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Distribution-Based Behavioural Distance for

Nondeterministic Fuzzy Transition Systems
Hengyang Wu and Yuxin Deng

Abstract—Modal logics and behavioural equivalences play an
important role in the specification and verification of concur-
rent systems. In this paper, we first present a new notion of
bisimulation for nondeterministic fuzzy transition systems, which
is distribution-based and coarser than state-based bisimulation
appeared in the literature. Then, we define a distribution-based
bisimilarity metric as the least fixed point of a suitable monotonic
function on a complete lattice, which is a behavioural distance
and is a more robust way of formalising behavioural similarity
between states than bisimulations. We also propose an on-the-fly
algorithm for computing the bisimilarity metric. Moreover, we
present a fuzzy modal logic and provide a sound and complete

characterization of the bisimilarity metric. Interestingly, this
characterization holds for a class of fuzzy modal logics. In
addition, we show the non-expansiveness of a typical parallel
composition operator with respect to the bisimilarity metric,
which makes compositional verification possible.

Index Terms—Fuzzy transition system, Bisimulation, Be-
havioural distance, Modal logic, Non-expansiveness.

I. INTRODUCTION

MOdal logics and behavioural equivalences are very

important for the specification and verification of con-

current systems. The former can be used for model checking,

particularly for specifying the properties to be verified. The

latter can be used for state-aggregation algorithms that com-

press models by merging bisimilar states but guarantee that

the required properties are preserved.

Recently, bisimulations have been investigated in fuzzy

systems. For example, Cao et al. [1], [2] considered bisimula-

tions for deterministic (resp. nondeterministic) fuzzy transition

systems, abbreviated as FTSs (resp. NFTSs); Ćirić et al.

[3] investigated bisimulations for fuzzy automata; Qiu and

Deng [4], and Xing et al. [5] studied (bi)simulations for

fuzzy discrete event systems; Fan [6] defined bisimulations

for fuzzy Kripke structures. For more information about fuzzy

(bi)simulations, we also refer to [7]–[14].

The bisimulation proposed by Cao et al. [2] is state-based

and represents a branching-time semantics. For instance, it can

distinguish states s and t in Fig.1. However, if we are mainly

interested in the maximal possibilities of the occurrences
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of some events, then the two states should be intuitively

identified. After performing the same action a, both s and

t can reach some state with maximal possibility 0.8; after

performing the action a immediately followed by b, both s and

t can reach some state with maximal possibility 0.6. Based

on this observation, we introduce a notion of distribution-

based bisimulation that represents a linear-time semantics.

This bisimulation is close to the classical bisimulation [20],

which is based on transitions between (bare) states. We view

distributions as generalized states and thus define transitions

between distributions. Two bisimilar distributions are required

to have the same height, which shows the same maximal

possibility of reaching some states, and after some matching

transitions, the two successor distributions still preserve the

same height.
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Fig.1 s and t are distribution-bisimilar but not state-bisimilar

Built on bisimulations, a notion of behavioural ultramet-

ric [2] has been proposed to measure the similarity of states

in an NFTS. It is a more robust way of formalising behavioural

similarity between fuzzy systems than bisimulations. The

smaller the behavioural distance, the more similarly the states

behave. In particular, the behavioural distance between two

states is 0 if and only if they are exactly bisimilar. In this

paper, we generalize behavioural ultrametrics and propose a

notion of triangular-conorm-based metric, called ⊕-metric, to

measure the distance between possibility distributions in an

NFTS. Technically speaking, we define a distribution-based

bisimilarity metric as the least fixed point of a suitable mono-

tonic function, which captures the similarity of the behaviour

of possibility distributions. We also show that a parallel com-

position in the style of communicating sequential processes

(CSP) [15] is non-expansive with respect to distribution-based

bisimilarity metric, which makes compositional verification

possible. Our metric differs from the ultrametric of Cao et

al. [2] in two aspects: (1) the former is defined on F(S), while

the latter is defined on S; (2) the former is based on a class of
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triangular-conorms, while the later is only based on ∨-conorm,

which is a special case of ours. This generalization allows us,

according to the properties of different systems, to compute

behavioural distances by choosing appropriate operators.

Modal logics and behavioural equivalences are closely re-

lated. Whenever a new equivalence is proposed, the quest

starts for the associated logic such that two systems (or states)

are behaviourally equivalent if and only if they satisfy the

same set of modal formulae. Along this line, a great amount

of work has appeared that characterizes various kinds of

classical (or probabilistic) bisimulations by appropriate logics,

e.g. [16]–[24]. Although bisimulations have been investigated

extensively in fuzzy systems, there is little work about the con-

nection between bisimulations and the corresponding modal

logics. Fan [6] characterized (fuzzy) bisimulations for fuzzy

Kripke structures in terms of Gödel modal logic; Wu and Deng

[14] characterized bisimulations for FTSs by using a fuzzy

style Hennessy-Milner logic. In this paper, we present a fuzzy

modal logic, which is directly interpreted on distributions. This

logic characterizes not only distribution-based bisimilarity but

also distribution-based bisimilarity metric for NFTSs soundly

and completely. We show that the distance between two

distributions is 0 if and only if they have the same value on

each formula. Moreover, this characterization holds for a class

of fuzzy modal logics, by instantiating a triangular-norm (t-

norm) as Łukasiewicz t-norm, Gödel t-norm, product t-norm,

or nilpotent minimum t-norm.

The rest of this paper is structured as follows. We briefly re-

view some basic concepts on fuzzy sets in Section II and intro-

duce a fuzzy logic used in this paper. In Section III, we define

a new bisimulation for NFTSs, which is distribution-based.

Section IV embarks upon the development of distribution-

based bisimilarity metric. We first define triangular-conorm-

based metric, called ⊕-metric. Then we give the notion of

distribution-based bisimulation metric and discuss the mono-

tonicity of a function on behavioural metrics. Thanks to

Tarski’s fixed point theorem, we can obtain the least fixed

point of the function and define it as the distribution-based

bisimilarity metric. Moreover, we present an on-the-fly algo-

rithm to compute the bisimilarity metric. In Section V, we give

a fuzzy modal logic, which characterizes distribution-based

bisimilarity metric soundly and completely. In Section VI, we

define a parallel composition and show that it is non-expansive

with respect to the distribution-based bisimilarity metric and

preserves distribution-based bisimilarity. As an example, we

discuss the potential application of our results in Section VII

and review some related work in Section VIII. Finally, we

conclude in Section IX with some future work.

II. PRELIMINARIES

A. Fuzzy Set

We first briefly recall some basic concepts on fuzzy sets.

Let S be an ordinary set. A fuzzy set µ of S is a function

that assigns each element s of S with a value µ(s) in the

unit interval [0, 1]. The support of µ, written supp(µ), is the

set {s ∈ S | µ(s) > 0}. We denote by F(S) the set of

all fuzzy sets in S. For convenience, whenever supp(µ) is a

finite set, say {s1, s2, · · · , sn}, then a fuzzy set µ is written as

µ = r1
s1

+ r2
s2

+ · · ·+ rn
sn
, where ri ∈ (0, 1] and ri = µ(si) with

1 ≤ i ≤ n. With a slight abuse of notations, we sometimes

write a possibility distribution to mean a fuzzy set1.

For any µ, ν ∈ F(S), we say that µ is contained in ν (or ν

contains µ), denoted by µ ⊆ ν, if µ(s) ≤ ν(s) for all s ∈ S.

Notice that µ = ν if both µ ⊆ ν and ν ⊆ µ. We use ∅ to

denote the empty fuzzy set with ∅(s) = 0 for all s ∈ S. For

any s ∈ S, we write s̄ for the point distribution, satisfying

s̄(s′) = 1 if s′ = s and 0 otherwise.

For any p, q ∈ [0, 1], we write p ∨ q and p ∧ q to mean

max(p, q) and min(p, q), respectively, write
∨

i∈I pi for the

supremum of {pi | i ∈ I}, and
∧

i∈I pi for the infimum, where

{pi | i ∈ I} is a family of elements in [0, 1]. In particular,
∨

∅ = 0 and
∧

∅ = 1. For any c ∈ [0, 1] and µ ∈ F(S),
the scalar multiplication c · µ of c and µ is defined by letting

(c · µ)(s) = c ∧ µ(s), for each s ∈ S. Let {µi | i ∈ I} be a

family of elements of F(S), the union of µi, denoted
⋃

µi, is

given by (
⋃

i∈I µi)(s) =
∨

i∈I µi(s). The height of possibility

distribution µ, written ht(µ), is defined as
∨

s∈S µ(s).
Throughout this paper, we assume an ordinary finite set S

and let it denote the set of states of a fuzzy transition system.

B. Fuzzy Logic

Let us introduce an algebraic structure, which will play a

key role in defining the bisimilarity metric and in its logical

characterization.

Definition 1. [26] Let (C,≤, 0, 1) be a bounded linearly

ordered set. A function n : C → C is called an involution or

strong negation function if it is order-reversing with n(1) = 0
and n(n(x)) = x for all x ∈ C.

When C is taken as the unit interval [0, 1], the involutive

negation is usually interpreted by the standard negation:

n(x) = 1− x for any x ∈ [0, 1].

Definition 2. We consider the unit interval [0, 1] as an algebra

endowed with the operations min and max, a fixed left-

continuous t-norm ⊗ and its residum ⇒, as well as the

standard negation n. The ordering ≤ is as usual. This algebra

will be denoted by L⊗.

