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Abstract

Weighted Markov decision processes (MDPs) have long been used to model quantitative
aspects of systems in the presence of uncertainty. However, much of the literature on such
MDPs takes a monolithic approach, by modelling a system as a particular MDP; properties
of the system are then inferred by analysis of that particular MDP. In contrast in this paper
we develop compositional methods for reasoning about weighted MDPs, as a possible basis for
compositional reasoning about their quantitative behaviour. In particular we approach these
systems from a process algebraic point of view. For these we define a coinductive simulation-
based behavioural preorder which is compositional in the sense that it is preserved by structural
operators for constructing weighted MDPs from components.

For finitary convergent processes, which are finite-state and finitely branching systems with-
out divergence, we provide two characterisations of the behavioural preorder. The first uses a
novel quantitative probabilistic logic, while the second is in terms of a novel form of testing, in
which benefits are accrued during the execution of tests.

1 Introduction

Markov decision processes (MDPs) have long been used to model quantitative aspects of systems
in the presence of uncertainty [Put94, RKNP04, BK08]. A comprehensive account of analysis
techniques may be found in [Put94], while [RKNP04] provides a good account of model-checking.

We are particularly interested in a sub-class of MDPs, in which actions have associated with
them an explicit cost or reward, which we refer to as weighted MDPs. However much of the
literature on this class of MDPs takes a monolithic view of systems; essentially a system is modelled
using a particular (weighted) MDP, and properties of the system are then inferred by analysis
of that MDP. The literature on the related model of weighted automata [DKV09] is similar in
nature. In this paper, instead, we would like to develop compositional methods for reasoning about
quantitative behaviour of these kinds of Markov decision processes. This involves devising a method
for comparing their behaviour which is susceptible to compositional analysis; the behaviour of a
composite system should be determined by that of its components.

∗Partially supported by Natural Science Foundation of China (61173033, 61033002).
†Supported financially by SFI project no. SFI 06 IN.1 1898.
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Figure 1: Nondeterministic machines
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Figure 2: Probabilistic systems

Our starting point is the idea of one system being able to simulate another. For example
consider the three systems in Figure 1. The first, a two-state machine, continually performs an
up action, which accrues a benefit of 3 units, followed by a down action, which accrues a benefit
of 1. The second machine performs the same actions but with benefits 2 and 4 respectively. In
some sense t0 is an improvement on s0; intuitively t0 can simulate the behaviour of s0 but in so
doing accrue more benefits; this is true even if one of its actions up is less beneficial than the
corresponding action of s0. The same is true for the machine u0; it can also simulate the behaviour
of s0, with more benefit, although in this case some internal weighted actions, denoted by τ ,
participate in the simulation and add to the accumulation of benefits. In our terminology we will
write s0 vsim t0, s0 vsim u0. However we will have t0 6vsim u0 because although u0 can simulate
the behaviour of t0 it accumulates less benefit.

Similar informal reasoning can also be applied to probabilistic systems. Consider the systems
in Figure 2. Here we have two kinds of nodes; the first as in Figure 1 representing states of the
systems, and the second representing probability distributions. For example the first system, from
state s1, can perform the up action with benefit 2 and a quarter of the time it ends up in a state
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Figure 3: Nondeterministic and probabilistic systems

in which down can be performed with benefit only 1. But for the remaining three-quarters it ends
up in a state in which down can be performed for the larger benefit 3. The circular darkened node
represents a distribution of states, with its outgoing edges describing the associated probabilities.
Again intuitively we can see that s1 is an improvement on s0 because it can simulate s0 and on
average accrue slightly more benefits; in our theory we will have s0 vsim s1.

The mixture of probabilistic behaviour and internal actions introduces complications. Consider
the system t1 in Figure 2 which after performing an up action probabilistically decides internally
whether to perform a down action for benefit 1, or branch back to make another probabilistic choice.
However each time it reverts back it accumulates a non-zero benefit via the internal weighted action
τ1, albeit with diminishing probability. Nevertheless it will turn out that for our definition of
simulation s0 vsim t1 and indeed s1 vsim t1.

Systems exhibiting both probabilistic and nondeterministic behaviour require more complicated
analysis. Consider the system in Figure 3. After performing the action up it finds itself either in
a state in which the action down will accrue the benefit 2, or 25% of the time there will be a
nondeterministic choice between it accruing either 1 or 6. In the literature there are numerous
mechanisms, such as policies, schedulers, adversaries, etc. [Put94, Seg95, RKNP04] for resolving
such choices. Here one can see if this choice systematically leads to the lower benefit 1 then s2

will not simulate s0 as it does not accrue sufficient benefits. This is a pessimistic outlook; an
optimistic outlook means that the best choices are systematically made. If this is assumed then we
will have s0 vsim s2; in s2 one execution of up followed by down will yield on average the benefit
1 + (3

4 · 2 + 1
4 · 6) = 4.

The main contribution of the paper is a coinductively defined behavioural preordervsim between
weighted MDPs based on simulations which validate the examples discussed informally above. We
confine our attention to the optimistic approach to the resolution of nondeterministic choices,
although as future work we hope to investigate the pessimistic approach. We also show that this
preorder is compositional in the sense that it is preserved by structural operators for constructing
(weighted) MDPs from components. The main operator is one for composing two such MDPs
in parallel. In P | Q the two MPDs P and Q remain independent, execute in parallel and may
communicate by synchronising on complementary actions; these internal synchronisations accrue
the combined benefits of the associated complementary actions.

We also provide two independent characterisations of the behavioural preorder vsim for a par-
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ticular class of well-behaved systems. These are weighted MDPs which are finite-state and finitely
branching systems without divergence, which we refer to as finitary convergent weighted MDPS.
The first characterisation is in terms of a quantitative probabilistic logic L. In addition to the
standard logical connectives such as conjunction and a maximal fixed point operator, this contains
a novel quantitative possibility modality 〈α〉

w
(φ1 p⊕ φ2), where p is some probability between 0 and

1. Intuitively this is satisfied by an MDP which can accrue at least the benefit w by performing
the action α, and subsequently satisfy the probabilistic assertion φ1 p⊕ φ2. It turns out that the
simulation preorder is completely determined by the logic L. Further evidence of the compatibility
between the logic and the simulation relation is the fact that every system P has a characteristic
formula φ(P ) in the logic which captures its behaviour; informally system Q can simulate P if and
only if it satisfies the characteristic formula φ(P ).

Our second characterisation is in terms of a novel form of testing called benefits testing. Intu-
itively a system P can be tested by running it in parallel with another testing system T , and seeing
the possible accrued benefits. In the presence of nondeterminism the execution of the combined
system (T | P ) will result in a non-empty set of benefits, Benefits(T | P ). Then systems P and
Q can be compared by comparing the associated benefit sets Benefits(T | P ) and Benefits(T | Q)
where T ranges over some collection of possible tests. We show that the simulation preorder vsim
is also determined in this manner by a suitable collection of tests T .

The rest of this paper is organised as follows. Section 2 is devoted to an exposition of our model,
which we call weighted Markov Decision Processes, wMDPs. These correspond to the diagrams we
have been using informally in this introduction. The actions in a wMPD take the form s

α−→w ∆,
where α is the label of the action, w its weight, or benefit, and ∆ a probability distribution which
determines the next state. Following [Seg95, Seg96, DvGHM09], we make extensive use of the
generalisation of this next-step relation to actions from distributions to distributions, ∆

α−→w Θ.
Furthermore we are interested in weak theories, in which internal activity is not directly observable.
So we generalise these actions to weak actions, of the form s

α
=⇒w ∆ and ∆

α
=⇒w Θ respectively,

actions in which occurrences of internal actions, denoted by τ , may occur an arbitrary number
of times both before and after α. As have already been pointed out by many authors, [LSV07,
DvGHM09], in a probabilistic setting we need to allow a potentially infinite number of internal
actions to occur, in the limit ; we follow the formalisation of this idea suggested in [DvGHM09].
One particularly significant property, which undelies much of our technical results, is that the set of
weak derivatives from a given state, although in general uncountable, in a finite-state wMDP can be
generated as the convex-closure of a finite number of derivatives. This is explained in Section 2.4.
The proof is very complex, relying on notions such as static policies and payoffs [DvGHM09].
Consequently, again the details are relegated to an appendix.

Then, still in Section 2, we turn our attention to a subclass of wMDPs, called bounded wMDPs.
In an arbitrary wMDP if ∆

τ
=⇒w Θ then w may in general be infinite because of an indefinite

accumulation of weights during an infinite internal computation. In bounded wMDPs we are
guaranteed that such ws will always be a finite real number. Such wMDPs are the main focus of
the paper, and their properties are studied in Section 2.5.

Section 3 is devoted to our notion of simulation, called amortised weighted simulation, based on
ideas from [KAK05]. In the first subsection we give the definition and some examples. The formal
simulation preorder C is defined coinductively but in Section 3.2 we show that in bounded wMDPs
it can also be defined as the intersection of an infinite sequence of inductively defined relations.
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This result depends on compactness arguments, which we are able to employ in bounded wMDPs
because of the finite generability property alluded to above. Then in Section 3.3 we show that the
simulation preorder can be captured by a very simple modal logic, again if we restrict attention to
bounded wMDPs. This logic is quantitative in the sense that satisfying formulae depends to some
extent on the benefits which a process can accrue. The logical characterisation in turn depends on
the approximation result from Section 3.2.

In Section 4 we offer another justification for our simulation based on testing [NH84]. Because
of the presence of weights or benefits in wMDPs we are able to use a novel form of (may) testing
in which benefits are accrued as tests are applied to processes; then processes can be compared in
terms of their ability to accumulate benefits. In section 4.1 this idea, benefits testing, is explained
in detail and we also show that it is preserved by the simulation preorder. More interesting is the
result, for bounded wMDPs, that the preorder is completely determined by these tests. This proof
requires a digression, in Section 4.2, into a more standard testing framework. Here we extend the
ideas on [Seg96, DvGMZ07] by developing a version of multi-success testing suitable for wMDPs.
In a non-trivial theorem we show that in bounded wMDPs both testing preorders, benefit-based
and multi-success, coincide. The interest in multi-success testing is that we can mimic the results
in [DvGHM09] to show that this form of testing can be captured by the modal logic of the previous
section. Since we already know that the modal logic determines the simulation preorder we have
therefore also established the soundness and completeness of benefits testing for the simulation
preorder.

Section 4 ends with a short discussion of another natural form of testing, expected benefits testing,
in which the average weight of each path of a computation leading to a success is associated with
a test. By means of a simple example we show that the simulation preorder is not sound for this
form of testing.

2 Weighted Markov decision processes

In this section we give a precise account of our version of MDPs and develop their technical
properties which will be needed in the remainder of the paper. The formal definition of our
weighted MDPs is given in Section 2.1 where we also define a process calculus, based on CCS,
[Mil89], for describing them. In the following Section 2.2 we show how to generalise the relations

s
µ−→w Θ found in weighted MDPs, to relations over (sub-)distributions, ∆

α−→w Θ; we also
outline some elementary properties of this construction. The approach taken is very similar to that
in [DvGHM09] but a proper account of the weights of actions needs to be given.

In the following Section 2.3 we give our defintion of weak weighted arrows, ∆
τ

=⇒w Θ in which,
as previously stated, the internal activity may occur indefinitely, and probabilistically infinitely
often. Again we follow closely the formal approach in [DvGHM09], developing a weighted version
of so-called hyper-derivations. We also give the rather large list of their properties which we require.
However their proofs are relagated to an appendix, as they are somewhat technical.

This construction endows the set of (sub-)distributions of a weighted MDP with the structure
of an Labelled Transition System (LTS) but in general the set of possible actions ∆

α
=⇒w Θ, even

from a given distribution ∆ are uncountable. However if we put finitary restrictions on the MDP
then it turns out that for a given ∆ the set of possible residuals Θ can be finitely generated; this
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is the topic of Section 2.4.
Finally in Section 2.5 we see the particular class of MDPs on which the paper focuses. In

general, because of the infinitary nature of weak moves ∆
τ

=⇒w Θ the actual weight associaed with
the move w may be infinite. We wish to rule out this possibility, and instead concentrate on a
sub-class of MDPs, which we called bounded, where this accummulation of infinite weight is not
possible. In this section we give a natural condition which is sufficient to ensure boundedness.

2.1 Introduction

There is considerable variation in the literature in the formal definition of a (labelled) Markov
decision process [RKNP04, Put94]. For the purpose of this paper we use Definition 2.1 to delineate
our version of weighted MDPs. We first fix some notation. A (discrete) probability subdistribution
over a set S is a function ∆ : S → [0, 1] with

∑
s∈S ∆(s) ≤ 1; the support of such a ∆ is d∆e := { s ∈

S | ∆(s) > 0 }, and its mass |∆| is
∑

s∈d∆e∆(s). A subdistribution is a (total, or full) distribution
if |∆| = 1. The point distribution s assigns probability 1 to s and 0 to all other elements of S,
so that dse = {s}. With Dsub(S) we denote the set of subdistributions over S, and with D(S) its
subset of full distributions. For ∆,Θ ∈ Dsub(S) we write ∆ ≤ Θ iff ∆(s) ≤ Θ(s) for all s ∈ S.

Let {∆k | k ∈ K} be a set of subdistributions, possibly infinite. Then
∑

k∈K ∆k is the real-
valued function in S → R defined by (

∑
k∈K ∆k)(s) :=

∑
k∈K ∆k(s). This is a partial operation on

subdistributions because for some state s the sum of ∆k(s) might exceed 1. If the index set is finite,
say {1..n}, we often write ∆1 + . . . + ∆n. For p a real number from [0, 1] we use p ·∆ to denote
the subdistribution given by (p ·∆)(s) := p ·∆(s). Finally we use ε to denote the everywhere-zero
subdistribution that thus has empty support. These operations on subdistributions do not readily
adapt themselves to distributions; but if

∑
k∈K pk = 1 for some collection of pk ≥ 0, and the ∆k are

distributions, then so is
∑

k∈K pk ·∆k. In general when 0≤p≤1 we write x p⊕ y for p · x+ (1−p) · y
where that makes sense, so that for example ∆1 p⊕ ∆2 is always defined, and is full if ∆1 and ∆2

are.
For ∆ ∈ Dsub(S) and f a function with domain S, we write Exp∆(f), the expected value of f

over ∆ ∈ Dsub(S), for
∑

s∈d∆e∆(s) · f(s). More generally suppose f : Sk → T . This is lifted to a

function f † : Dsub(S)k → Dsub(T ) by letting f †(∆1, . . . ,∆n)(t) =
∑

t=f(s1,...,sk) ∆1(s1) · . . . ·∆k(sk).

We will often abbreviate the lifted function f † to simply f .

Definition 2.1 [Weighted Markov decision process] A weighted Markov decision process or wMDP
is a 4-tuple 〈S,A,W,−→〉 where S is a set of states, A a set of actions, W a set of weights, and
−→ ⊆ S × A×W ×D(S). We normally write s

α−→w ∆ to mean (s, α, w,∆) ∈−→. �

In this paper we set W to be R≥0, the set of non-negative real numbers, and we assume A has the

structure Actτ = Act ∪ {τ} where each a in Act has an inverse a satisfying a = a. We write s
α9 if

there is no w,∆ such that s
α−→w ∆. We also use the following terminology. A wMDP is

• finite-state if S is a finite set;

• finitely branching if for each s ∈ S, the set {(α,w,∆) | s α−→w ∆} is finite;

• finitary if it is both finite-state and finitely branching,
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• deterministic if from every s ∈ S there is at most one outgoing transition.

In the Introduction we have used a straightforward graphical representation for wMDPs; a state

s is represented by a node s while darkened circular nodes are used for distributions, and arrows
between nodes and distributions are annotated with their weights. Often a point distribution is
represented by the unique state in its support; see the first series of examples with initial states
s0, t0 and u0.

The simplest approach to discussing compositionality is, as in [Her02], to introduce a process
calculus-like syntax for wMDPs. Our calculus, called CCMDP, is based on CCS:

P ::= αw.(⊕i∈Ipi · Pi) | P | P | P + P | 0 | P\a | A (1)

The main operator is prefixing, αw.(⊕i∈Ipi · Pi). Here α is taken from Actτ , w from R≥0, I is a
finite index set and pi are probabilities satisfying

∑
i∈I pi = 1. We also assume a set of definitional

constants, ranged over by A, and we assume that each such A has a definition associated with it,
a process term PA. We often write these definitions as

A⇐ PA

For convenience we will abbreviate the derived operator (P | Q)\Act to P || Q.
Let P denote the set of all terms P definable in this language. Intuitively, we view each such

term as describing a wMDP. Formally we describe one overarching wMDP where the states are all
terms in P and the weighted actions P

α−→w ∆ are those which can be derived by the rules in
Figure 4; obvious symmetric counterparts to the rules (l-alt) (l-par) are omitted. This style of
semantics is an obvious generalisation of that used in [DvGHM09] for (unweighted) probabilistic
processes. A similar style has been used in [DLLM09] for stochastic processes.

In the rule (l-act) we use the obvious notation Dist({ (pi, Pi) | i ∈ I }) for constructing a
distribution from the formal term ⊕i∈Ipi ·Pi. In rules (l-comm) and (l-par) we take advantage of
the fact that parallel composition can be viewed as a binary operator over process terms |: P×P →
P , and therefore can be lifted to distributions of processes as explained above: |†: P ×P → P. An
equivalent definition is given by

(∆1 |† ∆2)(Q) =

{
∆1(P1) ·∆2(P2) if Q = P1 | P2,
0 otherwise

The hiding operator is treated in a similar manner. In Figure 4, and in the remainder of the paper,
we drop the annotation †.

Note that all of the wMDPs described graphically in the Introduction can be described in
CCMDP. In the sequel we will not distinguish between the syntactic term P , its interpretation as a
state in the wMDP defined in Figure 4, and the wMDP it induces by considering only those states,
that is process terms, accessible from it.

2.2 Lifted relations

In a wMDP actions are only performed by states, in that actions are given by relations from
states to distributions. But formal systems or processes in general correspond to distributions over
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(l-act)

αw.(⊕i∈Ipi · Pi)
α−→w Dist({ (pi, Pi) | i ∈ I })

(l-alt)

P1
α−→w ∆

P1 + P2
α−→w ∆

(l-comm)

P1
a−→w1 ∆1, P2

a−→w2 ∆2

P1 | P2
τ−→w ∆1 | ∆2

w = w1 + w2

(l-par)

P1
α−→w ∆

P1 | P2
α−→w ∆ | P2

(l-hide)

P
α−→w ∆

P\a α−→w ∆\a
α 6= a, a

(l-def)

PA
α−→w ∆

A
α−→w ∆

A⇐ PA

Figure 4: Weighted actions

states, so in order to define what it means for a process to perform an action, we need to lift these
relations so that they also apply to distributions. In fact we will find it convenient to lift them to
subdistributions.

We first recall some standard terminology. For any subset X of R≥ × Dsub(S), with S a set,
let lX, the convex closure of X, be the least set satisfying 〈 r,Θ 〉 ∈ lX if and only if 〈 r,Θ 〉 =∑

i∈I pi · 〈 ri,Θi 〉, where 〈 ri,Θi 〉 ∈ X and pi ∈ [0, 1], for some index set I such that
∑

i∈I pi = 1.
We say a set X is convex if lX = X. Let R be a relation in Y × (R≥0 ×Dsub(S)). It is

1. convex whenever the set {〈 r,Θ 〉 | y R 〈 r,Θ 〉} is convex for every y in Y ; lR denotes the
smallest convex relation containing R

2. linear whenever ∆i R 〈 ri,Θi 〉 for i ∈ I implies (
∑

i∈I pi ·∆i) R (
∑

i∈I pi · 〈 ri,Θi 〉) for any
pi ∈ [0, 1] (i ∈ I) with

∑
i∈I pi ≤ 1

3. decomposable whenever (
∑

i∈I pi ·∆i) R 〈w,Θ 〉 implies 〈w,Θ 〉 =
∑

i∈I pi · 〈wi,Θi 〉 for some
weights wi and subdistributions Θi such that ∆i R 〈wi,Θi 〉 for i ∈ I.

Note that if R is linear it is automatically convex.

Definition 2.2 Let R⊆ S × (R≥0 × Dsub(S)) be a relation from states to pairs of weights and
subdistributions. Then R⊆ Dsub(S)× (R≥0 ×Dsub(S)) is the smallest linear relation that satisfies
s R 〈 r,Θ 〉 implies s R 〈 r,Θ 〉. �

By construction R is both linear and convex. Moreover the lifting operation is monotonic, in that
R1 ⊆ R2 implies R1 ⊆ R2. Also, because s (lR) Θ implies s R Θ we have R = lR.
Finally note that if R itself is convex, we have that s R Θ and s R Θ are equivalent.

An application of this notion is when the relation is
α−→ for α ∈ Actτ ; in that case we also

write
α−→ for (

α−→). Thus, as source of a relation
α−→ we now also allow distributions, and even

subdistributions.
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Lemma 2.3 ∆ R 〈 r,Θ 〉 if and only if

1. ∆ =
∑

i∈I pi · si, where I is an index set and
∑

i∈I pi ≤ 1,

2. For each i ∈ I there is a pair 〈 ri,Θi 〉 such that si R 〈 ri,Θi 〉 ,

3. r =
∑

i∈I piri and Θ =
∑

i∈I pi ·Θi.

Proof. Straightforward. �

An important point here is that a single state can be split into several pieces: that is, the decom-
position of ∆ into

∑
i∈I pi · si is not unique.

The lifting operation has yet another characterisation, this time in terms of choice functions.

Definition 2.4 Let R⊆ S × (R≥0 × Dsub(S)) be a relation. Then f : S → (R≥0 × Dsub(S)) is a
choice function for R, written f ∈ Ch(R), if s R f(s) for every s ∈ dom(R). �

Note that if f is a choice function of R then f behaves properly at each state s in the domain of
R, but for each state s′ outside the domain of R, the value f(s′) can be arbitrarily chosen.

Proposition 2.5 SupposeR⊆ S×(R≥0×Dsub(S)) is a convex relation. Then for any ∆ ∈ Dsub(S),
∆ R 〈w,Θ 〉 if and only if there is some choice function f ∈ Ch(R) such that 〈w,Θ 〉 = Exp∆(f).

Proof. First suppose 〈w,Θ 〉 = Exp∆(f) for some choice function f ∈ Ch(R), that is 〈w,Θ 〉 =∑
s∈d∆e∆(s) · f(s). It now follows from Lemma 2.3 that ∆ R 〈w,Θ 〉 since s R f(s) for each

s ∈ dom(R).
Conversely suppose ∆ R 〈w,Θ 〉; we have to find a choice function f ∈ Ch(R) such that

〈w,Θ 〉 = Exp∆(f). Applying Lemma 2.3 we know that

(i) ∆ =
∑

i∈I pi · si, for some index set I, with
∑

i∈I pi ≤ 1

(ii) 〈w,Θ 〉 =
∑

i∈I pi · 〈wi,Θi 〉 for some 〈wi,Θi 〉 satisfying si R 〈wi,Θi 〉.

Now define the function f : S → (R≥0 ×Dsub(S)) as follows:

• if s ∈ d∆e then f(s) =
∑
{ i∈I | si=s }(

pi
∆(s)) · 〈wi,Θi 〉;

• if s ∈ dom(R)\d∆e then f(s) = 〈w′,Θ′ 〉 for any 〈w′,Θ′ 〉 with s R 〈w′,Θ′ 〉;

• otherwise, f(s) = 〈 0, ε 〉, where ε is the empty subdistribution.

