
Outline of Lecture 2

Kolmogorov Complexity

Plain complexity and the invariance theorem.
Basic properties of C.
Incompressibility and randomness oscillations.
Prefix-free complexity K.
Schnorr’s Theorem.
The Ample Excess Lemma.
Chaitin’s ⌦.

Machine complexity
Let M be a Turing machine. M computes a partial recursive
function 2<N ! 2<N.

We define the M-complexity of a string x as

CM(x) = min{|�| : M(�) = x}

where min ; = 1.

The complexity of x depends on the choice of M. Can we
choose M so that it reflects the “true” complexity of x?

A machine R is optimal if for every machine M there exists a
constant eM such that

(8x) [CR(x)  CM(x) + eM].

The Invariance Theorem
Theorem [Kolmogorov]

There exists an optimal machine R.

Proof.

Let (Me) be an effective enumeration of all Turing
machines.
On input �, R parses � and finds unique e and ⌧ such that
� = 0e1⌧. Then R outputs

R(0e1⌧) = Me(⌧),

i.e. R is essentially a universal Turing machine.
It is now easy to see that for all e,

(8x) [CR(x)  CM(x) + eM + 1].

Kolmogorov Complexity

We define the Kolmogorov complexity of a string x as

C(x) = CR(x)

By the invariance theorem, any other machine complexity will
“undercut” C by at most a constant.

If � is an Me-program for x, then 0e1� is an R-program for x.

Basic Properties of C

There exists an e such that for all x, C(x)  |x|+ e.
e is the index of a copying machine that just outputs the
input. Obviously, x is an Me-program for x.

For each length n, there exist incompressible strings of length
n, i.e. strings x with C(x) � |x|.

There are
Pn-1

k=0 2
k = 2n - 1 programs of length < n.

C cannot be increased by computable transformations.

If f : 2<N ! 2<N is (partial) computable, then there exists a
c such that for all x such that f(x) #, C(f(x))  C(x) + c.

Algorithmic Properties of C
C is not computable.

The set D = {x : C(x) < |x|} is simple – r.e. and the
complement is infinite but does not contain an infinite r.e.
subset.
Assume the complement of D contains an infinite r.e. set.
Then it also contains an infinite computable set
Z = {z1 < z2 < . . . }.
A program for zi is given by the index of the machine
computing Z together with the index i, which can be
coded by log i bits. Hence C(zi)  log i+ c.
For large enough i this contradicts that zi is
incompressible.
Simple sets cannot be computable since this would mean
the set and its complement are r.e.
If C were computable, so would be D.

Algorithmic Properties of C

The noncomputability of C limits its use for practical purposes.

Possible remedies:

Allow only a fixed number of steps for “decompression”.
Formally, let g be a total recursive function with g(n) � n.
Define the time-bounded complexity

Cg(x) = min{|�| : R(�) = x in at most g(|x|) steps}.

Replace R by a computable compression/decompression
mechanism (like any general compression algorithm – gzip
etc.).

Algorithmic Properties of C
However, C is right-enumerable or enumerable from above:

There exists a computable function g : 2<N ⇥ N ! N [{1}

such that for all x, s, g(s+ 1, x)  g(s, x) and

lim
s

g(s, x) = C(x).

For instance, we can take

Cs(x) = min{|�| : R(�) = x in at most s steps}

Equivalently, the set

{(x,m) : C(x) < m}

is recursively enumerable.

Machine-independent Characterization of C
A function D : 2<N ! N satisfies the counting condition if
{x : D(x) < k} < 2k for each k.

The counting argument above shows that every machine
complexity CM satisfies the counting condition.

Proposition

If D is right-computable and satisfies the counting condition,
then there exists a machine M such that for all x,
CM(x) = D(x) + c.

It follows that C is given as a minimal (with respect to
pointwise domination within a constant) right-computable
function satisfying the counting condition.

Randomness as Incompressibility (I)

Conjecture: A sequence X is ML-random iff all of its initial
segments are incompressible, i.e. iff for some constant c,

(8n) [C(X�n) � n- c]

Unfortunately, this is not true of any infinite sequence.

Theorem [Martin-Löf]

Let k 2 N. For any sufficiently long string x there exists an
initial segment y ✓ x such that C(y) < |y|- k.

