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Abstract. We study the parameterized space complexity of model-check-
ing first-order logic with a bounded number of variables. By restrict-
ing the number of the quantifier alternations we obtain problems com-
plete for a natural hierarchy between parameterized logarithmic space
and FPT. We call this hierarchy the tree hierarchy, provide a machine
characterization, and link it to the recently introduced classes PATH and
TREE. We show that the lowest class PATH collapses to parameterized
logarithmic space only if Savitch’s theorem can be improved. Finally, we
settle the complexity with respect to the tree-hierarchy of finding short
undirected paths and small undirected trees.

1 Introduction

The model-checking problem for first-order logic FO asks whether a given first-
order sentence ϕ holds true in a given relational structure A. The problem
is PSPACE-complete in general and even its restriction to primitive positive
sentences and two-element structures stays NP-hard. However, Vardi [24] showed
in 1995 that the problem is solvable in polynomial time when restricted to a
constant number of variables.

In database theory, a typical application of the model-checking problem, we
are asked to evaluate a relatively short query ϕ against a large database A.
Thus, it has repeatedly been argued in the literature (e.g. [23]), that measuring
in such situations the computational resources needed to solve the problem by
functions depending only on the length of the input (ϕ,A) is unsatisfactory. Pa-
rameterized complexity theory measures computational resources by functions
taking as an additional argument a parameter associated to the problem in-
stance. For the parameterized model-checking problem p-MC(FO) one takes
the length of ϕ as parameter and asks for algorithms running in fpt time, that
is, in time f (|ϕ|) · |A|O(1) for some computable function f . Sometimes, this re-
laxed tractability notion allows to translate (by an effective but often inefficient
procedure) the formula into a form, for which the model-checking can be solved
efficiently (see [14] for a survey). For example, algorithms exploiting Gaifman’s
locality theorem solve p-MC(FO) on structures of bounded local treewidth [12]
in fpt time, and on bounded degree graphs even in parameterized logarithmic



space [10]. Parameterized logarithmic space, para-L, relaxes logarithmic space
in much the same way as FPT relaxes polynomial time [4, 10].

Note that Vardi’s result mentioned above implies that p-MC(FOs) can be
solved in fpt time, where FOs denotes the class of first-order sentences using at
most s variables. The starting point of this paper is the question whether one
can solve p-MC(FOs) in parameterized logarithmic space. We show that both a
negative as well as a positive answer would imply certain breakthrough results
in classical complexity theory. We now describe our results in some more details.

A first guess could be that when s increases, so does the space complexity of
p-MC(FOs). But it turns out that there is a parameterized logarithmic space re-
duction from p-MC(FOs) to p-MC(FO2) (implicit in Theorem 8 below). On the
other hand, one can naturally stratify p-MC(FOs) into subproblems p-MC(Σs

1),
p-MC(Σs

2), . . . , according to the number of quantifier alternations allowed in
the input sentences. It leads to a hierarchy of classes TREE[t] consisting of the
problems reducible to p-MC(Σs

t ).
The lowest TREE[1] coincides with the class TREE introduced in [5]. The

class TREE stems from the complexity classification of homomorphism problems
under parameterized logarithmic space reductions, which refines Grohe’s famous
characterization of those homomorphism problems that are in FPT [13]. As
shown in [5], they are either in para-L, or PATH-complete, or TREE-complete.
The class PATH here had already been introduced by Elberfeld et al. [9].

All mentioned classes line up in the tree hierarchy:

para-L ⊆ PATH ⊆ TREE[1] ⊆ TREE[2] ⊆ · · · ⊆ TREE[∗] ⊆ FPT, (1)

with p-MC(FOs) being complete for TREE[∗].
The classes PATH and TREE deserve some special interest. They can be

viewed as parameterized analogues of NL and LOGCFL (cf. [25]) respectively,
and capture the complexity of some parameterized problems of central impor-
tance. For example,

p-DiPath
Instance: A directed graph G and k ∈ N.

Parameter: k.
Problem: Is there a directed path of length k in G?

is complete for PATH [9, 5], and here we show (Proposition 17) that

p-DiTree
Instance: A directed graph G and a directed tree T.

Parameter: |T|.
Problem: Is there an embedding of T into G?

is complete for TREE. We always assume that paths are simple, i.e. without
repeated vertices. And by a directed tree we mean a directed graph obtained
from a tree by directing all edges away from the root.



