Lower Bounds for Kernelizations
Yijia Chen* Jorg Flum'

Shanghai Jiaotong University Albert-Ludwigs-Universiat Freiburg

Moritz Miller *
Albert-Ludwigs-Universiat Freiburg

Abstract

Among others, we show that every parameterized problem with a “linear OR” and with NP-hard underlying
classical problem does not have a polynomial reduction to itself that assigns to every insteitit@arametek
an instance with |y| = k2 . |z|1~¢ unless the polynomial hierarchy collapses to its third level (bdéseany
given real number greater than zero).

1. Introduction

Often, if a computationally hard problem must be solved in practice, one tries, in a preprocessing step, to reduce
the size of the input data. This approach has been widely studied and applied in parameterized complexity and it is
known askernelizationthere. We recall the basic concepts.

Parameterized complexity is a refinement of classical complexity theory, in which one measures the complexity
of an algorithm not only in terms of the total input lengthbut also takes into account other aspects of the input
codified as the parametkr Central to parameterized complexity theory is the notion of fixed-parameter tractability.

It relaxes the classical notion of tractability by allowing algorithms whose running time can be exponential but only

in terms of the parameter. This is based on the idea to choose the parameter in such a way that it can be assumed to
be small for the instances one is interested in. To be precise, a problem is saifixedbgarameter tractabli it

can be decided by dpt-algorithm that is, an algorithm whose running timefig) - p(n), wheref is an arbitrary
computable function anga polynomial.

A kernelizationK of a parameterized problem is a polynomial time algorithm that computes for every instance
x of the problem an equivalent instankgx) of a size bounded in terms &f (the parameter of the instanag.

This suggests a new method for designing fpt-algorithms: To decide a given instameecompute the kernel
K(x) and then decide iK(z) is a yes-instance by brute-force. The converse holds, too: Every fixed-parameter
tractable problem has a kernelization. The proof of this fact is easy; however it gives only a “trivial” kernel with no
algorithmic impact.

Besides efficient computability, an important quality of a good kernelizatismasll kernel sizeThe notion of
polynomial kernelizatioms an abstract model for small kernel size. A kernelizafiors polynomial if there is a
polynomialp such that for all instances (with parametek), the size ofK(x) is bounded by/(%).

Polynomial kernelizations are known for many parameterized problems (compare [12]). However, till recently,
besides artificial problems, only few natural problems were known to haymlynomial kernelization (one be-
ing the model-checking for monadic second-order logic on trees parameterized by the length of the second-order
formula). This has changed, since a machinery has been developed showing that no problem “having an OR” has
a polynomial kernelization unless the polynomial hierarchy collapses (cf. [4, 6]). Various applications of this ma-
chinery were given in [4, 6], in particular, in [6] it was shown that the problexn Sarameterized by the number
of propositional variables of the input formula has no polynomial kernelization.

In this paper we refine a central ingredient of this machinery to obtain better lower bounds. Applied to the SAT
problem we show:

*Email: yijia.chen@cs.sjtu.edu.cn
tEmail: joerg.flum@math.uni-freiburg.de
tEmail: moritz.mueller@math.uni-freiburg.de

Assume that the polynomial hierarchy does not collapse. Then for every there is no polynomial
time algorithm that for every instanee of SAT with & variables computes an equivalent instan¢e
with

o] < KOW - ot (1)

This result is a particular instance of a general theorem that yields lower bounds of the type in (1) for every problem
“having a linear OR” (compare Theorem 34 for the precise statement). For problems satisfying an apparently
weaker condition, namely only “having an OR for instances with constant parameter” we still get quite good lower
bounds; in case of & it would be:

| < KW - oo (2)

As already mentioned, concrete kernelizations yield algorithms for solving parameterized problems efficiently
for small parameter values. Conceptually similar are compression algorithms, even though the intention is slightly
different: the question is whether one can efficiently compress every “long” instantea problem@ with “a
short witness” to a shorter equivalent instant¢®f a problem@’ (here equivalent means thate @ if and only
if 2/ € Q). “Such compression enables to succinctly store instances until a future setting will allow solving them,
either via a technological or algorithmic breakthrough or simply until enough time has elapsed” (see [10]). By
suitably generalizing the notion of a kernelization of a parameterized problem to the notion of a kernelization from
some parameterized problem to another one, Forthow and Santhanam [6] introduce a framework which allows to
deal with kernelizations and compressions at the same time (in [6] a different terminology is used). Nevertheless
we stick to the traditional notion of kernelization as we mainly address problems of parameterized complexity.