Randomness as Incompressibility (I)

Proof

Let z be an initial segment of x.
Let n = n(z) be the index of z in a standard
length-lexicographical ordering/enumeration of 2<N .
Let y be the length n extension of z along x, i.e.
y = z� ✓ x and |�| = n.
There is a machine that, given � as input, outputs z�.
Hence C(y)  |�|+ c, where c is independent of y.
On the other hand, |y| = |z|+ |�|, so if we choose z such
that |z| > k+ c, it follows that C(y) < |y|- k.

Failure of Subadditivity

The complexity of a concatenation can be higher than the
complexities of its parts.

Given strings x, y, we should be able to combine programs for
them to obtain a program for z = xy.

Hence it should be true that C(xy)  C(x) + C(y) + c.

The problem is that, given a concatenation of descriptions for x

and y, respectively, we cannot tell where the description of x
ends and that of y begins.

Failure of Subadditivity
Corollary

Let k 2 N. There exists an x such that for some splitting
x = yz we have C(x) > C(y) + C(z) + k.

Proof
Let c be such that C(x)  |x|+ c (c is the index of the
copying machine).
Pick an incompressible, sufficiently long x, C(x) � |x|.
Let l = k+ c and use the preceding theorem to find an
initial segment y ✓ x such that C(y) < |y|- l.
Then for z such that x = yz, we have

C(y) + C(z) + k < |y|- k- c+ |z|+ c+ k = |x|  C(x).

Randomness Oscillations

One can analyze these phenomena further to get an assessment
on how incompressibility for C can fail along an infinite
sequence.

Theorem [Martin-Löf]

Let f : N ! N be a total computable function such thatP
n 2

-f(n) = 1. Then, for any sequence X, there exist infinitely
many n such that

C(X�n)  n- f(n).

For example, we can choose f(n) = logn.

A “Better” Version of C?

One of the intended meanings of Kolmogorov complexity is
information theoretic:

If � is a “minimal” program for x, � contains precisely the
information necessary to produce x.

But a string � does not only contain its bits as information, it
contains also its length.

This was used in the previous results.

We should therefore somehow “incorporate” the length of a
program into the definition of complexity.

A “Better” Version of C?

From a different perspective:

The failure of subadditivity is due to the fact that we
cannot, if we concatenate two descriptions, effectively tell
where one ends and the other begins.

Instead of using �⌧, we could use 0|�|1�⌧.

0|�|1� is called a self-delimiting description of �.

We will define a version of complexity that allows only
self-delimiting descriptions.

Prefix-free Sets

Definition
A set W ✓ 2<N is prefix-free if for any x, y 2 W,

x ✓ y implies x = y.

In other words, no two elements of W are prefixes of one
another.

Order theoretic:
W is an antichain with respect to the partial order ✓ of
strings.

Example: Phone numbers.

Prefix-free Kolmogorov complexity
A machine M is prefix-free if its domain is a prefix-free set. A
prefix-free machine S is optimal if for every prefix-free machine
M, CS  CM + c.

Proposition

There exists an optimal prefix-free machine S.

Proof:
Enumerate all Turing machines.
Whenever we see that some machine Me is not prefix-free,
we stop enumerating its domain. This way we convert it to
a prefix-free machine M̃e. If Me is already prefix free, it
remains unaltered.
If (M̃e) is an enumeration of all (and only) prefix-free
machines, we define S(0e1�) = M̃e(�).

Prefix-free Kolmogorov complexity

Definition
The prefix-free complexity of a string x is defined as

K(x) = CS(x).

Properties of K

Algorithmic properties

K is not computable.
K is enumerable from above.

Upper bounds are harder than for C
The copying machine is not prefix-free.
We can replace it by the machine M(0|x|1x) = x.
This yields K(x) + 2|x|. (+ means “ · · ·+ c”)
General idea: Code x by x + self-delimiting code for |x|.
The shortest self-del. code for |x| is given by a program of
length K(|x|).
Hence K(x) + |x|+ K(|x|) + |x|+ 2 log |x|.

Relating K and C

Proposition

K(x) + K(C(x)) + C(x).

Proof
Define machine M: On input ⌧ search for decomposition
⌧ = �⌘ such that S(�) #= k, k = |⌘|. (S is the universal
prefix-free machine.)
If such decomposition is found, M simulates R(⌘). (R is the
universal machine for C.)
M is prefix free.
If ⌘ is a shortest R-description of x and � is a shortest
S-description of |⌘|, then M outputs x.
Hence K(x) + |�|+ |⌘| = K(C(x)) + C(x).

