
A Parameterized Halting Problem

Yijia Chen1 and Jörg Flum2

1 Shanghai Jiaotong University, China, yijia.chen@cs.sjtu.edu.cn
2 Albert-Ludwigs-Universität Freiburg, Germany,

joerg.flum@math.uni-freiburg.de

Abstract. The parameterized problem p-Halt takes as input a nonde-
terministic Turing machine M and a natural number n, the size of M

being the parameter. It asks whether every accepting run of M on empty
input tape takes more than n steps. This problem is in the class XPuni,
the class “uniform XP,” if there is an algorithm deciding it, which for
fixed machine M runs in time polynomial in n. It turns out that various
open problems of different areas of theoretical computer science are re-
lated or even equivalent to p-Halt ∈ XPuni. Thus this statement forms a
bridge which allows to derive equivalences between statements of differ-
ent areas (proof theory, complexity theory, descriptive complexity, . . .)
which at first glance seem to be unrelated. As our presentation shows,
various of these equivalences may be obtained by the same method.

1. Introduction

Halting problems played a central role in computability theory right up from the
beginning. In fact, in his seminal paper [33] Turing made precise the notion of
algorithm by introducing the type of machine known as Turing machine and
proved the first undecidability result: the undecidability of the halting problem
for Turing machines:

Instance: A Turing machine M.
Problem: Does M accept the empty input tape?

In complexity theory Cook [13] and Levin [28] showed that the halting problem

NTM-Halt

Instance: A nondeterministic Turing machine M and a
string 1n with n ∈ N.

Problem: Does M accept the empty input tape in ≤ n
steps?

is NP-complete (under polynomial time reductions). Comparing this problem
with other NP-complete problems, Downey and Fellows remark in [16, page
236]:

. . . the point is that a nondeterministic Turing machine is such an opaque
and generic object that it simply does not seem reasonable that we should
be able to decide in polynomial time whether a given Turing machine has
some accepting path. The Cook-Levin theorem therefore gives powerful
evidence that P 6= NP.

Later on Chandra, Kozen, and Stockmeyer [7] introduced the notion of alter-
nating Turing machine and showed that all levels of the Polynomial Hierarchy
have natural complete problems that are halting problems for alternating Turing
machines.

Also in parameterized complexity most complexity classes of parameterized
intractable problems considered so far contain a more or less natural complete
halting problem (complete under fpt-reductions). Depending on the class the
machines are deterministic, nondeterministic, or alternating and they are single
or multitape machines. The reader will find the completeness results, for exam-
ple, in the textbook [20] on parameterized complexity. In this introduction we
mention some of these results, however, otherwise not used in this paper.

The classes W[1], W[2], and W[P] are (among) the most important classes
of parameterized intractable problems. In particular, for each of them there
is a halting problem for nondeterministic Turing machines complete for it. In
fact, the short halting problem for nondeterministic single-tape Turing machines
p-Short-NSTM-Halt, the short halting problem for nondeterministic (multi-
tape) Turing machines p-Short-NTM-Halt, and the bounded halting problem
for nondeterministic Turing machines p-Bounded-NTM-Halt are complete
for W[1], W[2], and W[P], respectively, where:

p-Short-NSTM-Halt

Instance: A nondeterministic single tape Turing machineM
and k ∈ N.

Parameter: k.
Problem: DoesM accept the empty input tape in≤ k steps?

p-Short-NTM-Halt

Instance: A nondeterministic multitape Turing machine M

and k ∈ N.
Parameter: k.

Problem: DoesM accept the empty input tape in≤ k steps?

p-Bounded-NTM-Halt

Instance: A nondeterministic Turing machine M, k ∈ N,
and 1n with n ∈ N.

Parameter: k.
Problem: DoesM accepts the empty input tape in≤ n steps

and using at most k nondeterministic steps?

2

These completeness results for W[1], W[2], and W[P] are due to Cai et al. [4],
Cesati et al. [6], and Cesati [5], respectively. Concerning the W[1]-completeness
of p-Short-NSTM-Halt, Downey and Fellows write in [16, page 236]:

It seems to us that if one accepts the philosophical argument that TUR-

ING MACHINE ACCEPTANCE [that is, NTM-Halt] is intractable,
then the same reasoning would suggest that SHORT TURING MA-

CHINE ACCEPTANCE [that is, p-Short-NSTM-Halt] is fixed pa-
rameter intractable.

In the problem p-Bounded-NTM-Halt the parameter bounds the number of
nondeterministic steps that are allowed in a run of length n, so small parameter
means limited nondeterminism. However in the first two parameterized halting
problems the parameter is the total number of steps considered in the given
instance. Having in mind the original investigations which led to the introduction
of the halting problem for (deterministic) Turing machines one hardly would
argue that the parameter is small compared with the total size of an instance.
In this context it is more natural to expect that the size of the Turing machine
is small compared with the number of steps considered in a run of the machine
on empty input tape.

If in p-Short-NSTM-Halt we replace the nondeterministic machines by
alternating ones with the appropriate number of alternations we obtain com-
plete parameterized halting problems for the different levels of the so-called A-
hierarchy [19]. Finally, in this short report on known results concerning halting
problems in parameterized complexity, let us mention at least one parameterized
class with a halting problem for deterministic machines as complete problem.
The problem

p-Exp-DTM-Halt

Instance: A Turing machine M, k ∈ N and 1n with n ∈ N.
Parameter: k.

Problem: Does M accept the empty input tape in at most
nk steps?

is complete for the class XP.

We already mentioned that in halting problems the size of the machine is a
reasonable parameter (reasonable in the sense of parameterized complexity). In
this paper we consider the parameterized halting problem:

p-Halt

Instance: A nondeterministic Turing machine M and 1n

with n ∈ N.
Parameter: |M|, the size of M.

Problem: Does every accepting run of M on empty input
tape take more than n steps?

3

We introduced this parameterization of the halting problem in [9]; indepen-
dently, it was introduced by Aumann and Domb [1]. Later on the complexity
of this problem has also been studied by Monroe [30]. Note that the classical
problem Halt underlying p-Halt essentially is the complement of the problem
NTM-Halt considered above. In fact, 〈M, 1n〉 ∈ p-Halt means that there is
no accepting run of M on empty input tape at all or if there is one, then all such
runs take more than n steps.

We have seen above that (apparently) it makes a difference whether we con-
sider single tape or multitape machines. Moreover, if we restrict the inputs of
p-Short-NSTM-Halt to nondeterministic Turing machines with the cardinal-
ity of its alphabet bounded by some constant, then the problem becomes fixed-
parameter tractable. As in p-Halt the size of the machine is the parameter,
its complexity is robust against such changes (fixed alphabet versus arbitrary
alphabet, single tape versus multitape, binary branching versus finite branching,
. . .); in fact, one easily verifies that any two such variants are fpt-equivalent.

It is easily seen that Halt (the classical problem underlying p-Halt) is
coNP-complete. The algorithm that for every instance 〈M, 1n〉 of p-Halt sys-
tematically checks all possible runs of length ≤ n of M on empty input tape
takes |M|n steps approximately. The “small” parameter |M| is the base of the
term |M|n and the “big” n its exponent. The question arises whether we can
reverse the roles of |M| and n, more precisely, whether there is an algorithm
solving 〈M, 1n〉 ∈ p-Halt in time nf(|M|) for some function f : N → N, that is,
whether

p-Halt ∈ XPuni.

This problem is widely open. We conjecture that p-Halt /∈ XPuni; in fact,
encouraged by the remarks of Downey and Fellows mentioned above, we are
tempted to add:

The point is that a nondeterministic Turing machine is such an opaque
and generic object that it simply does not seem reasonable that we should
be able to decide whether every accepting run on empty input tape of a
given nondeterministic Turing machine M takes more than n steps in
time nf(|M|) for some function f .

In this paper first we report on what is known about the complexity of p-Halt

(Section 3). Then we will see that the statement p-Halt ∈ XPuni is equivalent to
other prominent open problems from different areas of theoretical computer sci-
ence. More precisely, in Section 4 we show that it is equivalent to the existence of
polynomially optimal proof systems. In Section 5 we show that p-Halt ∈ XPuni

implies the existence of complete problems, first for the classical complexity
class UP and then for the class of polynomial time equivalence relations under
so-called equivalence reductions. We get a logic capturing the complexity class
P (= PTIME) under the assumption p-Halt ∈ XPuni in Section 6. Even though
we originally obtained these results using distinct arguments, in the meantime
we realized that they can be obtained all by the same method: first we translate

4

the consequences of p-Halt ∈ XPuni mentioned so far into statements on list-
ings (that is, on effective enumerations) and then, based on p-Halt ∈ XPuni, we
apply a technique we call the invariantization of listings ; this technique plays
a central role in the present exposition. One could formulate the principle un-
derlying this technique in an abstract way, and obtain our results as instances
of a general theorem. however, we do not do so. Nevertheless, in Section 7 we
introduce the notion of slicewise downward monotone parameterized problem
and take a closer look on its role in the preceding results. In Section 8 we relate
the assumption p-Halt ∈ XPuni to the complexity of deciding whether a hard
valid first-order sentence has a proof of a given length. Finally, in Section 9 we
show that p-Halt /∈ XPuni is equivalent to the existence of hard sequences for
algorithms deciding Taut.

2. Some preliminaries

In this section we fix some notations and recall some basic definitions.

We let N[X] be the set of polynomials with natural numbers as coefficients.
We denote the alphabet {0, 1} by Σ and the length of a string x ∈ Σ∗ by
|x|. Let 1n be the string consisting of n many 1s and let λ denote the empty
string. We identify problems with subsets Q of Σ∗. We already remarked that
the restriction to the alphabet Σ does not affect the complexity of the problem
p-Halt. Sometimes statements containing a formulation like “there is a d ∈ N

such that for all x ∈ Σ∗: . . . ≤ |x|d” can be wrong for x ∈ Σ∗ with |x| ≤ 1. We
trust the reader’s common sense to interpret such statements reasonably.

A problem Q ⊆ Σ∗ has padding if there is a function pad : Σ∗ × Σ∗ → Σ∗

computable in logarithmic space having the following properties:

(i) For any x, y ∈ Σ∗, |pad(x, y)| > |x|+ |y| and
(

pad(x, y) ∈ Q ⇐⇒ x ∈ Q
)

.
(ii) There is a logspace algorithm which, given pad(x, y) recovers y.

By 〈. . .〉 we denote some standard logspace and linear time computable tupling
function with logspace and linear time computable inverses.

