesubdistributions
that enable us to express divergence very conveniently.2

In a pLTS actions are only performed by states, in that actions are given by relations
from states to distributions. ButpCSP processes in general correspond to distributions
over states, so in order to define what it means for a process toperform an action we
need tolift these relations so that they also apply to (sub)distributions.

Definition 5. Let (S, L,→) be a pLTS andR ⊆ S ×Dsub(S) be a relation from states
to subdistributions. ThenR ⊆ Dsub(S) ×Dsub(S) is the smallest relation that satisfies

(1) s R Θ impliess R Θ, and
(2) (Linearity) ∆i R Θi for i∈ I implies (

∑

i∈I pi ·∆i) R (
∑

i∈I pi ·Θi) for any
pi ∈ [0, 1] with

∑

i∈I pi ≤ 1.

This applies when the relation isα−→ for α ∈ Actτ , where we also writeα−→ for α−→.
Thus as source of a relationα−→ we now also allow distributions, and even subdistri-
butions. A subtlety of this approach is that for any actionα, we haveε α−→ ε simply
by takingI = ∅ or

∑

i∈I pi = 0 in Definition 5. That will turn out to makeε espe-
cially useful for modelling the “chaotic” aspects of divergence, in particular that in the
must-case a divergent process can mimic any other.

We now formally define the notation of weak derivatives.

Definition 6. Suppose we have subdistributions∆, ∆→
k , ∆×

k , for k ≥ 0, with the fol-
lowing properties:

∆ = ∆→
0 + ∆×

0

∆→
0

τ−→ ∆→
1 + ∆×

1...

∆→
k

τ−→ ∆→
k+1 + ∆×

k+1 .
...

Then we call∆′ :=
∑∞

k=0 ∆×
k a weak derivativeof ∆, and write∆ =⇒ ∆′ to mean

that∆ can make aweakτ moveto its derivative∆′.

It is easy to check that
∑∞

k=0 ∆×
k is indeed a subdistribution, whereas in general it is not

a full distribution: for instance we have[rec x. x℄ =⇒ ε. By setting appropriate∆×
k ’s

to ε we see that∆( τ−→)∗Φ, where∗ denotes reflexive and transitive closure, implies
∆ =⇒ Φ. It is also easy to check that on recursion-freepCSP the relation=⇒ agrees
with the one defined in [3, 1] by means of transitive closure. Moreover the standard
notion ofdivergence, the ability of a subdistribution∆ to perform an infinite sequence
of τ transitions, is neatly captured by the relation∆ =⇒ ε.

2 Subdistributions’ nice properties with respect to divergence are due to their being equivalent
to the discrete probabilistic powerdomain over a flat domain[8].
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Example 1.Consider the (infinite) collection of statessk and probabilitiespk for k ≥ 2
such that

sk
τ−→ [a. 0 ℄pk

⊕ sk+1 ,

where we choosepk so that starting from anysk the probability of eventually taking a
left-hand branch, and so reaching[a. 0 ℄ ultimately, is just1/k in total. Thuspk must
satisfy1/k = pk +(1−pk)/(k+1), whence by arithmetic we have thatpk := 1/k2 will
do. Therefore in particulars2 =⇒ 1

2 [a. 0 ℄, with the remaining12 lost in divergence.

Definition 7. Let ∆ and its variants be subdistributions in a pLTS〈S, Actτ ,→〉.

– Fora ∈ Act write ∆
a

=⇒ ∆′ whenever∆ =⇒ ∆pre a−→ ∆post =⇒ ∆′. Extend this
to Actτ by allowing as a special case thatτ=⇒ is simply=⇒, i.e. including identity
(rather than requiring at least oneτ−→).

– ForA ⊆ Act ands∈S write s 6A−→ if s 6α−→ for everyα∈A ∪ {τ}; write ∆ 6A−→ if
s 6A−→ for everys∈⌈∆⌉.

– More generally write∆ =⇒ 6A−→ if ∆ =⇒ ∆pre for some∆pre such that∆pre 6A−→.

For example, in Figure 1 we have[Q1℄ a
=⇒ [ 0 ℄, because[Q1℄ =⇒ [a. 0 ℄ a−→ [0 ℄.

5 Some properties of weak derivations in finitary pLTSs

In this section we expose some less obvious properties of weak derivations from states
in finitary pLTSs, relating to their behaviour at infinity; they underpin many results
in the next section. One important property is that the set ofweak derivations from
a single starting point iscompactin the sense (from analysis) of being bounded and
containing all its limit points, where, in turn, limits depend on a Euclidean-style metric
defining the distance between two distributions in a straightforward way. The other
property is “distillation of divergence”, allowing us to find in any weak derivation that
partially diverges (by no matter how small an amount) a pointat which the divergence
is “distilled” into a state which wholly diverges.