Relating K and C

Corollary

C(x) + K(x) + C(x) + 2 log C(x) + C(x) + 2 log(|x|).

We can also get a first “approximation” to subadditivity.

C(xy) + K(x) + C(y).

Search for decomposition of input into S-program for x and
R-program for y.

Randomness as Incompressibility (II)

Proposition

The sequence Wn = {� : K(�)  |�|- n} is a ML-test.

Proof
The Wn are uniformly r.e. since K is enumerable from
above.
Observation: If V ✓ 2<N is prefix-free, then

P
�2W 2-|�|  1.

Each of the � in Wn has a program ⌧ of length  |�|- n.
These ⌧ form a prefix-free set Vn.
Hence

P
�2Wn

2-|�|  P
⌧2Vn

2-(|⌧|+n)  2-n.

Randomness as Incompressibility (II)

It follows that if X is ML-random, it will pass the test (Wn).

This means that from some level c on (the Wn are nested), X is
not covered by Wn for n > c.

This in turn means that

(8n) [K(X�n) � n- c].

In other words, if X is ML-random, its initial segments are
incompressible with respect to K.

Randomness as Incompressibility (II)

Can we prove a converse of this? If the initial segments of X are
incompressible, does it follow that X is random?

We want to show that if we have a ML-test, we can use it to
compress initial segments that are covered by it.

For this, we will study a new way of devising prefix-free
machines.

This will at the same time give a new characterization of K.

Discrete Semimeasures

Definition
A discrete semimeasure is a function m : 2<N ! [0, 1] such that

X

x22<N

m(x)  1

Think of a semimeasure as an incomplete probability
distribution over 2<N (or equivalently, N).

A semimeasure m is called optimal for a family F of
semimeasures if m 2 F and it multiplicatively dominates all
semimeasures in F, i.e. if

(8f 2 F) (9cf) (8x) [f(x)  cfm(x)].

Discrete Semimeasures

Theorem [Levin]

There exists a semimeasure em that is optimal for the family of
left-computable discrete semimeasures.

One can construct such a semimeasure along the lines of the
previous universality constructions.

But we will actually see that the function

em(x) = 2-K(x)

is an optimal semimeasure. This is known as the Coding
Theorem.

The Coding Theorem

Theorem [Levin]

If em is an optimal left-computable semimeasure, then
- log em =+ K.

Proof
It suffices to show that 2-K is an optimal left-computable
semimeasure.
2-K is left-computable, since K is enumerable from above.
Let m be a left-computable semimeasure. We construct a
prefix-free machine M such that KM(x) + - logm(x).

The Coding Theorem

Proof
Let {(xt, kt) : t = 1, 2, . . . } be an enumeration of the set
{(x, k) : 2-k < m(x)} without repetition.
Then

P
t 2

-kt =
P

x

P
t{2

-kt : xt = x}  P
x 2m(x) < 2.

Cut off adjacent intervals It of length 2-kt-1 from the left
side of [0, 1].
If J⌧K is the largest binary subinterval for some It, let
M(⌧) = xt. Otherwise let M be undefined.
M is obviously prefix-free and partial recursive.
It follows from the enumeration that for all x exists a t

such that xt = x and m(x)/2 < 2-kt .
Hence for every x there exists a ⌧ such that M(⌧) = x and
|⌧|  - logm(x) + 4.

The Kraft-Chaitin Theorem

The Coding Theorem gives us a useful methods to prove
complexity bounds.

Corollary

Suppose we have a computable sequence of “requests” of the
form (ri, xi), meaning that we want to build a prefix-free
machine M such that for all i exists �i with |�i| = ri + c and
M(�i) = xi. Such a machine exists iff the function m(xi) = 2-ri

is a semimeasure.

The proof is analogous to the construction in the previous
proof.

Randomness as Incompressibility (III)

Now let (Wn) be a ML-test that covers X.

Define mn(�) = n2-|�| if � 2 Wn (0 otherwise), and
m =

P
n mn.

m is enumerable from below.

P
�m(�)  P

n/2n < 1.

Deleting finitely many strings from W does not change the
covering properties of the test and turns m into a semimeasure.

Hence for some c, m  c 2-K.

Randomness as Incompressibility (III)
Given n there exists ln such that X�ln2 Wn.