If A is a (deterministic or nondeterministic) algorithm and A accepts x ∈ Σ∗,
then we denote by tA(x) the number of steps of a shortest accepting run of A
on x; if A does not accept x, then tA(x) :=∞. By convention,∞ > n for n ∈ N.
So we can state p-Halt in a more succinct way:

p-Halt

Instance: A nondeterministic Turing machine M and 1n

with n ∈ N.
Parameter: |M|.

Problem: Is tM(λ) > n?

By default, algorithms are deterministic. If an algorithm A on input x eventually
halts and outputs a value, we denote it by A(x). We use deterministic and
nondeterministic Turing machines withΣ as alphabet as our basic computational

5

model for algorithms (and we often use the notions “algorithm” and “Turing
machine” synonymously). If necessary, we will not distinguish between a Turing
machine and its code, a string in Σ∗. If M is a deterministic or nondeterministic
Turing machine, then L(M) is the language accepted by M. We use Turing
machines as acceptors and transducers. Even though we use formulations like
“let M1,M2, . . . be an enumeration of all polynomial time Turing machines,”
from the context it will be clear that we only refer to acceptors (or that we
only refer to transducers). We assume that a run of a nondeterministic Turing
machine is determined by the sequence of its states.

A polynomial time deterministic or nondeterministic Turing machine M is
clocked if (the code of) M contains a natural number time(M) such that ntime(M)

is a bound for the running time ofM on inputs of length n. Of course, the function
M 7→ time(M) should be computable in logspace.

2.1. Parameterized complexity. Formally, we view parameterized problems
as pairs (Q, κ) consisting of a classical problem Q ⊆ Σ∗ and a parameterization
κ : Σ∗ → N, which is required to be polynomial time computable. However,
we will present parameterized problems in the form we did it for p-Halt and
further parameterized problems in the Introduction.

We mainly consider the classes FPTuni and XPuni of uniform parameterized
complexity and sometimes the classes FPT and XP of strongly uniform parame-
terized complexity. A parameterized problem (Q, κ) is in the class FPTuni (or is
uniformly fixed-parameter tractable) if x ∈ Q is solvable by an algorithm running
in time ≤ f(κ(x)) · |x|O(1) for some f : N → N. The problem (Q, κ) is in the
class XPuni if x ∈ Q is solvable by an algorithm running in time ≤ |x|f(κ(x)) for
some f : N→ N.

If in the definition of FPTuni and XPuni we require the function f to be
computable, then we get the corresponding classes FPT and XP.

The following inclusions hold between the four complexity classes of param-
eterized problems just introduced:

FPTuni

⊂ ⊂

FPT XPuni

⊂ ⊂

XP

(1)

While the corresponding ⊆-inclusions are trivial, the strict inclusions FPT ⊂
FPTuni and XP ⊂ XPuni are due to Downey and Fellows [15] and to Downey [17].
The strict inclusions FPT ⊂ XP and FPTuni ⊂ XPuni are easily obtained by
showing that p-Exp-DTM-Halt ∈ XP \ FPTuni (cf. [20, Corollary 2.26]).

3. The complexity of p-Halt

In this section we report what we know on the complexity of p-Halt. We start
with a simple observation. The problem Halt is in coNE even if the natural
number n is given in binary. From that one easily obtains:

6

Theorem 1 ([9]). If E = NE (and hence if P = NP), then p-Halt ∈ FPT.

(Assuming E 6= NE), by (1) the most ambitious task is to show that p-Halt /∈
XPuni and p-Halt /∈ FPT should be the easiest one. We know:

Theorem 2 ([8]). If NP[tc] 6= P[tc], then p-Halt /∈ FPT.

Here NP[tc] 6= P[tc] means that DTIME(hO(1)) 6= NTIME(hO(1)) for all time
constructible and increasing functions h : N → N. If NP[tc] 6= P[tc], then
P 6= NP, even E 6= NE, as seen by taking as h the identity function and the
function 2n, respectively. On the other hand, it is not hard to see (cf. [8]) that
the assumption “NP contains a P-bi-immune problem” and hence the so-called
Measure Hypothesis imply NP[tc] 6= P[tc].

The following idea underlies a proof of Theorem 2. Assume that p-Halt ∈
FPT. Then, we have a deterministic algorithm deciding p-Halt, the parameter-
ized halting problem for nondeterministic Turing machines. This yields a way
(different from brute force) to translate nondeterministic algorithms into deter-
ministic ones; a careful analysis of this translation shows that NTIME(hO(1)) ⊆
DTIME(hO(1)) for a suitable time constructible and increasing function h. For
a detailed proof we refer the reader to [8].

One can refine the previous argument to get p-Halt /∈ XP; however one needs
a complexity-theoretic assumption (apparently) stronger than NP[tc] 6= P[tc],
namely the assumption NP[tc] 6⊆ P[tclog tc]; it claims that NTIME(hO(1)) 6⊆
DTIME(hO(log h)) for every time constructible and increasing function h : N →
N. That is:

Theorem 3. If NP[tc] 6⊆ P[tclog tc], then p-Halt /∈ XP.

The assumption “NP contains an E-bi-immune problem” implies the statement
NP[tc] 6⊆ P[tclog tc].

As mentioned, we do not know whether p-Halt ∈ XPuni or whether even
p-Halt ∈ FPTuni. However, from the point of view of nonuniform parameter-
ized complexity the problem p-Halt is fixed-parameter tractable. Recall that a
parameterized problem (Q, κ) is in the class FPTnu (or is nonuniformly fixed-
parameter tractable) if there is a constant c ∈ N, an arbitrary function f : N→ N,
and for every k ∈ N an algorithm solving the (classical) problem

(Q, κ)k :=
{

x ∈ Q
∣

∣ κ(x) = k
}

in time f(k) · |x|c. The problem (Q, κ)k is called the kth slice of (Q, κ).

Proposition 4. The problem p-Halt is in the class FPTnu.

Proof. Fix k ∈ N; then there are only finitely many nondeterministic Turing
machines M with |M| = k, say, M1, . . . ,Ms. Hence the algorithm Ak that on any
instance 〈M, 1n〉 of p-Halt with |M| = k determines the i with M = Mi, and
then accepts if and only if tMi

(λ) > n, decides the kth slice of p-Halt. It has
running time O(|M| + n); thus it witnesses that p-Halt ∈ FPTnu. �

7

The following lemma shows that p-Halt ∈ XPuni if there is an algorithm
that accepts p-Halt and that runs in the time required by XPuni for instances
〈M, 1n〉, where M is a nondeterministic Turing machine which does not halt on
the empty input tape.

Lemma 5. If there is an algorithm A accepting p-Halt such that for all in-
stances 〈M, 1n〉 with tM(λ) = ∞ we have tA(〈M, 1n〉) = nf(|M|) for some func-
tion f , then p-Halt ∈ XPuni.

Proof. Let A be as in the statement of the lemma. Let B be an algorithm that
on input M computes tM(λ) by systematically checking for r = 0, 1, . . . whether
there is a run of length r accepting λ. Note that B does not stop on inputs M

with tM(λ) =∞.
Now we consider the algorithm A∗ that on input 〈M, 1n〉 in parallel simulates

A on input 〈M, 1n〉 and B on input M. If A accepts, then A
∗ accepts. If B outputs

tM(λ), then A∗ checks whether tM(λ) > n and answers accordingly.
Clearly, A∗ decides p-Halt. We still have to show that it runs in time poly-

nomial in n for fixed nondeterministic Turing machine M. By our assumption
on A, this is clear if tM(λ) = ∞; if tM(λ) < ∞, then eventually B will halt on
input M and output tM(λ). As the check tM(λ) > n can be done in linear time,
in this case the running time of A∗ can be bounded by O(n) (where the constant
hidden in the Oh-notation depends on M). �

Using the previous argument we show that the answer to the question “p-Halt

∈ XPuni?” would be the same if we only would require for an instance 〈M, 1n〉
of p-Halt that we get the correct answer if tM(λ) is not near to n. Let us give
a precise version of what we mean. Let ρ : N→ N be a nondecreasing and poly-
nomial time computable function when inputs and outputs are given in unary
notation. We say that the approximation problem p-App-Halt is in XPuni if
there is a function f : N → N and an algorithm A that on every tuple 〈M, n〉,
where M is a nondeterministic Turing machine and n ∈ N, runs in time nf(|M|)

and has the properties:

(i) if tM(λ) =∞, then A accepts;

(ii) if tM(λ) <∞ and n ≤ tM(λ)
ρ(tM(λ)) , then A accepts;

(iii) if tM(λ) <∞ and tM(λ) · ρ(tM(λ)) ≤ n, then A rejects.

Thus, if tM(λ) <∞, then the answer of A can be arbitrary for n with

tM(λ)

ρ(tM(λ))
< n < tM(λ) · ρ(tM(λ)).

Then:

Proposition 6. p-Halt ∈ XPuni if and only if p-App-Halt ∈ XPuni.

Proof. Clearly, every algorithm witnessing that p-Halt ∈ XPuni shows that
p-App-Halt ∈ XPuni. Conversely, let A witness that p-App-Halt ∈ XPuni

8

and let 〈M, 1n〉 be an instance of p-Halt. We simulate A on
〈

M, 1n·ρ(n)
〉

. If A
accepts, then, by (iii),

tM(λ) > n.

and hence, 〈M, 1n〉 ∈ p-Halt. Otherwise, we know that tM(λ) < ∞, and we
compute tM(λ) by brute force and check whether tM(λ) > n or not. �

4. Polynomially optimal propositional proof systems and p-Halt

By Taut we denote the set of formulas of propositional logic that are tautologies.
A propositional proof system in the sense of [14] is a polynomial time computable
surjective function p : Σ∗ → Taut. If p(w) = α, we say that w is a p-proof of α.

Let p and p′ be propositional proof systems. A simulation from p′ to p is a
polynomial time computable function f : Σ∗ → Σ∗ such that p(f(w′)) = p′(w′)
for all w′ ∈ Σ∗. A propositional proof system p is polynomially optimal if for
every propositional proof system p′ there is a simulation from p′ to p.

The quest for a polynomially optimal propositional proof system is an im-
portant open problem of proof theory. In [27] Kraj́ıc̆ek and Pudlák conjectured
that there is no polynomially optimal propositional proof system. It turns out
that this conjecture is equivalent to p-Halt /∈ XPuni:

Theorem 7 ([10]). There is a polynomially optimal propositional proof system
if and only if p-Halt ∈ XPuni.