Both properties depend on our working withinfinitary pLTSs — that is, ones in
which the state space is finite and the (unlifted) transitionrelation is finite-branching.

5.1 Finite generability and closure

In a finitary pLTS, by definition the sets{∆ | s α−→ ∆} are finite, for everys andα.
This of course is no longer true for the lifted relationsα−→ over subdistributions; nev-
ertheless, the sets{∆ | s α−→ ∆} and their weak counterparts{∆ | s

α
=⇒ ∆} can be

finitely represented. Below, we focus on the set{∆ | s =⇒ ∆}.

Definition 8. A static derivative policy(SDP) for a pLTS〈S, Actτ ,→〉 is a partial func-
tion pp : S ⇀ D(S) such that ifpp is defined ats thens τ−→ pp(s).

Intuitively a policypp decides for each state, once and for all, which of the available τ -
choices to take, if any: since it either chooses a specific transition, or inaction (by being
undefined), it does not interpolate via a convex combinationof two different transitions;
and since it is a function of the state, it makes the same choice on every visit.
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The great importance for us of SDP’s is that they give a particularly simple charac-
terisation of weak derivatives, provided the state-space is finite and the pLTS is finitely
branching. This is essentially a result of Markov Decision Processes [13], which we
translate into our context. We first introduce a notion of SDP-derivatives by adapting
Definition 6.

Definition 9 (SDP-derivatives).Let pp be a SDP. We write∆ =⇒pp ∆′ if ∆ =⇒ ∆′

and the following holds (using the notation of Def. 6 and writing ∆k for ∆→
k + ∆×

k ):

∆×
k (s) =

{

0 if pp defined ats
∆k(s) otherwise

∆k+1 =
∑

{∆k(s)· pp(s) | s ∈ ⌈∆k⌉ andpp defined ats}.

Intuitively, ∆ =⇒pp ∆′ means that∆′ is the single derivative of∆ that results from
using policypp to construct the weak transition∆ =⇒ ∆′. Note that, for a given SDP
pp, the relation=⇒pp is actually a function; moreover in a finitary pLTS the set of all
possible SDPs is finite, due to the constraints of Definition 8.

Theorem 6 (Finite generability). Let s be a state in a finitary pLTS〈S, Actτ ,→〉.
Thens =⇒ ∆ for some∆∈Dsub(S) iff there is a finite index setI, probabilitiespi

summing to 1 and static derivative policiesppi with s =⇒ppi
∆i for eachi, such that

∆ =
∑

i∈I pi ·∆i.

Since the convex closure of a finite set of points is always compact, we obtain

Corollary 1. For any states in a finitary pLTS the set{∆ | s =⇒ ∆} is convex and
compact.

A similar result is obtained by Desharnais, Gupta, Jagadeesan & Panagaden [6].
Although the pLTS〈sCSP, Actτ ,→〉 is not finitary, the interpretation[P ℄∈D(sCSP)

of a finitary pCSP processP can also be understood to be a distribution in a fini-
tary pLTS, namely the restriction of〈sCSP, Actτ ,→〉 to the states reachable from[P ℄.
Using this, Corollary 1 leads to the essential Theorem 1, referred to in the introduction.

5.2 Distillation of divergence

Although it is possible to have processes that diverge with some probability strictly
between zero and one, in a finitary pLTS we candistill divergence in the sense that for
many purposes we can limit our analyses to processes that either wholly diverge (can
do so with probability one) or wholly converge (can diverge only with probability zero).
This property is based on the zero-one law for finite-state probabilistic systems, relevant
aspects of which we present in this sub-section.

We first note that static derivative policies obey the following zero-one law.

Theorem 7 (Zero-one law).If for a static derivative policypp over a finite-state pLTS
there is for somes a derivations =⇒pp ∆ with |∆| < 1 then in fact for some (possibly
different) statesε we havesε =⇒pp ε.



Testing Finitary Probabilistic Processes 11

Based on Theorems 6 and 7, the following property of weak derivations can now be
established.

Theorem 8 (Distillation of divergence).For anys, ∆ in a finitary pLTS withs =⇒∆
there is a probabilityp and full distributions∆1, ∆ε such thats =⇒ (∆1 p⊕ ∆ε) and
∆ = p ·∆1 and∆ε =⇒ ε.