A negative answer to our question whether p-MC(FOs) ∈ para-L is equiv-
alent to para-L 6= TREE[∗] and, in particular, implies L 6= P.3 In contrast, a
positive answer would imply para-L = PATH, a hypothesis we study in some
detail here. Recall that Savitch’s seminal result from 1969 can be equivalently
stated as NL ⊆ DSPACE(log2 n). In Lipton’s words [18] “one of the biggest
embarrassments of complexity theory [. . .] is the fact that Savitch’s theorem has
not been improved [. . . ]. Nor has anyone proved that it is tight.” Hemaspaandra
et al. [16, Corollary 2.8] showed that Savitch’s theorem could be improved if
there were problems of sublogarithmic density o(logn) and Turing hard for NL.
We refer to [20] for more on this problem. Here we show:

Theorem 1. If para-L = PATH, then NL ⊆ DSPACE
(

o(log2 n)
)

.

The hypothesis para-L 6= PATH is hence implied by the hypothesis that Savitch’s
Theorem is optimal, and in turn implies L 6= NL (see the discussion before
Proposition 6).

Finally, we settle the complexity of two more problems with respect to the
tree-hierarchy. First we show that the undirected version

p-Path
Instance: An (undirected) graph G and k ∈ N.

Parameter: k.
Problem: Is there a path of length k in G?

of p-DiPath is in para-L. To the best of our knowledge this has not been known
before despite the considerable attention p-Path has gained in parameterized
complexity theory (e.g. [6, 1, 7]). It answers a question of [5]. Second, and in
contrast to the just mentioned result, we prove that the undirected version

p-Tree
Instance: An (undirected) graph G and a tree T.

Parameter: |T|.
Problem: Is there an embedding of T into G?

of p-DiTree stays TREE-complete.

2 Preliminaries

Structures and logic. A vocabulary τ is a finite set of relation, function and
constant symbols. Relation and function symbols have an associated arity, a posi-
tive natural number. A τ-term is a variable, a constant or of the form f (t1, · · · , tr)
where f is an r-ary function symbol and t1, . . . , tr are again τ -terms. A τ-atom
has the form t = t′ or R(t1, . . . , tr) where R is an r-ary relation symbol and
t, t′, t1, . . . , tr are τ -terms. τ-formulas are built from atoms by means of ∧,∨,¬
and existential and universal quantification ∃x, ∀x. The vocabulary τ is called

3 In fact, general results from [10] imply that the hypotheses para-L 6= FPT,
TREE[∗] 6= FPT and L 6= P are all equivalent.



relational if it contains only relation symbols. A (finite) τ-structure A consists in
a finite nonempty set A, its universe, and for each r-ary relation symbol R ∈ τ
an interpretation RA ⊆ Ar and for each r-ary function symbol f ∈ τ an inter-
pretation fA : Ar → A and for each constant symbol c ∈ τ an interpretation
cA ∈ A. We view digraphs as {E}-structures G for a binary relation symbol E
such that EG is irreflexive. A graph is a digraph G with symmetric EG. If G
is a (di)graph, we refer to elements of G as vertices and to elements of EG as
(directed) edges.

Let τ be a relational vocabulary and A, B two τ -structures. A homomor-
phism from A to B is a function h : A → B such that for every r-ary R ∈ τ we
have

(

h(a1), . . . , h(ar)
)

∈ RB whenever (a1, . . . , ar) ∈ RA. We understand that
there do not exist homomorphisms between structures interpreting different (re-
lational) vocabularies. As has become usual in our setting, we understand that
an embedding is an injective homomorphism.

Parameterized complexity. A (classical) problem is a subset Q ⊆ {0, 1}∗,
where {0, 1}∗ is the set of finite binary strings; the length of a binary string x
is denoted by |x|. As model of computation we use Turing machines A with a
(read-only) input tape and several worktapes. For definiteness, let us agree that
a nondeterministic Turing machine has special states c∃, c0, c1 and can nonde-
terministically move from state c∃ to state cb with b ∈ {0, 1}, and we say A

existentially guesses the bit b. An alternating Turing machine additionally has a
state c∀ allowing to universally guess a bit b. For c : {0, 1}∗ → N, the machine
is said to use c many nondeterministic (co-nondeterministic) bits if for every
x ∈ {0, 1}∗ every run of A on x contains at most c(x) many configurations with
state c∃ (resp. c∀).