In the proof of the implication from right to left, we will use the following simple
result. By definition a listing is an effective enumeration. We denote by PF(Σ∗)
and PF(Taut) the set of all polynomial time computable functions from Σ∗ to
Σ∗ and the set of all polynomial time computable functions from Σ∗ to Taut,
respectively.

Proposition 8. The following are equivalent:
(a) There is a polynomially optimal propositional proof system.
(b) There is a listing of PF(Taut) by means of polynomial time Turing ma-

chines. By this we mean that there is a listing M1,M2, . . . of polynomial time
Turing machines computing functions h1, h2, . . . from Σ∗ to Taut such that
PF(Taut) = {hi | i ≥ 1}.

Proof. (b) ⇒ (a): Let M1,M2, . . . and h1, h2, . . . be as in (b). By repeating
machinesMi if necessary, we may assume that the function i 7→Mi is polynomial
time computable. We fix a tautology α0 and show that then the function p :
Σ∗ → Taut is a polynomially optimal propositional proof system where

p(x) :=

{

hi(w), if x = 〈i, w, c〉 and c is the computation of Mi on input w

α0, otherwise.

Then p is a propositional proof system: Our assumption on the function i 7→Mi

and the presence of the computation c in the first case of the definition of p

9

guarantee its polynomial time computability. Moreover, every α ∈ Taut is in
the range of p, as one of the his will be the constant function with value α.
Furthermore, p is polynomially optimal: If p′ is a further propositional proof
system, then there is an i ≥ 1 such that p′ = hi. Therefore, w 7→ 〈i, w, c〉, where
c is the computation of Mi on input w, is a simulation from p′ to p.

(a)⇒ (b): Let p be a polynomially optimal propositional proof system computed
by the polynomial time Turing machine M and let M1,M2, . . . be a listing of
PF(Σ∗) by means of polynomial time Turing machines. If hi denotes the function
computed by Mi, it is easy to verify that PF(Taut) = {p◦hi | i ≥ 1}

(

here p◦hi

is the function x 7→ p(hi(x))
)

. Then M ◦M1,M ◦M2, . . . is the required listing,
where M ◦ Mi denotes a natural polynomial time Turing machine computing
p ◦ hi. �

We first turn to a proof of the implication from right to left of Theorem 7.
Thereby we use a technique, the invariantization of listings, that we shall use
again and again in this paper; therefore, we give a detailed exposition here.

Lemma 9. If p-Halt ∈ XPuni, then there is a polynomially optimal proposi-
tional proof system.

Proof. By the previous result it suffices to show that there exists a listing of
PF(Taut) by means of polynomial time Turing machines. However, it is unde-
cidable whether a Turing machine computes a function from Σ∗ to Taut. So we
start with a listing of PF(Σ∗) by clocked polynomial time Turing machines, say

M1,M2, . . . (2)

We denote by hi the function computed by Mi. Thus, PF(Σ
∗) = {hi | i ≥ 1}.

Using the hypothesis p-Halt ∈ XPuni we invariantize this listing in order to get
a listing of PF(Taut). For this purpose, for h : Σ∗ → Σ∗ and n ≥ 1 we say that
h is n-tautological if

h(w) ∈ Taut for all w with |w| ≤ n

and define htaut : Σ∗ → Σ∗ by

htaut(w) :=

{

h(w), if h is |w|-tautological

α0, otherwise.

Then

(i) htaut : Σ∗ → Taut;

(ii) htaut = h if h : Σ∗ → Taut;

(iii) if h is not n-tautological, then htaut(w) = α0 for all |w| ≥ n;

(iv) if h is polynomial time computable, then so is htaut.

10

Note that (iv) is an immediate consequence of (ii) and (iii). Hence,

htaut
1 , htaut

2 , . . . (3)

is an enumeration of the elements of PF(Taut). In fact, by (iv) all htaut
i are poly-

nomial time computable, by (i) their range is contained in Taut, and by (ii) the
enumeration contains all elements of PF(Taut). But instead of the enumeration
(3) of PF(Taut) we aim at a listing of PF(Taut) by means of polynomial time
Turing machines. We show that there is an effective procedure assigning to ev-
ery clocked polynomial time Turing machine M computing some h ∈ PF(Σ∗) a
polynomial time Turing machine Mtaut computing htaut. Then Mtaut

1 ,Mtaut
2 , . . .

is the desired listing of PF(Taut). For this purpose we need:

Claim: Assume that p-Halt ∈ XPuni, then there is an algorithm B that on
input 〈M, 1n〉, where M is a clocked polynomial time Turing machine computing
a function h : Σ∗ → Σ∗, and n ∈ N decides whether h is an n-tautological in
time ng(|M|) for some g : N→ N.

With this Claim it is straightforward to present the program of a polynomial
time Turing machine Mtaut computing htaut, where M and h are as in the Claim.
In fact, let Mtaut be the Turing machine that on input w ∈ Σ∗

using the algorithm B of the Claim checks whether h is |w|-tautological; if
so, it computes and outputs M(w) by simulatingM; otherwise, it outputs
α0.

So it only remains to show the Claim.

Proof of the Claim: Let M be a clocked polynomial time Turing machine com-
puting a function h : Σ∗ → Σ∗. We show that we can decide whether h is
n-tautological in the desired time by a reduction to the problem p-Halt. For
this we assign to M a polynomial time nondeterministic Turing machine M+

such that (as a first approximation) we have

h : Σ∗ → Taut ⇐⇒ M
+ does not accept λ. (4)

To achieve this we take asM+ the machine that first guesses a string w, computes
M(w) by simulating M, and then checks if M(w) is a propositional formula; if
not, it accepts, otherwise it guesses an assignment for M(w) and accepts if it
does not satisfy M(w); otherwise it rejects. As M runs in ≤ |w|time(M) steps on
input w, by standard means we can arrange M

+ in such a way that for some
polynomial q ∈ N[X] the machine M+ runs exactly q(n) steps if in its first phase
it guesses a string w of length n. As q(n) < q(n + 1), we get

(

the fine-tuned

version of (4)
)

M is n-tautological (more precisely, h is n-tautological)

⇐⇒
〈

M
+, 1q(n)

〉

∈ p-Halt

11

(

note that we need the assumption that M is clocked to get M+ and the bound

q(n) in the desired effective way
)

. As we assume that p-Halt ∈ XPuni, we know

that whether (M+, 1q(n)) ∈ p-Halt may be checked in time q(n)f(|M
+|) for some

function f : N → N. As q(n)f(|M
+|) = ng(|M|) for suitable g : N → N, we are

done. �

If Q ⊆ Σ∗, we write List(Q) if there is a listing of all subsets in P of Q
by means of polynomial time Turing machines. We use this listing property to
prove the implication from left to right of Theorem 7. It is known that:

Theorem 10 ([32]). There is a polynomially optimal propositional proof sys-
tem if and only if List(Taut).

In a first step we will show:

Lemma 11. If List(Halt), then p-Halt ∈ XPuni.

Proof. Let L be a listing of the subsets in P of Halt by polynomial time Turing
machines. As for every 〈M, 1n〉 ∈ p-Halt, the set

{

〈M, 1n〉
}

is a subset in P of
Halt, the following algorithm A accepts p-Halt:

A // a nondeterministic Turing machine M and 1n with n ∈ N

1. ℓ← 1
2. compute the ℓth machine listed by L

3. simulate it on input 〈M, 1n〉
4. if it accepts then accept
5. ℓ← ℓ+ 1
6. goto 2.

We want to show that A runs in time polynomial in n for fixed M with tM(λ) =
∞. Then our claim follows from Lemma 5.

If M does not halt on λ, then
{

〈M, 1n〉
∣

∣ n ∈ N
}

is a subset in P of Halt.
Hence, there is a machine listed by L, say the ℓ0th one, that decides this set.
Then Lines 2–4 (for ℓ = ℓ0) show that the running time of A is polynomially
bounded in n. �

Proof of Theorem 7: It remains to show the implication from left to right (the
other one has already been proved by Lemma 9). As the problem Halt, the
problem Taut is coNP-complete and both problems have padding; hence, they
are polynomially isomorphic. Thus,

List(Taut) ⇐⇒ List(Halt). (5)

If there is a polynomially optimal propositional proof system, then List(Taut)
by Theorem 10. Thus, List(Halt) by (5), hence p-Halt ∈ XPuni by the previ-
ous result. �

12

Corollary 12. List(Halt) ⇐⇒ p-Halt ∈ XPuni.

Proof. Immediate by (5), Theorem 10, and Theorem 7. �

Later we will use the following simple observation.

Lemma 13. If List(Halt), then List(Q) for every Q ∈ coNP.

Proof. More generally, we show:

Assume Q′ has padding and List(Q′). If Q ≤pol Q
′, then List(Q).

Here,Q ≤pol Q
′ means thatQ is polynomial time reducible toQ′. By the padding

property we may assume that the polynomial time reduction x 7→ x′ from Q to
Q′ is one-to-one and has a polynomial time computable inverse. Then, for every
X ′ ⊆ Q′ in P, the set X := {x | x′ ∈ X ′} is a subset in P of Q and every subset
in P of Q is obtained in this way. Thus from a listing of the subsets in P of Q′,
we get a listing of the subsets in P of Q. �

5. Complete problems and p-Halt

In this section for some “semantically defined” complexity classes of classical
problems we will see that to show that they contain no complete problem is at
least as hard as it is to show that p-Halt 6∈ XPuni. We first deal with complete
problems for the class of polynomial time decidable equivalence relations under
so-called equivalence reductions (Section 5.1) and then with complete problems
for the class UP under polynomial time reductions (Section 5.2).

5.1. Complete P-equivalence relations. Problems concerning the algorith-
mic properties of equivalence relations arise throughout mathematics and theo-
retical computer science. Examples are to decide whether two finite graphs are
isomorphic or to decide whether two lists of numbers are equivalent in the sense
that they represent the same set.

If E and E′ are equivalence relations on Σ∗, a polynomial time reduction
from E to E′ (in the usual sense of complexity theory) is a polynomial time
computable function f such that

(x, y) ∈ E ⇐⇒ f(x, y) ∈ E′

for all x, y ∈ Σ∗. Often, in the context of equivalence relations the notion of
equivalence reducibility is more natural than that of polynomial time reducibility.
We say that E is equivalence reducible to E′ and write E ≤eq E′ if there is a
polynomial time computable function f : Σ∗ → Σ∗ such that

(x, y) ∈ E ⇐⇒
(

f(x), f(y)
)

∈ E′

for all x, y ∈ Σ∗, that is, writing xEy for (x, y) ∈ E and similarly for E′,

xEy ⇐⇒ f(x)E′f(y).