More precisely, the content of the different sections is the following. After recalling some definitions and fixing
our notation in Section 2, we consider and analyze some basic questions concerning kernelizations in Section 3. In
particular, we shall see that “most” parameterized problems have a polynomial kernelization if and only if they are
self-compressible.

A kernelization isstrongif the parameter oK(z) is less than or equal to the parametercofit is known that
every parameterized problem that has a kernelization already has a strong kernelization. In Section 4 we derive a
general result (Corollary 13) that shows that parameterized problems satisfying certain conditions have no strong
polynomialkernelizations. As an application we get that the problexn Bas no strong polynomial kernelization
if P # NP and no strong subexponential kernelization if the exponential time hypothesis (ETH) holds.

In Section 5 we recall the results of Bodlaender et al. [4] and of Fortnow and Santhanam [6] relevant in our
context and give some new applications. Section 6 and Section 7 are devoted to the generalizations of these results
of type (1) and of type (2), respectively, already mentioned above.

2. Preliminaries

The set of natural numbers (that is, nonnegative integers) is denot®d Bjor a natural numben let [n] :=
{1,...,n}. By log n we mean[log n] if an integer is expected. Fer = 0 the term logn is undefined. We trust
the reader’'s common sense to interpret such terms reasonably.

We identify problems (or languages) with subs@tef {0,1}*. Clearly, as done mostly, we present concrete
problems in a verbal, hence uncodified form or as a set of strings over an arbitrary finite alphabet. We use both P
and PTIME to denote the class of proble@such thate € @ is solvable in polynomial time.

A reduction from a problend) to a problem?’ is a mappingR : {0, 1}* — {0, 1}* such that for alk: € {0, 1}*
we have(z € Q <= R(z) € Q'). We writeR : Q <P Q' if Ris a reduction from) to)’ computable in
polynomial time, and) <? @’ if there is a polynomial time reduction frofj to Q.

2.1. Parameterized Complexity. A parameterized problers a pair(Q, x) consisting of a classical problem
Q C {0, 1}* and aparameterization : {0,1}* — N, which is required to be polynomial time computable even if
the result is encoded in unary.
We introduce some parameterized problems, which will be used later, thereby exemplifying our way to represent
parameterized problems. We denoteph$AT the parameterized problem

p-SAT
Instance: A propositional formulax in conjunctive normal form.
Parameter: Number of variables of.
Question: Is « satisfiable?

By p-PATH andp-CLIQUE we denote the problems:

p-PATH
Instance: A graphG andk € N.
Parameter: k.
Question: DoesG have a path of length?

p-CLIQUE
Instance: A graphG andk € N.
Parameter: k.
Question: DoesG have a clique of siz&?

Similarly we definep-DOMINATING -SET. If C is a class of graphs, theaPATH (C) denotes the problem

p-PATH(C)
Instance: A graphG in C andk € N.
Parameter: k.
Question: DoesG have a path of length?

We use similar notations for other problems.

We recall the definitions of the classes FPT, EXPT, EPT and SUBEPT. A parameterized pf@blenis fixed-
parameter tractabléor, in FPT) ifz € Q is solvable in timef (x(x)) - || for some computablg : N — N. If
 can be chosen such thitk) = 2@ then(Q, k) is in EXPT. If f can be chosen such thftk) = 20,
then(Q, x) is in EPT. If f can be chosen such thatk) = 2o (¥ then(Q,) is in SUBEPT.

Here o®" denotes the effective version of little oh: For computable functifins: N — N we say thatf is
effectively little oh ofy and write f = 0°%(g) if there is acomputable nondecreasing and unbounded function
¢ : N — N such that for sufficiently large € N

(k)
v(k)

As usual we often writef (k) = 0% (g(k)) instead off = o (g).

Q

f(k) <

oy

At some places in this paper, it will be convenient to consfieparameterized problemthese are pair&?, «),
where agairnQ is a classical problem andis apreparametrizationthat is, an arbitrary function frorf0, 1}* to
the sefR>, of nonnegative real numbers.