Note that if s ∈ d∆e then ∆(s) =
∑
{ i∈I | si=s } pi and therefore by convexity s R f(s); so f is a

choice function for R as s R f(s) for each s ∈ dom(R). Moreover, a simple calculation shows that
Exp∆(f) =

∑
i∈I pi · 〈wi,Θi 〉, which by (ii) above is 〈w,Θ 〉. �

By Definition 2.2, a lifted relation is linear and convex; we now show that it is also decomposable.

Proposition 2.6 Let R⊆ S × (R≥0 ×Dsub(S)) be a relation. Then R is decomposable.
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Proof. Let ∆ R 〈w,Θ 〉 where ∆ =
∑

i∈I pi ·∆i. By Proposition 2.5, using that R = lR, there is
a choice function f ∈ Ch(lR) such that 〈w,Θ 〉 = Exp∆(f). Take 〈wi,Θi 〉 := Exp∆i

(f) for i ∈ I.
Using that d∆ie ⊆ d∆e, Proposition 2.5 yields ∆i R 〈wi,Θi 〉 for i ∈ I. Finally,∑

i∈I
pi · 〈wi,Θi 〉 =

∑
i∈I

pi ·
∑

s∈d∆ie

∆i(s) · f(s) =
∑
s∈d∆e

∑
i∈I

pi ·∆i(s) · f(s) =
∑
s∈d∆e

∆(s) · f(s) =

Exp∆(f) = 〈w,Θ 〉. �

The converse to the above is not true in general: from ∆ R (
∑

i∈I pi · 〈wi,Θi 〉) it does not
follow that ∆ can correspondingly be decomposed. For example, we have

a0.(b0. 0 1
2
⊕ c0. 0)

a−→0
1

2
· b0. 0 +

1

2
· c0. 0,

yet a.(b0. 0 1
2
⊕ c0. 0) cannot be written as 1

2 ·∆1 + 1
2 ·∆2 such that ∆1

a−→0 b0. 0 and ∆2
a−→0 c0. 0.

In fact a simplified form of Proposition 2.6 holds for un-lifted relations, provided they are
convex:

Corollary 2.7 If (
∑

i∈I pi · si) R 〈w,Θ 〉 and R is convex, then 〈w,Θ 〉 =
∑

i∈I pi · 〈wi,Θi 〉 for
weights wi and subdistributions Θi with si R 〈wi,Θi 〉 for i ∈ I.

Proof. Take ∆i to be si in Proposition 2.6, whence 〈w,Θ 〉 =
∑

i∈I pi · 〈wi,Θi 〉 for some weights
wi and subdistributions Θi such that si R 〈wi,Θi 〉 for i ∈ I. Because R is convex, we then have
si R 〈wi,Θi 〉. �

2.3 Hyper-derivations

Consider again the systems in Figures 1 and 2. In the Introduction, when reasoning informally
that t1 can simulate s0, we have seen that the limiting behaviour of internal computations must
be taken into account. We now formalise this by extending the approach originally proposed in
[DvGHM09]. This involves extensive use of the lifting operation defined in Section 2.2 to define a
notion of weak arrows which allows internal actions to occur indefinitely. This is easier to formulate
in terms of subdistributions, rather than distributions.

Definition 2.8 [Hyper-derivations] A hyper-derivation consists of a collection of subdistributions
∆,∆→k ,∆

×
k , for k ≥ 0, with the following properties:

∆ = ∆→0 + ∆×0

∆→0
τ−→w0 ∆→1 + ∆×1

... (2)

∆→k
τ−→wk ∆→k+1 + ∆×k+1

...

∆′ =
∞∑
k=0

∆×k

10



Then we call ∆′ =
∑∞

k=0 ∆×k a hyper-derivative of ∆, and write ∆
τ

=⇒w ∆′, where w =
∑∞

k=0wi,
to mean that ∆ can make a (weak) hyper-move to its derivative ∆′ with weight w. Note that in
general w ∈ R≥0 ∪ {∞}; that is there is no guarantee that the sum

∑∞
k=0wi has a finite limit. �

One question to answer is when can we ensure that this sum does indeed have a limit. This will
be studied in Section 2.5.

Example 2.9 Consider the wMDP with initial state t1 discussed in the Introduction. Then we
have the following hyper-derivation:

U = U + ε

U
τ−→0

3

4
·R+

1

4
·D

3

4
·R τ−→ 3

4

3

4
· U + ε

3

4
· U τ−→0 (

3

4
)2 ·R+ (

3

4
)
1

4
·D

(
3

4
)2 ·R τ−→( 3

4
)2 (

3

4
)2 · U + ε

...

(
3

4
)k · U τ−→0 (

3

4
)(k+1) ·R+ (

3

4
)k

1

4
·D

(
3

4
)(k+1) ·R τ−→( 3

4
)(k+1) (

3

4
)(k+1) · U + ε

...

That is, U
τ

=⇒w
∑∞

k=0 (3
4)k(1

4 · D) where w =
∑∞

k=1(3
4)k. However this weight evaluates to 3,

while the sum of the subdistributions is the full point distribution D. In other words U
τ

=⇒3 D.
�

Definition 2.10 [Weak actions] In a wMDP 〈S,Actτ ,R≥0,−→〉 for ∆,Θ ∈ Dsub(S) we write

∆
a

=⇒w ∆ whenever ∆
τ

=⇒w1 ∆′
a−→w2 Θ′

τ
=⇒w3 Θ and w = w1 + w2 + w3. �

We complete this subsection by enumerating some elementary properties of hyper-derivations;
their proofs are relegated to Appendix A.

Proposition 2.11

1. If ∆
τ

=⇒v Θ then |∆| ≥ |Θ|.

2. If ∆
τ

=⇒v Θ and p ∈ R≥0 such that |p ·∆| ≤ 1, then p ·∆ τ
=⇒pv p ·Θ.

3. (Binary decomposition) If Γ + Λ
τ

=⇒v Π then Π = ΠΓ + ΠΛ with Γ
τ

=⇒vΓ ΠΓ, Λ
τ

=⇒vΛ ΠΛ,
and v = vΓ + vΛ.

4. (Linearity) Let pi ∈ [0, 1] for i ∈ I where
∑

i∈I pi ≤ 1. Then ∆i
τ

=⇒wi Θi for all i ∈ I implies∑
i∈I pi ·∆i

τ
=⇒(

∑
i∈I pi·wi)

∑
i∈I pi ·Θi.

11



5. (Decomposability) suppose
∑

i∈I pi · ∆i
τ

=⇒w Θ, where pi ∈ [0, 1] and
∑

i∈I pi ≤ 1. Then
w =

∑
i∈I pi · wi and Θ =

∑
i∈I pi · Θi for weights wi and subdistributions Θi such that

∆i
τ

=⇒wi Θi for all i ∈ I.

Proof. See Appendix A. �

With these results the relation
τ

=⇒ ⊆ Dsub(S)× (R≥0×Dsub(S)) can be obtained as the lifting

of a relation
τ

=⇒S from S to R≥0 ×Dsub(S), which is defined by writing s
τ

=⇒S 〈w,Θ 〉 just when

s
τ

=⇒w Θ.

Corollary 2.12 (
τ

=⇒S)= (
τ

=⇒).

Proof. That ∆ (
τ

=⇒S) 〈w,Θ 〉 implies ∆
τ

=⇒w Θ is a simple application of Part 4 followed by Part
3 of Proposition 2.11. For the other direction, suppose ∆

τ
=⇒w Θ. Given that ∆ =

∑
s∈d∆e∆(s) ·s,

Part 5 of the same proposition enables us to decompose Θ into
∑

s∈d∆e∆(s) · Θs and w into∑
s∈d∆e∆(s) · ws, where s

τ
=⇒ws Θs for each s in d∆e. But the latter actually means that s

τ
=⇒S

〈ws,Θs 〉, and so by definition this implies ∆ (
τ

=⇒S) 〈w,Θ 〉. �

Corollary 2.12 implies that the hyper-derivation relation
τ

=⇒ is convex. It is trivial to check that
τ

=⇒ is also reflexive because ∆
τ

=⇒0 ∆ for any ∆ ∈ Dsub(S). But transitivity is less obvious.

Theorem 2.13 [Transitivity of
τ

=⇒] If ∆
τ

=⇒u Θ and Θ
τ

=⇒v Λ then ∆
τ

=⇒u+v Λ.

Proof. See Appendix A. �

2.4 Finite generability

For a given ∆ the set D(∆) = { (w,∆′) | ∆
τ

=⇒w ∆′ } is in general uncountable. However
if we restrict our attention to finitary wMDPs it is possible to show that this set has a finite
representation. More specifically there is a finite set Df = {(w1,∆1), (w2,∆2), . . . , (wk,∆k)} such
that ∆

τ
=⇒wi ∆i for each i, and D(∆) is the convex closure of Df. The proof is non-trivial and

requires a significant digression into the world of payoff functions and policies. For this reason
the reader may wish to take this result for granted on first reading, and proceed to the following
section.

Let us fix a finite-state space S = {s1, ..., sn} with n ≥ 1 and define an extended state space
S∪{s0}. This allows us to deal with vectors and in particular to use vector arithmetic. For example,
a subdistribution ∆ ∈ Dsub(S) can be viewed as the n-dimensional vector 〈∆(s1), ...,∆(sn) 〉, and a
pair 〈w,∆ 〉 consisted of weight w and subdistribution ∆ may be viewed as the (n+1)-dimensional
vector 〈w,∆(s1), ...,∆(sn) 〉 in some contexts.

Definition 2.14 [Weight functions] A weight function is a function w : S ∪ {s0} → [−1, 1] from
the extended state space into the real interval [-1,1]. �
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This notion of weight function is not to be confused with the weights associated with actions in
a wMDP; instead they will be applied to the results of executing hyper-derivations. We often
consider a weight function as the (n + 1)-dimensional vector 〈w(s0), ...,w(sn) 〉. Therefore the
result of applying the weight function w to 〈w,∆ 〉 is given by the inner product of the two vectors
w � 〈w,∆ 〉.

Definition 2.15 [Payoff functions] Given a weight function w, the payoff function Pw
max : S → R

is defined by
Pw

max(s) = sup{w � 〈w,∆′ 〉 | s τ
=⇒w ∆′}

and we will generalise it to be of type Dsub(S) → R by letting Pw
max(∆) =

∑
s∈d∆e∆(s) · Pw

max(s).
�

A priori these payoff functions for a given state s are determined by its set of hyper-derivatives.
However they can also be calculated by using derivative policies, decision mechanisms for guiding
a computation through a wMDP.

Definition 2.16 A static (derivative) policy (SP) for a wMDP is a partial function pp : S⇀R≥0×
D(S) such that if pp(s) = 〈w,∆ 〉 then s

τ−→w ∆.
If pp is undefined at s, we write pp(s)↑. Otherwise, we write pp(s)↓. �

A derivative policy pp, as its name suggests, can be used to guide the derivation of a weak derivative.
Suppose s

τ
=⇒w ∆, using a derivation as given in Definition 2.8; for convenience we abbreviate

(∆→k + ∆×k ) to ∆k. Then we write s
τ

=⇒pp,w ∆ whenever ∆0 = s and, for all k ≥ 0,

(a) 〈wk+1,∆k+1 〉 =
∑
{∆k(s) · pp(s) | s ∈ d∆ke and pp(s)↓}

(b) ∆×k (s) =

{
0 if pp(s)↓
∆k(s) otherwise

}
We refer to s

τ
=⇒pp,w ∆ as a hyper-SP-derivation from s. Intuitively the conditions mean that

the derivation of ∆ from s, and the accumulation of weights, is guided at each stage by the policy
pp; the division of ∆k into ∆→k , the subdistribution which will continue marching, and ∆×k , the
subdistribution which will stop, is determined by the domain of the derivative policy pp.

Lemma 2.17 Let pp be derivative policy in a pLTS. Then

(1) If s
τ

=⇒pp,v ∆ and s
τ

=⇒pp,w Θ then v = w and ∆ = Θ.

(2) For every state s there exists some w, ∆ such that s
τ

=⇒pp,w ∆.

Proof. To prove part (1) consider the derivation of s
τ

=⇒v ∆ and s
τ

=⇒w Θ as in Definition 2.8, via
the subdistributions ∆k, ∆→k , ∆×k and Θk, Θ→k , Θ×k respectively, and the weights vk, wk. Because
both derivations are guided by the same derivative policy pp it is easy to show by induction on k
that

∆k = Θk ∆→k = Θ→k ∆×k = Θ×k vk = wk

from which ∆ = Θ and v = w follow immediately.
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To prove (2) generate subdistributions ∆k, ∆→k , ∆×k and weights wk for each k ≥ 0 satisfying
the constraints of Definition 2.8 by applying (a) and (b) above to pp. The result will then follow
by letting ∆ be

∑
k≥0 ∆×k and w to be

∑
k≥0wk. �

The net effect of this lemma is that a derivative policy pp determines a total function over
states. Moreover a policy can used as an alternative to the method used in Definition 2.15 to
calculate weighted payoffs.

Definition 2.18 [Policy-following payoffs] Given a weight function w, and static policy pp, the
policy-following payoff function Ppp,w : S → R∞ is defined by

Ppp,w(s) = w � 〈w,∆′ 〉

where w,∆ are determined uniquely by s
τ

=⇒pp,w ∆′. �

It should be clear that the use of derivative policies limits considerably the scope for calculating
weighted payoffs. Each particular policy can only derive one weak derivative, and moreover in
finitary pLTS there are only a finite number of derivative policies. Nevertheless this limitation is
more apparent than real.

Theorem 2.19 In a finitary wMDP, for any weight function w there exists a static policy pp such
that Pw

max = Ppp,w.

The proof of this theorem is non-trivial, requiring the use of discounted policies and payoffs. It is
relegated to Appendix B.

Theorem 2.20 [Finite generability] Let pp1, ..., ppn (n ≥ 1) be all the static policies in a finitary
wMDP. Suppose ∆

τ
=⇒ppi,wi ∆′i and wi < ∞ for all 1 ≤ i ≤ n. If ∆

τ
=⇒w ∆′ then there are

probabilities pi for all 1 ≤ i ≤ n with
∑n

i=1 pi = 1 such that 〈w,∆′ 〉 =
∑n

i=1 pi · 〈wi,∆′i 〉.

Proof. Let X be the convex closure of the finite set {〈wi,∆′i 〉 | 1 ≤ i ≤ n}. It suffices to show

that whenever ∆
τ

=⇒w ∆′ then 〈w,∆′ 〉 belongs to X. Suppose for a contradiction that 〈w,∆′ 〉 is
not in X. Since X is convex, Cauchy closed and bounded, by the Hyperplane separation theorem,
Theorem 1.2.4 in [Mat02], 〈w,∆′ 〉 can be separated from X by a hyperplane H whose normal can
be scaled into [−1, 1] because we are in finitely many dimensions. The scaled normal induces a
weight function wH such that, for some c ∈ R, we have wH �〈w,∆′ 〉 > c but wH �x < c for all x ∈ X.
Then we have PwH

max(∆) > c but Pppi,wH (∆) < c for all 0 ≤ i ≤ n, contradicting Theorem 2.19.
Therefore, 〈w,∆′ 〉 must be in X, and is a convex combination of {〈wi,∆′i 〉 | 1 ≤ i ≤ n}. �

Remark 2.21 It is important that in Theorem 2.20 the weight given by every static policy is finite.
Consider a wMDP consisted of two states s1, s2 and two transitions s1

τ−→1 s2, s1
τ−→1 s1. It can

only have two static policies. The first one, say pp1, is given by pp1(s1) = 〈 1, s2 〉 and pp1(s2) ↑.
The second one, say pp2 is given by pp2(s1) = 〈 1, s1 〉 and pp2(s2) ↑. They determine two hyper-
derivations from s1, namely s1

τ
=⇒pp1,1 s2 and s1

τ
=⇒pp2,∞ ε. Now consider the hyper-derivation

s1
τ

=⇒2 s1. Clearly, 〈 2, s1 〉 is not a convex combination of 〈 1, s2 〉 and 〈∞, ε 〉.
Here the culprit is pp2 which gives an infinite weight. In fact, the convex closure of the set

{〈 1, s2 〉, 〈∞, ε 〉} is unbounded, thus the Hyperplane separation theorem does not apply, and as a
matter of fact it is impossible to separate 〈 2, s1 〉 from that set.
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2.5 Bounded wMDPs

Another complication of our formulation of weak actions ∆
τ

=⇒w ∆′ in terms of hyper-derivations
is that, as we have already pointed out just after Definition 2.8, the weight w may turn out to
be ∞. We wish to restrict our attention to wMDPs where this weight is always guaranteed to be
finite.

Definition 2.22 A bounded wMDP is a finitary wMDP such that if ∆ is a subdistribution over it
and

∆
τ−→w1 ∆1

τ−→w2 ∆2
τ−→w3 · · ·

then
∑∞

i=1wi <∞. In other words, a bounded wMDP is a finitary wMDP that might diverge, but
with bounded weights. �

The purpose of this section is to give an alternative characterisation of boundedness (Theorem 2.27),
followed by a useful criteria which ensures boundedness (Theorem 2.29). Many of the results of
the remainder of the paper refer to bounded wMDPs.

Definition 2.23 A wMDP is convergent if no state is wholly divergent, i.e. s
τ

=⇒w ε for no state
s ∈ S and weight w. �

We will show that this condition is sufficient to ensure that a finitary wMDP is bounded.

Lemma 2.24 Let ∆ be a subdistribution in a finite-state, convergent and deterministic wMDP.
If ∆

τ
=⇒w ∆′ then

1. w is a finite real number and

2. |∆| = |∆′|.

Proof. Since the wMDP is convergent, then s
τ

=⇒w ε for no state s ∈ S and weight w. In other
words, each τ sequence from a state s is finite and ends with a distribution ∆ns which cannot
enable a τ transition.

s
τ−→w1 ∆1

τ−→w2 ∆2
τ−→w3 · · ·

τ−→wns ∆ns
τ9

In a deterministic wMDP, each state has at most one outgoing transition. So from each s there is
a unique τ sequence with length ns ≥ 0. Let ps be ∆ns(s

′) where s′ is any state in the support of
∆ns . We set

n = max{ns | s ∈ S}
p = min{ps | s ∈ S}

Note that since we are considering a finite-state wMDP both n and p are well defined. Now let
∆

τ
=⇒w ∆′ be any hyper-derivation constructed by a collection of ∆→k ,∆

×
k , wk such that

∆ = ∆→0 + ∆×0
∆→0

τ−→w0 ∆→1 + ∆×1
...

∆→k
τ−→wk ∆→k+1 + ∆×k+1

...
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with w =
∑∞

k=0wk and ∆′ =
∑∞

k=0 ∆×k . From each ∆→kn+i with k, i ∈ N, the block of n steps of τ
transition leads to ∆→(k+1)n+i such that |∆→(k+1)n+i| ≤ |∆

→
kn+i|(1− p). It follows that∑∞

j=0 |∆→j | =
∑n−1

i=0

∑∞
k=0 |∆→kn+i|

≤
∑n−1

i=0

∑∞
k=0 |∆→i |(1− p)k

=
∑n−1

i=0 |∆→i |
1
p

≤ |∆→0 |np

Since the wMDP is finite-state and deterministic, it is finitely branching. Therefore, there exists a
maximum weight wmax such that whenever s

τ−→v Θ then v ≤ wmax. It follows that

w =
∞∑
i=0

wi ≤
∞∑
i=0

|∆→i |wmax ≤
|∆→0 |nwmax

p

which means that the weight w is finite.
From above,

∑∞
j=0 |∆→j | is bounded (by |∆→0 |np ). It follows that limk→∞∆→k = 0, which in turn

means that |∆′| = |∆|. �

Example 2.25 In Lemma 2.24 it is important to require the wMDP to be convergent. In a
finite-state deterministic but divergent system, a hyper-derivation ∆

τ
=⇒w ∆′ may yield an infinite

weight w, even in the case that both ∆ and ∆′ are full distributions. For example, consider a system
consisting of one state s together with a self τ loop s

τ−→1 s. We construct a hyper-derivation as
follows.

s = 1
2s+ 1

2s
1
2s

τ−→ 1
2

1
3s+ (1

2 −
1
3)s

1
3s

τ−→ 1
3

1
4s+ (1

3 −
1
4)s

...
∆′ = s

So s makes a hyper-derivation to itself, but with weight
∑∞

k=2
1
k =∞. �

Lemma 2.26 [Distillation of divergence - static case] In a finite-state wMDP if there is a hyper-
SP-derivation ∆

τ
=⇒pp,w ∆′, there exists subdistribution ∆′ε such that ∆

τ
=⇒w1 (∆′ + ∆′ε), |∆| =

|∆′ + ∆′ε|, ∆′ε
τ

=⇒w2
ε, w1 is finite and w1 + w2 = w.

Proof. (Schema) We modify pp so as to obtain a static policy pp′ by setting pp′(s) = pp(s) except
when s

τ
=⇒pp,ws ε for some weight ws, in which case we set pp′(s) ↑. Intuitively, for any state s

which can potentially leads to total divergence under policy pp, the new policy pp′ requires it to
stop marching at the very beginning. The new policy determines a unique hyper-SP-derivation
∆

τ
=⇒pp′,w1 ∆′′ for some w1 and ∆′′, and induces a sub-wMDP from the wMDP induced by pp.

Note that the sub-wMDP is deterministic, and convergent too because all divergent states in the
original wMDP do not contribute any τ move in the sub-wMDP. By Lemma 2.24, we know that w1

is finite and |∆| = |∆′′|. We split ∆′′ up into ∆′′1 +∆′′ε so that each state in d∆′′εe is wholly divergent
under policy pp and ∆′′1 is supported by all other states. From ∆′ε the policy pp determines the
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hyper-SP-derivation ∆′ε
τ

=⇒pp,w2
ε for some w2. Combining the two hyper-SP-derivations we have

s
τ

=⇒pp′,w1 ∆′′1 + ∆′′ε
τ

=⇒pp,w2 ∆′′1.
In the above analysis, we divide the original hyper-SP-derivation into two stages by letting the

subdistribution ∆′′ε pause in the first stage and then resume marching in the second stage. Note
that the two-staged hyper-SP-derivation consists of the same τ transitions from the original hyper-
SP-derivation, which means that the overall weight and the final subdistribution remain the same
as before, thus we have w1 + w2 = w and ∆′′1 = ∆′. �

Theorem 2.27 A finitary wMDP is bounded if and only if for any subdistribution ∆, ∆
τ

=⇒w ∆′

implies w is a finite real number.

Proof. (⇐) First consider a finitary wMDP where we are assured that for any hyper-derivation
from any distribution ∆

τ
=⇒w ∆′, the weight w is finite. It is straightforward to see that the wMDP

is bounded: if ∆
τ

=⇒w ε, then by the hypothesis we know that w is finite.
(⇒) In a finitary wMDP, there are only finitely many static policies, say ppi for i ∈ I where

I is a finite index set. For each ppi we have the unique hyper-SP-derivation ∆
τ

=⇒ppi,wi ∆′i.

By Lemma 2.26 there exists subdistribution ∆′i ε such that ∆
τ

=⇒wi1 (∆′i + ∆′i ε), |∆| = |∆′i +

∆′i ε|, ∆′i ε
τ

=⇒wi2 ε, wi1 is finite and wi1 + wi2 = wi. If the wMDP is bounded, then wi2 is finite.
It follows that wi is also finite as it is the sum of two finite real numbers. Now we can apply
Theorem 2.20 to obtain that whenever ∆

τ
=⇒w ∆′ then w is a convex combination of {wi | i ∈ I}

which must be finite. �

This theorem enables us to generalise Lemma 2.26 to arbitrary hyper-derivations, provided we
restrict attention to bounded wMDPs.