A parameterized problem is a pair (Q, κ) of a classical problem Q and a
logarithmic space computable parameterization κ : {0, 1}∗ → N, mapping any
instance x ∈ {0, 1}∗ to its parameter κ(x) ∈ N. For a class A of structures we
consider the parameterized homomorphism problem

p-Hom(A)
Instance: A structure A ∈ A and a structure B.

Parameter: |A|.
Problem: Is there a homomorphism from A to B?

Here, |A| denotes the size of a reasonable encoding of A. Similarly, the pa-
rameterized embedding problem p-Emb(A) asks for an embedding instead of a
homomorphism.

The class FPT contains those parameterized problems (Q, κ) that can be
decided in fpt time (with respect to κ), i.e. in time f (κ(x)) · |x|O(1) for some
computable function f : N → N. The class para-L (para-NL) contains those
parameterized problems (Q, κ) such that Q is decided (accepted) by some (non-
deterministic) Turing machine A that runs in parameterized logarithmic space
f (κ(x)) + O(log |x|) for some computable f : N → N. A pl-reduction from
(Q, κ) to (Q′, κ′) is a reduction R : {0, 1}∗ → {0, 1}∗ from Q to Q′ such that



κ′(R(x)) ≤ f (κ(x)) and |R(x)| ≤ f (κ(x)) · |x|O(1) for some computable f : N → N,
and R is implicitly pl-computable, that is, the following problem is in para-L:

p-Bitgraph(R)
Instance: (x, i, b) with x ∈ {0, 1}∗, i ≥ 1, and b ∈ {0, 1}.

Parameter: κ(x).
Problem: Does R(x) have length |R(x)| ≥ i and ith bit b?

PATH and TREE. The class PATH (resp. TREE) contains those parame-
terized problems (Q, κ) such that Q is accepted by a nondeterministic Turing
machine A which runs in parameterized logarithmic space, and for some com-
putable function f : N → N uses f (κ(x)) · log|x| many nondeterministic bits (and
additionally f (κ(x)) many co-nondeterministic bits).

The class PATH has been discovered by Elberfeld et al. [9]. It captures the
complexity of the fundamental problem:

p-Reachability
Instance: A directed graph G, two vertices s, t ∈ G, and k ∈ N.

Parameter: k.
Problem: Is there a (directed) path of length k from s to t in G?

Theorem 2 ([9, 5]). p-Reachability is PATH-complete (under pl-reductions).

The class TREE has been introduced in [5] for the purpose of a classification
of the complexities of homomorphism problems up to pl-reductions:

Theorem 3 ([15, 13, 5]). Let A be a decidable class of relational structures of
bounded arity. Then

1. if the cores of A have bounded tree-depth, then p-Hom(A) ∈ para-L;
2. if the cores of A have unbounded tree-depth but bounded pathwidth, then

p-Hom(A) is PATH-complete;
3. if the cores of A have unbounded pathwidth but bounded treewidth, then

p-Hom(A) is TREE-complete;
4. if the cores of A have unbounded treewidth, then p-Hom(A) is not in FPT

unless W[1] = FPT.

Here, bounded arity means that there is a constant bounding the arities of
symbols interpreted in structures from A.4 Understanding in a similar way the
complexities of the embedding problems p-Emb(A) is wide open (see e.g. [11,
page 355]). We know:

Theorem 4 ([5]). For A as in Theorem 3 we have p-Emb(A) ∈ para-L in case
(1), p-Emb(A) ∈ PATH in case (2), and p-Emb(A) ∈ TREE in case (3).

Note p-Path and p-Tree are roughly the same as p-Emb(P) and p-Emb(T ),
where P and T denote the classes of paths and trees, respectively. The complex-
ities of these important problems are left open by Theorems 3 and 4.

4 We do not recall the notion of core nor the width notions here because we do not
need them.



3 Model-checking bounded variable first-order logic

The tree hierarchy. Following [5] we consider machines A with mixed nonde-
terminism. Additionally to the binary nondeterminism embodied in the states
c∃, c∀, c0, c1 from Section 2 they use jumps explained as follows. Recall our Tur-
ing machines have an input tape. During a computation on an input x of length
n := |x| the cells numbered 1 to n of the input tape contain the n bits of x. The
machine has an existential and a universal jump state j∃ resp. j∀. A successor
configuration in a jump state is obtained by changing the state to the initial
state and placing the input head on an arbitrary cell holding an input bit; the
machine is said to existentially resp. universally jump to the cell.