Notice that left-continuity is a necessary and sufficient

condition for a t-norm ⊗ and its residuum ⇒, defined as

x ⇒ y = sup{z ∈ [0, 1] | x ⊗ z ≤ y}, to verify the so-

called residuation property: x ≤ y ⇒ z iff x⊗ y ≤ z. In this

case, we say (⊗,⇒) is an adjoint pair [26].

For the basic properties of t-norms we refer to [27], [28].

There are four commonly used t-norms: Łukasiewicz t-norm

(x⊗y = max(x+y−1, 0)), Gödel t-norm (x⊗y = min(x, y)),
product t-norm (x⊗y = x×y), and nilpotent minimum t-norm

[29] (x⊗y = min(x, y) if x+y > 1 and 0 otherwise). The first

three are continuous, whereas the fourth is left-continuous. The

corresponding algebras are denoted by LL⊗, LG⊗, LP⊗, and LN⊗ ,

respectively. For convenience, we sometimes use the symbols

1Strictly speaking a possibility distribution is different from a fuzzy set,
though the former can be viewed as the generalized characteristic function of
the latter. See [25] for more detailed discussion.
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⇒L, ⇒G, ⇒P and ⇒N to denote the implications in the

algebras LL⊗, LG⊗, LP⊗, LN⊗ , respectively, which can be found

in [28], [29].

In general, an important aim of introducing an algebraic

structure is to establish the completeness of a formal system.

Examples include the BL-algebra for the basic logic intro-

duced by Hájek [28] and the MTL-algebra for the monoidal

t-norm based logic introduced by Esteva and Godo [26].

Nevertheless, our motivation is to establish an abstract metric

(see Section IV) and to characterize it (see Section V). Below

we discuss the reasons of choosing L⊗ by comparing it with

some relevant algebras.

• The standard semantics of BL (resp. MTL) uses the unit

interval [0, 1] as the set of truth values and a continuous

(resp. left-continuous) t-norm ⊗ as an interpretation of

the strong conjunction &. The implication → is inter-

preted by the residuum of ⊗. It is well known that

([0, 1],min,max,⊗,⇒, 0, 1) is an MTL-algebra [26],

and it is a BL-algebra provided that ⊗ is continuous [28].

• In BL and MTL-algebras, the negation ¬x = x ⇒ 0
is in general not involutive. Thus, BL and MTL as

well as some of their axiomatic extensions lack a strong

disjunction dual to the strong conjunction. Attempts have

been made to generalize them. For example, an IMTL-

algebra [26], where I stands for involution, is obtained

by adding ¬¬x = x to an MTL-algebra. However,

in IMTL the involution depends on the t-norm. As a

consequence, IMTL admits only those left-continuous t-

norms which yield an involutive negation, but rules out

operators like Gödel and product t-norms. In order to fill

such a gap, an MTLn-algebra2 is obtained by adding

an independent involutive negation n and a δ operation

to MTL; see [30] for more details. The extensions of

BL-algebra can be found in, for example, [31], [32].

Obviously, our L⊗ is like the MTLn-algebra giving up

the operator δ. In L⊗, we can obtain a t-conorm ⊕ by

letting x⊕ y = 1− [(1− x)⊗ (1− y)], which is dual to

⊗ and (⊗,⊕, n) is called a De Morgan triple.

• In this paper, the operator n is used for defining ⊕; the

operator ⊗ is used for producing the adjoint pair (⊗,⇒)
and the De Morgan triple (⊗,⊕, n). It is not used to inter-

pret the strong conjunction & as BL and MTL-algebras

do, since ϕ&ψ in general is not a formula in our fuzzy

modal logic; the induced operator ⊕ is used for defining

an abstract metric and for modeling the strong disjunction

(see Definition 6). Note that it is not used to interpret the

strong disjunctive connective ⊻ between formulae, since

ϕ⊻ψ in general is not a formula in our fuzzy modal logic.

This point is very different from [30], [32]. The induced

biimplication operator ⇔ helps us to model equivalence

≡ and is given by x⇔ y = (x⇒ y)∧ (y ⇒ x) (see [3],

[27]), which also deviates from BL and MTL-algebras,

where it is defined as x⇔ y = (x⇒ y)⊗ (y ⇒ x). For

more differences between L⊗ and the above algebras,

please see Section V.

2We use n instead of ∼ because this notion will be reserved for bisimilarity.

• The De Morgan triple (⊗,⊕, n) and the adjoint pair

(⊗,⇒) guarantee the main results of this paper to hold.

The following properties will be useful.

Proposition 1. Under L⊗, for any x, y, z, x1, x2, y1, y2, yi in

the interval [0, 1], where i ∈ I . The following properties hold.

(1) x⇒ y = 1 if and only if x ≤ y,
(2) 1⇒ x = x,

(3) x⊗ (x⇒ y) ≤ y,

(4) (x⇔ y)⊗ (y ⇔ z) ≤ x⇔ z,

(5) (x1 ⇔ y1) ∧ (x2 ⇔ y2) ≤ (x1 ∧ x2)⇔ (y1 ∧ y2),
(6) x1 ⇔ x2 ≤ (x1 ⇒ y)⇔ (x2 ⇒ y),
(7) x1 ⇔ x2 ≤ (y ⇒ x1)⇔ (y ⇒ x2),
(8) x⊕ (

∨

i∈I yi) ≥
∨

i∈I(x⊕ yi),
(9) x⊕ (

∧

i∈I yi) =
∧

i∈I(x⊕ yi).

Proof. The first five items can be found in [27], [28], [33].

Items (6) and (7) can be proven by adjoint condition. As an

example, we choose to prove (6). Let t ≤ x1 ⇔ x2. Then

t ≤ x1 ⇒ x2 and t ≤ x2 ⇒ x1. It follows by adjoint condition

that t ⊗ x1 ≤ x2 and t ⊗ x2 ≤ x1. Further, we have that

t ⊗ x2 ⊗ (x1 ⇒ y) ≤ x1 ⊗ (x1 ⇒ y) ≤ y by (3). Again, by

adjoint condition, we have that t⊗ (x1 ⇒ y) ≤ x2 ⇒ y, and

then t ≤ (x1 ⇒ y)⇒ (x2 ⇒ y). In a similar way, we can get

t ≤ (x2 ⇒ y) ⇒ (x1 ⇒ y). So t ≤ (x1 ⇒ y) ⇔ (x2 ⇒ y).
Thus, we obtain (x1 ⇔ x2) ≤ (x1 ⇒ y)⇔ (x2 ⇒ y).

Item (8) is trivial since ⊕ is monotonic. Item (9) can be

obtained by using the duality between ⊕ and ⊗ and the left-

continuity of ⊗.

III. DISTRIBUTION-BASED BISIMULATION

In this section, we introduce the notion of distribution-based

bisimulation for nondeterministic fuzzy transition systems.

Definition 3. [34] A nondeterministic fuzzy transition system

(NFTS) is a tripleM = (S,A,→), where S is a set of states,

A is a set of actions, and→ ⊆ S×A×F(S) is the transition

relation.

For each state s, more than one possibility distribution may

be reached by performing action a because of nondeterminism.

We often write s
a
−→ µ for (s, a, µ) ∈→. We write s 6

a
−→ if there

exists no µ such that s
a
−→ µ. Let us define a transition relation

between distributions in an NFTS.

Definition 4. Given an NFTS M = (S,A,→), the transition

relation → is lifted to →d⊆ F(S)×A×F(S) by taking the

smallest relation satisfying:

• if s
a
−→ µ then s̄

a
−→d µ;

• if s 6
a
−→ then s̄

a
−→d ∅;

• if s̄
a
−→d νs for each s ∈ supp(µ), then

µ
a
−→d

⋃

s∈supp(µ)

µ(s) · νs.

We often abuse the notation and →d is also denoted by →.

We define Ta(µ) as the set {ν ∈ F(S) | µ
a
−→ ν}. An NFTS

(S,A,→) is image-finite if for each distribution µ and each

action a, the set Ta(µ) is finite. The NFTS is finitary if it is

image-finite and has finitely many states.
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Note that if µ
a
−→ ν then some (not necessarily all) states in

the support of µ can perform action a. For example, consider

the two states s1 and s2 in Figure 1. Since s̄1
b
−→ 0.8

s3
and s2

cannot perform action b, the distribution µ = 0.6
s1

+ 0.8
s2

can

make the transition µ
b
−→ 0.6

s3
to reach the distribution 0.6

s3
.

Definition 5 (Distribution-based bisimulation). A symmetric

relationR ⊆ F(S)×F(S) is a distribution-based bisimulation

on an NFTS (S,A,→) if for all µ, ν ∈ F(S), whenever µRν
then:

(i) ht(µ) = ht(ν) and

(ii) if µ
a
−→ µ′, then there exists some ν′ ∈ F(S) such that

ν
a
−→ ν′ and µ′Rν′.

Two distributions µ, ν ∈ F(S) are bisimilar, written µ ∼ ν, if

there exists a distribution-based bisimulation R with µRν.

It is easy to see that ∼ is the greatest distribution-based

bisimulation since it is the union of all distribution-based

bisimulations. Moreover, it is an equivalence relation on F(S).

IV. DISTRIBUTION-BASED BISIMILARITY METRIC

Before defining the distribution-based bisimilarity metric,

we first introduce a triangular conorm-based metric.