Corollary 2.28 [Distillation of divergence - general case] In a bounded wMDP if ∆
τ

=⇒w ∆′ then
there exists subdistribution ∆′ε such that ∆

τ
=⇒w1 (∆′ + ∆′ε), |∆| = |∆′ + ∆′ε|, ∆′ε

τ
=⇒w2

ε and
w1 + w2 = w.

Proof. Let {ppi | i ∈ I} (I is a finite index set) be all the static policies in the bounded wMDP. Each
policy determines a hyper-SP-derivation ∆

τ
=⇒ppi,wi ∆′i. By Theorem 2.27, we know that wi <∞

for all i ∈ I. From Theorem 2.20 we know that if ∆
τ

=⇒w ∆′ then 〈w,∆′ 〉 =
∑

i∈I pi · 〈wi,∆′i 〉
for some pi with

∑
i∈I pi = 1 and ∆

τ
=⇒wi ∆′i. By Lemma 2.26, for each i ∈ I, there is some

∆′i,ε such that ∆
τ

=⇒wi1 (∆′i + ∆′i,ε), ∆ = |∆′i + ∆′i,ε|, ∆′i,ε
τ

=⇒wi2 ε and wi1 + wi2 = wi. Let
w1 =

∑
i∈I piwi1, w2 =

∑
i∈I piwi2, ∆′ε =

∑
i∈I pi ·∆′i,ε. By Proposition 2.11(4), it can be seen that

∆
τ

=⇒w1 (∆′ + ∆′ε), |∆| = |∆′ + ∆′ε|, ∆′ε
τ

=⇒w2
ε and w1 + w2 = w. �

Theorem 2.27 gives a useful property of bounded wMDPs, but there is a simpler criteria which
ensures boundedness.

Theorem 2.29 Every finitary and convergent wMDP is also bounded.

Proof. In a finitary and convergent wMDP, suppose ∆
τ

=⇒w ∆′. We show that the weight w is
finite. Let pp1, ..., ppn (n ≥ 1) be all the static policies in a finitary wMDP. Each static policy ppi
induces a deterministic sub-wMDP from the original wMDP, and determines a hyper-derivation
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∆
τ

=⇒ppi,wi ∆′i from ∆. Clearly, the sub-wMDP is also convergent. By Lemma 2.24, we know that

wi <∞ and |∆| = |∆i| for each i. Suppose ∆
τ

=⇒w ∆′. It follows from Theorem 2.20 that 〈w,∆′ 〉
is an interpolation of 〈w1,∆

′
1 〉, ..., 〈wn,∆′n 〉. Therefore, we have |∆| = |∆′| and w <∞. �

The final result of this section concerns closure with respect to parallel composition. This will
be useful in Section 4, where we define a testing preorder between processes (Definition 4.10).

Theorem 2.30 If P is a bounded wMDP and Q is a finite wMDP, then their parallel composition
P | Q is bounded.

Proof. (Schema) We use the simple syntax to represent finite wMDPs.

Q := 0 |
⊕
i∈I

pi ·Qi |
∑
i∈I
〈αi, wi 〉.Qi

where 0 is the deadlock state,
⊕

i∈I pi ·Qi represents a distribution that gives probability pi to state
Qi, and

∑
i∈I〈αi, wi 〉.Qi is a state that can nondeterministically evolve into state Qi by performing

action αi with weight wi. We prove by induction on the size of Q that if P | Q τ
=⇒w ε then w is

finite.

• Q ≡ 0. This is the base case. If P | 0 τ
=⇒w ε then obviously we have P

τ
=⇒w ε. Since P is a

bounded wMDP, we know that w is finite.

• Q ≡
⊕

i∈I pi ·Qi. If (P |
⊕

i∈I pi ·Qi)
τ

=⇒w ε, then we have P | Qi
τ

=⇒wi ε and w =
∑

i∈I piwi.
By induction hypothesis, each wi is finite. It follows that w is also finite.

• Q ≡
∑

i∈I〈αi, wi 〉.Qi. Note that it is easy to see Q generates a finitary wMDP. By The-
orem 2.20 it suffices to show that, for each static policy pp which determines the hyper-
SP-derivation P | Q τ

=⇒pp,w ε, the weight w is finite, because the finite generability theo-
rem ensures that the weight of a general hyper-derivation is the convex combination of the
weights given by static policies. We prove this using a schema similar to that in the proof of
Lemma 2.26.

We call a state in the compound wMDP P | Q productive if it is in the form P ′ | Q and
pp(P ′ | Q) = 〈wi, P ′′ | Qi 〉 for some i ∈ I and P ′′. That is, Q has participated in the
transition P ′ | Q τ−→wi P

′′ | Qi. We modify pp so as to obtain a static policy pp′ by
setting pp′(s) = pp(s) except when s is productive, in which case we set pp′(s) ↑. The
new policy determines a unique hyper-SP-derivation P | Q τ

=⇒pp′,w1 ∆ for some w1 and
∆, and induces a sub-wMDP from the wMDP induced by pp. The subdistribution ∆ is in
the form P ′ | Q because Q does not participate in any τ -transition in order to derive ∆,
and there is a hyper-derivation in P such that P

τ
=⇒w1 P

′. Since P is bounded, we know
that w1 is finite. We split ∆ up into ∆1 + ∆2 so that each state in d∆2e is productive
under policy pp and ∆1 is supported by all other states, if there are any at all. From ∆2

the policy pp determines the hyper-SP-derivation ∆2
τ

=⇒pp,w2
ε for some w2. Then there

are some w2s such that w2 =
∑

s∈d∆2e∆2(s) · w2s and s
τ

=⇒pp,w2s
ε for each s ∈ d∆2e.

Since each state s in d∆2e is productive, it must be in the form Ps | Q and make the
transitions Ps | Q

τ−→ws P
′′ | Qi

τ
=⇒pp,w′s

ε with ws + w′s = w2s. By induction hypothesis,
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the weight w′s is finite. Then w2s is finite because ws trivially is. It follows that w2 is finite.
Combining the two hyper-SP-derivations P | Q τ

=⇒pp′,w1 ∆1 + ∆2 and ∆2
τ

=⇒pp,w2
ε we have

P | Q τ
=⇒pp′,w1 ∆1 + ∆2

τ
=⇒pp,w2 ∆1. As we only divide the original hyper-SP-derivation

into two stages, and does not change the τ transition from each state, the overall weight and
the final subdistribution will not change, thus we have w1 +w2 = w and ∆1 = ε. Since both
w1 and w2 are shown to be finite, it follows that w is finite as well.

�

3 Amortised weighted simulations

This section is the heart of the paper; it is devoted to the formulation of the simulation relation
between systems described informally in the Introduction. Throughout we assume some arbi-
trary wMDP 〈S,Actτ ,R≥0,−→〉, although most of the technical results will only apply to bounded
wMDPs.

We give the formal definition of weighted simulations in Section 3.1 and show that it supports
compositional reasoning for our language CCMDP. This notion of weighted simulation can be
viewed as an extension of the notion of simulation for probabilistic systems from [DvGHM09],
using the idea of amortisation from [KAK05]. The definition is coinductive but in Section 3.2
we show that it can also be defined inductively; more specifically as the infinite intersection of a
decreasing sequence of inductively defined relations. This is essential to the logical characterisation,
the topic of Section 3.3.

3.1 Introduction

Weighed simulations can be defined either at the distribution level or at the state level. We choose
the latter.

Definition 3.1 Given a relation R⊆ S × (R≥0 × D(S)), let S(R) ⊆ S × (R≥0 × D(S)) be the
relation defined by letting s S(R) 〈 r,Θ 〉 whenever

s
α−→v ∆ implies the existence of some w and Θ′ such that Θ

α
=⇒w Θ′ and ∆ R 〈 r + w − v,Θ′ 〉

The operator S(−) is monotonic and so it has a maximal fixed point, which we denote by C. We
often write s Cr Θ for s C 〈 r,Θ 〉 and use ∆ vsim Θ to mean that there is some initial investment
r such that ∆ Cr Θ. �

The basic idea here is that s Cr Θ intuitively means that Θ can simulate the actions of s but
with more benefit, or at least not less benefit1. The parameter r should be viewed as compensation
which Θ has accumulated which can be used in local comparisons between the benefits of individual
actions. Thus when we simulate s

α−→v ∆ with Θ
α

=⇒w Θ′ there are two possibilities:

1In Definition 3.1 weights are understood as benefits. Alternatively if we consider weights as costs it is more
natural to use a variant of Definition 3.1 where the two resulting distributions are related by ∆ R 〈 r + v − w,Θ′ 〉.
This does not affect much the formal development in the rest of the paper.
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(i) w > v; here the accumulated compensation is increased from r to r+ (w− v). In subsequent
rounds this extra compensation may be used to successfully simulate a heavier action with a
lighter one.

(ii) w ≤ v; here the compensation is decreased from r to r − (v − w).

Finally it is important that r ≥ 0, and remains greater than or equal to zero, or otherwise the
presence of weights would have no effect. Thus in case (ii) if (v−w) > r then the simulation is not
successful.

We now show that with this formal definition of the relation vsim the various statements
asserted in the Introduction are true:

Example 3.2 Consider the first two systems, s0 and t0, viewed as wMDPs. Then the relation R
given by

R = {(s0, 〈 r, t0 〉) | r ≥ 1} ∪ {(sd, 〈 r, td 〉) | r ≥ 0}

is a simulation. Thus s0 Cr t0 for any r ≥ 1. As pointed out in [KAK05] this example shows the
need for the parametrisation with respect to initial investments r; Because of the weights associated
with the action up an initial investment of at least one is required in order for t0 to be able to match
s0.

We also have s0 Cr s1 for any r ≥ 1 because of the following simulation:

R = {(s0, 〈 r, s1 〉) | r ≥ 1} ∪ {(sd, 〈 r,∆ 〉) | r ≥ 0}

where ∆ is the distribution 1
4 ·O+ 3

4 ·T . Note that this is indeed a simulation because ∆
down−→2.5 s1.

Incidently this example shows why it is necessary to relate states to distributions, rather than
states; there is no individual state accessible from s1 which can simulate sd.

Similarly s1 Cr t1 for every r ≥ 0 because of the simulation:

R = {(s1, 〈 r, t1 〉) | r ≥ 0} ∪ {(O, 〈 r, U 〉) | r ≥ 0} ∪ {(T, 〈 r, U 〉) | r ≥ 0}

Note that from Example 2.9 we have seen that U
τ

=⇒3 D and therefore by transitivity U
down
=⇒4 t1.

Finally s0 C2 s2 because of the following simulation:

R = {(s0, 〈 r, s2 〉) | r ≥ 2} ∪ {(sd, 〈 r,∆ 〉) | r ≥ 0}

where ∆ is the distribution 1
4 · S + 3

4 · T . Note that ∆
down
=⇒3 s2 although it is also possible for it to

do the down action for much less benefit. �

Our first result about the simulation preorder C is that its lifting C is a precongruence relation
for the language CCMDP.

Lemma 3.3 1. If ∆
α

=⇒r ∆′ then ∆ | Γ α
=⇒r ∆′ | Γ and Γ | ∆ α

=⇒r Γ | ∆′.

2. If ∆
a−→r1 ∆′ and Γ

ā−→r2 Γ′ then ∆ | Γ τ−→r1+r2 ∆′ | Γ′.

Proof. Straightforward calculations. �
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Theorem 3.4 The relation C is a precongruence.

Proof. It is easy to verify that C is closed under prefixing, nondeterministic choice, and hiding
operators. Here we only show that the closure under parallel composition is also preserved, namely,
if ∆ Cr Θ then (∆ | Γ) Cr (Θ | Γ). We first construct the following relation

R:= {(s | t, 〈 r, Θ | t 〉) | s Cr Θ}

and check that R ⊆ C. Suppose that (s | t) Rr (Θ | t).

• If s | t α−→v ∆ | t because of the transition s
α−→v ∆, then Θ

α
=⇒w Θ′ and ∆ Cr+w−v Θ′. By

Lemma 3.3 we have Θ | t α
=⇒w Θ′ | t. It also holds that (∆ | t) Rr+w−v (Θ′ | t).

• If s | t α−→v s | Γ because of the transition t
α−→v Γ, then Θ | t α−→v Θ | Γ and we have that

(s | Γ) Rr (Θ | Γ).

• If s | t τ−→v ∆ | Γ because of the transitions s
a−→v1 ∆ and t

ā−→v2 Γ with v = v1 + v2, then
Θ

a
=⇒w1 Θ′ and ∆ Cr+w1−v1 Θ′. By Lemma 3.3 we derive that Θ | t τ

=⇒w1+v2 Θ′ | Γ. Note
that r + (w1 + v2)− (v1 + v2) = r + w1 − v1 and (∆ | Γ) Rr+w1−v1 (Θ′ | Γ).

So we have shown thatR is a simulation relation. It follows that ∆ Cr Θ implies (∆ | Γ) Rr (Θ | Γ),
thus (∆ | Γ) Cr (Θ | Γ). �

Example 3.5 Let P,Q be two processes with P C0 Q. Consider the following processes:

U ⇐ τ0.(τ1.U 3
4
⊕ down1.Q)

P ′ ≡ up2.(down1.P 1
4
⊕ down3.P )

Q′ ≡ up2.U

By the analysis in Example 2.9 we know that U
τ

=⇒3 down1.Q, thus U
down
=⇒4 Q. Then it is easy

to see that down1.P C0 U and down3.P C0 U . It follows from the compositionality of C0 that
(down1.P 1

4
⊕ down3.P ) C0 U and furthermore P ′ C0 Q′. �

Note that in Definition 3.1 for s Cr Θ to be true we only require that strong moves from s be
matched by weak moves from Θ; this restriction makes the proof of the congruence result, Theo-
rem 3.4, relatively straightforward. But later, in particular when giving a logical characterisation
of the simulation preorder, it will be useful to know that this transfer property is also true for weak
moves from s. We end this section with a proof of this result, which first requires a lemma.

Lemma 3.6 Let ∆ and Θ be two subdistributions in a bounded wMDP. Suppose ∆ Cr Θ for some
r ∈ R≥0. If ∆

α−→v ∆′ then Θ
α

=⇒w Θ′ for some w and Θ′ such that ∆′ Cr+w−v Θ′.

Proof. Note that in the statement of the lemma both ∆ and Θ are in general subdistributions.
Although the relations Cr only relate states to full distributions, the lifted relations Cr are relations
over subdistributions.

Suppose ∆ Cr Θ and ∆
α−→v ∆′. By Lemma 2.3 there is an index set I such that (i) ∆ =∑

i∈I pi · si, (ii) r =
∑

i∈I piri, (iii) Θ =
∑

i∈I pi · Θi, and (iv) si Cri Θi for each i ∈ I with
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∑
i∈I pi ≤ 1. By the condition ∆

α−→v ∆′, (i) and Proposition 2.6, there are some weights vi

and subdistributions ∆′i such that v =
∑

i∈I pivi, ∆′ =
∑

i∈I pi · ∆′i, and si
α−→vi ∆′i for each

i ∈ I. By Lemma 2.3 again, for each i ∈ I, there is an index set Ji such that vi =
∑

j∈Ji qijvij ,

∆′i =
∑

j∈Ji qij · ∆
′
ij and si

α−→vij ∆′ij for each j ∈ Ji and
∑

j∈Ji qij = 1. By (iv) there is some

wij and Θ′ij such that Θi
α

=⇒wij Θ′ij and ∆′ij Cri+wij−vij Θ′ij . Let w =
∑

i∈I,j∈Ji piqijwij and

Θ′ =
∑

i∈I,j∈Ji piqij ·Θ
′
ij . By Proposition 2.11 the relation

τ
=⇒ is linear, from which it follows that

α
=⇒ is also linear for an arbitrary α. It follows that Θ =

∑
i∈I pi

∑
j∈Ji qij · Θi

α
=⇒w Θ′. By the

linearity of C, we conclude that ∆′ = (
∑

i∈I pi
∑

j∈Ji qij ·∆
′
ij) Cr+w−v Θ′. �

Proposition 3.7 [Weak transfer property] Let s be a state and Θ a distribution in a bounded
wMDP such that s Cr Θ for some r ∈ R≥0. Suppose s

α
=⇒v ∆′ where ∆′ is again a distribution.

Then Θ
α

=⇒w Θ′ for some w and Θ′ such that ∆′ Cr+w−v Θ′.

Proof. Before embarking on the proof first note that we are assured that the matching Θ′ in the
statement of the lemma is also a distribution. Using the characterisation in Lemma 2.3, it is easy to
check that if ∆ R 〈 r,Θ 〉 for any relation R⊆ S×(R≥0×D(S)) then |∆| = |Θ|. Since ∆′ Cr+w−v Θ′

and ∆′ is a distribution it follows that Θ′ must also be a distribution.
We give the proof in the case when α is τ ; the case for a ∈ Act follows from this in a straight-

forward manner. Suppose s Cr Θ and s
τ

=⇒v ∆′ with |∆′| = 1. So there are ∆k, ∆→k and ∆×k for

k ≥ 0 such that s = ∆0, ∆k = ∆→k + ∆×k , ∆→k
τ−→vk+1

∆k+1, v =
∑∞

k=1 vk and ∆′ =
∑∞

k=0 ∆×k .
Since ∆→0 + ∆×0 = s Cr Θ, by Proposition 2.6 we can make the decomposition Θ = Θ→0 + Θ×0 so

that ∆→0 Cr→0 Θ→0 and ∆×0 Cr×0
Θ×0 for some r→0 , r

×
0 with r→0 + r×0 = r. Since ∆→0

τ−→v1 ∆1 and

∆→0 Cr→0 Θ→0 , by Lemma 3.6 we have Θ→0
τ

=⇒w1 Θ1 with ∆1 C(r→0 +w1−v1) Θ1.

Repeating the above procedure gives us inductively a series Θk,Θ
→
k ,Θ

×
k of subdistributions, for

k ≥ 0, and weights r→k , r
×
k , for k ≥ 1, such that Θ = Θ0, ∆k C(r→k−1+wk−vk) Θk, Θk = Θ→k + Θ×k ,

∆→k Cr→k Θ→k , ∆×k Cr×k
Θ×k , Θ→k

τ
=⇒wk+1

Θk+1 and r→k−1 + wk − vk = r→k + r×k . We define

Θ′ =
∑∞

k=0 Θ×k , w =
∑∞

k=1wk and r′ =
∑∞

k=0 r
×
k . It follows from Definition 2.2 that ∆′ Cr′ Θ′.

Below we show that Θ
τ

=⇒w Θ′ and r′ = r + w − v.
By the transitivity of hyper-derivations, Theorem 2.13, it can be established that Θ

τ
=⇒∑

k≤i wk

(Θ→i +
∑

k≤i Θ×k ) for each i ≥ 0. Since |∆′| = 1, we must have limi→∞ |∆→i | = 0. Again using the
characterisation in Lemma 2.3 we know that |Θ→i | = |∆→i | for each i. Therefore, since ∆→i Cr→i Θ→i ,

we then have limi→∞ |Θ→i | = 0. Thus, limi→∞(Θ→i +
∑

k≤i Θ×k ) =
∑∞

k=0 Θ×k = Θ′. We also have
limi→∞

∑
k≤iwk =

∑∞
k=1wk = w. In Appendix C, specifically in Corollary C.1, we show that the

set {〈 v,Γ 〉 | Θ τ
=⇒v Γ} is compact. From this it follows that Θ

τ
=⇒w Θ′.

By an easy inductive proof it can be seen that r = r→i +
∑

k≤i r
×
k +

∑
k<i vk −

∑
k<iwk for

each i ≥ 0. From limi→∞ |∆→i | = 0 and ∆→i Cr→i Θ→i it follows that limi→∞ r
→
i = 0. Therefore,

r =
∑

k≥0 r
×
k +

∑
k≥0 vk −

∑
k≥0wk = r′ + v − w, i.e. r′ = r + w − v. �

This weak transfer property is easily generalised to distributions:

Corollary 3.8 Suppose ∆ Cr Θ for some r ∈ R≥0, where ∆,Θ are two distributions in a bounded

wMDP. If ∆
α

=⇒v ∆′, where ∆′ is also a distribution, then there exists a distribution Θ′ such that
Θ

α
=⇒w Θ′ and ∆′ Cr+w−v Θ′.
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Proof. Combining Proposition 2.11 and Proposition 3.7. �

3.2 Infinite approximation

The simulation relations Cr are defined coinductively. But in bounded wMDPs they can also be
characterised inductively.

Definition 3.9 For every k ≥ 0 we define the relation Ck⊆ S × (R≥0 ×D(S)) as follows:

(i) C0= S × (R≥0 ×D(S))

(ii) Ck+1= S(Ck).

Finally we let C∞ be
⋂∞
k=0 C

k. �

Standard arguments ensure that Cr ⊆ Ckr for every k ≥ 0 and therefore that Cr ⊆ C∞r . The
converse is also true in bounded wMDPs, as we now demonstrate, using compactness arguments.

We note that the metric space (R≥0 ×Dsub(S), d1) equipped with the distance function

d1(〈 v,∆ 〉, 〈w,Θ 〉) = max({|w − v|} ∪ {|∆(s)−Θ(s)| | s ∈ S})

is complete. Provided the set S is finite, the distance function on the space (S → R≥0×Dsub(S), d2)
given by d2(f, g) = maxs∈S d1(f(s), g(s)) is well-defined, and the resulting metric space is also
complete.

Proposition 3.10 For any subdistribution ∆ in a bounded wMDP the set {〈w,∆′ 〉 | ∆ α
=⇒w ∆′}

is closed.

Proof. See Appendix C; a more general result is given in Lemma C.6. �

Definition 3.11 A relation R⊆ S × (R≥0 ×Dsub(S)) is closed (resp. bounded) if for every s ∈ S
the set s· R= { 〈w,∆ 〉 | s R 〈w,∆ 〉 } is closed (resp. bounded). It is compact if it is both closed
and bounded. �

The main technical result we require is the following:

Proposition 3.12 In a bounded wMDP, for every k ∈ N, the relation Ck is closed and convex.

Proof. Because of the style of argument required this proof is also relegated to Appendix C. �

Before the main result of this section we need one more technical result.

Lemma 3.13 Let S be a finite set of states. Suppose Rk ⊆ S × (R≥0 ×Dsub(S)) is a sequence of
closed and convex relations such that R(k+1) ⊆ Rk. Then it holds that

(∩∞k=0 Rk) ⊆ (∩∞k=0 Rk) .
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Proof. Let R∞ denote (∩∞k=0 Rk), and suppose ∆ Rk 〈w,Θ 〉 for every k ≥ 0. We have to show
that ∆ R∞ 〈w,Θ 〉.

Since Rk is closed and convex for each k, it follows that R∞ is also closed and convex. Moreover
it is easy to check that the set of choice functions Ch(R) is also closed. Therefore, Ch(Rk) for
each k ∈ N and Ch(R∞) are closed.

Now consider
G = { f : S → R≥0 ×Dsub(S) | 〈w,Θ 〉 = Exp∆(f) }

which is easily seen to be a closed set. Consider the collection of closed sets Hk = Ch(Rk) ∩ G;

since ∆ Rk 〈w,Θ 〉, Proposition 2.5 assures us that all of these are non-empty. Also H(k+1) ⊆ Hk

and therefore by the finite-intersection property [Lip65] ∩∞k=0H
k is also non-empty.

Let f be an arbitrary element of this intersection. For any state s ∈ dom(R∞), and for every
k ≥ 0, we have s ∈ dom(Rk) because dom(R∞) ⊆ dom(Rk). Therefore, s Rk f(s) as f ∈ Ch(Rk).
It follows that s R∞ f(s). So f is a choice function for R∞, f ∈ Ch(R∞). From Proposition 2.5 it
follows that ∆ R∞ Exp∆(f). But from the definition of the G we know that 〈w,Θ 〉 = Exp∆(f),
and the required result follows. �

Theorem 3.14 In a bounded wMDP, s Cr Θ if and only if s C∞r Θ.