6 Failure Simulation is Sound and Complete for Must Testing

In this section we define the failure-simulation preorder and show that it is sound and
complete for the must-testing preorder. The following presentation is an enhancement
of our earlier definition in [1].

Definition 10 (Failure-Simulation Preorder). Define⊒FS to be the largest relation
in Dsub(S) ×Dsub(S) such that if∆ ⊒FS Θ then

1. whenever∆ α
=⇒ (

∑

i pi∆
′
i), for α∈Actτ and certainpi with (

∑

i pi) ≤ 1, then
there areΘ′

i ∈Dsub(S) with Θ
α

=⇒ (
∑

i piΘ
′
i) and∆′

i ⊒FS Θ′
i for eachi

2. and whenever∆ =⇒ 6A−→ then alsoΘ =⇒ 6A−→.

Naturally Θ ⊑FS ∆ just means∆ ⊒FS Θ. For pCSP processesP andQ and any
preorder⊑ ⊆ Dsub(sCSP) ×Dsub(sCSP) we writeP ⊑ Q for [P ℄ ⊑ [Q℄.
Although the regularity of Definition 10 is appealing — for example it is trivial to see
that⊑FS is reflexive and transitive, as it should be — in practice, forspecific processes,
it is easier to work with a characterisation of the failure-simulation preorder in terms of
a relation betweenstatesand subdistributions.

Definition 11 (Failure Similarity). Let �FS be the largest relation inS×Dsub(S) such
that if s �FS Θ then

1. whenevers =⇒ ε then alsoΘ =⇒ ε,
2. whenevers α−→ ∆′, for α∈Actτ , then there is aΘ′ with Θ

α
=⇒ Θ′ and∆′

�FS Θ′

3. and whenevers 6A−→ thenΘ =⇒ 6A−→.

As an example, in Figure 1 it is straightforward to exhibit failure simulations to prove
both[Q1℄ �FS [a. 0 ℄ and the converse[a. 0 ℄ �FS [Q1℄, the essential ingredient being
the weak move[Q1℄ a

=⇒ [0 ℄. Likewise, we havea. 0 �FS [Q1 1

2

⊕ rec x. x℄, the
additional ingredient being0 �FS

ε.
The next result shows how the failure-simulation preorder can alternatively be de-

fined in terms of failure similarity. This is actually how we defined it in [1].

Theorem 9. For finitary∆, Θ∈Dsub(S) we have∆ ⊒FS Θ just when there is aΘ♮

with Θ =⇒ Θ♮ and∆ �FS Θ♮.

The proof of this theorem depends crucially on Theorems 1 and8. The restriction to
finitary subdistributions is essential, as in [2, App. A] we provide a counterexample
to the general case. It is in terms of this characterisation that we establish soundness
and completeness of the failure-simulation preorder with respect to the must-testing
preorder; consequently we have these results for finitary processes only.
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Theorem 10 (Precongruence).If P1, P2, Q1 andQ2 are finitarypCSP processes with
P1 ⊒FS Q1 andP2 ⊒FS Q2 then we haveα.P1 ⊒FS α.Q1 for anyα∈Actτ , as well
asP1 ⊙ P2 ⊒FS Q1 ⊙ Q2 for ⊙ any of the operators⊓, 2, p⊕ and|A.

The proof of this precongruence property involves a significant complication: in order
to relate two processes we have to demonstrate that if the first diverges then so does the
second. This affects particularly the proof that⊒FS is preserved by the parallel operator
|A. The approach we use involves first characterising divergence coinductively and then
applying a novel coinductive proof technique.

Theorem 11 (Soundness and Completeness).For finitarypCSP processesP andQ
we haveP ⊑FS Q iff P ⊑pmustQ.

Soundness, that⊑FS ⊆ ⊑pmust, is a relatively easy consequence of⊑FS being a pre-
congruence (Theorem 10). The completeness proof (that⊑pmust⊆ ⊑FS ) is much more
complicated and proceeds in three steps, which we detail below. First we provide a
characterisation of the preorder relation⊑FS by finite approximations. Secondly, using
this, we develop a modal logic which can be used to characterise the failure-simulation
preorder on finitary processes. Finally, we adapt the results of [1] to show that the modal
formulae can in turn be characterised by tests. From this, completeness follows.