3. Kernelizations

In this section we start by recalling the notion of kernelization and by introducing some refinements. We study
some basic properties of kernelizations and its relationship to the notion of compression.

Definition 1. Let (Q, k) be a parameterized problem afid N — N be a function. Anf-kernelizationfor (Q, x)
is a polynomial time algorithriK that on input: € {0, 1}* outputsK(z) € {0, 1}* such that

(e <= K(z)eQ) and [K(z)| < f(k(z)).
In particular,K is a polynomial time reduction fro to itself. If in addition for allz € {0,1}*

r(K(z)) < K(z),

thenK is astrong f-kernelization.
We say tha(Q,) has dinear, polynomial, subexponential, simply exponential, and exponential kernelization

if there is anf-kernelization for(Q,) with f(k) = O(k), f(k) = kW), f(k) = 2°™"®) f(k) = 20) and
F(k) = 287 respectively.
The following result is well-known:
Proposition 2. Let (@, k) be a parameterized problem with decidalj}e The following statements are equivalent.
(1) (Q, k) is fixed-parameter tractable.
(2) (Q, k) has anf-kernelization for some computabjfe
(3) (@, k) has a strongf-kernelization for some computabjfe

Furthermore, iff is computable and € @ is solvable in timef (x(z)) - |2|°™), then(Q, x) has a strongf-ker-
nelization.

The recent survey [9] contains examples of natural problems whose currently best known kernelizations are
polynomial, simply exponential and exponential.

We are mainly interested in polynomial kernelizations. First we show that the notions of polynomial kerneliza-
tion and of strong polynomial kernelization are distinct:

Proposition 3. There is a parameterized problgf@,) that has a polynomial kernelization but no strong polyno-
mial kernelization.

Proof: Let Q be a classical problem that is not solvable in ti2%!*)). We define a parameterized problé¢m «)
with P C {0,1}* x {1}* and withx((x, 1¥)) = k. By 1* we denote the string consisting bfmany 1s. For each
k € N we define thé:-projection P[k] := {z | (z,1*) € P} of P by:

—Ifk=20+1,then
Plk] = Q= (={z € Q| |z| = 1£}).

Hence, all elements iR[k] have length.

— If kK = 2¢, then ,
Plk] == {z1* |z € Q—¢},

wherez 12" is the concatenation of with the stringl2‘. Hence, all elements i[k] have length + 2°.

Intuitively, an element in the/-projection is an element in th@/ + 1)-projection padded with* many 1s. Itis
not hard to see thd? has a linear kernelization (which on the even projections increases the parameter).
We claim thatP has no strong polynomial kernelization. Assuiiés such a kernelization ande N such that

[K((z,1™))] <m®.

We useK to solvez € Q in time 2€(=D:
Letz be an instance df and let/ := |z|. We may assume that

(20)°¢ < 2°
(note that there are only finitely maaynot satisfying this inequality). We compute (in tid@(®)
(u, k) := K (212", 20)).

We know thatk < 2¢ and|u| < (2¢)¢ < 2°. If u does not have the length of the strings/ifk], then(u, k) ¢ P
and thereforer ¢ Q. In particular, this is the caseif= 2¢ (as|u| < 2%). If u has the length of the strings []
and hence: < 2/, then it is easy to read off from an instance with |y| < |z]and y € Q@ <= = € Q). We
then apply the same procedurejto]

Remark 4. Letc € N. Itis not hard to generalize the previous example and to show that there is a parameterized
problem with a polynomial kernelization but with no polynomial kernelizaffosatisfying for allz € {0,1}*

k(K(x)) < k(z)°.

The next result shows that a parameterized prol§l@m:) in FPT\EXPT with@ € NP cannot have polynomial
kernelizations. We show a little bit more. Recall that EXP is the class of classical pro@lesush thatr € @ is
solvable in deterministic timg/=1”"”.

Proposition 5. Assume that the proble(y), x) has a polynomial kernelization and th@te EXP. Then(Q, k) €
EXPT.