Proof. Since C ⊆ C∞ it is sufficient to show the opposite inclusion, which by definition holds if C∞

is a simulation, viz. if C∞⊆ S(C∞). Suppose s C∞r Θ, which means that s Ckr Θ for every k ≥ 0.
In order to show s S(C∞)r Θ we have to establish that if s

α−→v ∆′ then Θ
α

=⇒w Θ′ for some Θ′

such that ∆′ C∞(r+w−v) Θ′.

For every k ≥ 0 there exists some wk,Θ
′
k such that Θ

α
=⇒wk Θ′k and ∆′ Ck(r+wk−v) Θ′k. Now

construct the sets
Dk = { 〈w,Θ′ 〉 | Θ

α
=⇒w Θ′ and ∆′ Ck(r+w−v) Θ′ }.

We now argue that each Dk is a closed set.
To do so we rewrite it to a form which makes the fact that it is closed obvious. First define the

function E : Dsub(S) × (S → R≥0 × Dsub(S)) → R≥0 × Dsub(S) by E(Θ, f) = ExpΘ(f), which is
obviously continuous. It is also a closed function, meaning that the image of every closed set under
E is closed, because positive scaling and sum are operations that preserve closedness of functions.
Because of Proposition 2.5 it can be shown that

Dk = (Θ
α

=⇒) ∩G−1 ◦ E({∆′} ×Ch(Ck)),

where G(〈w,Θ′ 〉) = 〈 r + w − v,Θ′ 〉. Thus by Proposition 3.10 and Proposition 3.12 they are
closed.

They are also non-empty and Dk+1 ⊆ Dk. So by the finite-intersection property the set
⋂∞
k=0D

k

is non-empty. For any 〈w,Θ′ 〉 in it we know Θ
α

=⇒w Θ′ and ∆′ Ck(r+w−v) Θ′ for every k ≥ 0;

that is ∆′ (∩∞k=0 C
k

(r+w−v)) Θ′. By Proposition 3.12, the relations Ck are all closed and convex.
Therefore, Lemma 3.13 may be applied to them, which enables us to conclude ∆′ C∞(r+w−v) Θ′.

�
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3.3 Modal logic

As part of our argument in favour of amortised simulations for wMDPs we show that it has asso-
ciated with it a natural property or modal logic. We show two results. The first is that a finitary
version characterises the behavioural preorders Cr. Secondly we show that with the addition of
fixed points we can capture logically the behaviour of any state. Both results are restricted to
bounded wMDPs.

Here we develop a modal logic which characterises the relations C∞r in an arbitrary wMDP,
and thus Cr in bounded wMDPs.

Let L be the set of modal formulae defined inductively as follows:

• tt ∈ L

• 〈α〉
w
(φ1 p⊕ φ2) ∈ L when φi ∈ L, α ∈ Actτ , w ∈ R≥0 and p ∈ [0, 1]

• φ1 ∧ φ2 ∈ L when φ1, φ2 ∈ L

Let Con denote the set of all pairs 〈r,∆〉, called configurations, where r ∈ R≥0 and ∆ ∈ D(S),
with S denoting the state space of some wMDP. Intuitively this represents a probabilistic system
which has accumulated compensation r which it can use to satisfy formulae in the future. The
satisfaction relation |= ⊆ Con× L is now given by:

(i) 〈r,∆〉 |= tt for every configuration

(ii) 〈r,∆〉 |= φ1 ∧ φ2 whenever 〈r,∆〉 |= φ1 and 〈r,∆〉 |= φ2

(iii) 〈r,∆〉 |= 〈α〉
v
(φ1 p⊕ φ2) whenever ∆

α
=⇒w ∆′, 〈r + w − v,∆′〉 = 〈r1,∆

′
1〉 p⊕ 〈r2,∆

′
2〉, and

〈ri,∆′i〉 |= φi.

Let L(r,∆) = {φ ∈ L | 〈r,∆〉 |= φ }.
The idea here is that 〈r,∆〉 represents a process which has built up compensation r which it

can use to help satisfy a formula. The principal formula is 〈α〉
v
φ which represents the ability to do

an α action with benefit at least v and then satisfy φ. In (iii) above when this is satisfied by 〈r,∆〉
because ∆

α
=⇒w ∆′ there are two possibilities:

(i) v > w: here the compensation comes into play. The action may be accepted despite being
too heavy but the compensation is reduced from r to r− (v−w); note this is only possible if
this sum r − (v − w) ≥ 0.

(ii) v ≤ w: The action is accepted and the compensation is increased from r to r + (w − v).

For convenience of presentation, we generalise binary probabilistic choice to be n-ary and often
write 〈α〉

w

⊕
i∈I pi · φi for finite index set I. It is easy to see that, for instance,

〈r,∆〉 |= 〈α〉
w

⊕
i=1..3

pi · φi if and only if 〈r,∆〉 |= 〈α〉
w
(φ1 p1⊕ (〈τ〉

0
(φ2 p2

1−p1
⊕ φ3)))

for any configuration 〈 r,∆ 〉.
The modal logic L has a limited number of operators, and for this reason the satisfaction relation

is in some sense impervious to hyper-derivations:
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Lemma 3.15 Suppose ∆
τ

=⇒w ∆′ and r + w ≥ r′. Then 〈r′,∆′〉 |= φ implies 〈r,∆〉 |= φ.

Proof. By structural induction on φ. �

Proposition 3.16 Suppose in a bounded wMDP that ∆ Cr Θ. Then for every φ ∈ L, 〈r∆,∆〉 |= φ
implies 〈r∆ + r,Θ〉 |= φ.

Proof. By structural induction on φ. We examine only one case, when φ has the form 〈α〉
c
(φ1 p⊕

φ2). Suppose 〈r∆,∆〉 |= φ. This means ∆
α

=⇒v ∆′, 〈r∆ + v − c,∆′〉 = 〈r1,∆
′
1〉 p⊕ 〈r2,∆

′
2〉, and

〈ri,∆′i〉 |= φi for i = 1, 2. Note that by the definition of the satisfaction relation |= we know that
∆,∆′ ∈ D(S), i.e. |∆| = |∆′| = 1. In a bounded wMDP we know from Corollary 3.8 that Cr also
satisfies the transfer property for weak moves and therefore Θ

α
=⇒w Θ′ such that ∆′ C(r+w−v) Θ′.

By Proposition 2.6, 〈 r + w − v,Θ′ 〉 = 〈 t1,Θ′1 〉 p⊕ 〈 t2,Θ′2 〉 so that ∆′i Cti Θ′i for i = 1, 2. By
induction hypothesis, we have 〈ri + ti,Θ

′
i〉 |= φi for i = 1, 2. Since

(r1 + t1) p⊕ (r2 + t2) = (r∆ + v − c) + (r + w − v) = (r∆ + r) + w − c

it follows that 〈r∆ + r,Θ〉 |= φ. �

Theorem 3.17 In a bounded wMDP, L(0, s) ⊆ L(r,Θ) implies s Cr Θ.

Proof. Since we assume the wMDP is bounded, by Theorem 3.14 it is sufficient to prove the result
for C∞ rather than C. Thus we have to show that for every k ≥ 0, L(0, s) ⊆ L(r,Θ) implies

s Ckr Θ. This will follow immediately if for every state s and every index k we can construct the
k-th characteristic formulae φks satisfying:

(a) 〈0, s〉 |= φks

(b) 〈r,Θ〉 |= φks implies s Ckr Θ.

The construction is by induction on k:

(i) φ0
s = tt

(ii) φ
(k+1)
s =

∧
s
α−→w∆

〈α〉
w
φk∆

(iii) φk∆ =
⊕

s∈d∆e∆(s) · φks .

The proof that properties (a) and (b) are satisfied proceeds by induction on k, with the case

k = 0 being trivial. As an example of the inductive case we first show 〈r,Θ〉 |= φ
(k+1)
s implies

s C(k+1)
r Θ.
So let us assume 〈r,Θ〉 |= φ

(k+1)
s . Let s

α−→v ∆ be an arbitrary move from s; because of
the construction of the characteristic formula we have that 〈r,Θ〉 |= 〈α〉

v
φk∆. By definition this

means Θ
α

=⇒w Θ′, where 〈 (r + w − v),Θ′ 〉 =
∑

s∈d∆e∆(s) · 〈 rs,Θ′s 〉 and 〈rs,Θ′s〉 |= φks . At this

point we invoke induction to obtain s Ckrs Θ′s from which it follows by the definition of lifting that

∆ Ck(r+w−v) Θ′. Therefore, we have verified that s C(k+1)
r Θ. �

As an immediate corollary we have a logical characterisation of our simulation preorder.
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[tt]ρ = R≥0 ×D(S)

[φ1 ∧ φ2]ρ = [φ1]ρ ∩ [φ2]ρ
[〈α〉

v
(φ1 p⊕ φ2)]ρ = { 〈 r,∆ 〉 ∈ R≥0 ×D(S) | ∃∆′ : ∆

α
=⇒w ∆′ and

〈 r + w − v,∆′ 〉 = 〈 r1,∆1 〉 p⊕ 〈 r2,∆2 〉 with 〈 ri,∆i 〉 ∈ [φi]ρ }
[X]ρ = ρ(X)

[max X.φ]ρ =
⋃
{V ⊆ R≥0 ×D(S) | V ⊆ [φ]ρ[X 7→V ] }

Figure 5: Semantics of the fixed point logic

Corollary 3.18 In a bounded wMDP, s Cr Θ if and only if L(0, s) ⊆ L(r,Θ).

Proof. Combining Proposition 3.16 and Theorem 3.17. �

We now turn our attention to characteristic formulae. To this end we extend the modal
logic L with a fixed point operator.

Let Var be a countable set of variables. We define a set Lfix of modal formulae by the following
grammar:

φ := tt | 〈α〉
w
(φ1 p⊕ φ2) | φ1 ∧ φ2 | X | max X.φ

where α ∈ Actτ w ∈ R≥0 and p ∈ [0, 1]. Sometimes we also use the finite conjunction
∧
i∈I φi.

As usual, we have
∧
i∈∅ φi = tt. The fixed point operator max X binds the variable X. We apply

the usual terminology of free and bound variables in a formula and write fv(φ) for the set of free
variables in φ.

We use environments, which binds free variables to sets of distributions, in order to give seman-
tics to formulae. We fix a bound wMDP and let S be its state set. Let

Env = { ρ | ρ : Var→ P(R≥0 ×D(S)) }

be the set of all environments and ranged over by ρ. For a set V ⊆ R≥0 × D(S) and a variable
X ∈ Var, we write ρ[X 7→ V ] for the environment that maps X to V and Y to ρ(Y ) for all Y 6= X.

The semantics of a formula φ can be given as the set of configurations satisfying it. This entails
a semantic functional [ ] : Lfix → Env → P(R≥0 × D(S)) defined inductively in Figure 5. As the
meaning of a closed formula φ does not depend on the environment, we write [φ] for [φ]ρ where ρ
is an arbitrary environment.

The semantics of the fixed point logic is similar to that of the modal mu-calculus [Koz83], but
formulae are now satisfied by configurations. The characterisation of greatest fixed point formula
max X.φ follows from the well-known Knaster-Tarski fixed point theorem [Tar55].

We shall consider (closed) equation systems of formulae of the form

E : X1 = φ1
...

Xn = φn

whereX1, ..., Xn are mutually distinct variables and φ1, ..., φn are formulae having at mostX1, ..., Xn

as free variables. Here E can be viewed as a function E : Var → Lfix defined by E(Xi) = φi for
i = 1, ..., n and E(Y ) = Y for other variables Y ∈ Var.
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An environment ρ is a solution of an equation system E if ∀i : ρ(Xi) = [φi]ρ. The existence of
solutions for an equation system can be seen from the following arguments. The set Env, which
includes all candidates for solutions, together with the partial order ≤ defined by

ρ ≤ ρ′ iff ∀X ∈ Var : ρ(X) ⊆ ρ′(X)

forms a complete lattice. The equation functional E : Env → Env given in the λ-calculus notation
by

E := λρ.λX.[E(X)]ρ

is monotonic. Thus, the Knaster-Tarski fixed point theorem guarantees existence of solutions, and
the largest solution

ρE :=
⊔
{ ρ | ρ ≤ E(ρ) }.

We first observe that Proposition 3.16 can be generalised to this fixed point logic Lfix.
Let f : L → L be a monotonic function over a complete lattice L. For every ordinal λ define

fλ by:

• f0 = >L, where >L is the greatest element of the lattice

• fλ+1 = f(fλ)

• if λ is a limit ordinal let fλ =
d
{fβ | β < λ}.

Theorem 3.19 [Tarski] There exists an ordinal λ such that fλ is the greatest fixed point of f .

A subset C of Con is upper-closed (UC) if 〈r∆,∆〉 ∈ C and ∆ Cr Θ implies 〈r∆ + r,Θ〉 ∈ C.
An environment ρ is UC if ρ(X) is UC for every variable X ∈ Var.

Theorem 3.20 If ρ is UC then so is [φ]ρ for every formula φ ∈ Lfix.

Proof. We proceed by structural induction on the formula φ. The case for 〈α〉
r
φ′ is similar to the

proof in Proposition 3.16. All other cases are straightforward except for the greast fixed point.
Let φ = max X.φ′. Note that by structural induction we can assume that the result holds for

φ′. For every ordinal λ we define the set Cλ as follows:

(i) C0 = R≥0 ×D(S)

(ii) Cλ+1 = [φ′]ρ[X 7→Cλ]

(iii) Cλ =
⋂
{Cβ | β < λ} if λ is a limit ordinal.

By Tarski’s theorem there is some ordinal λ such that Cλ = [φ]ρ. So it is sufficient to prove, by

induction over the ordinals, that Cλ is UC for every λ.
Case (i) is trivial. Case (ii) follows by structural induction, since by the inner induction the

environment ρ[x 7→ Cλ] is UC. Case (iii) is trivial since the collection of UC sets are closed under
intersection. �
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Corollary 3.21 Suppose in a bounded wMDP that ∆ Cr Θ. Then for every closed formula
φ ∈ Lfix, 〈r∆,∆〉 ∈ [φ] implies 〈r∆ + r,Θ〉 ∈ [φ].

Let Lfix(r,∆) = {φ ∈ Lfix | fv(φ) = ∅ ∧ 〈r,∆〉 |= φ }. Then we have the extension of
Corollary 3.18 from L to Lfix.

Corollary 3.22 In a bounded wMDP, s Cr Θ if and only if Lfix(0, s) ⊆ Lfix(r,Θ).

Proof. It follows from Corollary 3.21 and Theorem 3.17. �

Below we characterise the behaviour of a process by an equation system of modal formulae.
To do so it will be convenient to use a generalised modality operator of the form 〈α〉

w

⊕
i∈I pi · φi

where I is a finite index set I. The satisfaction relation can be extended to these formulae so that
they become derived operators in the language Lfix, as we did in L.

Definition 3.23 Given a bounded wMDP, its characteristic equation system consists of one equa-
tion for each state s1, ..., sn ∈ S.

E : Xs1 = φs1
...

Xsn = φsn

where
φs :=

∧
s
α−→v∆

〈α〉
v
X∆ (3)

with X∆ :=
⊕

s∈d∆e∆(s) ·Xs. �

Theorem 3.24 Suppose E is a characteristic equation system. Then s Cr Θ if and only if 〈 r,Θ 〉 ∈
ρE(Xs).

Proof. (⇐) Let R:= { (s, 〈 r,Θ 〉) | 〈 r,Θ 〉 ∈ ρE(Xs) }. We first show that

〈 r,Θ 〉 ∈ [X∆]ρE implies ∆ R 〈 r,Θ 〉. (4)

Let ∆ =
⊕

i∈I pi · si, then X∆ =
⊕

i∈I pi ·Xsi . Suppose 〈 r,Θ 〉 ∈ [X∆]ρE . We have that 〈 r,Θ 〉 =∑
i∈I pi ·〈 ri,Θi 〉 and, for all i ∈ I, 〈 ri,Θi 〉 ∈ [Xsi]ρE , i.e. si R 〈 ri,Θi 〉. It follows that ∆ R 〈 r,Θ 〉.
Now we show that R is an amortised weighted simulation. Suppose s R 〈 r,Θ 〉 and s

α−→v ∆.
Then 〈 r,Θ 〉 ∈ ρE(Xs) = [φs]ρE . It follows from (3) that 〈 r,Θ 〉 ∈ [〈α〉

v
X∆]ρE . So there exists

some Θ′ such that Θ
α

=⇒w Θ′ and 〈 r + w − v,Θ′ 〉 ∈ [X∆]ρE . Now we apply (4).
(⇒) We define the environment ρ by

ρ(Xs) := { 〈 r,Θ 〉 | s Cr Θ }.

It suffices to show that ρ is a post-fixed point of E , i.e.

ρ ≤ E(ρ) (5)
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because in that case we have ρ ≤ ρE , thus s C 〈 r,Θ 〉 implies 〈 r,Θ 〉 ∈ ρ(Xs) which in turn implies
〈 r,Θ 〉 ∈ ρE(Xs).

We first show that
∆ C 〈 r,Θ 〉 implies 〈 r,Θ 〉 ∈ [X∆]ρ. (6)

Suppose ∆ C 〈 r,Θ 〉. Then we have that (i) ∆ =
∑

i∈I pi · si, (ii) 〈 r,Θ 〉 =
∑

i∈I pi · 〈 ri,Θi 〉, (iii)
si C 〈 ri,Θi 〉 for all i ∈ I. We know from (iii) that 〈 ri,Θi 〉 ∈ [Xsi]ρ. Using (ii) we have that
〈 r,Θ 〉 ∈ [

⊕
i∈I pi ·Xsi]ρ. Using (i) we obtain 〈 r,Θ 〉 ∈ [X∆]ρ.

Now we are in a position to show (5). Suppose 〈 r,Θ 〉 ∈ ρ(Xs). We must prove that 〈 r,Θ 〉 ∈
[φs]ρ, i.e.

〈 r,Θ 〉 ∈
⋂

s
α−→v∆

[〈α〉
v
X∆]ρ

by (3).
We assume that s

α−→v ∆. Since s Cr Θ, there exists some Θ′ such that Θ
α

=⇒w Θ′ and
∆ C 〈 r + w − v,Θ′ 〉. By (6), we get 〈 r + w − v,Θ′ 〉 ∈ [X∆]ρ. It follows that 〈 r,Θ 〉 ∈ [〈a〉

v
X∆]ρ.

�
So far we know how to construct the characteristic equation system for a bounded wMDP. As

introduced in [MO98], the three transformation rules in Figure 6 can be used to obtain from an
equation system E a formula whose interpretation coincides with the interpretation of X1 in the
greatest solution of E. The formula thus obtained from a characteristic equation system is called
a characteristic formula.

Theorem 3.25 Given a characteristic equation system E, there is a characteristic formula φs such
that ρE(Xs) = [φs] for any state s. �

The above theorem, together with Theorem 3.24, gives rise to the following corollary.

Corollary 3.26 For each state s in a bounded wMDP, there is a characteristic formula φs such
that s C 〈 r,Θ 〉 iff 〈 r,Θ 〉 ∈ [φs]. �

4 Testing

This section is devoted to our attempts to provide a behavioural justification for the simulation
preorder studied in the previous section. Specifically if P Cr Q then what can we say about the
behaviour of Q relative to P ? One standard way of comparing process behaviour [NH84] involves
the idea of applying tests to processes and seeing if the result is a success. This has been successfully
applied to probabilistic systems in [DvGHM09, Seg96] for example and in Section 4.2 we extend
this to wMDPs. But with the presence of weights in wMDPs we have the possibility of a novel
form of testing based on possible accrued benefits; this we call benefits testing and is developed in
Section 4.1.

The main result, Theorem 4.11, is that for bounded wMDPs both forms of testing lead to
the same behavioural preorder. This then enables us to show the completeness of benefits testing
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1. Rule 1: E → F

2. Rule 2: E → G

3. Rule 3: E → H if Xn 6∈ fv(φ1, ..., φn)

E : X1 = φ1 F : X1 = φ1 G : X1 = φ1[φn/Xn] H : X1 = φ1
...

...
...

...
Xn−1 = φn−1 Xn−1 = φn−1 Xn−1 = φn−1[φn/Xn] Xn−1 = φn−1

Xn = φn Xn = max Xn.φn Xn = φn

Figure 6: Transformation rules

relative to the simulation preorder, Corollary 4.13; this proof uses as an intermediary the logic of
Section 3.3.

Given that wMDPs are probabilistic, there is another natural form of testing based on expected
benefits when a test is applied to a system. This is discussed briefly in Section 4.3. However,
disappointingly, the simulation preorder is no sound with respect to this form of testing; see Ex-
ample 4.19.

4.1 Benefits testing

With the presence of weights on wMDPs we have an elementary way of testing systems; we run
a test in parallel with the system and calculate the possible benefits which can be accrued. Then
two wMDPs can be compared via the resulting sets of possible benefits.

Definition 4.1 A wMDP of the form 〈S, {τ},W,−→〉 is referred to as a (weighted) computation
structure. �

An arbitrary wMDP can be viewed as a weighted computation structure by ignoring all the actions
s

a−→w ∆ other than s
τ−→w ∆; indeed weighted computation structures correspond more or less

directly with the more standard notion of Markov decision processes. Here we are interested in the
computation structures generated by wMDPs of the form

[P ] || [T ]

where P is a wMDP which we wish to investigate and T is a finite wMDP, representing the
investigation. The question now is how do we associate a set of possible rewards with a distribution
over the set of states of a weighted computation structure?

Consider the simple fully probabilistic wMDP in Figure 7(a), which results from running the
test T = up1.down4. 0 in parallel with the system s1 from the Introduction. Formally this is the
sub-wMDP of the wMDP (s1 | T ) obtained by concentrating on the internal actions τw, which is
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Figure 7: Testing systems

just the wMDP represented by (s1 | T )\Act that we denote by s1 || T . Every time the experiment
runs we get the initial benefit 3; three-quarters of the time we also get the benefit 7 while a quarter
of time we get 5. So the total benefit is

3 +
3

4
· 7 +

1

4
· 5 = 9.5.

In the presence of nondeterminism there will in general be a set of possible benefits, depending
on the way in which the nondeterminism is resolved. Traditionally this resolution is expressed in
terms of a scheduler, or adversary, which for each state decides which of its successors is chosen
for execution, with the resulting set of benefits consequently depending on the choice of scheduler.
Here we take a more abstract approach, following [DvGHM09], and essentially allow arbitrary
schedulers.

Definition 4.2 [Extreme derivatives] For any ∆ in a computation structure we write ∆ =⇒�w Φ
if

• ∆
τ

=⇒w Φ, that is Φ is a hyper-derivative of ∆

• Φ is stable, that is s
τ9 for every s in dΦe.

We say ∆ =⇒�w Φ is an extreme derivation and that Φ is an extreme derivative of ∆, with weight
w. �

Intuitively every extreme derivation ∆ =⇒�w Φ represents a computation from the initial distribu-
tion ∆ guided by some implicit scheduler. For example, consider the hyper-derivation:

∆ = ∆→0 + ∆×0

∆→0
τ−→w0 ∆→1 + ∆×1

... (7)

∆→k
τ−→wk ∆→k+1 + ∆×k+1

...