13

For example, compare the meaning of both notions of reductions if E is the rela-
tion of isomorphism between finite groups and E′ that of isomorphism between
finite graphs.

In [21] Fortnow and Grochow asked whether the class P(eq) of all polyno-
mial time equivalence relations contain a complete problem under equivalence
reductions, that is, whether there is an equivalence relation E0 ∈ P(eq) such
that E ≤eq E0 for all E ∈ P(eq). We show:

Theorem 14. If p-Halt ∈ XPuni, then P(eq) contains a complete problem
under equivalence reductions.

To obtain this result we again want to use the technique of invariantization of
listings. Hence, the first step yielding a proof of this theorem is a reformulation
of its conclusion in terms of a listing. The bridge to listings is provided by the
following result. The reader will find a proof in [3].

Proposition 15. The following are equivalent:
(a) P(eq) contains a complete problem under equivalence reductions.
(b) There is a listing of equivalence relations ≤eq-cofinal in P(eq); more pre-

cisely, there is a listing E1, E2, . . . of elements of P(eq) by means of clocked
polynomial time Turing machines such that for every E ∈ P(eq) there is an
i ≥ 1 such that E ≤eq Ei.

In contrast to Proposition 8, here a listing in terms of clocked machines is re-
quired; in the following proof of Theorem 14 an additional argument is needed to
get such machines; otherwise the proof runs along the lines of that of Lemma 9.
We say that a Turing machine M is a Turing machine for tuples if M first checks
whether a given input is a tuple (that is, has the form 〈x, y〉 with x, y ∈ Σ∗) and
immediately rejects in the negative case.

Proof of Theorem 14: As it is undecidable whether a Turing machine for tuples
accepts an equivalence relation we start with a listing

M1,M2, . . . (6)

of all clocked polynomial time Turing machines for tuples. Hence, in general,
the set L(Mi) of tuples accepted by Mi, will not be an equivalence relation. We
invariantize this listing. If T is a set of tuples and n ∈ N, we say that T is an
n-equivalence relation if the set of tuples of strings of length at most n, that is,
if the set

{

〈x, y〉 ∈ T
∣

∣ x, y ∈ Σ≤n
}

is an equivalence relation on Σ≤n. Furthermore, we set

T eq :=
{

〈x, y〉 ∈ T | T is a max{|x|, |y|}-equivalence relation
}

∪
{

〈x, x〉 | x ∈ Σ∗
}

.

Then

14

(i) T eq is an equivalence relation on Σ∗;
(ii) T eq = T if T is an equivalence relation;
(iii) if T is not an n-equivalence relation, then T eq has only finitely many equiv-

alence classes with more than one element;
(iv) if T ∈ P, then T eq ∈ P.

Recall the listing (6) of all clocked polynomial time Turing machines for tuples.
By (i)–(iv)

L(M1)
eq, L(M2)

eq, . . .

is an enumeration of P(eq). But we aim at a listing of (a ≤eq-cofinal subset
of) P(eq) by means of clocked polynomial time Turing machines. We show that
there is an effective procedure assigning to every clocked polynomial time Turing
machine M for tuples a clocked polynomial time Turing machine Meq such that

L(M)eq ≤eq L(Meq).

Then M
eq
1 ,Meq

2 , . . . is the desired listing. We will show:

Claim: Assume that p-Halt ∈ XPuni, then there is an algorithm B that on input
〈M, 1n〉, where M is a clocked polynomial time Turing machine for tuples and
n ∈ N, decides whether L(M) is an n-equivalence relation in time ng(|M|) for
some g : N→ N.

Then it is straightforward to present the program of a clocked polynomial
time Turing machine Meq (where M is as in the Claim) with

L(Meq) :=
{

〈x, x〉 | x ∈ Σ∗
}

∪
{

〈〈x, 1s〉 , 〈y, 1s〉〉
∣

∣ 〈x, y〉 ∈ L(M), s ∈ N,

B accepts
〈

M, 1|x|
〉

in ≤ s steps and
〈

M, 1|y|
〉

in ≤ s steps
}

.

For s ≥ g(|M|), then the function x 7→
〈

x, 1|x|
s〉

is an equivalence reduction from
L(M)eq to L(Meq). So it only remains to show the Claim.

Proof of the Claim: The proof parallels that of the claim in the proof of Lemma 9
in Section 4. Let M be a clocked polynomial time machine for tuples. We assign
to M a polynomial time nondeterministic Turing machine M+ such that (as a
first approximation) we have

L(M) is an equivalence relation ⇐⇒ M
+ does not accept λ. (7)

For this we take as M+ a machine that on empty input first guesses a string
of the form 〈r, x〉, 〈s, x, y〉, or 〈t, x, y, z〉. Here r (“reflexivity”), s (“symmetry”),
and t (“transitivity”) are, say, the strings 00, 01, 10, respectively. If the string
has the form 〈r, x〉, then M+ simulates M on input 〈x, x〉 and accepts if and only
if M rejects; similarly, for strings 〈s, x, y〉 the machine M+ simulates M on input
〈x, y〉 and on input 〈y, x〉 and accepts if and only if M accepts 〈x, y〉 and rejects
〈y, x〉; it should be clear how M+ behaves on strings of the form 〈t, x, y, z〉.

As M runs in ≤ |w|time(M) steps on input w, by standard means we can
arrange M+ in such a way that for some polynomial q ∈ N[X] the machine M+

15

runs exactly q(n) steps if in its first phase it guesses a string w of length n. As
q(n) < q(n+ 1), we get (the fine-tuned version of (7))

L(M) is an n-equivalence relation ⇐⇒
〈

M
+, 1q(n)

〉

∈ p-Halt.

As we assume that p-Halt ∈ XPuni, we know that
〈

M+, 1q(n)
〉

∈ p-Halt may

be checked in time q(n)f(|M
+|) for some function f : N → N. As q(n)f(|M

+|) =
ng(|M|)) for suitable g : N→ N, we are done. �

5.2. UP-complete problems. Recall that a nondeterministic Turing machine
M is unambiguous if for every x ∈ Σ∗ there is at most one accepting run of M
on input x. UP is the class of problems accepted by an UP-machine, that is, by
an unambiguous polynomial time nondeterministic Turing machine.

In this section we derive the following result showing that apparently it will
be hard to show that UP contains no problem complete under polynomial time
reductions. The result is due to Meßner and Torán [29] who have shown that
UP contains a problem complete under polynomial time reductions if there is a
polynomially optimal proof system. In virtue of Theorem 7 this is equivalent to:

Theorem 16. If p-Halt ∈ XPuni, then UP contains a problem complete under
polynomial time reductions.

In [29], the corresponding result is shown for the class of sparse sets in NP and
further results of this type are given in [26, 24, 25]. We encourage the interested
reader to apply our proof method to get these results. Therefore, we give again a
quite detailed proof for UP, even though the proof just adapts the method used
for equivalence relations to the present case.

Again, first we reformulate the conclusion of Theorem 16 in terms of listings.
The reformulation is provided by:

Proposition 17 ([22, 26]). The following are equivalent:
(a) UP contains a problem complete under polynomial time reductions.
(b) There is a listing of problems ≤pol-cofinal in UP, that is, there is a listing

M1,M2, . . . of clocked UP-Turing machines such that for every Q ∈ UP there
is an i ≥ 1 such that Q ≤pol L(Mi).

Proof of Theorem 16: If M is a nondeterministic Turing machine and n ∈ N we
say that M is n-unambiguous if for every x ∈ Σ≤n there is at most one accepting
run of M on input x. We set

L(M)unamb :=
{

x ∈ L(M)
∣

∣ M is |x|-unambiguous
}

.

Then

(i) L(M)unamb = L(M) if M is unambiguous;
(ii) if M is not n-unambiguous, then L(M)unamb contains only strings of length

less than n;

16

(iii) if M is a polynomial time nondeterministic Turing machine, then L(M)unamb

is accepted by a UP-machine.

Let M1,M2, . . . be a listing of all clocked polynomial time nondeterministic Tur-
ing machines. Then, by (i)–(iii),

L(M1)
unamb, L(M2)

unamb, . . . (8)

is an enumeration of UP. But we aim at a listing of (a ≤pol-cofinal subset of) UP
by means of clocked UP-machines. We show that there is an effective procedure
assigning to every clocked polynomial time nondeterministic Turing machine M

a clocked UP-machine Munamb such that

L(M)unamb ≤pol L(M
unamb).

Then Munamb
1 ,Munamb

2 , . . . is the desired listing. We will show:

Claim: Assume that p-Halt ∈ XPuni, then there is an algorithm B that on input
〈M, 1n〉, where M is a clocked polynomial time nondeterministic Turing machine
and n ∈ N, decides whether L(M) is n-unambiguous in time ng(|M|) for some
g : N→ N.

With this Claim it is straightforward to present the program of a clocked
UP-machine Munamb (where M is as in the Claim) with

L(Munamb) :=
{

〈x, 1s〉
∣

∣

∣
x ∈ L(M) and B accepts

〈

M, 1|x|
〉

in ≤ s steps
}

.

Then, for s ≥ g(|M|), the function x 7→
〈

x, 1|x|
s〉

is a polynomial time reduction
from L(M)unamb to L(Munamb). So it only remains to show the Claim.

Proof of the Claim: Let M be a clocked polynomial time nondeterministic Turing
machine. We assign to M a polynomial time nondeterministic Turing machine
M+ such that (as a first approximation) we have

M is unambiguous ⇐⇒ M
+ does not accept λ. (9)

For this we take as M+ a machine that on empty input first guesses strings y, c1,
and c2, then it checks whether c1 and c2 are distinct runs of M accepting y; if so
M+ accepts, else it rejects. “Fine-tuning” as in the proof of the corresponding
claim in the proof of Theorem 14 yields the statement. �

6. Logics capturing P and p-Halt

We start by recalling the concepts from logic we need.

Structures.A vocabulary τ is a finite set of relation symbols. Each relation symbol
has an arity. A structure A of vocabulary τ , or τ-structure (or, simply structure),
consists of a nonempty set A called the universe, and an interpretation RA ⊆ Ar

of each r-ary relation symbol R ∈ τ . All structures are assumed to have a finite

17

universe. To avoid technicalities we assume in this section that all structures have
as universe, for some n ∈ N, the set [n] := {1, 2, . . . , n}. Then, in a canonical
way, we can identify structures with nonempty strings over Σ; in particular, |A|
for a structure A is the length of the string A. Moreover, then every structure
A has a natural ordering <A on it.