Observe that of the number of the cell to which the machine jumps can be
computed in logarithmic space by moving the input head stepwise to the left.
Intuitively, a jump should be thought as a guess of a number in [n] := {1, . . . , n}.
Acceptance is defined as usual for alternating machines. Call a configuration uni-
versal if it has state j∀ or c∀, and otherwise existential. The machine A accepts
x ∈ {0, 1}∗ if its initial configuration on x is accepting. The set of accepting con-
figurations is the smallest set that contains all accepting halting configurations,
that contains an existential configuration if it contains some of its successors,
and that contains a universal configuration if it contains all of its successors.

Each run of A on some input x contains a subsequence of jump configurations
(i.e. with state j∃ or j∀). For a natural number t ≥ 1 the run is t-alternating if this
subsequence consists in t blocks, the first consisting in existential configurations,
the second in universal configurations, and so on. The machine A is t-alternating
if for every input x ∈ {0, 1}∗ every run of A on x is t-alternating.

Let f : {0, 1}∗ → N. The machine A uses f jumps (bits) if for every input
x ∈ {0, 1}∗ every run of A on x contains at most f (x) many jump configurations
(resp. configurations with state c∃ or c∀).

As for a more general notation, note that every run of A on x contains
a sequence of nondeterministic configurations, i.e. with state in {j∃, j∀, c∃, c∀}.
The nondeterminism type of the run is the corresponding word over the alphabet
{j∃, j∀, c∃, c∀}. For example, being 2t-alternating means having nondeterminism
type in ({j∃, c∃, c∀}∗{j∀, c∃, c∀}∗)t. Here, we use regular expressions to denote
languages over {j∃, j∀, c∃, c∀}.

Definition 5. A parameterized problem (Q, κ) is in Tree[∗] if there are a com-
putable f : N → N and a machine A with mixed nondeterminism that accepts Q,
runs in parameterized logarithmic space, and uses f ◦ κ jumps and f ◦ κ bits.
Furthermore, if A is t-alternating for some t ≥ 1, then (Q, κ) is in Tree[t].

The definition of TREE[t] is due to Hubie Chen.

It is straightforward to verify PATH ⊆ TREE = TREE[1] (cf. [5, Lem-
mas 4.5, 5.4]). Obviously, para-L ⊆ PATH ⊆ para-NL, and all classes are equal
if L = NL (see [10]). Conversely, Elberfeld et al. [9] observed that L = NL if
PATH = para-NL. In fact, using general results from [10] one can show:

Proposition 6. 1. para-NL ⊆ TREE[∗] if and only if NL = L.



2. FPT ⊆ TREE[∗] if and only if P = L.

We shall need the following technical lemma.

Lemma 7 (Normalization). Let t ≥ 1. A parameterized problem (Q, κ) is in
Tree[t] if and only if there are a computable f : N → N and a t-alternating
machine A with mixed nondeterminism that accepts Q, runs in parameterized
logarithmic space (with respect to κ) and such that for all x ∈ {0, 1}∗ every run
of A on x has nondeterminism type:

(

(j∃c∀)f (κ(x))(j∀c∃)f (κ(x))
)⌊t/2⌋

(j∃c∀)f (κ(x))·(t mod 2). (2)

Model-checking. For s ∈ N let FOs denote the class of (first-order) formulas
over a relational vocabulary containing at most s variables (free or bound). For
t ∈ N we define the classes Σt and Πt as follows. Both Σ0 and Π0 are the class
of quantifier free formulas; Σt+1 (resp. Πt+1) is the closure of Πt (resp. Σt) under
positive Boolean combinations and existential (resp. universal) quantification.
We use Σs

t and Πs
t to denote FOs ∩ Σt and FOs ∩ Πt respectively.

For a class of formulas Φ we consider the parameterized problem:

p-MC(Φ)
Instance: A sentence ϕ ∈ Φ and a structure A.

Parameter: |ϕ|.
Problem: A |= ϕ ?

It is well known [24] that for all s ∈ N the problem p-MC(FOs) is in FPT,
indeed, the underlying classical problem is in P.

Theorem 8. Let t ≥ 1 and s ≥ 2. Then p-MC(Σs
t ) is Tree[t]-complete.