Φ =
∞∑
k=0

∆×k
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where w =
∑

k≥0wk. Initially, since ∆×0 is stable, ∆→0 contains (in its support) all states which can
proceed with the computation. The implicit scheduler decides for each of these states which step
to take, cumulating in the first move, ∆→0

τ−→w0 ∆→1 + ∆×1 . At an arbitrary stage ∆→k contains all
states which can continue; the scheduler decides which step to take for each individual state and the
overall result of the schedulers decision for this stage is captured in the step ∆→k

τ−→wk ∆→k+1+∆×k+1.

Example 4.3 Referring to Figure 7(a) it is easy to see that s has a unique (degenerate) extreme
derivative, s1 =⇒�9.5 (1

4sl + 3
4sr), intuitively representing the unique weighted computation from

s1. However, consider the wMDP in Figure 7(b), in which there is a nondeterministic choice from
state t2; here the extreme derivatives generated from t, and their associated weights, will depend
on the choices made during the computation by the implicit scheduler.

First suppose that the scheduler uses the static policy which maps t2 to 〈 12, t4 〉. Then it is easy
to see that the generated extreme derivative, which is degenerate, is t =⇒�12 (3

4 t4 + 1
4 t5). However

using the static policy which maps t2 to 〈 4, t 〉 we generate, using (7), a non-degenerate extreme
derivative; after some calculations this can be seen to be t1 =⇒�24 t5.

However there are many other possible implicit schedulers, for example at different times in
the computations employing either of these static policies, or even choosing nondeterministically
between them. But these are the only static policies and therefore we know from Theorem 2.20
that if t1 =⇒�w ∆ then w must take the form p · 12 + (1− p) · 24 for some 0 ≤ p ≤ 1. That is the
set of benefits which can be generated from t1 is { 24− 12 · p | 0 ≤ p ≤ 1 }. �

Definition 4.4 In a wMDP, for any ∆ ∈ D(S), let

Benefits(∆) = {w ∈W | ∆ =⇒�w Φ, for some Φ ∈ Dsub(S) }.

�

Note that in general Benefits(∆) may contain ∞, although by Theorem 2.27 this cannot be the
case if the wMDP is bounded.

We compare Benefit sets as follows:

B1 ≤rHo B2 if for every r1 ∈ B1 there exists some r2 ∈ B2 such that r1 ≤ r + r2.

Definition 4.5 [May testing] For any two distributions ∆,Θ we write ∆ vrmay Θ if for every finite
(testing) process T , Benefits(∆ || T ) ≤rHo Benefits(Θ || T ). We write ∆ vmay Θ to mean that there
is some r ∈ R≥0 such that ∆ vrmay Θ. �

This interpretation of processes is inherently optimistic; ∆ vrmay Θ means that, given the investment
r, every possible benefit produced by ∆ can in principle be improved upon by Θ. Note that if we
confine ourselves to bounded wMDPs then by Theorem 2.27 and Theorem 2.30 no benefits set used
in this definition will contain ∞.

Our first result shows that simulations can be used as a sound proof technique for this semantics.
In order to prove that result, we need the following technical lemmas.

Lemma 4.6 Let ∆,Θ be two distributions in a bounded wMDP. Suppose ∆ Cr Θ for some
r ∈ R≥0. If ∆

τ
=⇒v ε then Θ

τ
=⇒w Θ′ for some Θ′ such that r + w − v ≥ 0.
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Proof. If ∆
τ

=⇒v ε then there is a sequence of τ transitions

∆
τ−→v1 ∆1

τ−→v2 ∆2
τ−→v3 · · ·

such that
∑

k≥1 vk = v. Since ∆ Cr Θ, it can be shown by induction on i that there are weights
wi and subdistributions Θi with

Θ
τ

=⇒(
∑

1≤k≤i wk) Θi

∆i C(r+
∑

1≤k≤i wk−
∑

1≤k≤i vk) Θi

for all i ≥ 1. The compactness arguments in Appendix C (Corollary C.1) ensures that the set
{〈w′,Θ′ 〉 | Θ τ

=⇒w′ Θ′} is closed. As the sequence {
∑

1≤k≤iwk}∞i=1 has limit
∑

k≥1wk, there exists

some subdistribution Θ′ such that Θ
τ

=⇒(
∑
k≥1 wk) Θ′. Since for each i ≥ 1, we have that r +∑

1≤k≤iwk −
∑

1≤k≤i vk ≥ 0. It follows that r +
∑

k≥1wk −
∑

k≥1 vk ≥ 0. �

Lemma 4.7 Let ∆,Θ be two distributions in a bounded computation structure. If ∆ Cr Θ then
Benefits(∆) ≤rHo Benefits(Θ).

Proof. For any v ∈ Benefits(∆), there is some subdistribution ∆′ such that ∆ =⇒�v ∆′. By
Corollary 2.28 there is some subdistribution ∆′ε such that ∆

τ
=⇒v1 (∆′ + ∆′ε), |∆| = |∆′ + ∆′ε|,

∆′ε
τ

=⇒v2
ε and v1 + v2 = v. By Corollary 3.8 there is some Θ′′ such that Θ

τ
=⇒w1 Θ′′ and

(∆′ + ∆′ε) Cr+w1−v1 Θ′′. By Proposition 2.6 we can decompose Θ′′ such that Θ′′ = Θ′ + Θ′ε,
∆′ Cr1 Θ′, ∆′ε Cr2 Θ′ε, and

r1 + r2 = r + w1 − v1. (8)

By Lemma 4.6 there is some Θ′′ε such that Θ′ε
τ

=⇒w2 Θ′′ε and

r2 + w2 − v2 ≥ 0. (9)

By the transitivity of hyper-derivations, Theorem 2.13, we obtain that Θ
τ

=⇒w1+w2 Θ′ + Θ′′ε . It
follows that there is some extreme derivation Θ =⇒�w Θ′′′ for some w,Θ′′′ with

w ≥ w1 + w2. (10)

By (8), (9) and (10) we derive that

w ≥ (r1 + r2 − r + v1) + (v2 − r2) = v − r + r1 ≥ v − r.

Therefore, we have found some w ∈ Benefits(Θ) with v ≤ r + w. Since this holds for any v ∈
Benefits(∆), we have that Benefits(∆) ≤rHo Benefits(Θ). �

Theorem 4.8 [Soundness] In a bounded wMDP, P Cr Q implies P vrmay Q.

Proof. For any finite test T , we can infer that

P Cr Q
⇒ (P || T ) Cr (Q || T ) by Theorem 3.4
⇒ Benefits(P || T ) ≤rHo Benefits(Q || T ) by Lemma 4.7
⇔ P vrmay Q by definition

�

In the next section we will see a partial converse to this result, in Corollary 4.13.
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4.2 Success based testing

We follow our earlier approach [DvGHM09] of testing nondeterministic and probabilistic processes.
A test is simply a process from the language CCMDP except that it may use special actions for
reporting success. Thus we assume a countable set Ω of fresh success actions not already in Actτ ;
intuitively each ω in Ω can be viewed as a particular way in which success can be achieved. We call
CCMDPΩ the language CCMDP extended with the new actions in Ω. Its operational semantics is
as in Figure 4 except that the rules (L-ALT) and (L-PAR) are modified as follows, where α ranges
over Actτ .

(l-alt1)

P1
α−→w Q P2

ω9 for all ω ∈ Ω

P1 + P2
α−→w Q

(l-alt2)

P1
ω−→w Q P2

ω′9 for all ω′ ∈ Ω\{ω}
P1 + P2

ω−→w Q

(l-par1)

P1
α−→w Q P2

ω9 for all ω ∈ Ω

P1 | P2
α−→w Q | P2

(l-par2)

P1
ω−→w Q P2

ω′9 for all ω′ ∈ Ω\{ω}
P1 | P2

ω−→w Q | P2

These rules guarantee that if a process P can report success via action ω, i.e. P
ω−→w ∆ for some

w and ∆, then no other actions are enabled at P – neither a normal action in Actτ nor another
success action in Ω is allowed. For this reason, we say that the wMDPs generated by the processes
in CCMDPΩ are ω-respecting.

Definition 4.9 Let Φ ∈ Dsub(S), we write Success(Φ) for the function (viewed as a vector) in
[0, 1]Ω such that Success(Φ)(ω) =

∑
{Φ(s) | s ∈ dΦe and s

ω−→}. We let

Outcomes(∆) = {〈w,Success(Φ) 〉 | ∆ =⇒�w Φ for some Φ ∈ Dsub(S)}

�

Thus, intuitively, Outcomes(∆) tabulates the rewards associated with vectors of successes, each
particular vector obtained by an execution to completion of ∆.

Let B1, B2 ∈ R≥0 × [0, 1]Ω. We write B1 ≤rHo B2 if for each 〈 r1, f1 〉 ∈ B1 there exists some
〈 r2, f2 〉 ∈ B2 such that r1 ≤ r + r2 and f1(ω) ≤ f2(ω) for all ω ∈ Ω.

Definition 4.10 [Multi-success testing] For any two processes P,Q we write P vrmmay Q if for
every finite (testing) process T , Outcomes(P || T ) ≤rHo Outcomes(Q || T ). �
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Theorem 4.11 [Multi-success testing coincides with benefits testing] For any r ∈ R≥0 and two
processes P,Q whose operational semantics only give rise to bounded wMDPs,

P vrmmay Q iff P vrmay Q.

Proof. The general schema of the proof follows from [DvGMZ07] where it is shown that multi-
success testing coincides with uni-success testing for finitary probabilistic automata.

We first define the function Outcomes′ which is the same as Outcomes except that we allow any
derivation instead of just extreme derivations.

Outcomes′(∆) = {〈w,Success(Φ) 〉 | ∆ τ
=⇒w Φ for some Φ ∈ Dsub(S)}

We claim that Outcomes′ satisfies the next two properties.

1. For any ∆ ∈ Dsub(S), we have Outcomes(∆) ≤0
Ho Outcomes′(∆) and also conversely Outcomes′(∆) ≤0

Ho

Outcomes(∆).

2. For any ∆ ∈ Dsub(S) in a bounded wMDP, the set Outcomes′(∆) is compact and convex.

For the first claim, we observe that Outcomes(∆) ⊆ Outcomes′(∆) from which it follows that
Outcomes(∆) ≤0

Ho Outcomes′(∆). Since the wMDPs that we are considering are “ω-respecting”,
we have that if state s can enable a τ -action then Success(s) = ~0 where ~0 is the empty vector
with ~0(ω) = 0 for all ω ∈ Ω. It follows that ∆

τ
=⇒r ∆′ implies Success(∆) ≤ Success(∆′). So

if ∆
τ

=⇒r1 Φ then Φ
τ

=⇒r2 Φ′ for some extreme derivation Φ′, i.e. ∆ =⇒�r1+r2 Φ′, such that
Success(Φ) ≤ Success(Φ′). Hence, it is easy to show that Outcomes′(∆) ≤0

Ho Outcomes(∆).
For the second claim, we use the fact that the function Success is continuous. Let FSuccess be

the function given by
FSuccess(w,Φ) = 〈w,Success(Φ) 〉

which is also continuous. Again we appeal to the arguments in Appendix C (specifically Corol-
lary C.1) which guarantees that the set {〈w,Φ 〉 | ∆ τ

=⇒w Φ for some Φ ∈ Dsub(S)} is compact and
convex. Its image under FSuccess, i.e. Outcomes′(∆), is also compact and easily seen to be convex.

With these two properties at hand, we are ready to prove that P vrmmay Q iff P vrmay Q. The
only if direction is straightforward, so we focus on the if direction. We prove it by contradiction.
Suppose that P vrmay Q but P 6vrmmayQ. Then there is some multi-success test T such that
Outcomes(P || T ) 6≤rHoOutcomes(Q || T ). From claim (1) above, we have that

Outcomes′(P || T ) 6≤rHoOutcomes′(Q || T ).

Let m be the number of different success actions appearing in T . There is some vector 〈 v, p1, ..., pm 〉
in Outcomes′(P || T ) such that 〈 v, p1, ..., pm 〉 6≤ 〈w + r, q1, ..., qm 〉 for all vectors 〈w, q1, ..., qm 〉 in
Outcomes′(Q || T ). Let O1 and O2 be the two sets defined as follows.

O1 = {〈 v′, p′1, ..., p′m 〉 ∈ R≥0 × [0, 1]m | 〈 v, p1, ..., pm 〉 ≤ 〈 v′, p′1, ..., p′m 〉}
O2 = {〈w + r, q1, ..., qm 〉 | 〈w, q1, ..., qm 〉 ∈ Outcomes′(Q || T )}

It is obvious that O1 is closed and convex. Using claim (2) above, we know that O2 is compact and
convex. Clearly, O1 and O2 are disjoint. By the Hyperplane separation theorem, Theorem 1.2.4 in
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[Mat02], we can separate O1 from O2 by a hyperplane whose normal is 〈h0, h1, ..., hm 〉. That is,
there is some c ∈ R such that, without loss of generality,

h0v
′ +

m∑
i=1

hip
′
i > c > h0(w + r) +

m∑
i=1

hiqi (11)

for all 〈 v′, p′1, ..., p′m 〉 ∈ O1 and 〈w + r, q1, ..., qm 〉 ∈ O2.
We now argue that each hi, for 0 ≤ i ≤ m, is non-negative. Assume for a contradiction that

hi < 0. Choose some d > 0 large enough so that the vector 〈 v′, ..., p′i + d, ..., p′m 〉 is still in O1 but
h0v
′ + hi(p

′
i + d) +

∑
{hjp′j | 1 ≤ j ≤ m but j 6= i} < c. This would contradict the separation.

Then we distinguish two cases.

• h0 = 0. Then (11) can be simplified to

m∑
i=1

hip
′
i > c >

m∑
i=1

hiqi. (12)

Since O2 is compact, i.e. closed and bounded, we can let

c′ = max{
∑m

i=1 hiqi | 〈w + r, q1, ..., qm 〉 ∈ O2}
w′ = max{w + r | 〈w + r, q1, ..., qm 〉 ∈ O2}.

Note that we have c > c′. Let e be any real number such that e > w′

c−c′ . We infer that

v′ +
∑m

i=1 hiep
′
i ≥ e

∑m
i=1 hip

′
i

> ec
> w′ + ec′

≥ (w + r) + e
∑m

i=1 hiqi
= (w + r) +

∑m
i=1 hieqi

for any 〈 v′, p′1, ..., p′m 〉 ∈ O1 and 〈w + r, q1, ..., qm 〉 ∈ O2. This means that O1 can also be
separated from O2 by a hyperplane with normal 〈 1, h1e, ..., hme 〉.
We now construct a benefits test T ′ from the multi-success test T by letting

T ′ = T || (ω10.τh1e. 0+ · · ·+ ωm0.τhme. 0)

In T ′ an occurrence of ωi yields weight 0 but it is followed by a tau move which yields weight
hie. If 〈 v, p1, ..., pm 〉 is an outcome of testing P with T , then v +

∑m
i=1 hiepi is an outcome

of testing P with T ′. Testing Q with T ′ is similar. The above separation shows that P and
Q can be distinguished by the benefits test T ′ because

Benefits(P || T ′) 6≤rHoBenefits(Q || T ′)

which contradicts the assumption that P vrmay Q.
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• h0 > 0. It follows from (11) that

v′ +
m∑
i=1

hi
h0
p′i >

c

h0
> (w + r) +

m∑
i=1

hi
h0
qi (13)

for all 〈 v′, p′1, ..., p′m 〉 ∈ O1 and 〈w + r, q1, ..., qm 〉 ∈ O2. This means that O1 can also be
separated from O2 by a hyperplane with normal 〈 1, h1

h0
, ..., hmh0

〉. Similar to the last case, we
construct a benefits test T ′ from the multi-success test T by letting

T ′ = T || (ω10.τh1
h0

. 0+ · · ·+ ωm0.τhm
h0

. 0)

and it can be seen that P and Q are distinguished by the benefits test T ′.

Thus in both cases we obtain P 6vrmayQ, a contradiction to our original assumption. �

One consequence of this result is that we can show that benefits testing is complete for amortised
simulations. This is achieved by using multi-success testing as an intermediary:

Theorem 4.12 In a bounded wMDP, if ∆ vrmmay Θ then there exists some r′ such that r′ ≥ r
and L(0,∆) ⊆ L(r′,Θ).

Proof. The proof relies on designing, for each formula φ, a characteristic test Tφ; that is satisfying
the formula φ coincides with passing the corresponding test Tφ, relative to a target value. The
construction of the tests is quite complex; however the details are quite similar to those used in the
corresponding result in [DvGHM09] and are therefore relegated to Appendix E. �

Corollary 4.13 [Completeness] In a bounded wMDP, if s vmay Θ then s vsim Θ.

Proof. By combining Theorems 4.11, 4.12 and Corollary 3.18, we can show that s vrmay Θ implies
the existence of some compensation r′ ≥ r such that s Cr′ Θ, from which the required result follows.

�

It is tempting to sharpen the above property to state that in a bounded wMDP ∆ vrmay Θ
implies ∆ Cr Θ. Unfortunately, this would not be a valid statement, as demonstrated by the
following example.

Example 4.14 Consider the two distributions ∆ := 0 1
2
⊕ a1. 0 and Θ := τ2. 0 1

2
⊕ a0. 0. It is easy

to see that ∆ 6C0 Θ because there is no way to decompose Θ into Θ1 1
2
⊕ Θ2 for some Θ1,Θ2 such

that a1. 0 C0 Θ2. However, one can show that ∆ v0
may Θ. This follows from the observations

below:

(i) For all weight w and test T , Benefits(τw. 0 || T ) = {v + w | v ∈ Benefits(0 || T )}.

(ii) For all weight w and test T , Benefits(aw. 0 || T ) ≤wHo Benefits(a0. 0 || T ).
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Both assertions can be proved by structural induction on T .
Now suppose w ∈ Benefits(∆ || T ) for an arbitrary test T . There is some stable derivative Γ

such that ∆ || T τ
=⇒w Γ. By Proposition 2.11(3) there are some w1, w2,Γ1,Γ2 with 0 || T τ

=⇒w1 Γ1,
a1. 0 || T

τ
=⇒w2 Γ2, w = 1

2w1+ 1
2w2, and Γ = 1

2 ·Γ1+ 1
2 ·Γ2, where both Γ1 and Γ2 are stable. In other

words, w1 ∈ Benefits(0 || T ) and w2 ∈ Benefits(a1. 0 || T ). By (i) above, w1+2 ∈ Benefits(τ2. 0 || T );
by (ii) above, there exists some w′2 ∈ Benefits(a0. 0 || T ) with w2 ≤ w′2 + 1. Thus, we can infer that

w = 1
2w1 + 1

2w2

< 1
2(w1 + 2) + 1

2(w2 − 1)
≤ 1

2(w1 + 2) + 1
2w
′
2

Using Proposition 2.11(4), it can be seen that 1
2(w1 + 2) + 1

2w
′
2 ∈ Benefits(Θ || T ). Therefore, we

have Benefits(∆ || T ) ≤0
Ho Benefits(Θ || T ). Since this reasoning is carried out for an arbitrary test

T , it follows that ∆ v0
may Θ.

�

4.3 Expected benefits testing

The testing approach introduced in the previous two sections can be called total benefits testing
because benefits are calculated via extreme derivations, and the benefit of an extreme derivation
is obtained by adding up the weights appeared in all τ -steps. An alternative approach would be
to use one special action ω (i.e. Ω = {ω}) in a test to report success and to take the weighted
average of the weight of each path leading to an occurrence of the success action, which we refer
to as expected benefits testing.

In this section we develop this idea, but show a negative result: amortised simulations are not
sound for this form of testing.

Definition 4.15 Given a fully probabilistic computation structure, we define a function F : (R≥0×
S → R≥0)→ (R≥0 × S → R≥0) as follows.

F(f)(w, s) =


w if s

ω−→
0 if s 6−→
f(w + v,∆) if s

τ−→v ∆

(14)

where f(w,∆) =
∑

s∈d∆e∆(s) · f(w, s). �

It is clear that the set of functions of type R≥0 × S → R≥0 forms a complete lattice, with the
ordering f ≤ g iff f(w, s) ≤ g(w, s) for all w ∈ R≥0 and s ∈ S. The function F defined above
is monotonic. Therefore, it has a least fixed point which we denote by f?. Then f?(0, s) is the
expected benefits obtained by following all the paths starting from s.

Example 4.16 Consider the computation structure defined by

s = τ1.(s 1
2
⊕ t)

t = ω1. 0
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Then we have that
f?(0, s)

= 1
2f

?(1, s) + 1
2f

?(1, t)
= 1

4f
?(2, s) + 1

4f
?(2, t) + 1

2f
?(1, t)

= 1
8f

?(3, s) + 1
8f

?(3, t) + 1
4f

?(2, t) + 1
2f

?(1, t)
...
=

∑
k≥1

1
2k
f?(k, t)

=
∑

k≥1
k
2k

= 2

�

A general probabilistic computation structure can be resolved into fully probabilistic computa-
tion structures by pruning away multiple action-choices until only single choices are left. We use
the approach of [DvGMZ07] to formalise this idea:

Definition 4.17 A resolution of a computation structure 〈S, {τ},W,→〉 is a fully probabilistic
computation structure 〈R, {τ},W,→〉 such that there is a resolving function f : R → S which
satisfies:

1. if r
α−→w Θ then f(r)

α−→w f(Θ)

2. if r 6−→ then f(r) 6−→

where f(Θ) is the distribution defined by f(Θ)(s) :=
∑

f(r)=s Θ(r). We often use the meta-variable
R to refer to a resolution, with resolving function fR. �

Definition 4.18 In a wMDP M , for any ∆ ∈ D(S), let

EBenefits(∆) = {f?(0,Θ) | R is a resolution of M and fR(Θ) = ∆.}

For any two processes P,Q we write P 5rmay Q if for every test T ,

EBenefits(P || T ) ≤rHo EBenefits(Q || T ).

�

Example 4.19 [C is not sound for 5may] Consider the following processes:

P = τ2.(0 1
4
⊕ a0. 0)

Q = τ1.(τ2.(0 1
2
⊕ a0. 0) 1

2
⊕ a0. 0)

It is easy to see that P C0 Q since the transition P
τ−→2 0 1

4
⊕ a0. 0 can be simulated by the

hyper-transition Q
τ

=⇒2 0 1
4
⊕ a0. 0. Now let T be the test ā0.ω. Both P || T and Q || T give rise

to fully probabilistic wMDPs. We calculate the values of f?(0, P || T ) and f?(0, Q || T ) as follows.

f?(0, P || T ) = 1
4 · 0 + 3

4 · 2 = 3
2

f?(0, Q || T ) = 1
2 · 1 + 1

2(1
2 · 0 + 1

2 · 3) = 5
4

As EBenefits(P || T ) = {3
2} 6≤

0
Ho{

5
4} = EBenefits(Q || T ), we have that P 650

mayQ. Note that if we
consider total benefits, then Benefits(P || T ) = {2} = Benefits(Q || T ). �
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5 Conclusion and related work

We have proposed a model of weighted Markov decision processes, wMDP, for compositional rea-
soning about the behaviour of systems with uncertainty. Amortised weighted simulation is coin-
ductively defined to be a behavioural preorder for comparing different wMDPs. It is shown to
be a precongruence relation with respect to all structural operators for constructing wMDPs from
components, leading to the possibility of compositional reasoning for quantitative comparisions
between probabilistic systems. However the current paper restricts attention to developing the
mathematical theory of this novel simulation preorder, including a series of behavioural justifica-
tions. For finitary convergent wMDPs, we have given logical and testing characterisations of the
simulation preorder: it can be completely determined by a quantitative probabilistic logic and for
each system we can find a characteristic formula to capture its behaviour; the simulation preorder
also coincides with a notion of may testing preorder.