Hence mn(X�ln) = n2-ln , which implies

n =
mn(X�ln)

2-ln
 m(X�ln)

2-ln
 2-K(X�ln)

2-ln
.

This yields

lim sup
n

2-K(X�ln)

2-ln
= 1,

or equivalently

(8n) (9ln) [K(X�ln) < ln - n].

Schnorr’s Theorem

We have proved the second main theorem of algorithmic
randomness, better known as Schnorr’s Theorem.

Theorem
A sequence is ML-random iff there exists a c such that for all n,

K(X�n) � n- c.

The Ample Excess Lemma

For a random sequence, the distance between K(X�n) and n

must in fact go to infinity.

Theorem [Miller and Yu]

X is ML-random iff
P

n 2
n-K(X�n) < 1.

Proof: (()
If X is not ML-random, then there exist infinitely many n such
that K(X�n< n, which implies

X

n

2n-K(X�n) = 1.

The Ample Excess Lemma
Proof: ())

Fix a length m. Let’s count the total ‘gaps’ along strings of
length n:

X

|�|=m

X

nm

2n-K(��n) =
X

|�|=m

X

⌧✓�

2|⌧|-K(⌧) =
X

|⌧|m

2m-|⌧|2|⌧|-K(⌧)

= 2m
X

|⌧|m

2-K(⌧) < 2m

Hence at most 2m-c strings � of length m have
X

nm

2n-K(��n) � 2c.

Therefore, �{Y :
P

nm 2n-K(Y�n) � 2c}  2-c.
And thus, Uc = {Y :

P
n 2

n-K(Y�n) � 2c} has measure at
most 2-c. (Uc) forms a test that covers all Y for whichP

n 2
n-K(Y�n) = 1.

Chaitin’s ⌦

While there is an abundance of random sequences, it is hard to
come up with a distinguished example.

Chaitin defined the real number

⌦ =
X

�2dom(S)

2-|�|.

Theorem [Chaitin]

The binary expansion of ⌦ is a ML-random sequence.

Chaitin’s ⌦
Proof

We build a (plain) machine M.
On input x of length n, wait for t such that
0.x  ⌦t < 0.x+ 2-n, where

⌦t =
X

S(�)# in at most t steps, |�|t

2-|�|,

the approximation to ⌦ at stage t.
If such t is found, output the least string y not in the
range of St
If x = ⌦�n, then such t exists.
By stage t all S-descriptions of length  n have appeared,
otherwise ⌦ > ⌦t + 2-n.
Thus M(x) = y and K(y) > n.
Hence K(⌦�n) �+ K(M(⌦�n)) > n.

Digression: Clustering via Information Distance
Given two strings x, y, let hx, yi be a standard pairing function,
for example hx, yi = 0|x|1xy.

Think of a pairing function as a way to code x, y, and a
way to tell them apart.

Definition
Define the information distance between two strings x, y as

E(x, y) = K(hx, yi)- min{K(x),K(y)}.

E minorizes (up to a constant) all computable, nonnegative,
symmetric functions between strings.

This means if x, y are close with respect to some distance
function D, they will also be close with respect to E.

Digression: Clustering via Information Distance

Since information distance should be measured relative to
length, we define the normalized information distance

NID(x, y) =
K(hx, yi)- min{K(x),K(y)}

max{K(x),K(y)}
.

For practical purposes, replace K by CM with total computable
prefix-free compressor/decompressor (e.g. gzip).

The Coding Theorem lets us replace a prefix-free compressor by
any enumerable semimeasure.

Digression: Clustering via Information Distance

Google probability

Let S be the set of all Google search terms.

Let W be the set of all web pages indexed (⇠ 1010).

Google probability of a search term x:
Let x denote all pages on which x appears.
L(x) = |x|/|W|.

Problem: L is not a semimeasure (events overlap).

Modify counting: N =
P

{x,y}✓S |x ^ y|.

Set g(x, y) = |x ^ y|/N. Then
P

{x,y}✓S g(x, y) = 1, hence we
can derive a prefix-free complexity, the Google complexity G.

Digression: Clustering via Information Distance

Google distance

Set g(x, y) = |x ^ y|/N. Then
P

{x,y}✓S g(x, y) = 1, hence we
can derive a prefix-free complexity, the Google complexity G.

Based on this, define the normalized Google distance

NGD(x, y) =
G(hx, yi)- min{G(x), G(y)}

max{G(x), G(y)}
.

Application: Clustering using “Google semantics”