A. Triangular Conorm-Based Metric

Recall that the similarity relation on S proposed by Zadeh

in [35] is a fuzzy relation S on S, i.e., a function of type

S × S → [0, 1], that satisfies the following three conditions:

(1) reflexive, i.e., S(s, s) = 1 for all s ∈ S,

(2) symmetric, i.e., S(s, t) = S(t, s) for all s, t ∈ S,

(3) max-star transitive, i.e., S ∗ S ⊆ S, or, more explicitly,
∨

s′∈S

S(s, s′) ∗ S(s′, t) ≤ S(s, t)

where ∗ is associative and monotone non-decreasing in each

of its arguments.

Now, we take ∗ to be a t-norm ⊗ and define, for all s, t ∈ S,

d(s, t) = 1− S(s, t). It turns out that, for all s, s′, t ∈ S, we

have d(s, t) ≤ d(s, s′) ⊕ d(s′, t). Moreover, d(s, s) = 0 and

d(s, t) = d(t, s). We call the distance function d a ⊕-metric.

Next, we generalize the ⊕-metric from S to F(S).

Definition 6. Under L⊗, a function d : F(S)×F(S)→ [0, 1]
is called a ⊕-metric on F(S) if for all µ, ν, η ∈ F(S),

(P1) d(µ, µ) = 0,

(P2) d(µ, ν) = d(ν, µ),
(P3) d(µ, η) ≤ d(µ, ν) ⊕ d(ν, η).

We call (F(S), d) a ⊕-metric space.

This definition generalizes the notion of the pseudo-

ultrametric given by Cao et al. in [2] in two aspects: (1)

our metric is directly defined on distributions, whereas Cao’s

is defined on states; (2) we use ⊕ instead of ∨ in Cao’s

definition, i.e, the max-disjunction is replaced by the strong

disjunction. The following proposition indicates that ⊕-metric

always exists.

Proposition 2. Given a t-conorm ⊕ from L⊗, the ⊕-metric

always exists.

Proof. Let ⊥(µ, ν) = 1 − (ht(µ) ⇔ ht(ν)) for any distribu-

tions µ, ν ∈ F(S). Then it is easy to see that ⊥ satisfies P1
and P2. Now, we verify P3. For any µ, ν, η ∈ F(S), we have

⊥(µ, ν)⊕⊥(ν, η)
= [1− (ht(µ)⇔ ht(ν))]⊕ [1− (ht(ν)⇔ ht(η))]
= 1− (ht(µ)⇔ ht(ν))⊗ (ht(ν)⇔ ht(η))
≥ 1− (ht(µ)⇔ ht(η)) (by Proposition 1 (4))

= ⊥(µ, η)

as expected.

We can understand ⊥(µ, ν) as how far distributions µ and ν

are from the same height based on the ⊕-metric. If ⊕ is taken

from LL⊗, then we have ⊥(µ, ν) = |ht(µ) − ht(ν)|, which

gives a pseudometric bounded by 1 often used in probabilistic

systems. If ⊕ is taken from LG⊗, then ⊥(µ, ν) = 0 when

ht(µ) = ht(ν), and max(1 − ht(µ), 1 − ht(ν)) otherwise,

which is a pseudo-ultrametric. In the same way, one can get

⊥(µ, ν) when ⊕ is taken from LN⊗ and LP⊗, respectively. A

pseudo-ultrametric is a ⊕-metric because ∨ is the minimum

t-conorm, but the inverse is not necessarily true, as witnessed

by ⊥ when ⊕ is taken from LL⊗, LN⊗ , and LP⊗, respectively.

Note that ⊥ is important for defining our bisimilarity metric

and we use it as a special notation in the sequel.

Let DF(S) be the set of all ⊕-metrics on F(S). The order �
on DF(S) is defined by letting d1 � d2 if for all µ, ν ∈ F(S)
we have d1(µ, ν) ≤ d2(µ, ν).

It is easy to check that � is indeed a partial order on DF(S).

Recall that a partially ordered set (X,≤) is called a complete

lattice if every subset of X has a supremum and an infimum

in X . We now show that DF(S) endowed with the above order

forms a complete lattice.

Lemma 1. Under L⊗, (DF(S),�) is a complete lattice.

Proof. For any X ⊆ DF(S), we define
⊔

X by letting

(
⊔

X)(µ, ν) =
∨

{d(µ, ν) | d ∈ X} and
d
X by lettingd

X =
⊔

{d ∈ DF(S) | ∀d
′ ∈ X, d � d′}. We need to

verify that
⊔

X and
d
X are the supremum and infimum of

X , respectively. We only prove that
⊔

X is the supremum;

the infimum can be proven similarly. We first show that
⊔

X ∈ DF(S). It is obvious that (
⊔

X)(µ, µ) = 0 and

(
⊔

X)(µ, ν) = (
⊔

X)(ν, µ). For (P3), we have that

(
⊔

X)(µ, ν)
=

∨

d∈DF(S)
d(µ, ν)

≤
∨

d∈DF(S)
(d(µ, η) ⊕ d(η, ν))

≤
∨

d∈DF(S)
d(µ, η)⊕

∨

d∈DF(S)
d(η, ν)

= [(
⊔

X)(µ, η)]⊕ [(
⊔

X)(η, ν)]

for any µ, ν, η ∈ F(S). Hence
⊔

X is a ⊕-metric. In addition,

it is not hard to prove that
⊔

X is the supremum of X . Hence

(DF(S),�) is a complete lattice.

Hausdorff distance measures how far two subsets of a metric

space are from each other, which allows us to lift a ⊕-metric

on F(S) to a ⊕-metric on P(F(S)).
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Definition 7. Let (F(S), d) be a ⊕-metric space. For any

µ ∈ F(S) and a finite subset A of F(S), define

d(µ,A) =
∧

ν∈A

d(µ, ν).

Furthermore, given a pair of finite subsets A,B ⊆ F(S), the

Hausdorff distance induced by d is defined as

Hd(A,B) = [
∨

µ∈A

d(µ,B)] ∨ [
∨

ν∈B

d(ν,A)].

As expected, Hd has the following property.

Lemma 2. Under L⊗, if d is a ⊕-metric on F(S), then Hd

is a ⊕-metric on Pf (F(S)), where Pf (F(S)) stands for the

set of all finite subsets of F(S).

Proof. Firstly, it is easy to see that Hd(A,A) = 0 and

Hd(A,B) = Hd(B,A). Secondly,

Hd(A,B)⊕Hd(B,C)
≥ [

∨

µ∈A d(µ,B)] ⊕ [
∨

ν∈B d(ν, C)]

≥
∨

µ∈A

∨

ν∈B[d(µ,B)⊕ d(ν, C)] (by Proposition 1 (8))

≥
∨

µ∈A

∨

ν∈B[d(µ, ν
′)⊕ d(ν, C)] (for some ν′ ∈ B)

≥
∨

µ∈A[d(µ, ν
′)⊕ d(ν′, C)]

=
∨

µ∈A[d(µ, ν
′)⊕ (

∧

η∈C d(ν
′, η))]

=
∨

µ∈A[
∧

η∈C(d(µ, ν
′)⊕ d(ν′, η))]

≥
∨

µ∈A

∧

η∈C d(µ, η)

=
∨

µ∈A d(µ,C).

Similarly, we have Hd(A,B) ⊕ Hd(B,C) ≥
∨

η∈C d(η,A).
Hence,

Hd(A,B)⊕Hd(B,C)
≥ [

∨

µ∈A d(µ,C)] ∨ [
∨

η∈C d(η,A)]

= Hd(A,C).

This completes the proof.

The following lemma shows that the distance between a

distribution and a finite set of distributions is preserved by the

sup of an increasing ⊕-metric chain.

Lemma 3. Let (F(S), d) be a ⊕-metric space, {dn | n ∈ N}
be an increasing chain, i.e., d0 � d1 � d2 · · · , and B be a

finite subset of F(S). Then for any µ ∈ F(S), we have

(
⊔

n∈N

dn)(µ,B) =
∨

n∈N

dn(µ,B).

Proof. It is sufficient to prove that

inf
ν∈B

sup
n∈N

dn(µ, ν) = sup
n∈N

inf
ν∈B

dn(µ, ν).

First, for any n ∈ N, it is clear that

inf
ν∈B

dn(µ, ν) ≤ inf
ν∈B

sup
n∈N

dn(µ, ν).

This shows that infν∈B supn∈N
dn(µ, ν) is an upper bound of

the set {infν∈B dn(µ, ν) | n ∈ N}.
Second, for any ν ∈ B, we consider supn∈N dn(µ, ν). For

any ǫ > 0, there exists some nν such that

dnν
(µ, ν) > sup

n∈N

dn(µ, ν)− ǫ.

Since B is finite and dn(n ∈ N) is an increasing chain, there

exists a d such that d(µ, ν) > supn∈N dn(µ, ν) − ǫ for any

ν ∈ B. Hence,

inf
ν∈B

d(µ, ν) > inf
ν∈B

(sup
n∈N

dn(µ, ν)−ǫ) = inf
ν∈B

sup
n∈N

dn(µ, ν)−ǫ.

Thus, infν∈B supn∈N dn(µ, ν) is the supremum of the set

{infν∈B dn(µ, ν) | n ∈ N}. We have completed the proof.

An immediate corollary is that the Hausdorff distance

between two finite sets of possibility distributions is preserved

by the sup of an increasing ⊕-metric chain.

Corollary 1. Let (F(S), d) be a ⊕-metric space, A,B be

finite subsets of F(S), and {dn | n ∈ N} be an increasing

chain. Then H⊔
n∈N

dn(A,B) =
∨

n∈N
Hdn(A,B).