In Section 4.2 we have shown that multi-success testing coincides with benefits testing. We can
also show that multi-success testing coincides with uni-testing, where only one success action is
used in tests. An analogous result is proved in [DvGMZ07] for probabilistic automata; the ideas
from that proof can be adapted to the current setting, although we have one extra dimension to
take into account, the weights of actions.

Within the framework of the current paper there are still many open problems to be resolved.
One major concern is algorithmic. For example is the preorder Cr decidable? is there an efficient
algorithm to check if a given wMDP satisfies a given recursive formula? More generally, as in [Cle90]
is there an algorithm which inputs two systems, decides if they are related, and if not generates a
distinguishing formula from L which distinguishes them?

The dual of may testing is must testing. It would be interesting to investigate the must preorder
given by our testing approach. We leave it as future work to provide a coinductive formulation of
the preorder and study its logical characterisations.

There is an extensive literature on compositional theories for probabilistic and nondeterministic
systems, starting from [Seg95]. This includes theories based on bisimulations; see for instance
[PLS00] and [DGJP10] for typical examples. But there are also theories based on testing [NH84]
such as [Seg96, GA12, DvGHM09]. Much of this work is based on an intensional model called
Probabilistic Labelled Transition Systems, pLTSs in [DvGHM09], which are roughly equivalent
to the Probabilistic Automata from [Seg96] and the NPLTS model of [BDL11]. Indeed PLTSs are
precisely what is obtained if in the definition of wMDPS in Definition 2.1 all references to weights are
ignored. In [DvGHM09] it is shown that the may-testing preorder is characterised by a simulation
preorder. Indeed the current paper stems from the idea of trying to generalise that simulation
preorder so as to take into account costs or weights associated with actions. And if one eliminates
all use of weights from Definition 3.1 one obtains exactly the simulation preorder of [DvGHM09].
Similarly, the logical characterisation in Corollary 3.18 may be viewed as a generalistion of the
corresponding logical characterisation from [DvGHM09].

There is also considerable literature on compositional theories for Markov chains, mostly based
on probabilistic variations of bisimulation equivalence; see Chapter 10 of [BK08] for an elementary
introduction and [JLY01] for a survey. But again none of these equivalences treat systems in
which actions have associated weights or costs; even if Chapter 10.5 of [BK08] does present various
model-checking algorithms for such models.
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Another line of research in compositional theories addresses the addition time to the description
of process behaviour. For example in [Her02] Interactive Markov Chains (IMCs) are defined,
obtained by essentially adding to a standard process calculus a new operator representing random
time delays, governed by inverse exponential distributions. An appropriate version of bisimulation
equivalence is shown to to be compositional, in the sense of our Theorem 3.4: it is preserved by
the operators of a process calculus interpreted as IMCs. Recently a combination of probabilistic
automata and IMCs has been studied in [EHZ10, DH11], where again compositional theories based
on weak bisimulation are proposed. Here there is some sense in which at least the time-delay
actions have weights associated with them; nevertheless the intuition governing them, Markovian
distributions, is entirely divorced from the notion of cost or benefit as we have used in the current
paper. Similar remarks hold for papers in which stochastic delays are associated directly with
actions, such as [Ber99, BC00, Hil96]. For a uniform approach encompassing such actions see
[BDL11]

In [Ber97] rewards are associated with terms of the stochastic process algebra EMPA in order
to specify performance measures. A notion of Markovian bisimulation is defined which relates
terms with the same reward. Unlike our work, the rewards in [Ber97] are not accumulated along a
sequence of transitions.

Modal characterisations of (bi)simulations have a long history and can be traced back to [HM85],
where the classical non-probabilistic bisimulation can be fully characterised by a simple modal logic
later on known as HML. A probabilistic extension of HML has been studied in [LS91] for reactive
probabilistic processes where the outgoing transitions from a state are all labelled differently. For-
mula 〈a〉pφ is satisfied by a state s if action a can be performed by s and lead to a distribution
where the states satisfying φ are given probability at least p. For nondeterministic and probabilistic
processes, where several outgoing transitions from a state can have the same label, an extension
of HML with an operator [.]p was proposed in [HPS+11]. The formula [φ]p is satisfied by a dis-
tribution if the probability of the set of states that satisfy formula φ is at least p. In [JLY01] a
two-sorted logic was considered to characterise probabilistic bisimulation, with nondeterministic
formulas interpreted over states and probabilistic formulas interpreted over distributions. In the
current paper we use the operator ⊕ inherited from [DvGHM08], which has more distinguishing
power with respect to distributions.

For weak bisimulation, where internal transitions are abstracted away, a characterisation in
terms of the logic PCTL was given in [SL94]. For image-finite labelled concurrent Markov chains
[DGJP10] the logic PCTL* was shown to be sufficient to characterise weak bisimulation. Both
logics specify properties of probabilistic concurrent systems without weights.

Modal logics are also studied in the field of coalgebra; see e.g. [CKP+11] for an overview.
However, how to treat weak bisimulations coalgebraically is a challenging problem that remains
open.

There is also an extensive literature on weighted automata [DKV09], and probabilistic variations
have also been studied [CDH09]. However there the focus is on traditional language theoretic issues,
rather than our primary concern, compositionality.
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A Elementary properties of hyper-derivations

This appendix contains the details proofs of the properties of hyper-derivations announced in
Section 2.3.

Lemma A.1

1. If ∆
τ

=⇒v Θ then |∆| ≥ |Θ|.

2. If ∆
τ

=⇒v Θ and p ∈ R such that |p ·∆| ≤ 1, then p ·∆ τ
=⇒pv p ·Θ.

3. If Γ + Λ
τ

=⇒v Π then Π = ΠΓ + ΠΛ with Γ
τ

=⇒vΓ ΠΓ, Λ
τ

=⇒vΛ ΠΛ, and v = vΓ + vΛ.

Proof.

1. By definition ∆
τ

=⇒v Θ means that some ∆k,∆
×
k ,∆

→
k , vk exist for all k ≥ 0 such that

∆ = ∆0, ∆k = ∆×k + ∆→k , ∆→k
τ−→vk ∆k+1, Θ =

∞∑
k=0

∆×k v =
∞∑
k=0

vk.

A simple inductive proof shows that

|∆| = |∆→i |+
∑
k≤i
|∆×k | for any i ≥ 0. (15)

The sequence {
∑

k≤i |∆k|}∞i=0 is nondecreasing and by (15) each element of the sequence is
not greater than |∆|. Therefore, the limit of this sequence is bounded by |∆|. That is,

|∆| ≥ lim
i→∞

∑
k≤i
|∆×k | = |Θ|.

2. Now suppose p ∈ R such that |p ·∆| ≤ 1. From Definition 2.2 it follows that

p ·∆ = p ·∆0, p ·∆k = p ·∆→k + p ·∆×k , p ·∆→k
τ−→pv p ·∆k+1, p ·Θ =

∑
k

p ·∆×k .

Hence Definition 2.8 yields p ·∆ τ
=⇒pv p ·Θ.

3. Suppose Γ + Λ
τ

=⇒v Π. From Definition 2.8 we have

Γ + Λ = Π0 = Π→0 + Π×0 (16)

for some Π→0 ,Π
×
0 with Π→0

τ−→v0 Π1 for some Π1. Let us define subdistributions Γ→,Γ×,Λ→,Λ×

as follows. For any s ∈ S,
Γ→(s) = min(Γ(s),Π→0 (s))
Γ×(s) = Γ(s)− Γ→(s)
Λ×(s) = min(Λ(s),Π×0 (s))
Λ→(s) = Λ(s)− Λ×(s)

(17)

Clearly, we have Γ = Γ→ + Γ× and Λ = Λ→ + Λ×. Below we show that

Π→0 = Γ→ + Λ→ and Π×0 = Γ× + Λ×. (18)

For any s ∈ S, we distinguish two cases:
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(a) Π→0 (s) ≥ Γ(s). In this case we have Π×(s) ≤ Λ(s) by (16). It follows from (17) that
Γ→(s) = Γ(s), Γ×(s) = 0, Λ×(s) = Π×0 (s), and Λ→(s) = Λ(s)−Π×0 (s). Therefore,

Γ→(s) + Λ→(s) = Γ(s) + Λ(s)−Π×0 (s)
= Π0(s)−Π×0 (s) by (16)
= Π→0 (s)

Γ×(s) + Λ×(s) = 0 + Π×(s)
= Π×(s)

(b) Π→0 (s) < Γ(s). Similarly we can show that Γ→(s)+Λ→(s) = Π→0 (s) and Γ×(s)+Λ×(s) =
Π×0 (s).

So we have verified (18). Since Π→0
τ−→v0 Π1, we use (18) and Proposition 2.6 to find

v′0, v
′′
0 ,Γ1,Λ1 with Γ→

τ−→v′0
Γ1, Λ→

τ−→v′′0
Λ1, v0 = v′0 + v′′0 , and Π1 = Γ1 + Λ1. Now from

Γ1,Λ1 we can continue the above procedure for Γ,Λ to induce Γ2,Λ2, and then Γ3,Λ3, etc.
such that

Γ = Γ0, Γk = Γ→k + Γ×k , Γ→k
τ−→v′k

Γk+1,

Λ = Λ0, Λk = Λ→k + Λ×k , Λ→k
τ−→v′′k

Λk+1,

Γk + Λk = Πk, Γ→k + Λ→k = Π→k , Γ×k + Λ×k = Π×k .

Let ΠΓ :=
∑

k Γ×k , ΠΛ :=
∑

k Λ×k , v′ =
∑

k v
′
k, and v′′ =

∑
k v
′′
k . Then Π = ΠΓ + ΠΛ and

Definition 2.8 yields Γ
τ

=⇒v′ ΠΓ and Λ
τ

=⇒v′′ ΠΛ.

�
We now generalise the above binary decomposition to infinite (but still countable) decomposi-

tion, and also establish linearity.

Lemma A.2 Let pi ∈ [0, 1] for i ∈ I where I is a countable index set with
∑

i∈I pi ≤ 1. Then

1. (Linearity) If ∆i
τ

=⇒wi Θi for all i ∈ I then
∑

i∈I pi ·∆i
τ

=⇒(
∑
i∈I pi·wi)

∑
i∈I pi ·Θi.

2. (Decomposability) If
∑

i∈I pi · ∆i
τ

=⇒w Θ then w =
∑

i∈I pi · wi and Θ =
∑

i∈I pi · Θi for

weights wi and subdistributions Θi such that ∆i
τ

=⇒wi Θi for all i ∈ I.

Proof.

1. Suppose ∆i
τ

=⇒wi Θi for all i ∈ I. By Definition 2.8 there are subdistributions ∆ik,∆
→
ik ,∆

×
ik

and weights wik such that

∆i = ∆i0, ∆ik = ∆→ik + ∆×ik, ∆→ik
τ−→wik ∆i(k+1), Θi =

∑
k

∆×ik, wi =
∑
k

wik.

Therefore, we have that
∑

i∈I pi ·∆i =
∑

i∈I pi ·∆i0,
∑

i∈I pi ·∆ik =
∑

i∈I pi ·∆→ik +
∑

i∈I pi ·∆
×
ik,∑

i∈I pi ·∆→ik
τ−→(

∑
i∈I pi·wik)

∑
i∈I pi ·∆i(k+1) by Clause (2) of Definition 2.2,

∑
i∈I pi ·Θi =∑

i∈I pi ·
∑

k ∆×ik =
∑

k(
∑

i∈I pi ·∆
×
ik), and

∑
i∈I pi ·wi =

∑
i∈I pi ·

∑
k wik =

∑
k(
∑

i∈I pi ·wik).
By Definition 2.8 we obtain

∑
i∈I pi ·∆i

τ
=⇒(

∑
i∈I pi·wi)

∑
i∈I pi ·Θi.
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2. In the light of Lemma A.1(ii) it suffices to show that if
∑∞

i=0 ∆i
τ

=⇒w Θ then w =
∑∞

i=0wi for

weights wi and Θ =
∑∞

i=0 Θi for subdistributions Θi such that ∆i
τ

=⇒wi Θi for all i ≥ 0. Since∑∞
i=0 ∆i = ∆0 +

∑
k≥1 ∆k and

∑∞
i=0 ∆i

τ
=⇒w Θ, by Lemma A.1(3) there are Θ0,Θ

≥
1 , w0, w≥1

such that

∆0
τ

=⇒w0 Θ0,
∑
k≥1

∆k
τ

=⇒w≥1
Θ≥1 , Θ = Θ0 + Θ≥1 , w = w0 + w≥1.

Using Lemma A.1(3) again, we have Θ1,Θ
≥
2 , w1, w≥2 such that

∆1
τ

=⇒w1 Θ1,
∑
k≥2

∆k
τ

=⇒w≥2
Θ≥2 , Θ≥1 = Θ1 + Θ≥2 , w≥1 = w1 + w≥2

thus in combination Θ = Θ0 + Θ1 + Θ≥2 and w = w0 +w1 +w≥2. Continuing this process we
have that

∆k
τ

=⇒wk Θk,
∑
j≥k

∆j
τ

=⇒w≥k+1
Θ≥k+1, Θ =

k∑
j=0

Θj + Θ≥k+1, w =

k∑
j=0

wj + w≥k+1 (19)

for all k ≥ 0. Lemma A.1(1) ensures that |
∑

j≥k ∆j | ≥ |Θ≥k+1| for all k ≥ 0. But since∑∞
k=0 ∆k is a subdistribution, we know that the tail sum

∑
j≥k ∆j converges to ε when k

approaches∞, and therefore that limk→∞w≥k = 0 and limk→∞Θ≥k = ε. Thus by taking that
limit we conclude that

w =
∞∑
k=0

wk, Θ =
∞∑
k=0

Θk . (20)

�

Corollary A.3 The relation
τ

=⇒ is convex.

Proof. This is immediate from its being a lifting. �

Theorem A.4 (Theorem 2.13) If ∆
τ

=⇒u Θ and Θ
τ

=⇒v Λ then ∆
τ

=⇒u+v Λ.

Proof. By definition ∆
τ

=⇒u Θ means that some uk,∆k,∆
×
k ,∆

→
k exist for all k ≥ 0 such that

∆ = ∆0, ∆k = ∆×k + ∆→k , ∆→k
τ−→uk ∆k+1, Θ =

∞∑
k=0

∆×k , u =

∞∑
k=0

uk. (21)

Since Θ =
∑∞

k=0 ∆×k and Θ
τ

=⇒v Λ, by Lemma A.2(2) there are Λk, wk for k ≥ 0 such that

v =

∞∑
k=0

vk, Λ =

∞∑
k=0

Λk, ∆×k
τ

=⇒vk Λk (22)
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for all k ≥ 0. For each k ≥ 0, we know from ∆×k
τ

=⇒vk Λk that there are some vkl, ∆kl, ∆×kl,∆
→
kl

for l ≥ 0 such that

∆×k = ∆k0, ∆kl = ∆×kl + ∆→kl , ∆→kl
τ−→vkl ∆k,l+1 Λk =

∑
l≥0

∆×kl, vk =
∑
l≥0

vkl. (23)

Therefore we can put all this together with

Λ =

∞∑
k=0

Λk =
∑
k,l≥0

∆×kl =
∑
i≥0

 ∑
k,l|k+l=i

∆×kl

 , (24)

where the last step is a straightforward diagonalisation. Similarly,

v =

∞∑
k=0

vk =
∑
k,l≥0

vkl =
∑
i≥0

 ∑
k,l|k+l=i

vkl

 , (25)

Now from the decompositions above we re-compose an alternative trajectory of ∆′i’s to take ∆ via
τ

=⇒u+v to Λ directly. Define

∆′i = ∆
′×
i +∆

′→
i , ∆

′×
i =

∑
k,l|k+l=i

∆×kl, ∆
′→
i = (

∑
k,l|k+l=i

∆→kl )+∆→i , wi = (
∑

k,l|k+l=i

vkl)+ui

(26)
so that from (24) we have immediately that

Λ =
∑
i≥0

∆
′×
i . (27)

We now show that

1. ∆ = ∆′0

2. ∆
′→
i

τ−→wi ∆′i+1

3.
∑

i≥0wi = u+ v

from which, with (26) and (27), we will have ∆
τ

=⇒u+v Λ as required. For (1) we observe that

∆
= ∆0 (21)

= ∆×0 + ∆→0 (21)

= ∆00 + ∆→0 (23)

= ∆×00 + ∆→00 + ∆→0 (23)

= (
∑

k,l|k+l=0 ∆×kl) + (
∑

k,l|k+l=0 ∆→kl ) + ∆→0 index arithmetic

= ∆
′×
0 + ∆

′→
0 (26)

= ∆′0 . (26)
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For (2) we observe that

∆
′→
i

= (
∑

k,l|k+l=i ∆→kl ) + ∆→i (26)
τ−→wi (

∑
k,l|k+l=i ∆k,l+1) + ∆i+1 (21), (23), Definition 2.8(2)

= (
∑

k,l|k+l=i(∆
×
k,l+1 + ∆→k,l+1)) + ∆×i+1 + ∆→i+1 (21), (23)

= (
∑

k,l|k+l=i ∆×k,l+1) + ∆×i+1 + (
∑

k,l|k+l=i ∆→k,l+1) + ∆→i+1 rearrange

= (
∑

k,l|k+l=i ∆×k,l+1) + ∆i+1,0 + (
∑

k,l|k+l=i ∆→k,l+1) + ∆→i+1 (23)

= (
∑

k,l|k+l=i ∆×k,l+1) + ∆×i+1,0 + ∆→i+1,0 + (
∑

k,l|k+l=i ∆→k,l+1) + ∆→i+1 (23)

= (
∑

k,l|k+l=i+1 ∆×kl) + (
∑

k,l|k+l=i+1 ∆→kl ) + ∆→i+1 index arithmetic

= ∆
′×
i+1 + ∆

′→
i+1 (26)

= ∆′i+1 . (26)

For (3) we observe that
∑

i≥0wi =
∑

i≥0(
∑

k,l|k+l=i vkl) +
∑

i≥0 ui = v + u by (26) and (21-23),
which concludes the proof. �

B Proof of Theorem 2.19

In this section we introduce the machinery used to prove Theorem 2.19, which directly leads
to the finite generability theorem. The machinery employs some concepts such as discounted
hyper-derivation, discounted payoff, max-seeking policy etc., because we need to first establish a
discounted version of Theorem 2.19.

Definition B.1 [Discounted hyper-derivation] The discounted hyper-derivation ∆
τ

=⇒δ,w ∆′ for
discount factor δ (0 ≤ δ ≤ 1) is obtained from a hyper-derivation by discounting each τ transition
by δ. That is, there is a collection of ∆→k ,∆

×
k , wk satisfying

∆ = ∆→0 + ∆×0
∆→0

τ−→w1 ∆→1 + ∆×1
...

∆→k
τ−→wk+1

∆→k+1 + ∆×k+1
...

such that w =
∑∞

k=1 δ
kwk and ∆′ =

∑∞
k=0 δ

k∆×k . �

It is trivial that the relation
τ

=⇒1,w coincides with
τ

=⇒w.

Definition B.2 [Discounted payoff] Given a discount δ and weight function w, the discounted

payoff function Pδ,wmax : S → R is defined by

Pδ,wmax(s) = sup{w � 〈w,∆′ 〉 | s τ
=⇒δ,w ∆′}

and we will generalise it to be of type Dsub(S) → R by letting Pδ,wmax(∆) =
∑

s∈d∆e∆(s) · Pδ,wmax(s).
�
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Definition B.3 [Max-seeking policy] Given a wMDP, discount δ and weighted function w, we say
a static policy pp is max-seeking with respect to δ and w if for all s the following requirements are
met.

1. If pp(s)↑, then w � 〈 0, s 〉 ≥ δ(w � 〈w1, ε 〉+ Pδ,wmax(∆1)) for all s
τ−→w1 ∆1.

2. If pp(s) = 〈w,∆ 〉 then

(a) δ(w � 〈w, ε 〉+ Pδ,wmax(∆)) ≥ w � 〈 0, s 〉 and

(b) w � 〈w, ε 〉+ Pδ,wmax(∆) ≥ w � 〈w1, ε 〉+ Pδ,wmax(∆1) for all s
τ−→w1 ∆1.

�

Lemma B.4 Given a finitary wMDP, discount δ and weighted function w, there always exists a
max-seeking policy.

Proof. Given a wMDP, discount δ and weighted function w, the discounted payoff Pδ,wmax(s) can be
calculated for each state s. Then we can define a static policy pp in the following way. For any
state s, if w � 〈 0, s 〉 ≥ δ(w � 〈w1, ε 〉+Pδ,wmax(∆1)) for all s

τ−→w1 ∆1, then we set pp undefined at s.
Otherwise, we choose a transition s

τ−→w ∆ among the finite number of outgoing transitions from
s such that w � 〈w, ε 〉+ Pδ,wmax(∆) ≥ w � 〈w1, ε 〉+ Pδ,wmax(∆1) for all other transitions s

τ−→w1 ∆1,
and we set pp(s) = 〈w,∆ 〉. �

Given a wMDP, discount δ, weight function w, and static policy pp, we define the function
F δ,pp,w : (S → R)→ (S → R) by

F δ,pp,w := λf.λs.

{
w � 〈 0, s 〉 if pp(s)↑
δ(w � 〈w, ε 〉+ f(∆)) if pp(s) = 〈w,∆ 〉 (28)

where f(∆) =
∑

s∈d∆e∆(s) · f(s).

Lemma B.5 Given a wMDP, discount δ < 1, weight function w, and static policy pp, the function
F δ,pp,w has a unique fixed point.

Proof. We first show that the function F δ,pp,w is a contraction mapping. Let f, g be any two
functions of type S → R.

|F δ,pp,w(f)− F δ,pp,w(g)|
= sup{|F δ,pp,w(f)(s)− F δ,pp,w(g)(s)| | s ∈ S}
= sup{|F δ,pp,w(f)(s)− F δ,pp,w(g)(s) | | s ∈ S and pp(s)↓}
= δ · sup{|f(∆)− g(∆)| | s ∈ S and pp(s) = 〈w,∆ 〉 for some ∆}
≤ δ · sup{|f(s′)− g(s′)| | s′ ∈ S}
= δ · |f − g|
< |f − g|

By Banach unique fixed point theorem, the function F δ,pp,w has a unique fixed point. �
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Lemma B.6 Given a wMDP, discount δ, weight function w, and max-seeking static policy pp, the
function Pδ,wmax is a fixed point of F δ,pp,w.

Proof. We need to show that F δ,pp,w(Pδ,wmax)(s) = Pδ,wmax(s) holds for any state s. We distinguish two
cases.

1. If pp(s)↑, then F δ,pp,w(Pδ,wmax)(s) = w � 〈 0, s 〉 = Pδ,wmax(s) as expected.

2. If pp(s) = 〈w,∆ 〉, then the arguments are more involved. First note that if s
τ

=⇒δ,w ∆′′,
then by Definition B.1 there exist some ∆→0 ,∆

×
0 ,∆1,∆

′′, w1, w
′ such that s = ∆→0 + ∆×0 ,

∆→0
τ−→w1 ∆1, ∆1

τ
=⇒δ,w′ ∆′′, ∆′ = ∆×0 + δ · ∆′′ and w = δ(w1 + w′). So we can do the

following calculation.