In this section we deal with classes of structures. Thereby we always as-
sume that all structures of a fixed class have the same vocabulary. But distinct
vocabularies may correspond to distinct classes.

Logics and logics capturing P. For our purposes a logic L consists

– for every vocabulary τ of a set L[τ] of strings, the set of L-sentences of
vocabulary τ , and of an algorithm that for every τ and every string ξ decides
whether ξ ∈ L[τ] (in particular, L[τ] is decidable for every τ);

– of a satisfaction relation |=L; if (A, ϕ) ∈ |=L

(

written: A |=L ϕ
)

, then A
is a τ -structure and ϕ ∈ L[τ] for some vocabulary τ ; furthermore, for each
ϕ ∈ L[τ] the class

ModL(ϕ) :=
{

A
∣

∣ A |=L ϕ
}

of models of ϕ is closed under isomorphism.

From now on, if we say “let ϕ be an L-sentence,” we mean that, in addition to
ϕ, a vocabulary τ with ϕ ∈ L[τ] is given.

Definition 18. Let L be a logic.

(a) L is a logic for P if for all classes S of structures closed under isomorphism
(with respect to structures with universe of the form [n] for some n ∈ N) we
have

S ∈ P ⇐⇒ S = ModL(ϕ) for some L-sentence ϕ.

(b) L captures P if (a) holds and if there is an algorithm A deciding |=L (that
is, for every structure A and L-sentence ϕ the algorithm A decides whether
A |=L ϕ) and if moreover, A for every fixed ϕ runs in time polynomial in
|A|.

Hence, if L captures P, then for every L-sentence ϕ the algorithm A witnesses
that ModL(ϕ) ∈ P. However, we do not necessarily know ahead of time the
bounding polynomial.

(c) L is an effectively captures P if L captures P and if in addition to the
algorithm A as in (b) there is a computable function that assigns to every
L-sentence ϕ a polynomial q ∈ N[X] such that A decides whether A |=L ϕ
in ≤ q(|A|) steps.

If there is no logic capturing P, then P 6= NP (as Fagin [18] showed that there is a
logic capturing NP). We prove that then even p-Halt /∈ XPuni (cf. Theorem 1):

Theorem 19. If p-Halt ∈ XPuni, then there is a logic capturing P.

18

In addition, we want to show that under the assumption p-Halt ∈ XPuni the
so-called invariant least fixpoint logic captures P.

The following well-known result yields the desired reformulation in terms of
a listing. We include a proof as we shall make use of the logic associated with a
listing. Here we say that a Turing machine M is a Turing machine for structures
if (the code of) M contains a vocabulary τ and M first checks whether a given
input is a τ -structure and immediately rejects in the negative case. We then also
say that M is a τ -machine.

Proposition 20. The following are equivalent:
(a) There is a logic (effectively) capturing P.
(b) There is a listing of all classes in P of structures closed under isomorphism

by means of (clocked) polynomial time Turing machines for structures.

Proof. (b) ⇒ (a): Let the listing L with the enumeration

M1,M2, . . .

be as in (b). We may assume that |M1| < |M2| < . . . by adding dummy lines to
the programs of the machines if necessary. Then the logic L(L) given by

L(L)[τ] :=
{

Mi

∣

∣ i ≥ 1 and Mi is a τ -machine
}

and
A |=L(L) M ⇐⇒ M accepts A

is a logic capturing P. If all the machines of the listing are clocked, then L(L)
effectively captures P.

Conversely, if L is a logic (effectively) capturing P and A is the algorithm
deciding A |=L ϕ in time |A|f(|ϕ|) for some (computable) f : N→ N, denote by
Mϕ the (clocked) polynomial time Turing machine obtained by restricting A to
inputs of the form 〈. . . , ϕ〉. Then for any effective enumeration ϕ1, ϕ2, . . . of the
sentences of L, the listing

Mϕ1
,Mϕ2

, . . .

is the desired listing of all classes in P of structures closed under isomorphism.�

Proof of Theorem 19: Again we face the problem that it is undecidable whether a
Turing machine for structures accepts a class closed under isomorphism. There-
fore we start with a listing

M1,M2, . . . (10)

of all clocked polynomial time Turing machines for structures. In general, the
class L(Mi) = {A | Mi accepts A} of structures accepted by Mi will not be
closed under isomorphism. We apply the invariantization technique to get a
listing as required by part (b) of Proposition 20.

If S is a class of structures and n ∈ N, then we say that S is n ∼=-invariant if
for all isomorphic structures A and B whose universes have at most n elements
we have

A ∈ S ⇐⇒ B ∈ S.

19

We set

Sinv :=
{

A ∈ S
∣

∣ S is |A| ∼=-invariant
}

. (11)

We have

(i) Sinv is closed under isomorphism;
(ii) Sinv = S if S is closed under isomorphism;
(iii) if S is not n ∼=-invariant, then all structures in Sinv have less than n elements;
(iv) if S ∈ P, then Sinv ∈ P.

Thus,
L(M1)

inv, L(M2)
inv, . . .

is an enumeration of all classes in P of structures closed under isomorphism
(

in
fact, the classes are in P by (iv), they are closed under isomorphism by (i), and
all such classes occur by (ii)

)

.
We show that there is an effective procedure assigning to every clocked poly-

nomial time Turing machineM for structures a (clocked) polynomial time Turing
machine Minv for structures such that

L(Minv) = L(M)inv. (12)

Then Minv
1 ,Minv

2 , . . . is the desired listing.

Claim: Assume that p-Halt ∈ XPuni (p-Halt ∈ XP), then there is an algorithm
B that on input 〈M, 1n〉, where M is a clocked polynomial time Turing machine
for structures and n ∈ N, decides whether L(M) is n ∼=-invariant in time ng(|M|)

for some (computable) g : N→ N.

With this claim and the definition (11) of Sinv it is straightforward to present
the program of a (clocked) polynomial time Turing machine M

inv for structures
satisfying (12).

Proof of the Claim: As in preceding proofs we reduce our problem to p-Halt.
Let M be a clocked polynomial time Turing machine for structures. We assign to
M a nondeterministic Turing machine M+ such that (as a first approximation)
we have

L(M) is closed under isomorphism ⇐⇒ M
+ does not accept λ. (13)

For this we take as M+ a machine that on empty input first guesses strings A,
B, and f , and accepts if A and B are structures, f is an isomorphism between
A and B, and M accepts A but rejects B.

As M runs in ≤ |w|time(M) steps on input w, by standard means we can
arrange M

+ in such a way that for some polynomial q ∈ N[X] the machine
M+ runs exactly q(n) steps if in its first phase it guesses a structure A with n
elements. As q(n) < q(n+ 1), we get (the fine-tuned version of (13))

L(M) is n ∼=-invariant ⇐⇒
〈

M
+, 1q(n)

〉

∈ p-Halt.

20

As we assume that p-Halt ∈ XPuni (p-Halt ∈ XP), we know that (M+, 1q(n)) ∈

p-Halt may be checked in time q(n)f(|M
+|) for some (computable) function

f : N → N. As q(n)f(|M
+|) = ng(|M|) for a suitable (computable) g : N → N, we

are done. �

In the previous proof we have shown the implication “(a) ⇒ (b)” of:

Proposition 21. The following are equivalent:
(a) p-Halt ∈ XPuni (p-Halt ∈ XP);
(b) There is an effective procedure assigning to every clocked polynomial time

Turing machine M for structures a (clocked) polynomial time Turing ma-
chine Minv for structures such that

L(Minv) = L(M)inv.

Proof. In the following we leave the proofs of the effective versions of our claims
to the reader. It remains to prove the implication (b) ⇒ (a). For k ≥ 1 let τk be
the vocabulary

{

P1, . . . , Pk

}

with unary relation symbols P1, . . . , Pk.
Let M be a nondeterministic Turing machine. We can assume that [k] for

some k ≥ 1 is the set of states of M. By our convention on nondeterministic
machines every two distinct successor configurations of a given configuration of
M have distinct states. Furthermore, here we assume that the starting state is
not an accepting state. We let S(M) be the class of τk-structures B satisfying (i)
and (ii).

(i) The Pi’s with i ∈ [k] form a partition of the universe B of B and there is an
n ∈ N such that |Pi| = n for all i ∈ [k].

(ii) If i1, . . . , in
(

where n is according to (i)
)

are such that the jth element of
B in the natural ordering <B of B is in Pij , then we require that neither
i1, . . . , in nor any initial segment of it are the states of a run accepting the
empty input.

Clearly, S(M) ∈ P and from M we get a clocked polynomial time machine M0

for τk-structures deciding S(M), that is,

L(M0) = S(M).

Furthermore, let A(M, n) be the τk-structure with universe [n · k] and with
Pi := {n · (i− 1)+ 1, . . . , n · (i− 1) + n} for all i ∈ [k]. Then A(M, n) ∈ S(M) as
the starting state is not an accepting one. Furthermore,

A(M, n) ∈ S(M)inv (= L(M0)
inv) ⇐⇒ 〈M, 1n〉 ∈ p-Halt,

as we obtain all possible sequences of states of length n by considering the
isomorphic copies of A(M, n). Thus, by our assumption (b), we have for the
machine Minv

0 ,

M
inv
0 accepts A(M, n) ⇐⇒ 〈M, 1n〉 ∈ p-Halt.

21

Therefore, the following algorithm A shows that p-Halt ∈ XPuni: On input M,
a nondeterministic Turing machine, and 1n with n ∈ N, it first computes the
structure A(M, n) and the clocked polynomial time machine M0; then applying
the effective procedure of (b), it gets the machine Minv

0 ; finally, it checks whether
Minv

0 accepts A(M, n). �

6.1. The invariant least fixpoint logic. Recall that in the proof of Theo-
rem 19 we started with a listing M1,M2, . . . of all clocked polynomial time Tur-
ing machine for structures and obtained under the hypothesis p-Halt ∈ XPuni

(p-Halt ∈ XP) a listing Minv
1 ,Minv

2 , . . . of all classes in P of structures closed
under isomorphism by means of (clocked) polynomial time Turing machines for
structures. We denote this listing Minv

1 ,Minv
2 , . . . by L. Then the logic L(L), the

logic assigned to L in the proof of the direction “(b) ⇒ (a)” of Proposition 20,
(effectively) captures polynomial time. In this section we present a more “logic-
friendly” version of this logic.

