QOutline of Lecture 2

Kolmogorov Complexity

e Plain complexity and the invariance theorem.
e Basic properties of C.

e Incompressibility and randomness oscillations.
e Prefix-free complexity K.

e Schnorr’s Theorem.

e The Ample Excess Lemma.
e Chaitin’s Q.



Machine complexity

Let M be a Turing machine. M computes a partial recursive
function 2<% — 2<N.

We define the M-complexity of a string x as
Cm(x) = min{|o|: M(0o) = x}
where min () = co.

The complexity of x depends on the choice of M. Can we
choose M so that it reflects the “true” complexity of x?

A machine R is optimal if for every machine M there exists a
constant epq such that

(Vx) [Cr(x) < Cm(x) + eml.



The Invariance Theorem

Theorem [Kolmogorov|

There exists an optimal machine R.

Proof.

e Let (M.) be an effective enumeration of all Turing
machines.

e On input o, R parses 0 and finds unique e and T such that
o = 0°1t. Then R outputs

R(0°11) = M¢(T),

1.e. R is essentially a universal Turing machine.

e [t 1s now easy to see that for all e,

(Vx) [Cr(x) < Cm(x) +em + 1.



Kolmogorov Complexity

We define the Kolmogorov complexity of a string x as
C(x) = Cr(x)

By the invariance theorem, any other machine complexity will
“undercut” C by at most a constant.

If 0 is an M.-program for x, then 0°lo is an R-program for x.



Basic Properties of C

There exists an e such that for all x, C(x) < |x| + e.

e ¢ 1s the index of a copying machine that just outputs the
input. Obviously, x is an M.-program for x.

For each length n, there exist incompressible strings of length
n, i.e. strings x with C(x) > |x/|.

e There are ZE;& 2% = 2" — 1 programs of length < n.

C cannot be increased by computable transformations.

o If f:2<N — 2<Nis (partial) computable, then there exists a
c such that for all x such that f(x) |, C(f(x)) < C(x) + c.



Algorithmic Properties of C

C 1s not computable.

The set D = {x: C(x) < |x|} is simple — r.e. and the
complement is infinite but does not contain an infinite r.e.
subset.

Assume the complement of D contains an infinite r.e. set.
Then it also contains an infinite computable set
l={z1i<zm<...})

A program for z; is given by the index of the machine
computing Z together with the index 1, which can be
coded by log i bits. Hence C(z;) < log i + c.

For large enough 1 this contradicts that z; is
incompressible.

Simple sets cannot be computable since this would mean
the set and its complement are r.e.

If C were computable, so would be D.



Algorithmic Properties of C

The noncomputability of C limits its use for practical purposes.

Possible remedies:

e Allow only a fixed number of steps for “decompression”.
Formally, let g be a total recursive function with g(n) > n.
Define the time-bounded complexity

C9(x) = min{|o|: R(o) = x in at most g(|x|) steps].

e Replace R by a computable compression/decompression
mechanism (like any general compression algorithm — gzip
etc.).



Algorithmic Properties of C

However, C is right-enumerable or enumerable from above:

e There exists a computable function g: 2N x N — N U {oco}
such that for all x, s, g(s + 1,x) < g(s,x) and

lim g(s,x) = C(x).
S
For instance, we can take

Cs(x) = min{|o|: R(o) = x in at most s steps}

e HEquivalently, the set
{(x,m): C(x) <mj

1s recursively enumerable.



Machine-independent Characterization of C

A function D : 2N — N satisfies the counting condition if
[x: D(x) < k} < 2¥ for each k.

e The counting argument above shows that every machine
complexity Cy, satisfies the counting condition.

Proposition

If D is right-computable and satisfies the counting condition,
then there exists a machine M such that for all x,

Cm(x) = D(x) +c.

o It follows that C is given as a minimal (with respect to
pointwise domination within a constant) right-computable
function satisfying the counting condition.



Randomness as Incompressibility (I)

Conjecture: A sequence X is ML-random iff all of its initial
segments are incompressible, i.e. iff for some constant c,

(vn) [C(XTn) 2 n—cl

Unfortunately, this is not true of any infinite sequence.

Theorem [Martin-Lof]

Let k € N. For any sufficiently long string x there exists an
initial segment y C x such that C(y) < [y| — k.