Pδ,wmax(s)

= sup{w � 〈w,∆′ 〉 | s τ
=⇒δ,w ∆′}

= sup{w � 〈 δ(w1 + w′),∆×0 + δ ·∆′′ 〉 | s = ∆→0 + ∆×0 ,∆
→
0

τ−→w1 ∆1, and ∆1
τ

=⇒δ,w′ ∆′′

for some ∆→0 ,∆
×
0 ,∆1,∆

′′, w1, w
′}

= sup{w � 〈 0,∆×0 〉+ δ(w � 〈w1, ε 〉+ w � 〈w′,∆′′ 〉) | s = ∆→0 + ∆×0 ,∆
→
0

τ−→w1 ∆1, and ∆1
τ

=⇒δ,w′ ∆′′

for some ∆→0 ,∆
×
0 ,∆1,∆

′′, w1, w
′}

= sup{w � 〈 0,∆×0 〉+ δ(w � 〈w1, ε 〉+ sup{w � 〈w′,∆′′ 〉 | ∆1
τ

=⇒δ,w′ ∆′′ for some w′,∆′′})
| s = ∆→0 + ∆×0 and ∆→0

τ−→w1 ∆1 for some ∆→0 ,∆
×
0 ,∆1, w1}

= sup{w � 〈 0,∆×0 〉+ δ(w � 〈w1, ε 〉+ Pδ,wmax(∆1)) | s = ∆→0 + ∆×0 and ∆→0
τ−→w1 ∆1

for some ∆→0 ,∆
×
0 ,∆1, w1}

= sup{w � 〈 0, (1− p)s 〉+ pδ(w � 〈w1, ε 〉+ Pδ,wmax(∆1)) | p ∈ [0, 1] and s
τ−→w1 ∆1

for some ∆1, w1} [s can be split into ps+ (1− p)s only]

= sup{w � 〈 0, (1− p)s 〉+ pδ(w � 〈w1, ε 〉+ Pδ,wmax(∆1)) | p ∈ [0, 1] and s
τ−→w1 ∆1

for some ∆1, w1}
= sup{w � 〈 0, (1− p)s 〉+ pδ · sup{w � 〈w1, ε 〉+ Pδ,wmax(∆1) | s τ−→w1 ∆1} | p ∈ [0, 1]}
= max(w � 〈 0, s 〉, δ · sup{w � 〈w1, ε 〉+ Pδ,wmax(∆1) | s τ−→w1 ∆1})
= δ(w � 〈w, ε 〉+ Pδ,wmax(∆)) [as pp is max-seeking]

= F δ,pp,w(Pδ,wmax)(s)

�

Definition B.7 [Discounted hyper-SP-derivation] Let ∆ be a subdistribution and pp a static pol-
icy. We define a collection of subdistributions ∆k and weights wk as follows.

∆0 = ∆
〈wk+1,∆k+1 〉 =

∑
{∆k(s) · pp(s) | s ∈ d∆ke and pp(s)↓} for all k ≥ 0.

Then ∆×k is obtained from ∆k by letting

∆×k (s) =

{
0 if pp(s)↓
∆k(s) otherwise

for all k ≥ 0. Then the discounted hyper-SP-derivation ∆
τ

=⇒δ,pp,w ∆′ determines a unique weight
w and subdistribution ∆′ with w =

∑∞
k=1 δ

kwk and ∆′ =
∑∞

k=0 δ
k∆×k . �
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In other words, if ∆
τ

=⇒δ,pp,w ∆′ then w and ∆′ come from the discounted hyper-derivation ∆
τ

=⇒δ,w

∆′ which is constructed by following the static policy pp when choosing τ transitions from each
state. If the discount factor δ = 1, we write

τ
=⇒pp,w in place of

τ
=⇒1,pp,w.

Definition B.8 [Policy-following payoff] Given a discount δ, weight function w, and static policy
pp, the policy-following payoff function Pδ,pp,w : S → R is defined by

Pδ,pp,w(s) = w � 〈w,∆′ 〉

where w,∆ are determined by the discounted hyper-SP-derivation s
τ

=⇒δ,pp,w ∆′. Note that for
discount δ = 1 this coincides with the function given in Definition 2.18; that is P1,pp,w(s) = Ppp,w(s).
�

Lemma B.9 For any discount δ, weight function w, and static policy pp, the function Pδ,pp,w is a
fixed point of F δ,pp,w.

Proof. We need to show that F δ,pp,w(Pδ,pp,w)(s) = Pδ,pp,w(s) holds for any state s. There are two
cases.

1. If pp(s) ↑, then s
τ

=⇒δ,pp,w ∆′ implies w = 0 and ∆′ = s. Thus, Pδ,pp,w(s) = w � 〈 0, s 〉 =
F δ,pp,w(Pδ,pp,w)(s) as required.

2. Suppose pp(s) = 〈w1,∆1 〉. If s
τ

=⇒δ,pp,w ∆′ then s
τ−→w1 ∆1, ∆1

τ
=⇒δ,pp,w′ ∆′′, ∆′ = δ∆′′

and w = δ(w1 + w′) for some weight w′ and subdistribution ∆′′. Therefore,

Pδ,pp,w(s)
= w � 〈w,∆′ 〉
= w � 〈 δ(w1 + w′), δ∆′′ 〉
= δ(w � 〈w1, ε 〉+ w � 〈w′,∆′′ 〉)
= δ(w � 〈w1, ε 〉+ Pδ,pp,w(∆1))
= F δ,pp,w(Pδ,pp,w)(s)

�
The following proposition is a discounted version of Theorem 2.19, where the static policy and

payoff function are stated with respect to a discount factor that should be strictly less than 1.

Proposition B.10 Let δ ∈ [0, 1) be a discount and w a weight function. If pp is a max-seeking

static policy with respect to δ and w, then Pδ,wmax = Pδ,pp,w.

Proof. By Lemma B.5, the function F δ,pp,w has a unique fixed point. By Lemmas B.6 and B.9,
both Pδ,wmax and Pδ,pp,w are fixed points of the same function F δ,pp,w, which means that Pδ,wmax and
Pδ,pp,w coincide with each other. �

In Proposition B.10 it is crucial to rule out the case δ = 1, as the following example shows.
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Figure 8: Max-seeking policies

Example B.11 Consider the wMDP in Figure 8. Suppose we have a weight function w with
w(s0) = 0, w(s1) = 0, w(s2) = 1. Recall that w(s0) is the weight applied to the action benefit
in transitions; however in the example all action benefits are 0 and therefore they will be more or
less ignored. Note that s1 =⇒1,0 s2 and s2 =⇒1,0 s2 and therefore P1,w

max(s1) = P1,w
max(s2) = 1. Let

us now look at which policies can attain this payoff, in particular for the state s1.
According to Definition 2.16 there are three different static policies for the wMDP in Figure 8.

All three are required to be undefined at state s2 since it has no derivatives; so we concentrate on
s1. The first policy, pp1, is also undefined at s1. However pp1 is not max-seeking for the discount
δ = 1 as it fails condition (1) in Definition B.3.

The second policy, pp2 maps s1 to the pair 〈 0, s1 〉. Note that pp2 is max-seeking for the
discount δ = 1 as it satisfies both parts of clause (2) in Definition B.3. However the payoff
following this policy at state s1 is 0; intuitively the policy follows the divergent trace continually
through state s1, accumulating the payoff 0. Formally, applying Definition B.8, P1,pp2,w(s1) = 0.
Thus Proposition B.10 is in general false; pp2 is max-seeking but P1,w

max(s1) 6= P1,pp2,w(s1).
Incidently the third possible static policy, pp3 which maps s1 to pair 〈 0, s1 1/2⊕ s2 〉 is also

max-seeking and it does attain that the maximum payoff. What is more interesting is to examine
what happens when the discount δ is strictly less than 1.

If δ ∈ [0, 1), then pp2 is no longer max-seeking. First note that from state s1 we have the
discounted hyper-derivation s1

τ
=⇒δ,0

δ
2−δ · s2 because

s1 = s1 + ε

s1
τ−→0

1
2 · s1 + 1

2 · s2
1
2 · s1

τ−→0
1
4 · s1 + 1

4 · s2
...

1
2k
· s1

τ−→0
1

2k+1 · s1 + 1
2k+1 · s2

...

(29)

and
∑∞

k=1 δ
k ·( 1

2k
·s2) = δ

2−δ ·s2. From state s2 we have the discounted hyper-derivation s2
τ

=⇒δ,0 s2.
Because of these hyper-derivations one can check that the discounted payoff function is given by
Pδ,wmax(s1) = δ

2−δ and Pδ,wmax(s2) = 1. Thus pp2 is not max-seeking because it fails condition (2)(b) in

Definition B.3. Its immediate payoff is δ
2−δ which is strictly less than the immediate payoff obtained
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by following the other possible transition, s1
τ−→0 s1 1/2⊕ s2; Pδ,wmax(s1 1/2⊕ s2) = 1

2 ·
δ

2−δ + 1
2 ·1 = 1

2−δ ,

and 1
2−δ >

δ
2−δ for δ ∈ [0, 1).

Lemma B.4 assures us that some max-seeking policy always exists. In this case, with δ ∈ [0, 1),
it happens to be unique, namely pp3. Moreover one can check that by following it the transitions
listed in (29) are realised, which yields the discounted hyper-SP-derivation s1

τ
=⇒δ,pp3,0

δ
2−δ · s2.

Therefore, the maximum payoff δ
2−δ from state s1 can be attained; that is Pδ,pp2,w(s1) = δ

2−δ . �

One of the key lemmas in proving the finite generalability theorem is the following, whose proof
involves the mathematical concept of bounded continuity of real-valued functions. For convenience
of presentation, we delegate the discussion on bounded continuity, culminating in Proposition D.2,
to Section D.

Lemma B.12 Suppose s
τ

=⇒w ∆′ with 〈w,∆′ 〉 =
∑∞

i=0〈wi,∆
×
i 〉 for some properly related ∆×i

and some wi with w0 = 0. Let {δj}∞j=0 be a nondecreasing sequence of discount factors converging
to 1. Then for any weight function w it holds that

w � 〈w,∆′ 〉 = lim
j→∞

∞∑
i=0

(δj)
i(w � 〈wi,∆×i 〉).

Proof. We have three cases. If w = ∞ and w(s0) > 0, then it is easy to see that both sides of
the equation are equal to ∞. Similarly, if w = ∞ and w(s0) < 0, both sides are equal to −∞.
Otherwise, |w · 〈w,∆′ 〉| <∞ and we proceed as follows.

Let f : N × N → R be the function defined by f(i, j) = (δj)
i(w � 〈wi,∆×i 〉). We check that f

satisfies the four conditions in Proposition D.2.

1. f satisfies condition C1. For all i, j1, j2 ∈ N, if j1 ≤ j2 then (δj1)i ≤ (δj2)i. It follows that

|f(i, j1)| = |(δj1)i(w � 〈wi,∆×i 〉)| ≤ |(δj2)i(w � 〈wi,∆×i 〉)| = |f(i, j2)|.

2. f satisfies condition C2. For any i ∈ N, we have

lim
j→∞

|f(i, j)| = lim
j→∞

|(δj)i(w � 〈wi,∆×i 〉)| = |w � 〈wi,∆×i 〉|. (30)

3. f satisfies condition C3. For any n ∈ N, the partial sum Sn =
∑n

i=0 limj→∞ |f(i, j)| is
bounded because ∑n

i=0 limj→∞ |f(i, j)|
=

∑n
i=0 |w � 〈wi,∆

×
i 〉|

≤
∑∞

i=0 |w � 〈wi,∆
×
i 〉|

≤
∑∞

i=0(wi + |∆×i |)
= w + |∆′|

where the first equality is justified by (30).

4. f satisfies condition C4. For any i, j1, j2 ∈ N, if j1 ≤ j2 then

f(i, j1) + |f(i, j1)|
= (δj1)i(w � 〈wi,∆×i 〉) + |(δj1)i(w � 〈wi,∆×i 〉)|
= (δj1)i(w � 〈wi,∆×i 〉+ |w � 〈wi,∆×i 〉|)
≤ (δj2)i(w � 〈wi,∆×i 〉+ |w � 〈wi,∆×i 〉|)
= f(i, j2) + |f(i, j2)|.
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Therefore, we can use Proposition D.2 to do the following inference.

limj→∞
∑∞

i=0(δj)
i(w � 〈wi,∆×i 〉)

=
∑∞

i=0 limj→∞(δj)
i(w � 〈wi,∆×i 〉)

=
∑∞

i=0 w � 〈wi,∆×i 〉
= w �

∑∞
i=0〈wi,∆

×
i 〉

= w � 〈w,∆′ 〉

�

Corollary B.13 Let {δj}∞j=0 be a nondecreasing sequence of discount factors converging to 1. For

any static policy pp and weight function w, it holds that P1,pp,w = limj→∞ Pδj ,pp,w.

Proof. We need to show that P1,pp,w(s) = limj→∞ Pδj ,pp,w(s), for any state s. Note that for any

discount δj , each state s enables a unique discounted hyper-SP-derivation s
τ

=⇒δj ,pp,wj ∆j such

that 〈wj ,∆j 〉 =
∑∞

i=0(δj)
i〈wi,∆×i 〉 for some properly related ∆×i and some wi with w0 = 0. Let

w =
∑∞

i=0wi and ∆′ =
∑∞

i=0 ∆×i . We have s
τ

=⇒1,pp,w ∆′. Then we can infer that

limj→∞ Pδj ,pp,w(s)
= limj→∞w � 〈wj ,∆j 〉
= limj→∞w �

∑∞
i=0(δj)

i〈wi,∆×i 〉
= limj→∞

∑∞
i=0(δj)

i(w � 〈wi,∆×i 〉)
= w � 〈w,∆′ 〉 by Lemma B.12
= P1,pp,w(s)

�

Theorem B.14 (Theorem 2.19) In a finitary wMDP, for any weight function w there exists a
static policy pp such that P1,w

max = P1,pp,w.

Proof. Let w be a weight function. By Lemma B.4 and Proposition B.10, for every discount factor
δ < 1 there exists a max-seeking static policy with respect to δ and w such that

Pδ,wmax = Pδ,pp,w. (31)

Since the wMDP is finitary, there are finitely many different static policies. There must exist
a static policy pp such that (31) holds for infinitely many discount factors. In other words, for
every nondecreasing sequence {δn}∞n=0 converging to 1, with δn < 1 for all n ≥ 0, there exists a
sub-sequence {δnj}∞j=0 converging to 1 and a static policy pp? such that

P
δnj ,w
max = Pδnj ,pp

?,w for all j ≥ 0. (32)
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For any state s, we infer as follows.

P1,w
max(s)

= sup{w � 〈w,∆′ 〉 | s τ
=⇒w ∆′}

= sup{limj→∞
∑∞

i=0(δnj )
i(w � 〈wi,∆×i 〉) | s

τ
=⇒w ∆′ with 〈w,∆′ 〉 =

∑∞
i=0〈wi,∆

×
i 〉}

[by Lemma B.12]

≤ limj→∞ sup{
∑∞

i=0(δnj )
i(w � 〈wi,∆×i 〉) | s

τ
=⇒w ∆′ with 〈w,∆′ 〉 =

∑∞
i=0〈wi,∆

×
i 〉}

= limj→∞ sup{w �
∑∞

i=0(δnj )
i(〈wi,∆×i 〉) | s

τ
=⇒w ∆′ with 〈w,∆′ 〉 =

∑∞
i=0〈wi,∆

×
i 〉}

= limj→∞ sup{w � 〈w′,∆′′ 〉 | s τ
=⇒δnj ,w

′ ∆′′}

= limj→∞ P
δnj ,w
max (s)

= limj→∞ Pδnj ,pp
?,w(s) [by (32)]

= P1,pp?,w(s) [by Corollary B.13]

The other direction, P1,w
max(s) ≥ P1,pp?,w(s), is trivial in view of Definitions B.2 and B.8. �

C Compactness arguments

In this appendix we give the detailed proofs of the two results from Section 3.2, Proposition 3.10
and Proposition 3.12 which rely on compactness arguments.

Corollary C.1 Let ∆ be a subdistribution in a bounded wMDP. The set {〈w,∆′ 〉 | ∆ τ
=⇒w ∆′}

is compact and convex.

Proof. Let pp1, ..., ppn (n ≥ 1) be all the static policies in the bounded wMDP. Each policy
determines a hyper-SP-derivation ∆

τ
=⇒ppi,wi ∆′i. By Theorem 2.27, the weight wi is finite. Let

C be the convex closure of {〈wi,∆i 〉 | 1 ≤ i ≤ n}. Let D be the set {〈w,∆′ 〉 | ∆ τ
=⇒w ∆′}. By

Theorem 2.20 we have D ⊆ C. On the other hand, it is easy to see from Lemma 2.11(1) that D
is convex and thus C ⊆ D. Consequently, D coincides with C, the convex closure of a finite set.
Therefore, it is Cauchy closed and bounded, thus being compact. �

In order to extend the above result to the relation
α

=⇒, for any α ∈ Act, we need some prelimi-
nary concepts.

Definition C.2 A subset D ⊆ R×Dsub(S) is said to be finitely generable whenever there is some
finite set F ⊆ R×Dsub(S) such that D = lF . Then a relation R⊆ X × R×Dsub(S) is said to be
finitely generable if for every x in X the set x· R is finitely generable. �

Lemma C.3 If a set is finitely generable, then it is compact and convex.

Proof. A direct consequence of the definition of finite generability. �

Definition C.4 LetR1,R2∈ Dsub(S)×(R×Dsub(S)) be two relations. We define their composition
R1;R2 by letting ∆ R1;R2 〈w,Θ 〉 if there are some w1, w2,Θ

′ such that ∆ R1 〈w1,Θ
′ 〉 and

Θ′ R2 〈w2,Θ 〉 with w1 + w2 = w. �
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Lemma C.5 Let R1,R2⊆ Dsub(S) × (R × Dsub(S)) be finitely generable. Moreover, R2 is both
linear and decomposable. Then the relation R1;R2 is finitely generable.

Proof. Let BiΦ be a finite set of pairs of reals and subdistributions such that Φ· Ri= lBiΦ for i = 1, 2.
By exploiting the linearity and decomposability of R2, we can check that

∆· R1;R2 = l ∪{ 〈w, ε 〉+ B2
Θ | 〈w,Θ 〉 ∈ B1

∆ }.

where 〈w, ε 〉+ B2
Θ stands for the set {〈w, ε 〉+ 〈 v,Γ 〉 | 〈 v,Γ 〉 ∈ B2

Θ}. �

We are now ready to establish Proposition 3.10; it follows from this slightly more general result:

Lemma C.6 Let ∆ be a subdistribution in a bounded wMDP. The set {〈w,∆′ 〉 | ∆ α
=⇒w ∆′} is

compact and convex.

Proof. The relation
α

=⇒ is a composition of three stages:
τ

=⇒;
α−→;

τ
=⇒. In the proof of Corollary C.1

we have shown that
τ

=⇒ is finitely generable. Since a bounded wMDP is finitary, the relation
α−→

is also finitely generable. We observe that
α−→ is both linear and decomposable, so is

τ
=⇒ by

Lemma 2.11. It follows from Proposition C.5 that
α

=⇒ is finitely generable. By Lemma C.3 we
have that

α
=⇒ is compact and convex. �

Corollary C.7 In a bounded wMDP, the relation
α

=⇒ is the lifting of the compact and convex
relation

α
=⇒S , where s

α
=⇒S ∆ means s

α
=⇒ ∆.

Proof. The relation
α

=⇒S is
α

=⇒ restricted to point distributions. We have shown that
α

=⇒ is
compact and convex in Lemma C.6. Therefore,

α
=⇒S is compact and convex. Its lifting coincides

with
α

=⇒, which follows from Proposition 2.11. �

Our next step is to show that each of the relations Ck is closed. This requires some results to
be first established.

Lemma C.8 If R⊆ S × (R≥0 ×Dsub(S)) is compact, then so is its set of choice functions Ch(R).

Proof. Suppose that R is compact, that is closed and bounded. It is straightforward to show
that Ch(R), under the metric defined on page 23, is therefore also closed and bounded. It follows
that Ch(R) forms a complete metric space. Moreover, since R is bounded, Ch(R) is also totally
bounded. Therefore, Ch(R) is compact, for a metric space is compact if and only if it is complete
and totally bounded. �

Let β(x) be a predicate with variable x ranging over some set X. We use the notation β(•) to
represent the set {x ∈ X | β(x)}.

Lemma C.9 Suppose there is a continuous function g : R2
≥0 → R and two convex relations

R1,R2⊆ S × (R≥0 ×Dsub(S)) such that R1 is compact and R2 is closed. Then the set

Z = { 〈 r,Θ 〉 | r ∈ R≥0 and ∃w ∈ R≥0 : (Θ R1 〈w, • 〉) ∩ (∆ R2 〈 g(r, w), • 〉) 6= ∅ }

is closed.
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Proof. We will use the continuous function E , defined in the proof of Theorem 3.14; recall that it
also maps closed sets to closed sets.

Let r, w ∈ R≥0, Θ ∈ Dsub(S), and f ∈ S → R≥0 × Dsub(S). Then define the following four
functions

H1 : 〈 〈 r,Θ 〉, f 〉 7→ 〈 r, 〈Θ, f 〉 〉
H2 : 〈 r, 〈w,Θ 〉 〉 7→ 〈 〈 r, w 〉,Θ 〉
FE : 〈 r, 〈Θ, f 〉 〉 7→ 〈 r, E(Θ, f) 〉
Gg : 〈 〈 r, w 〉,Θ 〉 7→ 〈 g(r, w),Θ 〉

which are continuous. Finally let

Z ′ = π1(H−1
1 ◦ F−1

E ◦H
−1
2 ◦G−1

g ◦ E({∆} ×Ch(R2)) ∩ (R≥0 ×Dsub(S))×Ch(R1))

where π1 : (R≥0×Dsub(S))×Ch(R1)→ R≥0×Dsub(S) is the projection onto the first component
of a pair. Since R2 is closed, it easily follows that Ch(R2) is also closed. Then the product
{∆} × Ch(R2) is closed. Its image under the closed function E is also closed. Since the four
functions Gg, H2, FE , H1 are continuous and the inverse image of a closed set is closed, we know
that H−1

1 ◦F
−1
E ◦H

−1
2 ◦G−1

g ◦E({∆}×Ch(R2)) is closed. On the other hand, since R1 is compact,
by Lemma C.8 the set of choice functions Ch(R1) is compact. It is then easy to see that (R≥0 ×
Dsub(S))×Ch(R1) is closed. It follows that the intersection of two closed sets

H−1
1 ◦ F−1

E ◦H
−1
2 ◦G−1

g ◦ E({∆} ×Ch(R2)) ∩ (R≥0 ×Dsub(S))×Ch(R1)

is closed. By the tube lemma in topology theory, the projection π1 is closed2. Therefore, we have
that Z ′ is closed.

We now show that Z = Z ′.

〈 r,Θ 〉 ∈ Z ′
iff 〈 〈 r,Θ 〉, f1 〉 ∈ H−1

1 ◦ F−1
E ◦H

−1
2 ◦G−1

g ◦ E({∆} ×Ch(R2)) for some f1 ∈ Ch(R1)

iff 〈 r, 〈Θ, f1 〉 〉 ∈ F−1
E ◦H

−1
2 ◦G−1

g ◦ E({∆} ×Ch(R2)) for some f1 ∈ Ch(R1)

iff 〈 r, E(Θ, f1) 〉 ∈ H−1
2 ◦G−1

g ◦ E({∆} ×Ch(R2)) for some f1 ∈ Ch(R1)

iff 〈 r,ExpΘ(f1) 〉 ∈ H−1
2 ◦G−1

g ◦ E({∆} ×Ch(R2)) for some f1 ∈ Ch(R1)

iff Θ R1 〈w,Θ′ 〉 and 〈 r, 〈w,Θ′ 〉 〉 ∈ H−1
2 ◦G−1

g ◦ E({∆} ×Ch(R2)) for some 〈w,Θ′ 〉
iff Θ R1 〈w,Θ′ 〉 and 〈 〈 r, w 〉,Θ′ 〉 ∈ G−1

g ◦ E({∆} ×Ch(R2) for some 〈w,Θ′ 〉
iff Θ R1 〈w,Θ′ 〉 and 〈 g(r, w),Θ′ 〉 ∈ E({∆} ×Ch(R2) for some 〈w,Θ′ 〉
iff Θ R1 〈w,Θ′ 〉 and ∆ R2 〈 g(r, w),Θ′ 〉 for some 〈w,Θ′ 〉
iff (Θ R1 〈w, • 〉) ∩ (∆ R2 〈 g(r, w), • 〉) 6= ∅ for some w
iff 〈 r,Θ 〉 ∈ Z.