Proof. Straightforward by using Lemma 3.

B. Distribution-Based Bisimulation Metric

Inspired by [36], we define a bisimilarity metric that can

measure the behavioural distance between two distributions.

Definition 8. Given an NFTS (S,A,→) and L⊗, a ⊕-metric

d on F(S) is called a distribution-based bisimulation metric

if for all µ, ν ∈ F(S),

(i) ⊥ � d and

(ii) d(µ, ν) < 1 implies that whenever µ
a
−→ µ′ then there

exists a transition ν
a
−→ ν′ with d(µ′, ν′) ≤ d(µ, ν).

The first condition says that d should be at least ⊥. The

second condition requires the matching of transitions and the

distance between the two successor distributions should not

exceed the distance between the original distributions.

Below we aim to give a fixed-point characterization of

bisimulation metric.

Definition 9. Given an image-finite NFTS (S,A,→), the

functional ∆ : DF(S) → DF(S) is defined as follows: for

any d ∈ DF(S) and µ, ν ∈ F(S),

∆(d)(µ, ν) = max(
∨

a∈A

Hd(Ta(µ), Ta(ν)),⊥(µ, ν)).

Now, we check that ∆ is well-defined.

Proposition 3. Given an image-finite NFTS (S,A,→), then

for any d ∈ DF(S), we have ∆(d) ∈ DF(S).

Proof. It is easy to see that ∆(d) satisfies P1 and P2. Now, we

verify P3. For any µ, ν, η ∈ F(S), it is obvious that, for any

a ∈ A, ∆(d)(µ, ν) ≥ Hd(Ta(µ), Ta(ν)) and symmetrically

∆(d)(ν, η) ≥ Hd(Ta(ν), Ta(η)). Hence, for any a ∈ A,

∆(d)(µ, ν) ⊕∆(d)(ν, η)
≥ Hd(Ta(µ), Ta(ν))⊕Hd(Ta(ν), Ta(η))
≥ Hd(Ta(µ), Ta(η)) (by Lemma 2).

Consequently,

∆(d)(µ, ν) ⊕∆(d)(ν, η) ≥
∨

a∈A

Hd(Ta(µ), Ta(η)).

On the other hand, we also have

∆(d)(µ, ν) ≥ ⊥(µ, ν) and ∆(d)(ν, η) ≥ ⊥(ν, η).
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Hence,

∆(d)(µ, ν) ⊕∆(d)(ν, η) ≥ ⊥(µ, ν)⊕⊥(ν, η) ≥ ⊥(µ, η)

by Proposition 2. It follows that

∆(d)(µ, ν) ⊕∆(d)(ν, η)
≥ max(

∨

a∈AHd(Ta(µ), Ta(η)),⊥(µ, η)).

That is, ∆(d)(µ, ν)⊕∆(d)(ν, η) ≥ ∆(d)(µ, η) as desired.

Moreover, ∆ is monotonic with respect to the order �,

i.e., if d1 � d2, then we have ∆(d1) � ∆(d2). Recall that

the Knaster-Tarski fixed-point theorem [37] says that each

monotonic function on a complete lattice has a least fixed

point. Hence the following proposition holds.

Proposition 4. Given an image-finite NFTS (S,A,→), the

functional ∆ : DF(S) → DF(S) has a least fixed point given

by

∆min =
l
{d : ∆(d) � d}.

Let us present an explicit characterization of bisimulation

metrics in terms of pre-fixed points of ∆.

Lemma 4. Given an image-finite NFTS (S,A,→), for any

d ∈ DF(S), d is a pre-fixed points of ∆ if and only if it is a

distribution-based bisimulation metric.

Proof. Straightforward by the definitions of distribution-based

bisimulation metric and ∆.

Proposition 4 and Lemma 4 imply the following theorem.

Theorem 1. Given an image-finite NFTS (S,A,→). The

smallest distribution-based bisimulation metric exists, more-

over it is just ∆min. Let db
def
= ∆min and call it distribution-

based bisimilarity metric.

In what follows, we use dLb , dGb , dPb , and dNb to denote

distribution-based bisimilarity metrics based on LL⊗, LG⊗,

LP⊗ and LN⊗ , respectively. Under the assumption of image-

finiteness, Corollary 1 implies that ∆ preserves the sup of an

increasing chain of DF(S).

Lemma 5. Given an image-finite NFTS (S,A,→), we have

∆(
⊔

n∈N

dn) =
⊔

n∈N

∆(dn)

where dn(n ∈ N) is an increasing chain of DF(S).

Combining Theorem 1 and Lemma 5 gives a way to

calculate the distribution-based bisimilarity metric for image-

finite NFTSs.

Corollary 2. Let (S,A,→) be an image-finite NFTS. We

define ∆0(⊥)
def
= ⊥ and ∆n+1(⊥)

def
= ∆(∆n(⊥)). Then

db = ∆min =
⊔

n∈N

∆n(⊥).

Proof. The proof is standard; see e.g. Page 183 in [37].

We give a simple example below to illustrate the above

notions and results.

Example 1. Consider Figure 1 again. Let µ1 = 0.6
s1

+ 0.8
s2

,

µ2 = 0.8
s3

, ν1 = 0.6
t1

+ 0.8
t2

and ν2 = 0.6
t3

. We write dn for

∆n(⊥), clearly di � di+1 for any i ∈ N. Now, we compute

dGb (s̄, t̄) and dGb (s̄1, t̄2). For any n ≥ 3,

dn(s̄, t̄) = ∆(dn−1)(s̄, t̄)
= max(dn−1(µ1, ν1), 1− (ht(s̄)⇔G ht(t̄)))
= dn−1(µ1, ν1)
= ∆(dn−2)(µ1, ν1)
= max(dn−2(

0.6
s3
, 0.6
t3
), 1− (ht(µ1)⇔G ht(ν1)))

= dn−2(
0.6
s3
, 0.6
t3
)

= ∆(dn−3)(
0.6
s3
, 0.6
t3
)

= max(dn−3(∅, ∅), 1− (ht(0.6
s3

)⇔G ht(0.6
t3
)))

= 0.

Hence dGb (s̄, t̄) = 0. In the same way, we can calculate that

dGb (s̄1, t̄2) = 0.4.

For any pair of possibility distributions µ and ν, we observe

that the smaller the value of db(µ, ν), the more similar the

distributions.

Corollary 3. Given an image-finite NFTS (S,A,→). For any

s, t ∈ S, let S(s, t)
def
= 1 − db(s̄, t̄). Then S is a similarity

relation on S.

The above corollary relates distribution-based bisimilarity

metric to Zadeh’s similarity relation.

We can see that ⊥ plays a key role in computing the

distribution-based bisimilarity metric, which is obtained by an

iteration of ∆ starting from ⊥. This paper uses the least fixed

point to establish the distribution-based bisimilarity metric,

while Cao et al. [2] used the greatest fixed point to establish the

behavioural distance. However, there is no essential difference

because in [2] the partial order on DF(S) is reverse, i.e.,

d1 � d2 if d1(s, t) ≥ d2(s, t) for all s, t ∈ S.

C. An Algorithm for Computing db

First of all, let us fix a finitary NFTS M = (S,A,→).
Given any pair of possibility distributions µ, ν ∈ F(S), we

present an on-the-fly algorithm to compute their distance.

In order to compute the distance db(µ, ν), we need to suc-

cessively compute dn(µ, ν) = ∆n(⊥)(µ, ν) by Corollary 2,

until an N appears such that dN (µ, ν) = dN+1(µ, ν). Then

db(µ, ν) = dN (µ, ν). The tricky point is that there may be

several n satisfying dn(µ, ν) = dn+1(µ, ν) and we cannot

simply choose any of them to be N . We have to make sure

that similar condition dN (µ′, ν′) = dN+1(µ
′, ν′) also holds

for any µ′ and ν′ reachable from µ and ν, respectively.

Algorithm 1 gives the details. The main procedure is

distance(µ, ν), which first uses the procedure generate to

generate all the generalized states reachable from µ and ν,

then repeatedly calls dist(n, µ′, ν′) for computing dn(µ
′, ν′).

The procedure dist(n, µ, ν) faithfully implements the inductive

definition ∆n(⊥)(µ, ν) for n ≥ 0. When a sufficiently large

number n is obtained such that dn(µ
′, ν′) = db(µ

′, ν′) for any

µ′ and ν′ reachable from µ and ν, respectively, the algorithm

terminates. Therefore, the correctness of the algorithm is

ensured by the fixed point characterization of the bisimilarity

metric given in Corollary 2.
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Proposition 5. For any infinite sequence of transitions

µ0
a1−→ µ1

a2−→ µ2
a3−→ · · ·

there exists some i ≥ 0 such that for all j > i we have

ht(µj) = ht(µi).

Proof. Suppose for a contraction that ∀i, ∃j > i with

ht(µj) 6= ht(µi). So in particular, for i = 0, ∃j1 > 0
such that ht(µj1) 6= ht(µ0). Then for j1, ∃j2 > j1 such

that ht(µj2) 6= ht(µj1). Continuing this process, we will

get that ht(µjn) 6= ht(µjn−1) for any n ≥ 2. Note that

Definition 4 implies that ht(µ) ≥ ht(ν) for any µ
a
−→ ν with

a ∈ A. Hence, we get that ht(µj1) > ht(µj2) > · · · , i.e.,

an infinite descending chain of non-zero values of ht(µjn).
However, this is impossible. The reason is as follows. Let

X = {µ0(s
′) | s′ ∈ S} and Y be the set defined by

{ν(s′) | s′ ∈ S, ∃s ∈ S, s
a
−→ ν}. Note that the two sets

are finite because S is finite and the transitions are finite.