Proof. The containment p-MC(Σs
t ) ∈ Tree[t] is straightforward. To show that

p-MC(Σ2
t) is hard for Tree[t], let (Q, κ) ∈ Tree[t] be given and choose a

computable f and a t-alternating machine B with f ◦κ jumps and f ◦κ bits that
accepts Q and runs in space f (κ(x)) + O(log |x|).

Given x ∈ {0, 1}∗ compute an upper bound s = f (κ(x)) + O(log |x|) on the
space needed by B on x; since κ is computable in logarithmic space, the number
f (κ(x)) and hence s can be computed in parameterized logarithmic space. We can
assume that B on x always halts after at mostm = 2f (κ(x)) ·|x|O(1) steps. Note that
the binary representation of m can be computed in parameterized logarithmic
space. For two space s configurations c, c′ of B on x, we say that B reaches c′

from c if there is a length ≤ m computation of B leading from c to c′ that neither
passes through a nondeterministic configuration nor through a configuration of
space > s. We assume B reaches a nondeterministic configuration from the initial
configuration, i.e. the computation of B on x is not deterministic.

We define a structure A whose universe A comprises all
(

length O(s) binary
codes of

)

nondeterministic space s configurations of B on x. The structure A
interprets a binary relation symbol E, unary function symbols s0, s1 and unary
relation symbols S, F, J∃, J∀, C∃, C∀ as follows. A pair (c, c′) ∈ A2 is in EA if



there exists a successor configuration c′′ of c such that B reaches c′ from c′′.
The symbol S is interpreted by SA = {cfirst} where cfirst is the (unique) first
configuration in A reached by B from the initial configuration of B on x. The
symbols J∃, J∀, C∃ and C∀ are interpreted by the sets of configurations in A
with states j∃, j∀, c∃ and c∀ respectively. Obviously these sets partition A. The
symbol F is interpreted by the set of those c ∈ A such that

– c ∈ CA

∃ ∪ JA

∃ and B reaches a space s accepting halting configuration from
at least one successor configuration of c.

– c ∈ CA

∀ ∪ JA

∀ and B reaches a space s accepting halting configuration from
all successor configurations of c.

The function symbols s0 and s1 are interpreted by any functions sA0 , sA1 : A → A
such that for every c ∈ CA

∃ ∪ CA

∀ with {d ∈ A | (c, d) ∈ EA} 6= ∅ we have:

{sA0 (c), sA1 (c)} = {d ∈ A | (c, d) ∈ EA}.

It is easy to check that A is implicitly pl-computable from x. For example,
to check whether a given pair (c, c′) ∈ A2 is in EA we simulate B starting from c
for at most m steps; if the simulation wants to visit a configuration of space > s
or a nondeterministic configuration 6= c′, then we stop the simulation and reject.

For a word w of length |w| ≥ 1 over the alphabet {j∃, j∀, c∃, c∀} we define
a formula ϕw(x) with (free or bound) variables x, y as follows. We proceed by
induction on |w|. If |w| = 1, define ϕw(x) := Fx. For |w| ≥ 1 define:

ϕc∀w(x) := C∀x ∧
(

ϕw(s0(x)) ∧ ϕw(s1(x))
)

,

ϕc∃w(x) := C∃x ∧
(

ϕw(s0(x)) ∨ ϕw(s1(x))
)

,

ϕj∃w(x) := J∃x ∧ ∃y
(

E(x, y) ∧ ∃x(x = y ∧ ϕw(x))
)

,

ϕj∀w(x) := J∀x ∧ ∀y
(

¬E(x, y) ∨ ∀x(¬x = y ∨ ϕw(x))
)

.

Let |w| ≥ 1 and assume that c ∈ A is a configuration such that every run of B
on x starting at c has nondeterminism type w; then (recall the definition of an
accepting configuration from page 6)

c is accepting ⇐⇒ A |= ϕw(c). (3)