6.1 Inductive Characterisation

The relation�FS of Definition 11 is given coinductively: it is the largest fixpoint of an
equationR= F(R). An alternative approach is to use thatF(−) to define�FS as a limit
of approximants:

Definition 12. For everyk ≥ 0 we define the relations�k
FS ⊆ S ×Dsub(S) as follows:

(i) �
0
FS := S ×Dsub(S)

(ii) �
k+1
FS := F(�k

FS)

Finally let�∞
FS :=

⋂∞
k=0 �

k
FS. Furthermore, for everyk ≥ 0 let ∆ ⊒k

FS
Θ if there exists

aΘ =⇒ Θ♮ with ∆ �k
FS Θ♮, and let⊒∞

FS
denote

⋂∞
k=0 ⊒k

FS
.

Theorem 12. For finitarypCSP processesP andQ we haveP ⊒∞
FS

Q iff P ⊒FS Q.

To show this theorem, we need to use two key results, Propositions 1 and 2 below. We
say a relationR ⊆ S ×D(S) is convex (resp. compact) whenever the set{∆ | s R ∆}
is convex (resp. compact) for everys ∈ S.

Proposition 1. In a finitary pLTS, the relation�k
FS is convex and compact, for every

k ≥ 0.

The proof of this property heavily relies on Corollary 1.

Proposition 2. SupposeRk ⊆ S × Dsub(S) is a sequence of convex and compact
relations such thatRk+1 ⊆ Rk. Then(

⋂∞
k=0 Rk) ⊆ (

⋂∞
k=0 Rk).

This proposition is proved using the Finite Intersection Property of compact sets [9].



Testing Finitary Probabilistic Processes 13

6.2 A Modal Logic

LetF be the set of modal formulae defined inductively as follows:

– div,⊤ ∈ F
– ref(A) ∈ F whenA ⊆ Act,
– 〈a〉ϕ ∈ F whenϕ∈F anda∈Act,
– ϕ1 ∧ ϕ2 ∈ F whenϕ1, ϕ2 ∈ F ,
– ϕ1 p⊕ ϕ2 ∈ F whenϕ1, ϕ2 ∈ F andp ∈ [0, 1].

This generalises the modal language used in [1] by the addition of the new constant
div, representing the ability of a process to diverge.

Relative to a given pLTS〈S, Actτ ,→〉 thesatisfaction relation|= ⊆ Dsub(S) × F
is given by:

– ∆ |= ⊤ for any∆ ∈ Dsub(S),
– ∆ |= div iff ∆ =⇒ ε,
– ∆ |= ref (A) iff ∆ =⇒ 6A−→,
– ∆ |= 〈a〉ϕ iff there is a∆′ with ∆

a
=⇒ ∆′ and∆′ |= ϕ,

– ∆ |= ϕ1 ∧ ϕ2 iff ∆ |= ϕ1 and∆ |= ϕ2,
– ∆ |= ϕ1 p⊕ ϕ2 iff there are∆1, ∆2 ∈ Dsub(S) with ∆1 |= ϕ1 and∆2 |= ϕ2, such

that∆ =⇒ ∆1 p⊕ ∆2.

We write∆ ⊒F Θ when∆ |= ϕ impliesΘ |= ϕ for all ϕ∈F , and can verify that⊒FS

is sound for⊒F. In establishing the converse, we mimic the development in Section
7 of [1] by designingcharacteristic formulaewhich capture the behaviour of states in
a pLTS. But here the behaviour is not characterised relativeto �FS, but rather to the
sequence of approximating relations�

k
FS.

Definition 13. In a finitary pLTS〈S, Actτ ,→〉, thekth characteristic formulaeϕk
s , ϕk

∆

of statess∈S and subdistributions∆∈Dsub(S) are defined inductively as follows:

– ϕ0
s = ⊤ andϕ0

∆ = ⊤,
– ϕk+1

s = div, provideds =⇒ ε,
– ϕk+1

s = ref(A)∧
∧

s
a−→∆〈a〉ϕk

∆ whereA = {a∈Act | s 6a−→}, provideds 6τ−→,
– ϕk+1

s =
∧

s
a−→∆〈a〉ϕk

∆ ∧
∧

s
τ−→∆ ϕk

∆ otherwise,

– andϕk+1
∆ = (

⊕

s∈⌈∆⌉
∆(s)
⌈∆⌉ ·ϕ

k+1
s ) ⌈∆⌉⊕ (div) .

The next result relates thekth characteristic formulae to thekth failure similarity.

Proposition 3. Fork ≥ 0 we have

(i) Θ |= ϕk
s impliess �

k
FS Θ,

(ii) Θ |= ϕk
∆ impliesΘ ⊒k

FS
∆.