Now, by Definition 4, µ1 =
⋃

s∈supp(µ0)
µ0(s) · νs, where

the distribution νs is obtained by s in supp(µ0) performing

the action a. For any s′ ∈ S, µ1(s
′) only takes values in the

set X or Y , implying that ht(µ1) only takes values in these

two sets. In the same way, each ht(µjn)(n ≥ 1) only takes

value in these two sets, which is in contradiction with the fact

that {ht(µjn) | n ≥ 1} has an infinite descending chain.

This proposition shows that for any given distribution µ,

after finitely many transitions, the height of the resulting

distributions will not change any more, which is important

for the termination of the algorithm that we will soon present.

Theorem 2. Under the L⊗, the algorithm terminates and is

EXPTIME.

Proof. We first show the algorithm terminates. Proposition 5

says that for any chain of transitions µ
a
−→ µ1

b
−→ µ2 · · · ,

the height of distributions in this chain will not change any

more after finite number of steps. The proof of that proposition

also says that the transition systems between distributions are

finitary, which is important for the analysis below. For any

µ, ν ∈ F(S) and n ≥ 0, we know that

dn+1(µ, ν) = max(
∨

a∈A

Hdn(Ta(µ), Ta(ν)),⊥(µ, ν)). (1)

If µ and ν are fixed, the choices on the right hand side

are finite: dn+1(µ, ν) is determined by either ⊥(µ, ν) or

dn(µi, νj) with µ
a
−→ µi and ν

a
−→ νj , where there are only

finitely many outgoing transitions from µ and ν. However, (1)

holds for any n ≥ 0. It must be the case that either

dn+1(µ, ν) = ⊥(µ, ν), (2)

or

dn+1(µ, ν) = dn(µi, νj) (3)

for some fixed transitions µ
a
−→ µi and ν

a
−→ νj , but infinitely

many different n’s. In other words, the distance between µ

and ν is either a fixed number ⊥(µ, ν) or determined by a

pair of their successor distributions. In the latter case, the

same remark can be made again. Eventually, the computation

of dist(n, µ, ν) (n ≥ 0) boils down to the computations

Algorithm 1 Compute the distance between two distributions

Input: A finite NFTS, and µ, ν ∈ F(S).
Output: db(µ, ν).

procedure distance(µ, ν)
n← 1;

for all µi ∈ generate(µ) do

for all νj ∈ generate(ν) do

nij ← 1;

while dist(nij − 1, µi, νj) 6= dist(nij , µi, νj) do

nij ← nij + 1;

end while

if nij > n then

n← nij
end if

end for

end for

return dist(n, µ, ν);
end procedure

procedure generate(µ)
D ← {µ}
repeat

for all a ∈ A do

for all µ′ ∈ D do

D′ ← D ∪ Ta(µ
′)

end for

end for

until D′ = D

return D

procedure dist(n, µ, ν)
if n = 0 then

return 1− (ht(µ′)⇔ ht(ν′));
else

for all a ∈ A do

for all µi ∈ Ta(µ) do

for all νj ∈ Ta(ν) do

daij ← dist(n− 1, µi, νj);
end for

end for

end for

return
∨

a((
∨

i

∧

j daij)∨ (
∨

j

∧

i daij))∨dist(0, µ, ν);
end if

end procedure

of ⊥(µk, νl), where µk and νl are elements in the chains

generated by µ and ν, respectively. Hence, when the heights

of distributions do not change, the values of ⊥(µk, νl) do

not change either. Consequently, there exists some N such

that dist(N,µ′, ν′) = dist(N + 1, µ′, ν′) for any µ′ and ν′

reachable from µ and ν, respectively, hence the algorithm will

terminate.

We now consider the time complexity. Let (S,A,→) be

the NFTS under consideration. Assume that the size of the

state space is n = |S| and the number of edges (viewing the
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NFTS as a directed graph) labelled with possibility values

is m. Suppose the density of the NFTS is k. That is, from

any state s there are at most k outgoing transitions s
a
−→ µi

with the same label a, for any a ∈ A. In the worst case,

the support of µ is S. By Definition 4, from µ there are at

most kn outgoing transitions with the same label. Similarly for

ν. Therefore, in the procedure dist(l, µ, ν), we will compute

dist(l− 1, µi, νj) at most |A|k2n times. For any µ, ν ∈ F(S),
let tl be the time of computing dist(l, µ, ν). We see that

tl = |A|k
2ntl−1. It follows that tl is in O((|A|k2n)l). In the

proof of Proposition 5, the sizes of the sets X and Y are

bounded by n and m, respectively. Therefore, the procedure

dist(l, µ′, ν′) will stabilize after n + m iterations. Note that

for each distribution µ′ reachable from µ, its support is at

most S and the possibility µ′(s) for any s in its support must

be a possibility value that has already appeared and labelled

some transition in the original NFTS. So the total number of

those values is less than the total number m of edges of the

graph of the original NFTS. It follows that the total number of

distributions reachable from µ or ν is at most nm. Therefore,

the overall time consumed is thus in O(nm|A|n+mk2n
2+2nm),

which means that the algorithm takes exponential time.

Remark 1. Let us consider the algorithm in three particular

cases.

1) If an NFTS is deterministic, i.e. its density k is equal

to 1, the above algorithm still takes exponential time.

There are two time-consuming tasks: (1) to find some

N such that dN (µ, ν) stabilizes; (2) to guarantee that

dN is stable not only for µ and ν, but also for any pair

of distributions reachable from µ and ν. This obstacle

reminds us of the problem of computing the bisimilarity

metric for probabilistic systems [38]–[40], for which

there does not seem to exist polynomial time algorithms.

For example, van Breugel and Worrell [40] point out that

the problem of computing the bisimilarity pseudometric

on the state space of a probabilistic automaton is in

PPAD, which stands for polynomial parity argument

in a directed graph. It lies between the search problem

versions of P and NP.

2) Given a finitary NFTS without loops, we know that

it has a finite tree structure. Suppose the height of

the tree is h. If we apply the above algorithm, it

is easy to see that after at most h + 1 rounds of

iteration, the approximate computation of the distance

between any pair of distributions will stabilize. That is,

dist(h, µ, ν) = dist(h + 1, µ, ν), and similarly for any

pair of distributions reachable from µ and ν. Moreover,

the procedure distance can be simplified: there is no

need to call generate and it suffices to require the

while loop to iterate h+1 times. The overall time thus

consumed is O(|A|h+1k2n(h+1)).
3) If the NFTS in 2) is deterministic, then the running time

of the algorithm becomes O(|A|h+1). So in this very

particular case the algorithm becomes polynomial.

V. FUZZY MODAL LOGIC

In this section, we introduce a fuzzy modal logic that can

characterize distribution-based bisimilarity metric. Let A be

a set of actions ranged over by a, b, · · · , and T be a fixed

proposition, which is taken from the classical Hennessy-Milner

Logic [20]. The language L of formulae is the least set

generated by the following BNF grammar:

ψ ::= T | ψ1 ∧ ψ2 | ψ → p̄ | p̄→ ψ | 〈a〉ψ

where p ∈ [0, 1]. We write ϕ↔ p̄ for (ϕ→ p̄) ∧ (p̄→ ϕ).
Note that the formulae in L are defined inductively, so we

can only generate formulae of finite depth such as T, 〈a〉T,

〈a〉〈b〉T, T → p̄, p̄ → 〈a〉T, (〈a〉T → p̄) ∧ (r̄ → 〈b〉T), etc.

However, 〈a〉T→ T is not a legitimate formula.

Let us fix an NFTSM = (S,A,→). We define the semantic

function [[·]] : L → F(S) → [0, 1] to calculate the degree for

a distribution to satisfy a formula.

Definition 10. A formula ψ ∈ L evaluates in µ ∈ F(S) as

follows:

• [[T]](µ)
def
= ht(µ),

• [[ψ1 ∧ ψ2]](µ)
def
= min([[ψ1]](µ), [[ψ2]](µ)),

• [[ψ → p̄]](µ)
def
= [[ψ]](µ)⇒ p,

• [[p̄→ ψ]](µ)
def
= p⇒ [[ψ]](µ),

• [[〈a〉ψ]](µ)
def
= max

µ
a−→µ′

[[ψ]](µ′).

The roles of the operators in L⊗ will be clearer when

connecting them with the fuzzy modal logic L.

1) In general, for any ϕ, ψ ∈ L, ϕ ∨ ψ, ϕ&ψ, and ϕ→ ψ

need not be fuzzy modal logical formulae. This point is

completely different from BL and MTL;

2) The operator min is used to interpret the min-

conjunction ∧ as BL and MTL-algebras do;

3) The operator max is used to interpret the formula

〈a〉ψ, which specifies the property for a distribution to

perform action a and result in a possible distribution to

satisfy ψ. Due to nondeterminism, from µ there may be

several transitions labelled by the same action a, e.g.

µ
a
−→ µi with i ∈ I . We take the optimal case by letting

[[〈a〉ψ]](µ) be the maximal [[ψ]](µi) when i ∈ I;

4) The operator⇒ is used to interpret the formula ψ → p̄,

where p ∈ [0, 1].

Definition 11. Let S = (S,A,→) be an NFTS, for any

distributions µ, ν ∈ F(S), the logical metric between µ and

ν is defined by dl(µ, ν) = 1− infψ∈L([[ψ]](µ)⇔ [[ψ]](ν)).