This follows by a straightforward induction on |w|. Now we look for A′ and ϕ′
w

with this property but in a relational vocabulary.
By the Normalization Lemma 7 we can assume that all runs of B on x have

nondeterminism type w of the form (2). For such a w we observe that ϕw(x)
is in Σ2

t and all its atomic subformulas containing some function symbol are of
the form E(sb(x), y), J∃(sb(x)), or J∀(sb(x)). For b ∈ {0, 1} we introduce binary
relation symbols Eb and unary relation symbols J∀b and J∃b, and then replace the
atomic subformulas E(sb(x), y), J∃(sb(x)), J∀(sb(x)) in ϕw(x) by Eb(x, y), J∃b(x),
J∀b(x) respectively. This defines the formula ϕ′

w(x). Note that ϕ′
w(x) ∈ Σ2

t .
To define A′ we expand A setting EA

′

b := {(c, d) | (sAb (c), d) ∈ EA}, JA
′

∃b :=
{c | sAb (c) ∈ JA

∃ }, and JA
′

∀b := {c | sAb (c) ∈ JA

∀ }. Then we have for all c ∈ A:

A |= ϕw(c) ⇐⇒ A′ |= ϕ′
w(c).



As the assumption of (3) is satisfied for cfirst, and cfirst is accepting if and only if
B accepts x, that is, if and only if x ∈ Q, we get

x ∈ Q ⇐⇒ A′ |= ϕ′
w(cfirst)

Then x 7→
(

∃x(Sx ∧ ϕ′
w(x)),A′

)

is a reduction as desired. ✷

Now, the following are derived by standard means.

Corollary 9. Let t′ > t ≥ 1. If Tree[t] is closed under complementation, then
Tree[t′] = Tree[t].

Corollary 10. Let s ≥ 2. Then p-MC(FOs) is Tree[∗]-complete. In particular,
TREE[∗] ⊆ FPT.

Remark 11. It is not known whether PATH or TREE are closed under comple-
mentation (cf. [5]). Their classical counterparts NL and LOGCFL are (cf. [2]),
but both proofs break under the severe restrictions on nondeterminism in the
parameterized setting.

4 PATH and classical complexity theory

Savitch’s Theorem [22] is a milestone result linking nondeterministic space to
deterministic space. It states that the problem

Reachability
Instance: A directed graph G and two vertices s, t ∈ G.
Problem: Is there a (directed) path from s to t in G?

is in DSPACE(log2 n). It is a long-standing open problem whether this can be
improved. We prove the following stronger version of Theorem 1:

Theorem 12. Assume whether (G, s, t, k) ∈ p-Reachability can be decided
in deterministic space f (k) + O(log |G|) for a function f : N → N (which is not
necessarily computable). Then Reachability ∈ DSPACE

(

o(log2 n)
)

.

Proof. (Sketch) Let A be an algorithm deciding whether (G, s, t, k) ∈ p-Reacha-
bility in space f (k) +O(log |G|). We can assume that f (k) ≥ k for every k ∈ N.
Then let ι : N → N be nondecreasing and unbounded such that

f (ι(n)) ≤ logn, and hence ι(n) ≤ logn (4)

for all n ∈ N. Note that we might not know how to compute ι(n). Now let
G = (G,EG) be a directed graph, s, t ∈ G, n := |G|, and k ≥ 2. We compute in
space O(logk + logn) the minimum ℓ := ℓ(k) such that

kℓ ≥ n− 1, and hence ℓ = O(logn/ logk). (5)



We define a sequence of directed graphs (Gk
i )i≤ℓ with self-loops. Each Gk

i

has vertices Gk
i := G and a directed edge (u, v) ∈ EG

k

i if there is a directed path

from u to v in G of length at most ki. In particular, EG
k

0 is the reflexive closure
of EG; and by (5) there is a path from s to t in G if and only if there is an edge
from s to t in Gk

ℓ . Furthermore, for every i ∈ [ℓ] and u, v ∈ Gk
i = Gk

i−1 = G there

is an edge from u to v in Gk
i if and only if there is a path from u to v in Gk

i−1 of
length at most k. The following recursive algorithm C decides, given a directed

graph G, k, i ∈ N, and u, v ∈ G, whether (u, v) ∈ EG
k

i .

1. if i = 0 then output whether
(

u = v or (u, v) ∈ EG
)

and return

2. simulate A on
(

Gk
i−1, u, v, k

)

3. if A queries “(u′, v′) ∈ EG
k

i−1?” then call C(G, k, i−1, u′, v′).

For every k ≥ 2 let Ck be the algorithm which, given a directed graph G
and s, t ∈ G, first computes ℓ = ℓ(k) as in (5) and then simulates C(G, k, ℓ, s, t).
Thus, Ck decides whether there is a path from s to t in G. We analyse its
space complexity. First, the depth of the recursion tree is ℓ, as Ck recurses
on i = ℓ, ℓ − 1, . . . , 0. As usual, Ck has to maintain a stack of intermediate
configurations for the simulations of

A(Gk
ℓ , , , k),A(Gk

ℓ−1, , , k), . . . ,A(Gk
0 , , , k).