Proof: Let K be a polynomial kernelization ¢f,). As Q € EXP there is an algorithm solvingz € @ in time

20217 The algorithm that on: € {0, 1}* first computeK(x) and then applied to K(z) solvesz € @ in time
|2|OM) 4 2IK@I?Y = glr(@)]?M .|z 100), O

The model-checking of monadic second-order logic on the class of trees is in EXP. By a result of [8] the
corresponding parameterized problem with the length of the formula as parameter is\iERPT unless P= NP.
Hence, by the preceding proposition, it has no polynomial kernelization (unlessP).

In later sections, under some complexity-theoretic assumptions, we will present various examples of natural
problems that are in EPT and have no polynomial kernelization. Here we give a simple, artificial example without
polynomial kernelizations which holds unconditionally. Bodlaender et al. [4] claim the existence of a problem in
EPT without subexponential kernelizations.

Example 6. Let Q be a classical problem not in PTIME but solvable in tiégz|'°9 1*1). Let x be the parameteri-
zation mapping: to (log |z|)2. Then(Q,) € EPT, becausg®(®) = |z|°9 I=!,

For the sake of contradiction assume tf@ <) has a polynomial kernelizatidd. Then to decide it € Q it
suffices to decide iK(z) € Q. Since|[K(x)| = (log |z|)°™") this can be done in time

K ()| K@) < (log |z|)Ot0a sl < ologlog|e)®™ 5 100)

Thus@ € PTIME, a contradiction.

However, if we would allow kernelizations to have slightly superpolynomial running time, ¢ékery EPT
problem would have subexponential kernelizations:
Proposition 7. Let (Q, k) € EPTand: : N — N be a nondecreasing unbounded and computable funétitimen
there is algorithniK that for every instance of () outputs an instancK(z) in time

|| O @)

such that
(r€Q <= K(z)€Q) and IK(z)| = 290

To obtain this proposition we just refine the “standard” proof of the implication=- (2) of Proposition 2 and
show that every problem in EPT has arbitrarily small exponential kernelizations, that is, forzegeRythere is a
polynomial kernelization with kernels of size (1 4 £)"(*), even more:

Lemma 8. Let(Q, x) be a parameterized problem EPT. There is an algorithni that takes as inputs an instance
x of Q and/ € N and outputs an instandgz, ¢) of Q in time|z|°) such that

(xe€Q «— I(z,0) €Q) and [I(z, 0)| = 200=@)/¢,

Proof: We choose: € N and an algorithmi solvingz € @ is in time2° () . |2|9() Furthermore we fix:, € Q
andz_ ¢ Q. Then the following is the desired algorithm.

I(x,¢) [/l z aninstance of) and/ € N.

1. if |z| < 2%(®)/¢ then outputa.

2. elsesimulateA on x
/I the running time is bounded @y *(®) . |2|0() < |g|et+00),
3. if A acceptse then outputz elseoutputx_.

1To get a “slightly superpolynomial running time” we choose as “extremely slowly” growing function.

O

Proof of Proposition 7 We choose a polynomial time computable: N — N with v < . and setK(z) :=
I(x,v(k(x))), wherel is the algorithm of the preceding lemma. O

Next we show that the different degrees of kernelizability introduced in Definition 1 are indeed different.

Proposition 9. The classes of parameterized problems with a linear, a polynomial, a subexponential, a simply
exponential, and an exponential kernelization are pairwise different.

The claim immediately follows from the following lemma.

Lemma 10. Letg : N — N be nondecreasing and unbounded ghdN — N such thatf (k) < g(k — 1) for all
sufficiently largek. Then thereis & C {0, 1}* and a preparameterization such that @, <) has ag-kernelization
but no f-kernelization.

If in addition g is increasing and time-constructible, then we can chootebe a parameterization.

Proof: Let g andf be as in the statement. We chodgesuch thatf (k) < g(k — 1) for all k¥ > kq. We consider the
“inverse function”., of g given by

tg(m) :=min{s € N| g(s) > m}.

Then for alln € N
n < g(tg(n)) and ifeg(n) > 1,then g(y(n) — 1) < n. (3)

Let Q be a problem not in PTIME and define the parameterizatiby x(x) := ¢4(|z|). By the first inequality in
(3) the identity is g-kernelization of @,).
Assume that there is aftkernelizatiorK of (@, x). As ¢, is unbounded, we havg(|z|) > k¢ for sufficiently
longz € {0,1}*. Then
[K(z)| < f(r(2)) = Fg(|2])) < gleg(lz]) = 1) <a].