Randomness as Incompressibility (I)

Proof

e Let z be an initial segment of x.

e Let n = n(z) be the index of z in a standard
length-lexicographical ordering/enumeration of 2<% .

e Let y be the length n extension of z along x, 1.e.
y =z0 C x and |o| =n.

e There i1s a machine that, given o as input, outputs zo.
e Hence C(y) < |o| + ¢, where c is independent of y.

e On the other hand, |y| = |z| + |o], so if we choose z such
that |z| > k + ¢, it follows that C(y) < Jy| — k.



Failure of Subadditivity

The complexity of a concatenation can be higher than the
complexities of its parts.

Given strings x,y, we should be able to combine programs for
them to obtain a program for z = xy.

Hence it should be true that C(xy) < C(x) + C(y) + c.

The problem is that, given a concatenation of descriptions for x
and y, respectively, we cannot tell where the description of x
ends and that of y begins.



Failure of Subadditivity
Corollary

Let k € N. There exists an x such that for some splitting
x = yz we have C(x) > C(y) + C(z) + k.

Proof

e Let ¢ be such that C(x) < [x| + ¢ (c is the index of the
copying machine).

e Pick an incompressible, sufficiently long x, C(x) > |x]|.

e Let | = k+ c and use the preceding theorem to find an
initial segment y C x such that C(y) < [y| — L.

e Then for z such that x = yz, we have

Cly)+Cz)+k<pyl—k—c+lzl +c+k = [x| <C(x).



Randommness Oscillations

One can analyze these phenomena further to get an assessment
on how incompressibility for C can fail along an infinite
sequence.

Theorem [Martin-Lof]

Let f: N — N be a total computable function such that
> 27t — oo, Then, for any sequence X, there exist infinitely
many n such that

CXTnh) <n—f(n).

For example, we can choose f(n) = logn.



A “Better” Version of C?

One of the intended meanings of Kolmogorov complexity is
information theoretic:

If 0 1s a “minimal” program for x, o contains precisely the
information necessary to produce x.

But a string o does not only contain its bits as information, it
contains also its length.

This was used in the previous results.

We should therefore somehow “incorporate” the length of a
program into the definition of complexity.



A “Better” Version of C?

From a different perspective:

The failure of subadditivity is due to the fact that we
cannot, if we concatenate two descriptions, effectively tell
where one ends and the other begins.

Instead of using o, we could use 0°1oT.
0°1¢ is called a self-delimiting description of o.

We will define a version of complexity that allows only
self-delimiting descriptions.



Prefix-free Sets
Definition
A set W C 2= is prefix-free if for any x,y € W,

x Cy 1mplies x=uy.

In other words, no two elements of W are prefixes of one
another.

Order theoretic:

W is an antichain with respect to the partial order C of
strings.

Example: Phone numbers.



Prefix-free Kolmogorov complexity

A machine M i1s prefix-free if its domain is a prefix-free set. A
prefix-free machine S is optimal if for every prefix-free machine
M, Cs < Cm +c.

Proposition

There exists an optimal prefix-free machine S.

Proof:
e Enumerate all Turing machines.

e Whenever we see that some machine M. is not prefix-free,
we stop enumerating its domain. This way we convert it to
a prefix-free machine M,. If M, is already prefix free, it
remains unaltered.

~

o If (M) is an enumeration of all (and only) prefix-free
machines, we define S(0¢10) = M. (0).



Prefix-free Kolmogorov complexity

Definition

The prefix-free complexity of a string x is defined as

K(x) = Cg(x).



Properties of K

Algorithmic properties

K 1s not computable.

K 1s enumerable from above.

Upper bounds are harder than for C

The copying machine is not prefix-free.

We can replace it by the machine M(0®1x) = x.

This yields K(x) <* 2|x|. (<" means “< --- 4 ¢”)
General idea: Code x by x + self-delimiting code for |x]|.

The shortest self-del. code for |x| is given by a program of
length K(|x|).

Hence K(x) <7 [x| + K(|x|]) < |x| + 21og |x].



Relating K and C

Proposition

K(x) <t K(C(x)) + C(x).