These are space f (k) + O(logn) configurations, so by (5) Ck runs in space

O
(

logk + logn + ℓ ·
(

f (k) + logn
)

)

= O
(

logk +
f (k) · logn + log2 n

logk

)

.

By (4) this is o(log2 n) for k := ι(n). We would thus be done if we could com-
pute ι(n), say, in space O(logn). In particular, this can be ensured under the
hypothesis para-L = PATH of Theorem 1 which allows to choose f space-
constructible. The general case needs some additional efforts. It can be han-
dled using the strategy underlying Levin’s optimal inverters [17, 8], namely to
simulate all C2,C3, . . . in a diagonal fashion. ✷

The trivial brute-force algorithm (cf. [5, Lemma 3.11]) decides p-MC(Σ2
1)

(

indeed, the whole p-MC(FO)
)

in spaceO
(

|ϕ|2·log |A|
)

. Assuming the optimality
of Savitch’s Theorem, this is space-optimal in the following sense:

Corollary 13. If Reachability /∈ DSPACE(o(log2 n)), then whether (ϕ,A) ∈
p-MC(Σ2

1) cannot be decided in deterministic space o
(

f (|ϕ|) · log |A|
)

for any f .

We close this section by characterizing the collapse of PATH to para-L sim-
ilarly as analogous characterizations of W[P] = FPT [3], or BPFPT = FPT [19].

Definition 14. Let c : N → N be a function. The class NL[c] contains all
classical problems Q that are accepted by some nondeterministic Turing machine
which uses c(|x|) many nondeterministic bits and runs in logarithmic space.

Theorem 15. para-L = PATH if and only if there exists a space-constructible
function c(n) = ω(log(n)) such that NL[c] = L.



5 Embedding Undirected Paths and Trees

As mentioned in the Introduction it is known that (see [5, Theorem 4.7]):

Proposition 16. p-DiPath is PATH-complete.

A straightforward but somewhat tedious argument shows:

Proposition 17. p-DiTree is TREE-complete.

The following two results determine the complexities of the undirected ver-
sions of these two problems. Somewhat surprisingly, the complexity of the former
drops to para-L while the latter stays TREE-complete:

Theorem 18. p-Path ∈ para-L.

Theorem 19. p-Tree is TREE-complete.

Theorem 18 answers a question posed in [5, Section 7]. Its proof is based on
the well-known color-coding technique. Specifically, we shall use the following
lemma from [11, page 349]:

Lemma 20. For every sufficiently large n ∈ N, it holds that for all k ≤ n and
for every k-element subset X of [n], there exists a prime p < k2 · logn and q < p
such that the function hp,q : [n] → {0, . . . , k2 − 1} given by hp,q(m) := (q · m
mod p) modk2 is injective on X.

Proof of Theorem 18. Let G =
(

[n], EG
)

be a graph and 0 < k < n. Assume n
is large enough for Lemma 20 to apply. Using its notation we set

F :=
{

g ◦ hp,q

∣

∣

∣
g : {0, . . . , (k + 1)2 − 1} → [k + 1] and q < p < (k + 1)2 logn

}

.

For f ∈ F let G(f ) be the graph obtained from G by deleting all edges
(u, v) ∈ EG with |f (u) − f (v)| 6= 1. By Lemma 20 one readily verifies that G
contains a path of length k if and only if there are f ∈ F and u, v ∈ [n] such
that f (u) = 1, f (v) = k + 1, and there is a path from u to v in G(f ).

To decide whether (G, k) ∈ p-Path we cycle through all tuples (g, p, q, u, v)
with g : {0, . . . , (k + 1)2 − 1} → [k + 1], q < p < (k + 1)2 logn, and u, v ∈ [n],
and test whether g(hp,q(u)) = 1, g(hp,q(v)) = k + 1, and there is a path from u
to v in G(g ◦hp,q). For every such test we simulate Reingold’s logarithmic space
algorithm [21] for Reachability on (undirected) graphs. The simulation relies
on the fact that G(g ◦ hp,q) is implicitly pl-computable from (g, p, q) and G. ✷
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