For every vocabulary τ we let τ< := τ ∪ {<}, where < is a binary relation
symbol not in τ chosen in some canonical way. A logic L captures P on ordered
structures if (a) and (b) of Definition 18 hold for ordered structures and classes
of ordered structures. In Definition 18 (b), for fixed ϕ ∈ L[τ<] the algorithm A

must witness that the class of ordered models of ϕ is in P. It should be clear
what we mean by a logic effectively capturing P on ordered structures.

Least fixpoint logic LFP is an extension of first-order logic obtained by adding
an operator which allows to speak about the least fixpoint of monotone opera-
tions definable in the logic. We only need the following property of LFP.

Theorem 22. [23, 34] LFP effectively captures P on ordered structures.

If S is a class of τ<-structures and n ∈ N, then S is n <-invariant if for all
τ -structures A with |A| ≤ n and every orderings <1 and <2 of A we have

(A, <1) ∈ S ⇐⇒ (A, <2) ∈ S.

We define the invariant least fixpoint logic LFPinv by: For every vocabulary τ
we set

LFPinv[τ] := LFP[τ<],

and we define the satisfaction relation by

A |=LFPinv
ϕ ⇐⇒
(

ModLFP(ϕ) is |A| <-invariant and (A, <A) |=LFP ϕ
)

;
(14)

recall that <A denotes the natural ordering on A.
If ModLFP(ϕ) is not n <-invariant, then ModLFPinv

(ϕ) only contains struc-
tures with universe of cardinality less than n and hence is in P. Together with
the fact that LFP captures P on ordered structures, this shows that LFPinv is a
logic for P.

In the proof of Theorem 19 we started with a listing L0 of all clocked poly-
nomial time Turing machines for structures. As LFP captures P on ordered

22

structures, in a certain sense the listing L0 corresponds to the sentences of LFP
in the enlarged vocabularies τ<. We invariantized the listing L0 by using the
concept of n ∼=-invariance. As orderings correspond to permutations and hence
to isomorphisms, in LFPinv this invariantization is taken care by the definition
of its semantics in (14). Hence the following result is not surprising:

Theorem 23 ([31]). (a) p-Halt ∈ XPuni if and only if LFPinv captures P.
(b) p-Halt ∈ XP if and only if LFPinv effectively captures P.

Proof. For (a) it suffices to show that LFPinv captures P if and only if there is
an effective procedure as stated in Proposition 21 (b).

Assume first that such a procedure exists. As LFP effectively captures P on
ordered structures, for ϕ ∈ LFPinv[τ] = LFP[τ<], we obtain a clocked polynomial
time machine Mϕ for τ -structures with

L(Mϕ) :=
{

A
∣

∣ (A, <A) |=LFP ϕ
}

.

Then, one easily verifies that

L(Mϕ)
inv = ModLFPinv

(ϕ),

that is, L(Minv
ϕ) = ModLFPinv

(ϕ). Hence, the algorithm that on input 〈A, ϕ〉,

first computes Mϕ, then Minv
ϕ and finally simulates Minv

ϕ on input A, decides the
satisfaction relation of LFPinv in the desired time.

Conversely, assume that LFPinv captures P. Let M be a clocked polynomial
time Turing machine for τ -structures. Then

C :=
{

(B, <)
∣

∣

∣
for some A we have:

(

(B, <) ∼= (A, <A) and M accepts A
)}

is a class in P of ordered τ -structures closed under isomorphism (clearly, from
(B, <) one can determine the unique structure A with (B, <) ∼= (A, <A) in
polynomial time). Hence, from M we effectively get a clocked polynomial time
Turing machine M∗ with L(M∗) = C. Furthermore, it is well-known that from
a clocked polynomial time Turing machine accepting a class in P of ordered
τ -structures closed under isomorphism one effectively gets an LFP[τ<]-sentence
ϕ with C = ModLFP(ϕ). Now, again it is routine to verify that L(M)inv =
ModLFPinv

(ϕ). Thus, from the algorithm deciding the satisfaction relation and
witnessing that LFPinv captures P, we can extract the algorithm assigning to a
clocked polynomial time Turing machine M a polynomial time Turing machine
Minv with L(Minv) = L(M)inv. �

7. Slicewise downward monotone parameterized problems

We already mentioned in the Introduction that we do not want to present an
abstract version of the invariantization technique available if p-Halt ∈ XPuni

and underlying the previous proofs. However, in this section we want to point

23

out that hidden at the core of each of these proofs is a parameterized problem
which (as we show here) is in XPuni if and only if p-Halt is in XPuni.

The problem p-Halt is slicewise downward monotone. A parameterized prob-
lem (Q, κ) is slicewise downward monotone if Q is decidable, all elements of Q
have the form 〈x, 1n〉 with x ∈ Σ∗ and n ∈ N, if κ(〈x, 1n〉) = |x|, and finally if
the slices are downward monotone, that is, for all x ∈ Σ∗ and n, n′ ∈ N

〈x, 1n〉 ∈ Q and n′ < n imply
〈

x, 1n
′

〉

∈ Q.

The following slicewise downward monotone problems

p-Taut, p-Equiv, p-Unamb, and p-∼= -Inv

are hidden in our considerations on polynomially optimal proof systems, P(eq)-
complete problems, UP-complete problems, and logics capturing P, respectively.
Here

p-Taut
Instance: A clocked polynomial time Turing machineM and

1n with n ∈ N.
Parameter: |M|.

Problem: Is M n-tautological?

p-Equiv
Instance: A clocked polynomial time Turing machine M for

tuples and 1n with n ∈ N.
Parameter: |M|.

Problem: Is L(M) an n-equivalence relation?

p-Unamb

Instance: A clocked polynomial time nondeterministic Tur-
ing machine M and 1n with n ∈ N.

Parameter: |M|.
Problem: Is M n-unambiguous?

p-∼= -Inv

Instance: A clocked polynomial time Turing machine M for
structures and 1n with n ∈ N.

Parameter: |M|.
Problem: Is L(M) n ∼=-invariant?

The Claims in the proofs of Lemma 9, Theorem 14, Theorem 16, and Theorem 19
show that all these problem are in XPuni if p-Halt ∈ XPuni. We show:

24

Theorem 24. If one of the problems

p-Taut, p-Equiv, p-Unamb, p-∼= -Inv, and p-Halt

is in XPuni, then all are.

To compare the complexity of parameterized problems we use standard no-
tions of reductions of parameterized complexity theory that we recall first. Let
(Q, κ) and (Q′, κ′) be parameterized problems. We write (Q, κ) ≤fpt (Q

′, κ′) if
there is an fpt-reduction from (Q, κ) to (Q′, κ′), that is, a mapping R : Σ∗ → Σ∗

with:

(1) For all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).
(2) R(x) is computable in time f(κ(x)) · |x|O(1) for some computable f : N→ N.
(3) There is a computable function g : N→ N such that κ′(R(x)) ≤ g(κ(x)) for

all x ∈ Σ∗.

We write (Q, κ) ≤xp (Q′, κ′) if there is an xp-reduction from (Q, κ) to (Q′, κ′),
which is defined as (Q, κ) ≤fpt (Q′, κ′) except that instead of (2) it is only
required that R(x) is computable in time |x|f(κ(x)) for some computable f : N→
N. These are notions of reductions of the usual (strongly uniform) parameterized
complexity theory. We shall use the following simple observation.

Lemma 25. If (Q, κ) ≤xp (Q′, κ′) and (Q′, κ′) ∈ XPuni, then (Q, κ) ∈ XPuni.

Proof of Theorem 24. By the lemma and by the remark preceding the theorem
it suffices to show that

p-Halt ≤fpt p-Taut ≤xp p-Equiv ≤xp p-Unamb ≤xp p-∼=-Inv.

p-Halt ≤fpt p-Taut: Let M be a nondeterministic Turing machine. We choose
s(M) ∈ N such that all states of M are (coded by) strings of length s(M). We
fix a tautology α0 and define f : Σ∗ → Σ∗ by

f(w) :=

{

λ, if w is the sequence of states of a run of M accepting λ;

α0, otherwise.

Of course, there is a polynomial time procedure assigning to M a clocked poly-
nomial time Turing machine M′ computing f . Then

〈M, 1n〉 ∈ p-Halt ⇐⇒
〈

M
′, 1n·s(M)

〉

∈ p-Taut,

so that 〈M, 1n〉 7→
〈

M′, 1n·s(M)
〉

is an fpt-reduction from p-Halt to p-Taut.

p-Taut ≤xp p-Equiv: For a clocked polynomial time Turing machine M let
M′ be the Turing machine for tuples that accepts 〈x, y〉 if either x = y or
(

x = λ and y = 〈w, v〉, where M(w) is no propositional formula or (M(w) is a

propositional formula and v a valuation which does not satisfy M(w))
)

. Again

25

we can assume that from M we get a clocked polynomial time such M′ and that
for some polynomial q ∈ N[X]

〈M, 1n〉 ∈ p-Taut ⇐⇒
〈

M
′, 1q(n)

〉

∈ p-Equiv.

This yields the reduction 〈M, 1n〉 7→
〈

M′, 1q(n)
〉

from p-Taut to p-Equiv, which
is an xp-reduction and not an fpt-reduction as the degree of the polynomial q
depends on time(M).

p-Equiv ≤xp p-Unamb: Let M be a clocked polynomial time machine for tuples.
We consider the following clocked nondeterministic polynomial time machineM′:
It has an initial state which is left in the first step and cannot be visited again
during any run on any input. From the initial state a direct transition to an
accepting state is possible (independent of the symbol scanned by the head).
Hence, L(M′) = Σ∗. Furthermore, all other runs on inputs which do not have
the form 〈r, x〉, 〈s, x, y〉, or 〈t, x, y, z〉 will be rejecting. Here r (“reflexivity”), s
(“symmetry”), and t (“transitivity”) are the strings 00, 01, 10, respectively. On
input 〈r, x〉 there is a run of M′ which simulates M on input 〈x, x〉 and accepts
if and only if M rejects; similarly, there is an additional accepting run of M′ on
input 〈s, x, y〉 if and only if

(

M accepts 〈x, y〉 and rejects 〈y, x〉
)

; finally, there is

an additional accepting run of M′ on input 〈t, x, y, z〉 if and only if
(

M accepts

〈x, y〉 and 〈y, x〉 but not 〈x, z〉
)

. In particular, we see that

L(M) is an equivalence relation on Σ∗ ⇐⇒ M
′ is a UP-machine.