Thus applyingk at most|x| times we get an equivalent instance of length at nf¢sg). Therefore@ € PTIME,
a contradiction.

If g is increasing and time-constructible, thgris polynomial time computable and hencés a parameteriza-
tion. m]

Polynomial Kernelization and Compression. Most natural problemg) € NP have acanonicalrepresentation
of the form

re@ <= thereisy e {0,1}9® such tha(z,y) € Qo (4)

for some polynomial time computable functign: {0,1}* — N and some&?, € PTIME. In [3] the problem
(@, g) has been called theanonical parameterizatioof) (more precisely, one should speak of the canonical
parameterization induced by the representation (4))fClearly (Q, g) is fixed-parameter tractable, it is even in
EPT. If (Q, k) was a parameterized problem, thgh g) is called thecanonical reparameterizatioof (Q,).

The canonical reparameterizationBfSAT is p-SAT itself; the canonical reparameterizations of the problems
p-PATH, p-CLIQUE andp-DOMINATING - SET are the problemsni-PATH, uni-CLIQUE anduni-DOMINATING -SET,
respectively, where in the three cases, we haV€&', k)) = k - log |V|; hence in particular,

uni-PATH
Instance: A graphG = (V, E) andk € N.
Parameter: k-log|V].
Question: DoesG have a path of length?

Many fixed-parameter tractable problems, namely all in EXPT and hence, in particllarH, have a polyno-
mial kernelization if and only if their canonical reparameterizations have. This is shown by the following proposi-
tion.

Proposition 11. Let (Q, <) € EXPTand let(Q, g) be the canonical reparameterization @,). Assume thay
has the form
g(x) = k(z) - log h(z) with h(z) = 2|

andh(x) > 2 for sufficiently largex. Then

(Q, k) has a polynomial kernelization iff), g) has a polynomial kernelization.

Proof: Clearly, every polynomial kernelization ¢f), «) is a polynomial kernelization df@, g). Conversely, leK
be a polynomial kernelization dfy, g). Chooser, ¢ € N and an algorithm solvingz € Q in time 25(2)° ||,
We define a polynomial kernelizatid®' for (Q, x).

Fixzy € Qandz_ ¢ Q. (If Q is trivial, that is,Q = 0 or Q = {0,1}*, we letK’ always output the empty
string.) Letz € {0,1}*. If (z) < (log |z|)'/¢, the algorithmA on inputz needs at mosiz|<+! steps. In
this case we leK’(z) bex, or z_ according to the answer @f. Otherwisex(z)¢ > log |z|. Then|K(z)| =
(k(z) -log h(z))°M) = (k(z) - log |z|)°M) = k(z)°(M), so we can sek/ () := K(z). i

The reader familiar with [10] will realize that this result shows that any parameterized pro®lem in EXPT
has a polynomial kernelization if and only if the problépris self-compressible.

4. Excluding strong kernelizations

In this section we exemplify how self-reducibility can be used to rulestraing polynomial kernelizations. This
method is very simple and works under the assumption thatIRP. We use it to give two natural examples of
problems in EPT that do not hag&rongpolynomial kernelizations.

We will revisit these examples in section 5. There we will see that these problems do not even have polynomial
kernelizations using the stronger assumption that the polynomial hierarchy does not collapse to its third level.

Lemma 12. Let(Q, k) be a parameterized problem and assume that the Oth@{6¢ := {z € Q | k(z) = 0} is
in PTIME. If there is a polynomial (subexponential) kernelizatirsuch that for allz ¢ Q(0)

k(K(x)) < k(z), (5)
then@ € PTIME ((Q, x) € SUBEPT,.

Proof: Let K be a kernelization satisfying (5). The following algorithindecides@ (using a polynomial time
decision procedur® for Q(0)). Given an instance of @, the algorithmA computesK(z), K(K(x)),...; by (5)
after at mosk(z) steps we obtain an instangawith x(y) = 0; hence(x € Q@ < y € Q(0)); now A simulates
Bony.