By Proposition 1 (4), it is not difficult to verify that dl is a

⊕-metric on F(S). In the following, we use dLl , dGl , dPl , and

dNl to denote logical metrics based on LL⊗, LG⊗, LP⊗ and LN⊗ ,

respectively.

The rest of this section is devoted to a logical characteriza-

tion of db. It turns out that dl coincides with db if we consider

image-finite NFTSs. We split the proof of this coincidence

result into two parts, to show that one metric is dominated by

the other and vice versa.

Lemma 6. For image-finite NFTSs, we have dl � db.
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Proof. Let (S,A,→) be an image-finite NFTS. For any

distributions µ, ν ∈ F(S), we need to show the inequality

dl(µ, ν) ≤ db(µ, ν). It is sufficient to prove

[[ψ]](µ)⇔ [[ψ]](ν) ≥ 1− db(µ, ν)

for all ψ ∈ L.

We proceed by structural induction on formulae. We first

analyze the structure of ψ ∈ L.

• ψ ≡ T. Then it is trivial to see that

[[T]](µ)⇔ [[T]](ν) = ht(µ)⇔ ht(ν) ≥ 1− db(µ, ν)

because ⊥(µ, ν) = 1− (ht(µ)⇔ ht(ν)) ≤ db(µ, ν) and

db is a bisimulation metric.

• ψ ≡ ψ1 ∧ ψ2. We infer that

[[ψ1 ∧ ψ2]](µ)⇔ [[ψ1 ∧ ψ2]](ν)
= min([[ψ1]](µ), [[ψ2]](µ))⇔ min([[ψ1]](ν), [[ψ2]](ν))
≥ min([[ψ1]](µ)⇔ [[ψ1]](ν), [[ψ2]](µ)⇔ [[ψ2]](ν))
≥ 1− db(µ, ν) (by induction on ψ1 and ψ2).

The second step holds because of Proposition 1 (5).

• ψ ≡ ψ1 → p̄. We infer that

[[ψ1 → p̄]](µ)⇔ [[ψ1 → p̄]](ν)
= ([[ψ1]](µ)⇒ p)⇔ ([[ψ1]](ν)⇒ p)
≥ [[ψ1]](µ)⇔ [[ψ1]](ν) (by Proposition 1 (6))

≥ 1− db(µ, ν) (by induction on ψ1).

• ψ ≡ p̄ → ψ1. Similar to the last case by using

Proposition 1 (7).

• ψ ≡ 〈a〉ψ′. Let µ′ be the distribution such that µ
a
−→ µ′

and [[〈a〉ψ′]](µ) = [[ψ′]](µ′). Since db is a distribution-

based bisimulation metric, by Definition 8, there exists

some ν′ such that ν
a
−→ ν′ and db(µ

′, ν′) ≤ db(µ, ν).
Without loss of generality, we assume [[ψ]](µ) ≥ [[ψ]](ν).
In this case, [[ψ′]](µ′) ≥ [[ψ′]](ν′). We distinguish two

possibilities:

– [[ψ]](µ) = [[ψ]](ν). Then

[[ψ]](µ)⇔ [[ψ]](ν)
= 1
≥ 1− db(µ, ν)

– [[ψ]](µ) > [[ψ]](ν). Then

[[ψ]](µ)⇔ [[ψ]](ν)
= [[ψ]](µ)⇒ [[ψ]](ν) (by Proposition 1 (1))

= [[ψ′]](µ′)⇒ max
ν

a−→ν′′
[[ψ′]](ν′′)

≥ [[ψ′]](µ′)⇒ [[ψ′]](ν′)
≥ 1− db(µ′, ν′) (by induction on ψ′).

≥ 1− db(µ, ν).

Lemma 7. For image-finite NFTSs, we have db � dl.

Proof. Since db is the least distribution-based bisimulation

metric, it suffices to prove that dl is a distribution-based

bisimulation metric. Let (S,A,→) be an image-finite NFTS

and µ, ν ∈ F(S) be any two distributions. First, we prove the

inequality ⊥ � dl. This holds because

dl(µ, ν) = 1− infψ∈L([[ψ]](µ)⇔ [[ψ]](ν))
≥ 1− ([[T]](µ)⇔ [[T]](ν))
= 1− (ht(µ)⇔ ht(ν))
= ⊥(µ, ν).

Now, assume that µ
a
−→ µ′ and dl(µ, ν) = r < 1. We

need to show that there exists some transition ν
a
−→ ν′ with

dl(µ
′, ν′) ≤ dl(µ, ν). Suppose for a contradiction that no

a-transition from ν satisfies this condition. Then for each νi
(i ∈ I) with ν

a
−→ νi we have dl(µ

′, νi) > r. There must exist

some formula ψi ∈ L such that 1−([[ψi]](µ′)⇔ [[ψi]](νi)) > r,

that is, [[ψi]](µ
′) ⇔ [[ψi]](νi) < 1 − r, for each i ∈ I . Note

that by assumption the NFTS is image-finite, so the index set

I is finite. Define ψ′
i = ψi ↔ [[ψi]](µ′). Then for all i ∈ I ,

[[ψ′
i]](µ

′) = 1 and [[ψ′
i]](νi) = [[ψi]](µ

′)⇔ [[ψi]](νi) < 1− r.

Let ψ = 〈a〉
∧

i∈I ψ
′
i. Then we infer that

[[ψ]](µ) = max
µ

a−→µ′′
[[
∧

i∈I ψ
′
i]](µ

′′)

≥ [[
∧

i∈I ψ
′
i]](µ

′)
= mini∈I [[ψ

′
i]](µ

′)
= 1.

On the other hand, we have

[[ψ]](ν) = max
ν

a−→νi
[[
∧

j∈I ψ
′
j ]](νi)

= max
ν

a−→νi
minj∈I [[ψ

′
j ]](νi)

≤ max
ν

a−→νi
[[ψ′
i]](νi)

< 1− r.

It follows that

dl(µ, ν) = 1− infψ′∈L([[ψ
′]](µ)⇔ [[ψ′]](ν))

≥ 1− [[ψ]](µ)⇔ [[ψ]](ν)
= 1− [[ψ]](ν) (by Proposition 1 (2))

> 1− (1− r)
= r

which is in contradiction to dl(µ, ν) = r.

By combining the above two lemmas, we arrive at the

following logical characterization theorem.

Theorem 3. For image-finite NFTSs, we have dl = db.

For any µ, ν ∈ F(S) and any ψ ∈ L, the proof of Lemma 6

implies [[ψ]](µ) = [[ψ]](ν) when µ ∼ ν. It follows that µ ∼ ν

implies dl(µ, ν) = 0. On the other hand, define the binary

relation R
def
= {(µ, ν) | dl(µ, ν) = 0}. Then R is obvious an

equivalence relation. The proof of Lemma 7 implies that R is

a distribution-based bisimulation. Hence dl(µ, ν) = 0 implies

µ ∼ ν. Therefore, two distributions are bisimilar if and only

of the logical distance between them is 0.

Corollary 4. Let µ and ν be two distributions over an image-

finite NFTS. Then µ ∼ ν iff dl(µ, ν) = db(µ, ν) = 0 iff

[[ψ]](µ) = [[ψ]](ν) for all ψ ∈ L.

The above property can be used to judge whether two

distributions are bisimilar.
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Example 2. According to Corollary 4 and the computation

results of Example 1, we can see that s̄ and t̄ are bisimilar,

whereas s̄1 and t̄2 are not.

In addition, with Theorem 3 sometimes we can easily cal-

culate distribution-based bisimilarity metric in terms of dl. For

instance, consider Example 1 again. The only relevant formula

is 〈b〉T, and it is direct to calculate that [[〈b〉T]](s̄1) = 0.8
and [[〈b〉T]](t̄2) = 0.6. Thus [[〈b〉T]](s̄1) ⇔ [[〈b〉T]](t̄2) = 0.6
under the Gödel implication. It follows from Theorem 3 that

dGb (s̄1, t̄2) = dGl (s̄1, t̄2) = 1− 0.6 = 0.4.

VI. NON-EXPANSIVENESS

In this section, we show the non-expansiveness of our

distribution-based bisimilarity metric with respect to a parallel

composition in the style of CSP [15]. It means that if the

difference (with respect to bisimilarity metric) between µi
and νi is ǫi, then the difference between f(µ1, · · · , µn) and

f(ν1, · · · , νn) is no more than
∨n
i=1 ǫi [2], where f is a

parallel composition operator with n arguments. This non-

expansiveness makes compositional verification possible.

Given an NFTS (S,A,→) and two possibility distributions

µ, ν ∈ F(S), the key to define a parallel composition is how

to appropriately define the fuzzy set represented by µ‖ν. For

example, let µ = 0.3
s1

+ 0.5
s2

and ν = 0.4
s3

. Intuitively, in their

parallel composition, (s1, s3) appears with possibility 0.3 and

(s2, s3) appears with possibility of 0.4. That is, µ‖ν is the

fuzzy set 0.3
(s1,s3)

+ 0.4
(s2,s3)

. Hence, µ‖ν is given by

(µ‖ν)(s, t) = µ(s) ∧ ν(t)

for all (s, t) ∈ S × S. Clearly, we have µ‖ν ∈ F(S × S)
and in general, (µ‖ν) and (ν‖µ) are different fuzzy sets on

F(S × S). For instance, (ν‖µ) = 0.3
(s3,s1)

+ 0.4
(s3,s2)

. Note that

(s̄‖t̄)(s′, t′) = 1 if (s′, t′) = (s, t) and 0 otherwise. The

above fuzzy set µ‖ν can be understood as 0.3
s̄1‖s̄3

+ 0.4
s̄2‖s̄3

. For

simplicity, we write 0.3
s1‖s3

+ 0.4
s2‖s3

instead of 0.3
s̄1‖s̄3

+ 0.4
s̄2‖s̄3

.