�

This lemma enables us to establish the second requirement of the appendix:

Proposition C.10 [Proposition 3.12] In a bounded wMDP, for every k ∈ N, the relation Ck is
closed and convex.

2In general, the projection π1 : X×Y → X is not closed. For example, if X = Y = R, then π1 maps the closed set
{〈x, y 〉 ∈ R2 | xy = 1} into R\{0} which is not closed. However, the tube lemma tells us that if X is any topological
space and Y a compact space, then the projection map π1 is closed.
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Proof. By induction on k. For k = 0 the result is obvious. So let us assume that Ck is closed and
convex. We have to show that

s· C(k+1) is closed and convex, for every state s (33)

For every α, v, ∆ let

Gα,v,∆ = { 〈 r,Θ 〉 | r ∈ R≥0 and ∃w ∈ R≥0 : (Θ· α
=⇒w) ∩ (∆· Ckr+w−v) 6= ∅ }.

By Corollary C.7, the relation
α

=⇒ is lifted from a compact and convex relation. By induction
hypothesis we know that Ck is closed and convex. The function g : R2

≥0 → R≥0 given by g(r, w) =
r + w − v is continuous. So we can appeal to Lemma C.9 and conclude that each Gα,v,∆ is closed.
By Definition 2.2 it is also easy to see that Gα,v,∆ is convex. But it follows that s· C(k+1) is also
closed and convex as it can be written as

∩{Gα,v,∆ | s
α−→v ∆ }.

�

D Bounded continuity

In this section we study the property of bounded continuity of real-valued binary functions, which
plays a crucial role in the proof of Lemma B.12. We first consider nonnegative functions.

Proposition D.1 [Bounded continuity - nonnegative function] Given a function f : N×N→ R≥0

which satisfies the following conditions

C1. f is monotonic on the second parameter, i.e. j1 ≤ j2 implies f(i, j1) ≤ f(i, j2) for all
i, j1, j2 ∈ N.

C2. For any i ∈ N, the limit limj→∞ f(i, j) exists.

C3. For any n ∈ N, the partial sum Sn =
∑n

i=0 limj→∞ f(i, j) is bounded, i.e. there exists some
c ∈ R≥0 such that Sn ≤ c for all n ≥ 0.

then it holds that
∞∑
i=0

lim
j→∞

f(i, j) = lim
j→∞

∞∑
i=0

f(i, j).

Proof. Let ε be any positive real number. By C3 the sequence {Sn}∞n=0 is bounded and it is
nondecreasing, so it converges to

∑∞
i=0 limj→∞ f(i, j). Then there exists some nε ∈ N such that

0 ≤
∞∑
i=0

lim
j→∞

f(i, j)−
nε∑
i=0

lim
j→∞

f(i, j) ≤ ε

2
. (34)
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By C1 and C2, for any i ∈ N, the sequence {f(i, j)}∞j=0 is nondecreasing and converges to
limj→∞ f(i, j). Therefore, for each i ∈ N, there exists some mi,ε,nε ∈ N such that

∀j ≥ mi,ε,nε : 0 ≤ lim
j′→∞

f(i, j′)− f(i, j) ≤ ε

2(nε + 1)
. (35)

Let mε = max{mi,ε,nε | 0 ≤ i ≤ nε}. It follows from (35) that

∀j ≥ mε : 0 ≤
nε∑
i=0

lim
j′→∞

f(i, j′)−
nε∑
i=0

f(i, j) ≤ ε

2
. (36)

By summing up (34) and (36), we obtain

∀j ≥ mε : 0 ≤
∞∑
i=0

lim
j′→∞

f(i, j′)−
nε∑
i=0

f(i, j) ≤ ε. (37)

By C1 and C2, we have that f(i, j) ≤ limj′→∞ f(i, j′) for any i, j ∈ N. So for any j, n ∈ N the
partial sum

∑n
i=0 f(i, j) is bounded as

n∑
i=0

f(i, j) ≤
n∑
i=0

lim
j′→∞

f(i, j′) ≤ c

according to C3. Thus it converges to
∑∞

i=0 f(i, j). Then for any j ∈ N there exists some nj,ε such
that

∀n ≥ nj,ε : 0 ≤
∞∑
i=0

f(i, j)−
n∑
i=0

f(i, j) ≤ ε. (38)

Now consider the particular case that j = mε. Let Nε = max{nε, nmε,ε}. We know from (37)

0 ≤
∞∑
i=0

lim
j→∞

f(i, j)−
Nε∑
i=0

f(i,mε) ≤ ε. (39)

From (38) we infer that

−ε ≤
Nε∑
i=0

f(i,mε)−
∞∑
i=0

f(i,mε) ≤ 0. (40)

By summing up (39) and (40), we derive that

−ε ≤
∞∑
i=0

lim
j→∞

f(i, j)−
∞∑
i=0

f(i,mε) ≤ ε. (41)

We conclude from (41) that

lim
j→∞

∞∑
i=0

f(i, j) =

∞∑
i=0

lim
j→∞

f(i, j).

�
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Proposition D.2 [Bounded continuity - general function] Given a function f : N× N→ R which
satisfies the following conditions

C1. For all i, j1, j2 ∈ N, we have j1 ≤ j2 implies |f(i, j1)| ≤ |f(i, j2)|.

C2. For any i ∈ N, the limit limj→∞ |f(i, j)| exists.

C3. For any n ∈ N, the partial sum Sn =
∑n

i=0 limj→∞ |f(i, j)| is bounded, i.e. there exists some
c ∈ R≥0 such that Sn ≤ c for all n ≥ 0.

C4. For all i, j1, j2 ∈ N, we have j1 ≤ j2 implies f(i, j1) + |f(i, j1)| ≤ f(i, j2) + |f(i, j2)|.

then it holds that
∞∑
i=0

lim
j→∞

f(i, j) = lim
j→∞

∞∑
i=0

f(i, j).

Proof. For any i, j ∈ N, we have f(i, j) + |f(i, j)| ≤ 2|f(i, j)| ≤ 2 limj→∞ |f(i, j)| by C1 and C2.
Therefore, for any i ∈ N, the sequence {f(i, j) + |f(i, j)|}∞j=0 has a limit. That is, we have the
condition

C5. for any i ∈ N, the limit limj→∞(f(i, j) + |f(i, j)|) exists.

Moreover, it holds that limj→∞(f(i, j) + |f(i, j)|) ≤ 2 limj→∞ |f(i, j)|. It follows that

C6. for any n ∈ N, the partial sum
∑n

i=0 limj→∞(f(i, j) + |f(i, j)|) ≤ 2
∑n

i=0 limj→∞ |f(i, j)| ≤
2c.

By Proposition D.1 and conditions C1, C2 and C3, we infer that

lim
j→∞

∞∑
i=0

|f(i, j)| =
∞∑
i=0

lim
j→∞

|f(i, j)|. (42)

By Proposition D.1 and conditions C4, C5 and C6, we infer that

lim
j→∞

∞∑
i=0

(f(i, j) + |f(i, j)|) =

∞∑
i=0

lim
j→∞

(f(i, j) + |f(i, j)|). (43)

Since
∑∞

i=0 f(i, j) =
∑∞

i=0(f(i, j) + |f(i, j)|)−
∑∞

i=0 |f(i, j)|, we then have

limj→∞
∑∞

i=0 f(i, j) = limj→∞(
∑∞

i=0(f(i, j) + |f(i, j)|)−
∑∞

i=0 |f(i, j)|)
[existence of the two limits by (42) and (43)]

= limj→∞
∑∞

i=0(f(i, j) + |f(i, j)|)− limj→∞
∑∞

i=0 |f(i, j)|
[by (42) and (43)]

=
∑∞

i=0 limj→∞(f(i, j) + |f(i, j)|)−
∑∞

i=0 limj→∞ |f(i, j)|
=

∑∞
i=0(limj→∞(f(i, j) + |f(i, j)|)− limj→∞ |f(i, j)|)

=
∑∞

i=0 limj→∞(f(i, j) + |f(i, j)| − |f(i, j)|)
=

∑∞
i=0 limj→∞ f(i, j)

�
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E Completeness for benefits testing

Here we outline the details for the proof of Theorem 4.12, which underlies the completeness of
benefits testing for amortised weighted simulation. They are a variation on the proof of the corre-
sponding result in [DvGHM09].

Lemma E.1 Let ∆ be a distribution and T, Ti be tests.

1. o ∈ Outcomes(∆ || ω) iff o = 〈 0, ~ω 〉.

2. o ∈ Outcomes(∆ || a0.T ) and o 6= ~0 iff ∆
a

=⇒w ∆′ and o = o′ + 〈w,~0 〉 for some o′ ∈
Outcomes(∆′ || T ).

3. o ∈ Outcomes(∆ || T1 p⊕ T2) iff o = pi · o1 + (1− p) · o2 for some oi ∈ Outcomes(∆ || Ti).

4. o ∈ Outcomes(∆ || (τ0.T1 + τ0.T2)) if there are q ∈ [0, 1], weight w and distributions ∆1,∆2

such that ∆
τ

=⇒w q · ∆1 + (1 − q) · ∆2 and o = q · o1 + (1 − q) · o2 + 〈w,~0 〉 for certain
oi ∈ Outcomes(∆i || Ti).

Proof.

1. The states in the support of ∆ || ω has a unique outgoing transition labelled by ω. There-
fore, ∆ || ω is the unique extreme derivative of itself. As Success(∆ || ω) = ~ω, we have
Outcomes(∆ || ω) = {〈 0, ~ω 〉}.

2. (⇐) Suppose ∆
a

=⇒w ∆′, o′ ∈ Outcomes(∆′ || T ) and o = o′+ 〈w,~0 〉. With loss of generality
we may assume that ∆

τ
=⇒w1 ∆1

a−→w2 ∆2
τ

=⇒w3 ∆′ with w = w1 + w2 + w3. Using
Lemma 3.3, we have that ∆ || a0.T

τ
=⇒w1 ∆1 || a0.T

a−→w2 ∆2 || T
τ

=⇒w3 ∆′ || T . It follows
that o ∈ Outcomes(∆ || a0.T ).

(⇒) Suppose o ∈ Outcomes(∆ || a0.T ) and o 6= ~0. Then there must be a ∆′ such that
∆

τ
=⇒w1

a−→w2 ∆′ and some o′ ∈ Outcomes(∆′ || T ) exists with o = o′ + 〈w1 + w2,~0 〉.

3. (⇐) Suppose oi ∈ Outcomes(∆ || Ti) for i = 1, 2. Then ∆ || Ti
τ

=⇒wi Γi for some stable

Γi with oi = 〈wi, Success(Γi) 〉. By Proposition 2.11(4) we have ∆ || T1 p⊕ T2
τ

=⇒w Γ
with w = pw1 + (1 − p)w2 and Γ = p · Γ1 + (1 − p) · Γ2. Clearly, Γ is also stable and
Success(Γ) = p · Success(Γ1) + (1− p) · Success(Γ2). Hence, o ∈ Outcomes(∆ || T1 p⊕ T2).

(⇒) Suppose o ∈ Outcomes(∆ || T1 p⊕ T2). Then there is a stable Γ such that ∆ || T1 p⊕
T2

τ
=⇒w Γ and o = 〈w,Success(Γ) 〉. By Proposition 2.11(3) there are Γi for i = 1, 2, such

that ∆ || Ti
τ

=⇒wi Γi and w = pw1 + (1− p)w2 and Γ = p ·Γ1 + (1− p) ·Γ2. As Γ1 and Γ2 are
stable, we have 〈wi, Success(Γi) 〉 ∈ Outcomes(∆ || Ti). Moreover, o = p · 〈w1, Success(Γ1) 〉+
(1− p) · 〈w2,Success(Γ2) 〉.

4. Suppose ∆
τ

=⇒w q · ∆1 + (1 − q) · ∆2 and oi ∈ Outcomes(∆i || Ti). Then there are stable
Γi with ∆i || Ti

τ
=⇒wi Γi and oi = 〈wi, Success(Γi) 〉. Using Lemma 3.3, we have that

∆ || (τ0.T1 +τ0.T2)
τ

=⇒w q ·(∆1 || (τ0.T1 +τ0.T2))+(1−q) ·(∆2 || (τ0.T1 +τ0.T2))
τ−→0 q ·∆1 ||

T1+(1−q)·∆2 || T2
τ

=⇒w′ Γ with w′ = qw1+(1−q)w2 and Γ = q ·Γ1+(1−q)·Γ2. Clearly, Γ is
stable and Success(Γ) = q·Success(Γ1)+(1−q)·Success(Γ2). Hence, q·o1+(1−q)·o2+〈w,~0 〉 ∈
Outcomes(∆ || T1 p⊕ T2).
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The converse to part (4) of Lemma E.1 also holds, though its proof is much more complicated.

Lemma E.2 If o ∈ Outcomes(∆ || (τ0.T1 + τ0.T2)) then there are q ∈ [0, 1], weight w and distribu-
tions ∆1,∆2 such that ∆

τ
=⇒w q ·∆1 + (1− q) ·∆2 and o = q · o1 + (1− q) · o2 + 〈w,~0 〉 for certain

oi ∈ Outcomes(∆i || Ti).

Proof. By mimicking the corresponding proof in [DvGHM09]. �

Proposition E.3 In a bounded wMDP, for every formula φ ∈ L there exists a pair (Tφ, vφ) with
Tφ a multi-success test and vφ ∈ [0, 1]Ω such that, for any weight r and distribution ∆,

(1) If 〈 r,∆ 〉 |= φ then ∃o ∈ Outcomes(∆ || Tφ) : vφ ≤ o+ 〈 r,~0 〉.

(2) If ∃o ∈ Outcomes(∆ || Tφ) : vφ ≤ o + 〈 r,~0 〉 then there exists some weight r′ such that r′ ≥ r
and 〈 r′,∆ 〉 |= φ.

Tφ is called a characteristic test of φ and vφ its target value.

Proof. For any φ ∈ L we define the pair Tφ and vφ by structural induction.

• Let φ = tt. Take Tφ := ω0. 0 for some ω ∈ Ω and vφ := 〈 0, ~ω 〉.

• Let φ = 〈α〉
v
ψ. By induction, ψ has a characteristic test Tψ with target value vψ. Take

Tφ := a0.Tψ and vφ := vψ + 〈 v,~0 〉.

• Let φ = φ1 ∧ φ2. Choose Ω-disjoint tests T1, T2 for φ1 and φ2, with target values v1, v2. Let
p ∈ (0, 1) be chosen arbitrarily. We define Tφ := T1 p⊕ T2 and vφ := p · v1 + (1− p) · v2.

• Let φ = φ1 p⊕ φ2. Choose Ω-disjoint tests T1, T2 for φ1 and φ2 with target values v1, v2, and
two fresh success actions ω1, ω2. Let T ′i := Ti 1

2
⊕ wi and v′i := 1

2vi + 1
2〈 0, ~ωi 〉. Note that for

i = 1, 2 we have that T ′i is also a characteristic test of φi with target value vi. We define
Tφ := τ0.T

′
1 + τ0.T

′
2 and vφ := p · v′1 + (1− p) · v′2.

We now check by induction on φ that (1) and (2) above hold.

(1) • Let φ = tt. For any configuration 〈 r,∆ 〉, there exists some o ∈ Outcomes(∆ || ω0. 0) with
〈 0, ~ω 〉 ≤ o ≤ o+ 〈 r,~0 〉, using Lemma E.1(1).

• Let φ = 〈α〉
v
ψ. Suppose 〈 r,∆ 〉 |= φ. Then there are w,∆′ with ∆

α
=⇒w ∆′ and 〈 r+w−

v,∆′ 〉 |= ψ. By induction, there exists oψ ∈ Outcomes(∆′ || Tψ) with vψ ≤ oψ + 〈 r +w −
v,~0 〉. By Lemma E.1(2), there is some o ∈ Outcomes(∆ || a0.Tψ) with o = oψ + 〈w,~0 〉.
It follows that vφ = vψ + 〈 v,~0 〉 ≤ o+ 〈 r,~0 〉 as required.

• Let φ = φ1 ∧ φ2. Suppose 〈 r,∆ 〉 |= φ. Then 〈 r,∆ 〉 |= φi for i = 1, 2. By induction,
there exists oi ∈ Outcomes(∆ || Ti) with vi ≤ oi + 〈 r,~0 〉. By Lemma E.1(3), we have
o := p · v1 + (1− p) · v2 ∈ Outcomes(∆ || Tφ), and vφ ≤ o+ 〈 r,~0 〉.
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• Let φ = φ1 p⊕ φ2. Suppose 〈 r,∆ 〉 |= φ. Then there are r1, r2,∆1,∆2 such that 〈 r,∆ 〉 =
p · 〈 r1,∆1 〉 + (1 − p) · 〈 r2,∆2 〉 and 〈 ri,∆i 〉 |= φi for i = 1, 2. By induction,there
exists some oi ∈ Outcomes(∆i || Ti) with vi ≤ oi + 〈 ri,~0 〉. By Lemma E.1(1), we have
〈 0, ~ωi 〉 ∈ Outcomes(∆i || ωi). Since T ′i = Ti 1

2
⊕ ωi, by Lemma E.1(3), there is some

o′i := 1
2 · oi + 1

2 · 〈 0, ~ωi 〉 ∈ Outcomes(∆i || T ′i ). We note that

v′i :=
1

2
· vi +

1

2
· 〈 0, ~ωi 〉 ≤

1

2
· (oi + 〈 ri,~0 〉) +

1

2
· 〈 0, ~ωi 〉 = o′i +

1

2
· 〈 ri,~0 〉.

By Lemma E.1(4), there exists some o := p·o′1+(1−p)·o′2 ∈ Outcomes(∆ || (τ0.T
′
1+τ0.T

′
2)).

Therefore,

vφ ≤ p · (o′1 +
1

2
· 〈 r1,~0 〉) + (1− p) · (o′2 +

1

2
· 〈 r2,~0 〉) = o+

1

2
· 〈 r,~0 〉 ≤ o+ 〈 r,~0 〉.

(2) • Let φ = tt. For any configuration 〈 r,∆ 〉, we have 〈 r,∆ 〉 |= φ.

• Let φ = 〈α〉
v
ψ. Suppose there exists some o ∈ Outcomes(∆ || Tφ) with vφ ≤ o+ 〈 r,~0 〉. It

is easy to see that o 6= ~0 because o(ω) ≥ vφ(ω) 6= 0 for some ω ∈ Ω. By Lemma E.1(2)

we have ∆
a

=⇒w ∆′ and o = o′ + 〈w,~0 〉 for some o′ ∈ Outcomes(∆′ || Tψ). It follows that
vψ + 〈 v,~0 〉 ≤ o′+ 〈w,~0 〉+ 〈 r,~0 〉. In other words, vψ ≤ o′+ 〈 r+w− v,~0 〉. By induction,
there is some weight r′ ≥ r + w − v with 〈 r′,∆′ 〉 |= ψ. Let r′′ := max(0, r′ − w + v).
Clearly, we have r′′ ≥ r′ −w + v ≥ r. It holds that 〈 r′′,∆ 〉 |= φ. To see this, we consider
two cases: (i) if r′′ = r′ − w + v then r′ − w + v ≥ 0 and by the definition of |= we get
〈 r′ − w + v,∆ 〉 |= φ; (ii) if r′′ = 0 then r′ − w + v ≤ 0, i.e. w − v ≥ r′, which implies
〈w − v,∆′ 〉 |= ψ by Lemma 3.15 and then 〈 0,∆ 〉 |= φ.

• Let φ = φ1 ∧ φ2. Suppose there exists o ∈ Outcomes(∆ || Tφ) with vφ ≤ o + 〈 r,~0 〉. By
Lemma E.1(3) we have o = p·o1+(1−p)·o2 for certain oi ∈ Outcomes(∆ || Ti). Recall that
T1, Tw are Ω-disjoint tests. There exists weight ri that vi ≤ oi + 〈 ri,~0 〉 for both i = 1, 2.
To see this, we observe that (i) vi(ω) ≤ oi(ω) for all ω ∈ Ω for if vi(ω) > oi(ω) for some
i = 1 or 2 then ω must occur in Ti but not in T3−i, thus v3−i(ω) = 0 and vφ(ω) > o(ω), in
contradiction with the assumption; (ii) if xi and yi are the weight components of vi and oi
respectively, then we can simply choose ri := max(0, xi − yi) to ensure that xi ≤ yi + ri.
By induction, there exists some weight r′i ≥ ri such that 〈 r′i,∆ 〉 |= φi, for i = 1 and 2.
Let r′′ = max(r′1, r

′
2, r). By Lemma 3.15 we have 〈 r′′,∆ 〉 |= φi, hence 〈 r′′,∆ 〉 |= φ.

• Let φ = φ1 p⊕ φ2. Suppose there is some o ∈ Outcomes(∆ || Tφ) such that vφ ≤ o+ 〈 r,~0 〉.
By Lemma E.2, there are q, w,∆1,∆2 such that ∆

τ
=⇒w q · ∆1 + (1 − q) · ∆2 and o =

q · o′1 + (1− q) · o′2 + 〈w,~0 〉 for certain o′i ∈ Outcomes(∆i || T ′i ). Now v′i(ωi) = o′i(ωi) = 1
2

for both i = 1 and 2, so using that T1, T2 are Ω-disjoint tests, 1
2p = p · v′1(ω1) = vφ(ω1) ≤

o(ω1) = q · o′1(ω1) = 1
2q and likewise 1

2(1 − p) = (1 − p) · v′2(ω2) = vφ(ω2) ≤ o(ω2) =
(1 − q) · o′2(ω2) = 1

2(1 − q). Together, these inequalities say that p = q. Exactly as

in the previous case one obtains v′i ≤ o′i + 〈 ri,~0 〉 for some weight ri, where i = 1, 2.
Given that T ′i = Ti 1

2
⊕ wi, using Lemma E.1(3), it must be that o′i = 1

2oi + 1
2 ~ωi for some

oi ∈ Outcomes(∆i || Ti) with vi ≤ oi + 2ri. By induction, there exists some r′i ≥ 2ri
such that 〈 r′i,∆ 〉 |= φi, for i = 1 and 2. Let r′′ = max(r, pr′1 + (1 − p)r′2). We have
〈 r′′,∆ 〉 |= φ, using Lemma 3.15.
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Corollary E.4 [Theorem 4.12] In a bounded wMDP, if ∆ vrmmay Θ then there exists some r′ such
that r′ ≥ r and L(0,∆) ⊆ L(r′,Θ).

Proof. For any φ ∈ L(0,∆), we have 〈 0,∆ 〉 |= φ. Let Tφ be a characteristic test of φ with target
value vφ. By Proposition E.3(1), there exists some o ∈ Outcomes(∆ || Tφ) such that vφ ≤ o.
Since ∆ vrmmay Θ, there is some o′ ∈ Outcomes(Θ || Tφ) such that o ≤ o′ + 〈 r,~0 〉. It follows

that vφ ≤ o′i + 〈 r,~0 〉. By Proposition E.3(2), there exists some weight r′ such that r′ ≥ r and
〈 r′,Θ 〉 |= φ, i.e. φ ∈ L(r′,Θ). �
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