Moreover, one can arrange matters in such a way that for some polynomial
q ∈ N[X] we have

〈M, 1n〉 ∈ p-Equiv ⇐⇒
〈

M
′, 1q(n)

〉

∈ p-Unamb.

p-Unamb ≤fpt p-∼= -Inv: We assign to a string w ∈ Σ∗ a structure A(w) of
vocabulary τ := {<,P0}, where

– the universe of A(w) is [|w|];
– the binary < is interpreted by the natural ordering on [|w|];
– the unary P0 is interpreted by the set of positions in w carrying a 0.

For k ≥ 1 we introduce the vocabulary τk = {U, V, P1, . . . , Pk, R} with unary
relation symbols U, V, P1, . . . , Pk and a binary R. Let M be a clocked polynomial
time nondeterministic Turing machine. We assume that M runs exactly ntime(M)

steps on inputs of length n. We set q(n) := ntime(M). We let M′ be a clocked
polynomial time Turing machine for τ ∪ τk-structures that accepts a structure
B if for some w ∈ Σ∗ and n := |w|:

(i) (the interpretation of) U and V form a partition of B;
(ii) the τ -reduct on U is isomorphic to A(w);
(iii) the Pi’s with i ∈ [k] form a partition of the V -part and |Pi| = q(n) for all

i ∈ [k];

26

(iv) R is an ordering of its field, this field is contained in the V -part and it has
exactly exactly q(n) elements;

(v) if i1, . . . , iq(n) are such that the mth element of the ordering R is in Pim ,
then i1, . . . , iq(n) is the sequence of states of a run of M accepting w;

(vi) if j1, . . . , jq(n) are such that the mth element of V in the natural ordering
on B is in Pim , then either (i1, . . . , iq(n)) = (j1, . . . , jq(n)) or j1, . . . , jq(n) is
not the sequence of states of a run of M accepting w.

It is easy to see that M is an unambiguous machine if and only if the class of
structures accepted by M′ is closed under isomorphism. We leave the rest of the
argument to the reader. �

We close this section by showing that some results we proved for p-Halt

hold for all slicewise downward monotone parameterized problems. The proof of
the first result is obtained by the obvious modifications in that of Proposition 4.

Proposition 26. Every slicewise downward monotone parameterized problem is
in the class FPTnu.

If (Q, κ) is slicewise downward monotone and x ∈ Σ∗, we set

s(x) := min
{

n
∣

∣ n ∈ N and 〈x, 1n〉 /∈ Q
}

.

If 〈x, 1n〉 ∈ Q for all n ∈ N, then we set s(x) :=∞. Note that for (Q, κ) = p-Halt

and every nondeterministic Turing machine we have s(M) = tM(λ). Hence, the
following lemma generalizes Lemma 5. As its proof runs along the same lines we
omit it here.

Lemma 27. Let (Q, κ) be slicewise downward monotone. If there is an algo-
rithm A accepting (Q, κ) such that for all instances 〈x, 1n〉 with s(x) = ∞ we
have tA(〈x, 1

n〉) = nf(|M|) for some function f , then (Q, κ) ∈ XPuni.

With this lemma we show the following generalization of Lemma 11, which
will be used in the next section.

Lemma 28. Let (Q, κ) be slicewise downward monotone. If List(Q), then (Q, κ)
∈ XPuni.

Proof. Let L be a listing of the subsets in P of Q by polynomial time Turing
machines. As for every 〈x, 1n〉 ∈ Q, the set {〈x, 1n〉} is a subset in P of Q, the
following algorithm A accepts Q:

A // x ∈ Σ∗ and 1n with n ∈ N

1. ℓ← 1
2. compute the ℓth machine listed by L

3. simulate it on input 〈x, 1n〉
4. if it accepts then accept
5. ℓ← ℓ+ 1
6. goto 2.

27

We want to show that A runs in time polynomial in n for fixed x with s(x) =∞.
Then our claim follows from Lemma 27.

If s(x) = ∞, then {〈x, 1n〉 | n ∈ N} is a subset in P of Halt. Hence, there
is a machine listed by L, say the ℓ0th one, that decides this set. Then Lines 2–4
(for ℓ = ℓ0) show that the running time of A is polynomially bounded in n. �

8. The length of first-order proofs and p-Halt

By the undecidability of first-order logic we know that there is no computable
bound on the length of shortest proofs of valid sentences of first-order logic.3

Mathematicians’ experience seems to indicate that various valid sentences ϕ of
first-order logic only have quite long proofs, say, proofs superpolynomial in |ϕ|.
How hard is it to decide whether such a hard valid sentence has a proof of a
length less than a given bound? Corollary 32 will show that this problem is not
decidable in polynomial time if p-Halt /∈ XPuni. First we have to make precise
the preceding question. By “hard valid sentences” we mean valid sentences like
the Four Color Theorem or Fermat’s Last Theorem, but also statements like
P 6= NP or the Riemann Hypothesis. Of course, we do not know whether these
last two statements are valid sentences; hence the following promise problem
could be viewed as the appropriate precise version of our question (note that its
promise is equivalent to assuming that either ϕ is not valid or that ϕ is valid
and has no short proof). Let ι : N → N be a nondecreasing, unbounded, and
computable function.

Promise-Exp-Gödelι
Instance: A first-order sentence ϕ having no proof of length

< |ϕ|ι(|ϕ|) and 1n with n ≥ |ϕ|ι(|ϕ|).
Problem: Does every proof of ϕ have length > n?

One could also consider the following (plain) problem.

Exp-Gödelι
Instance: A first-order sentence ϕ and 1n with n ≥ |ϕ|ι(|ϕ|).
Problem: Does every proof of ϕ have length > n?

Clearly, Exp-Gödelι is in coNP; Buhrman and Hitchcock [2] have shown that
sparse problems are not coNP-hard unless the polynomial hierarchy collapses.
This implies (cf. [8]):

Lemma 29. Assume that the polynomial hierarchy does not collapse. Then the
problems Promise-Exp-Gödelι and Exp-Gödelι are not coNP-hard (for the
problem Promise-Exp-Gödelι this means that the set of instances of the prob-
lem that satisfy the promise and are positive instances is not coNP-hard).

3 Here we refer to any reasonable sound and complete proof calculus for first-order
logic. However, we do not allow proof calculi, which admit all first-order instances of
propositional tautologies as axioms (as then it would be difficult to recognize correct
proofs if P 6= NP).

28

If the two problems are not coNP-hard, how do we convince ourselves that the
two problems are intractable? For this purpose we consider a further slicewise
downward monotone parameterized problem, namely

p-Gödel

Instance: A first-order sentence ϕ and 1n with n ∈ N.
Parameter: |ϕ|.

Problem: Does every proof of ϕ have a length > n?

We establish the following relationship to the previous problems:

Proposition 30 ([8]). Let ι be a nondecreasing, unbounded, and computable
function. If Promise-Exp-Gödelι or Exp-Gödelι is decidable in polynomial
time, then p-Gödel ∈ FPT.

Proof. Assume that the algorithm A decides Promise-Exp-Gödelι in polyno-
mial time. Then the following algorithm G shows that p-Gödel ∈ FPT: Given
an arbitrary instance 〈ϕ, 1n〉 of p-Gödel, by brute force G checks whether a
shortest proof of ϕ has length s(ϕ) < |ϕ|ι(|ϕ|); if so, it checks whether s(ϕ) > n
or not and answers accordingly; otherwise, if n < |ϕ|ι(|ϕ|), it accepts and if
n ≥ |ϕ|ι(|ϕ|) (and hence the promise of Promise-Exp-Gödelι ∈ P is fulfilled),
it simulates A on 〈ϕ, 1n〉 and answers accordingly.

As the “brute force check” can be done in time ≤ f(|ϕ|) for a suitable com-
putable f , the algorithm G witnesses that p-Gödel ∈ FPT. �

We show:

Theorem 31. p-Gödel ∈ XPuni if and only if p-Halt ∈ XPuni.

From the two previous results we get:

Corollary 32. If p-Halt /∈ XPuni, then the problems Promise-Exp-Gödelι
and Exp-Gödelι are not polynomial time decidable.

Proof of Theorem 31. Assume first that p-Halt ∈ XPuni. Then List(Halt)
(by Corollary 12) and thus, by Lemma 13, List(Gödel), where Gödel denotes
the classical problem underlying p-Gödel. Therefore, p-Gödel ∈ XPuni by
Lemma 28.

Now assume that p-Gödel ∈ XPuni. By standard means one can show
(e.g., [8, Lemma 7]) that there exists a d ∈ N and a polynomial time algorithm
that assigns to every nondeterministic Turing machine M a first-order sentence
ϕM such that for n ∈ N

〈

ϕM, 1
nd
〉

∈ p-Gödel =⇒ 〈M, 1n〉 ∈ p-Halt. (15)

Moreover,

ϕM has a proof =⇒M accepts the empty input tape. (16)

29

Now assume that G is an algorithm that witnesses p-Gödel ∈ XPuni. Let d ∈ N

be as above. We present an algorithm A showing that p-Halt ∈ XPuni. On an
instance 〈M, 1n〉 of p-Halt the algorithm A first computes ϕM and then runs
two algorithms in parallel:

– an algorithm that on input M, by brute force, computes tM(λ) (the least n
such that M on empty input tape has an accepting run of length n);

– the algorithm G on input
〈

ϕM, 1n
d
〉

.

If the brute force algorithm halts outputting tM(λ), then A checks whether n <
tM(λ), answers accordingly, and halts. Assume now that G halts. If G accepts
〈

ϕM, 1
nd
〉

(

and hence 〈M, 1n〉 ∈ p-Halt by (15)
)

, then A accepts. If G rejects
〈

ϕM, 1
nd
〉

, then A continues the simulation of the “brute force algorithm.”

The algorithm A decides p-Halt: note that if G rejects
〈

ϕM, 1
nd
〉

, then
〈

ϕM, 1
nd
〉

/∈ p-Gödel; in particular, ϕM has a proof, and therefore M accepts

the empty input tape by (16), so that in this case the computation of the brute
force algorithm eventually will output tM(λ), and A will answer correctly.

We still have to show that for fixed nondeterministic Turing machine M the
algorithm A runs in time polynomial in n on inputs of the form 〈M, 1n〉. We
consider two cases.