Proof

e Define machine M: On input T search for decomposition
T = on such that S(o) |[=k, k =[n|. (S is the universal
prefix-free machine.)

o If such decomposition is found, M simulates R(n1). (R is the
universal machine for C.)

e M is prefix free.

e If n is a shortest R-description of x and o is a shortest
S-description of [n|, then M outputs x.

e Hence K(x) <™ |o| + n| = K(C(x)) + C(x).



Relating K and C

Corollary
C(x) <t K(x) <™ C(x) +2log C(x) <™ C(x) + 2log(|x]).

We can also get a first “approximation” to subadditivity.

C(xy) <" K(x) + C(y).

e Search for decomposition of input into S-program for x and
R-program for y.



Randomness as Incompressibility (II)

Proposition

The sequence W,, = {o: K(o) < |o| — n} is a ML-test.

Proof

e The W, are uniformly r.e. since K is enumerable from
above.

o Observation: If V C 2= is prefix-free, then >~ sEW 2710l < 1.
e Each of the o in W,, has a program T of length < |o| — n.

e These T form a prefix-free set V,,.
e Hence )  w. 2ol < D eV, 2-(tHn) < 2=



Randomness as Incompressibility (II)

It follows that if X is ML-random, it will pass the test (W,,).

This means that from some level ¢ on (the W,, are nested), X is
not covered by W,, for n > c.

This in turn means that

(Vn) [K(XTn) >n —cl.

In other words, if X i1s ML-random, its initial segments are
incompressible with respect to K.



Randomness as Incompressibility (II)

Can we prove a converse of this? If the initial segments of X are
incompressible, does it follow that X is random?

We want to show that if we have a ML-test, we can use it to
compress 1nitial segments that are covered by it.

For this, we will study a new way of devising prefix-free
machines.

e This will at the same time give a new characterization of K.



Discrete Semimeasures

Definition

A discrete semimeasure is a function m : 2<N — 10, 1] such that

) m(x) <1

Think of a semimeasure as an incomplete probability
distribution over 2<" (or equivalently, N).

A semimeasure m is called optimal for a family F of
semimeasures if m € F and it multiplicatively dominates all
semimeasures in J, i.e. if

(Vf e F) (Jer) (Wx) [f(x) < cpmix)].



Discrete Semimeasures

Theorem [Levin|

There exists a semimeasure m that is optimal for the family of
left-computable discrete semimeasures.

One can construct such a semimeasure along the lines of the
previous universality constructions.

But we will actually see that the function
m(x) =2~ K

1s an optimal semimeasure. This 1s known as the Coding
Theorem.



The Coding Theorem

Theorem [Levin)|

If m is an optimal left-computable semimeasure, then
—logm =" K.

Proof

o It suffices to show that 2~ ¥ is an optimal left-computable
semimeasure.

o 2~ ¥ is left-computable, since K is enumerable from above.

e Let m be a left-computable semimeasure. We construct a
prefix-free machine M such that Ky (x) <™ —log m(x).



The Coding Theorem

Proof

Let {(x¢,k¢): t =1,2,...} be an enumeration of the set
{(x,k): 27% < m(x)} without repetition.

Then Y 270 =5 > {27F:x =x} <) 2m(x) < 2.
Cut off adjacent intervals I; of length 27t~ from the left
side of [0, 1].

If [t] is the largest binary subinterval for some I, let
M(T) = x¢. Otherwise let M be undefined.

M 1s obviously prefix-free and partial recursive.

It follows from the enumeration that for all x exists a t
such that x; = x and m(x)/2 < 27,

Hence for every x there exists a T such that M(t) = x and
Tl < —logm(x) + 4.



The Kraft-Chaitin Theorem

The Coding Theorem gives us a useful methods to prove
complexity bounds.

Corollary

Suppose we have a computable sequence of “requests” of the
form (ri,X;), meaning that we want to build a prefix-free
machine M such that for all 1 exists o; with |o;| = r; + ¢ and

M (0;) = x;. Such a machine exists iff the function m(x;) =27
1S a semimeasure.

The proof is analogous to the construction in the previous
proof.



Randomness as Incompressibility (III)

Now let (W, ) be a ML-test that covers X.

Define m,, (o) = n27° if 0 € W,, (0 otherwise), and
m=)  Mmpy.

m 1S enumerable from below.
> ,m(o) <) n/2" < 0.

Deleting finitely many strings from W does not change the
covering properties of the test and turns m into a semimeasure.