Using Proposition 3 we obtain a logical characterisation of⊒∞
FS

(and hence of⊒FS ):

Theorem 13. For finitarypCSP processesP andQ we haveP ⊒F Q iff P ⊒∞
FS

Q.
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6.3 Characteristic Tests for Formulae

The import of Theorems 12 and 13 is that we can obtain completeness of the failure-
simulation preorder with respect to the must-testing preorder by designing for each
formulaϕ a test which in some sense characterises the property that a process satisfies
ϕ. This was achieved for the pLTS generated by the recursion-free fragment ofpCSP

in Section 8 of [1]. Here we have generalised this technique to the pLTS generated by
the set of finitarypCSP terms. The crucial property is stated as follows.

Theorem 14. For every formulaϕ ∈ F there exists a pair(Tϕ, vϕ) with Tϕ anΩ-test
andvϕ ∈ [0, 1]Ω such that∆ |= ϕ if and only if ∃o ∈ AΩ(Tϕ, ∆) : o ≤ vϕ. TestTϕ is
called acharacteristic testof ϕ andvϕ is its target value.

This property can be shown by exploiting several characteristics of the testing function
AΩ(−,−); unlike in [1] these cannot be obtained inductively. The most complicated
one is the following.

Proposition 4. If o ∈ AΩ(T1 ⊓ T2, ∆) then there are aq ∈ [0, 1] and∆1, ∆2 ∈
Dsub(sCSP) such that∆ =⇒ q ·∆1 + (1−q)·∆2 ando = q ·o1 + (1−q)·o2 for certain
oi ∈ AΩ(Ti, ∆i).

From Theorem 14 we obtain that the must-testing preorder is at least as discriminating
as the logical preorder:

Theorem 15. Let P andQ bepCSP processes. IfP ⊒Ω
pmustQ thenP ⊒F Q.

The completeness result in Theorem 11 follows by combining Theorems 15, 13 and 12.

7 Simulation is Sound and Complete for May Testing

We define a simulation preorder that can be shown sound and complete for may testing
following the same strategy as for failure simulation and must testing, except that we
restrict our treatment to full distributions, a simpler domain. This is possible because in
may testing an infiniteτ -path is not treated specially — it engages in no visible actions;
in must testing, infiniteτ -paths potentially can do anything (chaos).

Definition 14 (Simulation Preorder).Let⊑S be the largest relation inD(S) ×D(S)
such that if∆ ⊑S Θ then

whenever∆ α
=⇒ (

∑

i pi∆
′
i), for α∈Actτ and certainpi with (

∑

i pi) ≤ 1,
then there areΘ′

i ∈D(S) with Θ
α

=⇒ (
∑

i piΘ
′
i) and∆′

i ⊑S Θ′
i for eachi.

The technical development from this point on is similar to that given in Section 6. For
the modal logic, we use the set of formulae obtained fromF by skipping thediv and
ref(A) clauses. However the satisfaction relation used for this sub-logic is radically
different from that given in Section 6.2, because here the interpretation is relative to full
distributions. Nevertheless we still obtain the counterparts of Theorems 12, 13 and 15.

Theorem 16 (Soundness and Completeness).For finitarypCSP processesP andQ
we haveP ⊑pmay Q if and only if P ⊑S Q.
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8 Conclusion and Related Work

In this paper we continued our previous work [3, 4, 1] in our quest for a testing theory
for processes which exhibit both nondeterministic and probabilistic behaviour. We have
generalised our results in [1] of characterising the may preorder as a simulation relation
and the must preorder as a failure-simulation relation, from finite processes to finitary
processes. To do this it was necessary to investigate fundamental structural properties
of derivation sets (finite generability) and similarities (infinite approximations), which
are of independent interest. The use of Markov Decision Processes and Zero-One laws
was essential in obtaining our results.

Segala [14] defined two preorders called trace distributionprecongruence (⊑TD)
and failure distribution precongruence (⊑FD ). He proved that the former coincides with
an action-based version of⊑Ω

pmay and that for “probabilistically convergent” systems
the latter coincides with an action-based version of⊑Ω

pmust. The condition of probabilis-
tic convergence amounts in our framework to the requirementthat for∆∈D(S) and
∆ =⇒ ∆′ we have|∆′| = 1. In [10] it has been shown that⊑TD coincides with a
notion of simulation akin to⊑S . Other probabilistic extensions of simulation occurring
in the literature are reviewed in [3, 1].
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