The parallel composition operator we are going to define

is asynchronous in the sense that the components can either

synchronize or act independently. Given an NFTS (S,A,→),
for any µ, ν ∈ F(S), the events intended to synchronize at

µ and ν are listed in the set Aµ ∩ Aν and the rest of the

events can be performed independently, where Aµ stands for

the set {a ∈ A : ∃µ′ 6= ∅, µ
a
−→ µ′}. Formally, the parallel

composition µ‖ν can perform action a in four different ways:

Ta(µ‖ν)=















{µ′‖ν′ : µ′ ∈ Ta(µ), ν′ ∈ Ta(ν)} if a ∈ Aµ ∩ Aν
{µ′‖ν : µ′ ∈ Ta(µ)} if a ∈ Aµ\Aν
{µ‖ν′ : ν′ ∈ Ta(ν)} if a ∈ Aν\Aµ
∅ otherwise.

Let us present an example of the parallel composition and

compute the bisimilarity metric between distributions.

Example 3. Let S = ({s1, s2, s3, s4}, {a},→) be an NFTS,

where → is defined by the transitions s̄1
a
−→ { 0.4

s3
+ 0.6

s4
},

s̄2
a
−→ { 0.6

s3
+ 0.3

s4
}, and s̄3

a
−→ { 0.4

s4
}. Then,

s̄1‖s̄2
a
−→ {µ : µ = 0.4

s3‖s3
+ 0.3

s3‖s4
+ 0.6

s4‖s3
+ 0.3

s4‖s4
}

s̄2‖s̄3
a
−→ {ν : ν = 0.4

s3‖s4
+ 0.3

s4‖s4
}

If we take the fuzzy logic LL⊗, then by a direct computation

shown in Example 1, we can obtain that dLb (s̄1, s̄2) = 0 and

dLb (s̄2, s̄3) = 0.4.

Now, for n ≥ 2, we have that

dn(s̄1‖s̄2, s̄2‖s̄3)
= ∆(dn−1)(s̄1‖s̄2, s̄2‖s̄3)
= max(dn−1(µ, ν), 1 − (ht(s̄1‖s̄2)⇔L ht(s̄2‖s̄3)))
= dn−1(µ, ν)
= ∆(dn−2)(µ, ν)
= max(dn−2(

0.4
s4‖s4

, 0.4
s4‖s4

), 1− (ht(µ)⇔L ht(ν)))

= max(0, 0.2)
= 0.2.

Hence dLb (s̄1‖s̄2, s̄2‖s̄3) = 0.2.

In a similar way, one can compute this distance under other

fuzzy logics, which are shown in the following diagram.

(s̄1, s̄2) (s̄2, s̄3) (s̄1‖s̄2, s̄2‖s̄3)
dLb 0 0.4 0.2
dGb 0 1 0.6
dPb 0 1 1

3

dNb 0 0.6 0.6

It is obvious that db(s̄1‖s̄2, s̄2‖s̄3) ≤ db(s̄1, s̄2)∨db(s̄2, s̄3),
i.e., the parallel composition is non-expansive. More generally,

we have the following theorem.

Theorem 4. Let (S,A,→) be an NFTS and µi, νi ∈ F(S)
with db(µi, νi) = ǫi, where i = 1, 2. Then we have

db(µ1‖µ2, ν1‖ν2) ≤ ǫ1 ∨ ǫ2.

Proof. Let F(S)‖F(S) = {µ‖ν | µ, ν ∈ F(S)}. We define

the function D : (F(S)‖F(S))× (F(S)‖F(S))→ [0, 1] by

D(µ‖µ′, ν‖ν′)
def
= db(µ, ν) ∨ db(µ

′, ν′)

for any µ‖µ′, ν‖ν′ ∈ F(S)‖F(S).
It is easy to check that D is a ⊕-metric on F(S)‖F(S).

We claim that D is a pre-fixed point of the function

∆ : DF(S)‖F(S) → DF(S)‖F(S). Let us verify it.

For any µ1‖µ2, ν1‖ν2 ∈ F(S)‖F(S), we first check that

1− (ht(µ1‖µ2)⇔ ht(ν1‖ν2)) ≤ D(µ1‖µ2, ν1‖ν2). It holds

because

D(µ1‖µ2, ν1‖ν2)
= db(µ1, ν1) ∨ db(µ2, ν2)
≥ [1− (ht(µ1)⇔ ht(ν1))] ∨ [1− (ht(µ2)⇔ ht(ν2))]
= 1− (ht(µ1)⇔ ht(ν1)) ∧ (ht(µ2)⇔ ht(ν2))
≥ 1− (ht(µ1) ∧ ht(µ2)⇔ ht(ν1) ∧ ht(ν2))
= 1− (ht(µ1‖µ2)⇔ ht(ν1‖ν2)).

The second step holds because db is the bisimilarity metric,

and the fourth step holds because of Proposition 1 (5). The

last equality holds because of the following facts: there exist

s0, t0 such that ht(µ1) = µ1(s0) and ht(µ2) = µ2(t0), then

ht(µ1‖µ2) = sup(s,t)∈S×S µ1(s)∧µ2(t) = µ1(s0)∧µ2(t0) =
ht(µ1) ∧ ht(µ2); similarly, ht(ν1‖ν2) = ht(ν1) ∧ ht(ν2).

Next, suppose that µ1‖µ2
a
−→ µ′

1‖µ
′
2. We need to show

that there exists some ν′1‖ν
′
2 such that ν1‖ν2

a
−→ ν′1‖ν

′
2

and D(µ′
1‖µ

′
2, ν

′
1‖ν

′
2) ≤ D(µ1‖µ2, ν1‖ν2). There are four
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cases: a ∈ Aµ1 ∩ Aµ2 , a ∈ Aµ1\Aµ2 , a ∈ Aµ2\Aµ1 , and

a 6∈ Aµ1 ∪Aµ2 . We only give the details for the first case; the

other cases are simpler and can be proved in a similar way.

In the case of a ∈ Aµ1 ∩ Aµ2 , we get by the definition of

the parallel composition that there are µ1
a
−→ µ′

1 and µ2
a
−→ µ′

2.

Since the least fixed point of ∆ is a pre-fixed point as well. By

Lemma 4 there are ν′1 and ν′2 such that ν1
a
−→ ν′1 and ν2

a
−→ ν′2

with db(µ
′
1, ν

′
1) ≤ db(µ1, ν1) and db(µ

′
2, ν

′
2) ≤ db(µ2, ν2).

Clearly, we have ν1‖ν2
a
−→ ν′1‖ν

′
2 and it remains to verify that

D(µ′
1‖µ

′
2, ν

′
1‖ν

′
2) ≤ D(µ1‖µ2, ν1‖ν2). This follows because

it is easy to see that

db(µ
′
1, ν

′
1) ∨ db(µ

′
2, ν

′
2) ≤ db(µ1, ν1) ∨ db(µ2, ν2).

Based on the claim, it follows from the definition of db that

db � D, which implies

db(µ1‖µ2, ν1‖ν2) ≤ D(µ1‖µ2, ν1‖ν2)
= db(µ1, ν1) ∨ db(µ2, ν2)
= ǫ1 ∨ ǫ2.

This completes the proof.

As a consequence, we can show that the parallel composi-

tion preserves distribution-based bisimilarity.

Corollary 5. If µ1 ∼ ν1 and µ2 ∼ ν2, then µ1‖µ2 ∼ ν1‖ν2.

Proof. It is straightforward by using Theorem 4 and Corol-

lary 4.

VII. AN ILLUSTRATIVE EXAMPLE

We have seen from Corollary 4 that the problem of checking

whether two distributions are bisimilar can be converted into

a logical judgment of whether the two distributions have the

same values on the same set of logical formulae, which can

benefit from traditional logic theories and be assisted by some

practical tools. In particular, it is very useful to judge the non-

bisimilarity of two distributions because we only need to find a

formula that witnesses the difference of the two distributions.

As an application, we consider an example related to

medical diagnosis and treatment, as described by Cao et al.

[2] and Qiu [41] (see also, [5], [42]). We assume that there

is an unknown bacterial infection. Based on his experience, a

physician believes that two drugs, say a1 and a2, may be useful

for treating this disease. Three possible negative symptoms,

e.g., b1, b2, b3, must also be considered. A patient’s condition

can be in one of three rough types, e.g., “poor”, “fair”, and

“excellent”, which are denoted by the capital letters P , F , and

E, respectively. A treatment (or a negative symptom) may

lead to a state among multiple possible states with certain

degree. For example, the transition F
a1[0.6]
−−−−→ E means that

the patient’s condition has changed from “fair” to “excellent”

with possibility 0.6 after using drug a1, whereas F
b1[0.3]
−−−−→ P

means that the patient’s condition has changed from “fair” to

“poor” with possibility 0.3 if the patient has negative symptom

b1. The transition possibilities of these events are estimated by

the physician. Different physical conditions of patients may

lead to nondeterministic changes even if the patients are in

the same state and are given the same treatment. For example,

we may have the following two transition:

P
a1−→ {

0.1

P
+

0.9

F
} and P

a1−→ {
0.6

F
+

0.2

E
}.