Hence for some ¢, m < c2™ ¥,



Randomness as Incompressibility (III)

Given n there exists 1, such that X[ € W,,.

Hence m, (X [1,) = n2 ', which implies

n:mn(x ) - m(X [y, ) <2_K(X““).
2w ST S o

This yields

. 2—K(X,)
lim sup >
n

— OQ,

or equivalently

(vn) (Fn) K(XT,) <lw —nl.



Schnorr’s Theorem

We have proved the second main theorem of algorithmic
randomness, better known as Schnorr’s Theorem.

Theorem

A sequence is ML-random iff there exists a ¢ such that for all n,

K(Xw) >n—c.



The Ample Excess Lemma

For a random sequence, the distance between K(X [,) and n
must in fact go to infinity.

Theorem [Miller and Yu|
X is ML-random iff 52" K(Xn) < o0,

Proof: (&)
If X is not ML-random, then there exist infinitely many n such
that K(X [n< n, which implies

3 KX < o,
n



The Ample Excess Lemma

Proof: (=)
e Fix a length m. Let’s count the total ‘gaps’ along strings of

length n:
y y on—Kfofn) _ y y lt—=K{t) _ Z ym—|t|9ltl—K(T)
[ol=mn=<m [o]l=m tCo [Tl<m
=2m ) 27K <o
[Tl<m

e Hence at most 2™ ¢ strings o of length m have

Z on—K(ofn) > )¢,

n<m

e Therefore, A{Y: Y 2" KVn) > 2¢} < 27c
e And thus, U, ={Y: ) 2n-KOVn) > 2¢1 has measure at

most 2. (U.) forms a test that covers all Y for which



Chaitin’s QO

While there is an abundance of random sequences, it is hard to
come up with a distinguished example.

Chaitin defined the real number

Q= ) 2“’|

ocdom(S

Theorem [Chaitin|

The binary expansion of () is a ML-random sequence.



Chaitin’s Q)
Proof

e We build a (plain) machine M.

e On input x of length n, wait for t such that
0.x < QO <0.x+ 2™, where

S(o)] in at most t steps, |0|<t

the approximation to () at stage t.

e If such t 1s found, output the least string y not in the
range of S;

o If x = Q [, then such t exists.

e By stage t all S-descriptions of length < n have appeared,
otherwise O > QO + 27 ™.

e Thus M(x) =y and K(y) > n.
e Hence K(Q[,) > KM(Q,)) > n.



Digression: Clustering via Information Distance

Given two strings x,y, let (x,y) be a standard pairing function,
for example (x,y) = 0™ 1xy.
e Think of a pairing function as a way to code x,y, and a

way to tell them apart.

Definition

Define the information distance between two strings x,y as

E(x,y) = K((x,y)) — min{K(x), K(y)}.

E minorizes (up to a constant) all computable, nonnegative,
symmetric functions between strings.

e This means if x,y are close with respect to some distance
function D, they will also be close with respect to E.



Digression: Clustering via Information Distance

Since information distance should be measured relative to
length, we define the normalized information distance

K((x,y)) — min{K(x), K(y)}

NID(x,y) = max{K(x), K(y)}

For practical purposes, replace K by Cy; with total computable
prefix-free compressor /decompressor (e.g. gzip).

The Coding Theorem lets us replace a prefix-free compressor by
any enumerable semimeasure.



Digression: Clustering via Information Distance

Google probability
Let S be the set of all Google search terms.

Let W be the set of all web pages indexed (~ 10'°).

Google probability of a search term x:

e Let x denote all pages on which x appears.
e L(x)=[xl/|WI.

Problem: L is not a semimeasure (events overlap).
Modify counting: N = Z{x,y}gs x Ayl

Set g(x,y) = |x /Ay|/N. Then Z{x,y}gs g(x,y) = 1, hence we
can derive a prefix-free complexity, the Google complexity G.



Digression: Clustering via Information Distance

Google distance
Set g(x,y) =[x Ay|/N. Then } ¢ 1-s9(x,y) =1, hence we

can derive a prefix-free complexity, the Google complexity G.

Based on this, define the normalized Google distance

G((x,y)) —min{G(x), G(y)}
max{G(x), G(y)} '

NGD(x,y) =

Application: Clustering using “Google semantics”