M halts on empty input tape: Then an upper bound for the running time is given
by the time that the brute force algorithm needs to compute tM(λ) (and the time
for the check whether n < tM(λ)); hence we have an upper bound of the form
ncM .

M does not halt on empty input tape: Then, by (16), we have
〈

ϕM, 1
nd
〉

∈

p-Gödel; hence an upper bound is given by the running time of G on input
〈

ϕM, 1
nd
〉

. �

Similarly as we did for p-Halt at the end of Section 3, one can show that
the answer to the question “p-Gödel ∈ XPuni?” would be the same if we only
would require for an instance 〈ϕ, 1n〉 of p-Gödel that we get the correct answer
if s(ϕ), the length of a shortest proof of ϕ, is not near to n.

9. Hard sequences for algorithms and p-Halt

Recall that an algorithm O deciding a problem Q ⊆ Σ∗ is almost optimal if for
every algorithm A deciding Q there is a polynomial pA ∈ N[X] such that for
every x ∈ Q

tO(x) ≤ pA(tA(x) + |x|). (17)

Note that nothing is required for x /∈ Q.
In [27] it was shown that

Taut has an almost optimal algorithm ⇐⇒

there is a polynomially optimal propositional proof system.

30

Hence, by Theorem 7,

Taut has an almost optimal algorithm ⇐⇒ p-Halt ∈ XPuni. (18)

Let A be an algorithm deciding a problem Q. A sequence (xs)s∈N of strings xs

in Q is hard for A if the function 1s 7→ xs is computable in polynomial time
and the sequence

(

tA(xs)
)

s∈N
is not polynomially bounded in s. Clearly, if A is

polynomial time, then A has no hard sequences. Furthermore, an almost optimal
algorithm forQ has no hard sequences either. In fact, if (xs)s∈N is a hard sequence
for an algorithm, then one can polynomially speed up it on {xs | s ∈ N}, so it
cannot be almost optimal. We show:

Theorem 33. Every algorithm deciding Taut has a hard sequence if and only
if p-Halt /∈ XPuni.

Proof. If p-Halt ∈ XPuni, thenTaut has an almost optimal algorithm
(

by (18)
)

;
we have just remarked that an almost optimal algorithm has no hard sequence.

It remains to show the implication from right to left. So assume that p-Halt /∈
XPuni. Then, by Lemma 5, for every algorithm A deciding p-Halt there is a
nondeterministic machine M(A) with tM(A)(λ) = ∞ such that A restricted to
instances of the form 〈M(A), 1n〉 is not polynomial time.

Now let C be any algorithm deciding Taut and let S be a polynomial time
reduction from Halt to Taut. Then the algorithm C ◦ S that on input x first
computes S(x) and then simulates C on input S(x), decides Halt. By the pre-
vious observation, C ◦ S restricted to instances of the form 〈M(C ◦ S), 1n〉 is not
polynomial time; hence, C restricted to instances of the form S

(

〈M(C ◦ S), 1n〉
)

is not polynomial time. As 1s 7→ S
(

〈M(C ◦ S), 1s〉
)

is computable in polynomial

time, the sequence
(

S
(

〈M(C ◦ S), 1s〉
))

s∈N
is a hard sequence for C. �

10. Summary, generalizations and extensions of the results

Summarizing we present a theorem which contains statements from different ar-
eas of theoretical computer science we have shown to be equivalent to p-Halt ∈
XPuni.

Theorem 34. The following are equivalent:
(1) p-Halt ∈ XPuni;
(2) There is a polynomially optimal propositional proof system;
(3) LFPinv captures P;
(4) p-Gödel ∈ XPuni;
(5) There are algorithms deciding Taut without hard sequences.

In this expository article we only derived consequences of or statements equiv-
alent to “p-Halt ∈ XPuni.” There are various extensions of these equivalences,
which arise from questions like “what do p-Halt ∈ XP, p-Halt ∈ FPT, or
p-Halt ∈ FPTuni mean for these related problems?” Further complexity classes
have been considered in [12].

31

Here we report what the effect of changing membership of p-Halt in the class
XPuni by a different class means for the equivalence (18). By this equivalence,
p-Halt ∈ XPuni if and only if there is an algorithm O deciding Taut such that
for every further algorithm A deciding Taut there is a polynomial pA ∈ N[X]
such that for every tautology α

tO(α) ≤ pA(tA(α) + |α|). (19)

The statement p-Halt ∈ XP is equivalent to the existence of an effective pro-
cedure assigning to an algorithm A deciding Taut a polynomial pA satisfying
(19). And p-Halt ∈ FPTuni means that for some d the polynomials pA may be
chosen of degree ≤ d. If, in addition, they may be chosen effectively, this means
that p-Halt ∈ FPT.

References

1. Y. Aumann and Y. Dombb. Fixed structure complexity. In Proceedings of the
3rd International Workshop on Parameterized and Exact Computation (IWPEC
2008), M. Grohe and R. Niedermeier (eds.), Lecture Notes in Computer Science
5018, 31–42, 2008.

2. H. Buhrman and J. M. Hitchcock. NP-hard sets are exponentially dense
unless coNP ⊆ NP/poly. In Proceedings of the 23rd Annual IEEE Confer-
ence on Computational Complexity (CCC’08), pp. 1-7, 2008. Electronic Collo-
quium on Computational Complexity (ECCC’08), Report TR08-022, available at
http://eccc.hpi-web.de/eccc-local/Lists/TR-2008.html

3. S. Buss, Y. Chen, J. Flum, S. Friedman, and M. Müller. Strong isomorphism
reductions in complexity theory. To appear in Jour. Symb. Logic.

4. L. Cai, J. Chen, R. Downey, and M. Fellows On the parameterized complexity of
short computation and factorization. Archive for Mathematical Logic, 36:321-337,
1997.

5. M. Cesati. The Turing way to parameterized complexity. Journal of Computer
and System Sciences, 67:654–685, 2003.

6. M. Cesati and M. Di Ianni. Computation models for parameterized complexity.
Mathematicall Logical Quarterly, 43:179–202, 1997.

7. A.K. Chandra, D. Kozen, and L.J. Stockmeyer, Alternation. In Journal of the
ACM, 28:114–133, 1981. pages 77–90, 1977.

8. Y. Chen and J. Flum. On the complexity of Gödel’s proof predicate. The Journal
of Symbolic Logic 75, 239–254, 2009.

9. Y. Chen and J. Flum. A logic for PTIME and a parameterized halting problem.
In Fields of Logic and Computation, Lecture Notes in Computer Science 6300,
251–276, 2010.

10. Y. Chen and J. Flum. On p-optimal proof systems and logics for PTIME. In
Proceedings of the 37th International Colloquium on Automata, Languages and
Programming (ICALP’10, Track B), Lecture Notes in Computer Science 6199,
321–332, 2010.

11. Y. Chen and J. Flum. On slicewise monotone parameterized problems and optimal
proof systems for TAUT. In Proceedings of the 19th EACSL Annual Conference
in Computer Science Logic (CSL’10), Lecture Notes in Computer Science 6247,
200–214, 2010.

32

12. Y. Chen and J. Flum. Listings and logics. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science (LICS’11), 165–174, 2011.

13. S. Cook. The complexity of theorem proving procedures. Proceedings of the Third
Annual ACM Symposium on Theory of Computing , 151–158, 1971.

14. S. Cook and R. Reckhow. The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic, 44:36–50, 1979.

15. R. Downey and M. Fellows. Fixed-parameter tractability and commpleteness
III: Some structurl aspects of the W -hierarchy. In Complexity Theory (ed. K.
Ambos-Spies et al.), 166-191, 1993

16. R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
17. R. Downey. Private communication.
18. R. Fagin. Generalized first–order spectra and polynomial–time recognizable sets.

In R. M. Karp, editor, Complexity of Computation, SIAM-AMS Proceedings, Vol.
7, 43–73, 1974.

19. J. Flum and M. Grohe. Fixed-parameter tractability, definability, and model
checking. SIAM Journal on Computing, 31:113–145, 2001.

20. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.
21. L. Fortnow and J. Grochow. Complexity classes of equivalence problems revisited,

arXiv:0907.4775v1 [cs.CC], 2009.
22. J. Hartmanis and L. Hemachandra. Complexity classes without machines: On

complete languages for UP. Theoretical Computer Science 58 , 129–142, 1988.
23. N. Immerman. Relational queries computable in polynomial time. Information

and Control , 68:86–104, 1986.
24. J. Köbler and J. Messner. Complete problems for promise classes by optimal

proof systems for test sets. In Proceedings of the 13th IEEE Conference on Com-
putational Complexity (CCC’ 98), 132–140, 1998.

25. J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete sets
for promise classes. Information and Computation, 184:71–92, 2003.

26. W. Kowalczyk. Some connections between presentability of complexity classes
and the power of formal systems of reasonning. In Proceedings of Mathematical
Foundations of Computer Science 1984 (MFCS’84), Lecture Notes in Computer
Science 176, 364–369, 1984.

27. J. Kraj́ıc̆ek and P. Pudlák. Propositional proof systems, the consistency of first
order theories and the complexity of computations. The Journal of Symbolic
Logic, 54:1063–1088, 1989.

28. L. Levin. Universal search problems. Problems of Information Transmission,
9(3):265-266, 1973. In Russian; English translation in: B.A.Trakhtenbrot. A
survey of Russian approaches to perebor (brute-force search) algorithms. Annals
of the History of Computing , 6(4):384-400, 1984.

29. J. Messner and J. Torán. Optimal proof systems for propositional logic and com-
plete sets. In Proceedings of the 15th Annual Symposium of Theoretical Aspects of
Computer Science (STACS’98), Lecture Notes in Computer Science 1373, 477–
487, 1998.

30. H. Monroe. Speedup for natural problems and noncomputability. Theoretical
Computer Science, 412(4-5):478–481, 2011

31. A. Nash, J. Remmel, and V. Vianu. PTIME queries revisited. In Proceedings of
the 10th International Conference on Database Theory (ICDT’05), Lecture Notes
in Computer Science 3363, 274–288, 2005.

32. Z. Sadowski. On an optimal propositional proof system and the structure of easy
subsets. Theoretical Computer Science, 288(1):181–193, 2002.

33

33. A. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Society, 2:230–265, 1936.

34. M.Y. Vardi. The complexity of relational query languages. In Proceedings of the
14th Annual ACM Symposium on Theory of Computing (STOC’82), 137–146,
1982.

34