So we obtain an NFTS (S,A,→), where S = {P, F,E},
A = {a1, a2, b1, b2, b3} and →⊆ F(S)×A×F(S).

In order to compare with the work of Cao et al., we revisit

Example 4 in [2]. According to the physician’s estimation,

the transition possibilities of these events among states are as

follows.

P
a1−→ { 0.1

P
+ 0.9

F
}, P

a2−→ { 0.6
P

+ 0.4
F
}

F
a1−→ { 0.5

F
+ 0.4

E
}, F

a2−→ { 0.3
F

+ 0.8
E
}

F
b1−→ { 0.2

P
}, F

b2−→ { 0.3
P
}, E

b3−→ { 0.1
P

+ 0.3
F
}.

Suppose now that there are two patients: Alice and Bob. The

physician describes the patients’ states as SA = [0.8, 0.2, 0.1]
and SB = [0.8, 0.3, 0], respectively. The fuzzy value vector,

say SB , means that Bob is in “poor” state with membership

0.8, and in “fair” state with membership 0.3. For simplicity,

we assume that Alice and Bob have no negative symptoms

when the drugs are used for the first time in therapy. It turns

out that
SA

a1−→ { 0.1
P

+ 0.8
F

+ 0.2
E
}

SA
a2−→ { 0.6

P
+ 0.4

F
+ 0.2

E
}

SB
a1−→ { 0.1

P
+ 0.8

F
+ 0.3

E
}

SB
a2−→ { 0.6

P
+ 0.4

F
+ 0.3

E
}

We first show by Corollary 4 that the states of Alice and Bob

are not bisimilar, which is not easy to judge directly by the

definition of distribution-based bisimulation. In fact, we can

find a formula 〈a1〉〈b3〉T such that [[〈a1〉〈b3〉T]](SA) = 0.2
and [[〈a1〉〈b3〉T]](SB) = 0.3 and hence the states of Alice and

Bob are not bisimilar.

Furthermore, we can obtain more quantitative information

by measuring the distance between their states. Using LN⊗ ,

it is not difficult to see that dNb (SA, SB) = 0.3 by a direct

computation shown in Example 1. In the same way, we can

also obtain that dNb (SA, SB) = 0.5 where SA = [0.5, 0.5, 0]
and SB = [0, 0.5, 0.5]. By Corollary 3, S(SA, SB) = 0.7
and S(SA, SB) = 0.5 in the above two cases, respectively,

which measures the similarity between Alice’s and Bob’s

conditions in the progress of treatment. A little surprise is that

dNb (SA, SB) is equal to df (SA, SB) in the above two cases,

respectively, where df is the behavioural distance of Cao et

al. [2]. However, Figure 1, Example 1, Example 2, Corollary

4 in this paper and Theorem 4 in [2] tell us that dNb is not

always equal to df for any s, t ∈ S.

On the other hand, if we take a different fuzzy logic, then

db(SA, SB) is in general different. For example, under LP⊗, we

get that dPb (SA, SB) = 0.4 when SA = [0.5, 0.5, 0] and SB =
[0, 0.5, 0.5], but dPb (SA, SB) = 1

3 when SA = [0.8, 0.2, 0.1]
and SB = [0.8, 0.3, 0], respectively.

VIII. RELATED WORK

Simulations and bisimulations for fuzzy (or lattice-valued)

systems have received much attention in the field. Errico and

Loreti [9] proposed a notion of bisimulation and applied it to
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fuzzy reasoning. Kupferman and Lusting [11] studied a latticed

simulation between two lattice-valued Kripke structures, which

are applied to latticed games. P. Eleftheriou et al. [10] defined

bisimulation for Heyting-valued modal languages. Pan et al.

[12] investigated simulation for lattice-valued doubly labeled

transition systems. Cao et al. [1] defined a bisimulation relation

between two different FTSs by a correlational pair based on

some relation. Ćirić et al. [3] introduced four types of bisimu-

lations (forward, backward, forward-backward, and backward-

forward) for fuzzy automata. Sun et al. [13] investigated

forward and backward bisimulations for fuzzy automata. Qiu

and Deng [4], and Xing et al. [5] addressed the supervisory

control of fuzzy discrete event systems by using simulation

equivalence and bisimulation equivalence, respectively. Fan [6]

defined bisimulations for fuzzy Kripke structures. Damljanović

et al. [8] also studied simulation and bisimulation for weighted

automata in a similar manner, as also described in [3], [7]. Wu

and Deng [14] considered bisimulations for FTSs.

All these approaches can be divided into two classes. In the

first class, (bi)simulations are based on a crisp relation on the

state space, and thus one state is either (bi)similar to another

state or not. As [1], [5], [8]–[10], [13], [14], the present study

belongs to this class. In the second class, (bi)simulations are

based on a fuzzy relation (or a lattice-valued relation) on the

state space, which shows the degree to which one state is

(bi)similar to another. This approach was adapted in [3], [4],

[6], [11], [12]. Recently, lattice-valued nondeterministic fuzzy

automata have also been proposed [43].

This paper investigates distribution-based bisimulation,

which is a crisp relation and to our knowledge, remains under-

explored in fuzzy systems. We just compare our distribution-

based bisimulation with the state-based bisimulation given by

Cao et al [2].

An equivalence relation R ⊆ S × S is a state-based

bisimulation if s R t implies that whenever s
a
−→ µ, there

exists some transition t
a
−→ ν with µ([s′]) = ν([s′]) for all

R-equivalence classes [s′].
We can prove that if R is a state-based bisimulation, then

the lifted relation R† (see Definition 8 in [2]) is a distribution-

based bisimulation. This means that for any s, t ∈ S, if s

and t are related by a state-based bisimulation then s̄ and

t̄ are related by a distribution-based bisimulation. However,

the inverse does not hold, as can be seen from Figure 1

and Example 2. In this sense, we say that distribution-based

bisimilarity is coarser than state-based bisimilarity.

As modal logics, Wu and Deng [14] gave a fuzzy style

Hennessy-Milner logic, which characterizes bisimulations for

FTSs soundly and completely. There the formula is interpreted

on (bare) states and is two-valued, i.e., a state either satisfies

a formula or not. Fan [6] characterized her fuzzy bisimulation

in terms of Gödel modal logic G(�♦) as follows:

ϕ ::= p | c̄ | ϕ1 → ϕ2 | ϕ1 ∧ ϕ2 | �ϕ | ♦ϕ.

Its semantic interpretation is given in terms of (bare) states and

is quantitative, i.e., the semantic domain is the unit interval

[0, 1]. This logic is different from the logic in the current

work both in the syntax and in the semantics. In addition,

the formula ϕ ↔ p̄ in our logic plays a key role in proving

Theorem 3. One can ask whether we can use ψ1 → ψ2

instead of ψ → p̄ in our setting. The answer is negative. The

reason is that Lemma 6 does not hold for ψ ≡ ψ1 → ψ2. In

addition, Fan [44] has pointed out that fuzzified Hennessy-

Milner Theorem does not hold for modal logics based on

Łukasiewicz t-norm and the product t-norm. However, this

theorem holds in our framework under a class of fuzzy logics

generated by a t-norm including Łukasiewicz t-norm and the

product t-norm. Therefore, the results in this paper provide an

answer to the question of Fan [44]: “to investigate alternative

definitions of fuzzy bisimulation that can satisfy the Hennessy-

Milner Theorem with respect to Łukasiewicz and product

structures.” In [10] Eleftheriou gave Heyting-valued modal

logics LH
�♦

. The relationship between LH
�♦

and G(�♦), and

the corresponding bisimulations have been discussed in detail

[6]. Another direction concerning modal logics is to investigate

model checking of nondeterministic systems. For example, Li

et al. [45], [46] studied quantitative computation tree logic for

model checking based on possibility measures.

IX. CONCLUSION AND FUTURE WORK

We have proposed a new notion of bisimulation, which

is distribution-based. We have introduced an abstract metric

based on triangular-conorm and constructed a distribution-

based bisimilarity metric for measuring the behavioural dis-

tance between generalized states in NFTSs. The bisimilarity

metric is a quantitative analogue of bisimilarity. The smaller

the distance, the more alike the distributions are. In particular,

two distributions are bisimilar if and only if they have distance

0. Moreover, we have given a fuzzy modal logic to characterize

distributions-based bisimilarity metric soundly and completely.

In addition, we have also shown that the CSP-style paral-

lel composition with respect to bisimilarity metric is non-

expansive. Unlike the exact notion of bisimulation, bisimilarity

metric is more robust for fuzzy systems, which enables us to

investigate the approximate equivalence of fuzzy systems.

There are several problems that are worth further study.

First, it would be interesting to find an appropriate logic to

characterize the behavioural distance df of Cao et al. [2].

In fact, we have a logic that can characterize the state-based

bisimulation of Cao et al., but cannot characterize df . Second,

it is unclear if our methodology can be generalized to the

general framework of lattices. One subtlety lies in Lemma 7.

In the current setting, sup{x ∈ A | x < r} < r holds when

A is a finite subset of the unit interval [0, 1]. However, this

property fails if we deal with a general lattice. Hence, it seems

necessary to give a new proof of Theorem 3 or to change the

modal logic. Last but not least, we would like to figure out

whether it is possible and how to improve the algorithm for

computing the bisimilarity metric so that they can be used in

practical analysis of fuzzy systems.
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