If Kwas a polynomial kernelization, sal{(x)| < x(z)¢, then, again by (5), all gK(K(z))|, K(K(K(z)))], ...
are bounded by (z)¢. Recall that parameterizations are computable in polynomial time even if the result is encoded
in unary. Hences:(x) = |2|°(). It follows thatA runs in polynomial time.

If K was a subexponential kernelization, si(z)| < 2%()/«(=(=)) with computable, nondecreasing and
unbounded andK(z) is computable in timéxz|?, then to compute the equivalent instancalgorithmA needs at
most

[4+ 2 R(E@)/1(()) | 9 () 1) i) =1) 4 9 (s(2)=2)1(s(2)=2) 4 4 gd1/u(1))

many steps. As we can assume that the funcfier j/.(j) is increasing, this number of steps is bounded by
|z|? 4 k(x) - 2¢#@)/1x(2) which shows thatQ, k) € SUBEPT. O

Corollary 13. Let (Q, x) be a parameterized problem with(0) € PTIME. Assume that there is a polynomial
reductionR from @ to itself which iparameter decreasintpat is, for allz ¢ Q(0),

k(R(x)) < k().

— If (@, k) has a strong polynomial kernelization, thenc PTIME.
— If (@, k) has a strong subexponential kernelization, tfi€nx) € SUBEPT

Proof: Let R be as in the statement and Etbe a strong polynomial (subexponential) kernelizatiof @f).
Then the compositiofk o R, that is, the mapping — K(R(z)), is a polynomial (subexponential) kernelization of
(Q, k) satisfying (5); hence, by the previous lemma, we@et PTIME (Q € SUBEPT). |

Examples 14. The classical problems underlying
p-SAT and p-POINTED-PATH

have parameter-decreasing polynomial reductions to themselves, where

p-POINTED-PATH
Instance: A graphG = (V, E), avertexv € V, andk € N.
Parameter: k.
Question: DoesG have a path of length starting at?

Proof: p-SAT: We define a parameter-decreasing polynomial redu@tiétom p-SAT to itself as follows: Letx be
a CNF formula. Ifa has no variables, we s&(«a) := «. Otherwise letX be the first variable im.. We let R(«)

be a formula in CNF equivalent to
TRUE FALSE

(OéT V X),
where, for exampley ™= is the formula obtained from by replacingX by TRUE everywhere. Clearlyz(«) can
be computed frona in polynomial time.

p-POINTED-PATH: We define a parameter-decreasing polynomial redudtiétom p-POINTED-PATH to itself
as follows: Let(G, v, k) be an instance qgf-POINTED-PATH and assumé > 3. For any pathP : v, vy (P), va(P)
of length2 starting fromw let G p be the graph obtained froi by deleting the two vertices, v, (P) (and all the
edges incident with one of these vertices). Hebe the graph obtained from the disjoint union of all the gra@lhs
(whereP ranges over all paths of length 2 startinginby adding a new vertex and all edgegw, v2(P)}. Then
H has a path of lengttk — 1) starting atw if and only if G has a path of length starting atv. Hence we can set
R((G,v,k)) := (H,w,k —1). a

Corollary 15. (1) If P # NP, thenp-SAT has no strong polynomial kernelization.
(2) If ETH holds, therp-SAT has no strong subexponential kernelization.
(3) If P £ NP, thenp-POINTED-PATH has no strong polynomial kernelization.
(4) If ETH holds, therp-PoINTED-PATH has no strong subexponential kernelization.
Proof: Part (1) and (3) are immediate by Corollary 13. Moreover, we know by this corollary that if one of the two

problems has a strong subexponential kernelization, then it is in SUBEPT. However then ETH would fail in the
case ofp-SAT by [11] and in the case af-POINTED-PATH by [2]. |

5. Excluding polynomial kernelizations

The following type of reductions that preserve polynomial kernels was introduced in [6] (based on a notion of [10])
under the nameW -reductions.”

Definition 16. Let (Q, x) and(Q’, ') be parameterized problems.palynomial reductiorirom (Q, k) to (Q’, k')
is a polynomial reductio® from @ to Q’ such that

K (R(x)) = k(z)°W.

We then writeR : (Q, k) <P (Q’,). FurthermordQ, x) <? (@', x’) means that there is a polynomial reduction
from (@,) to (Q’, k).

Example 17. uni-PATH <P p-SAT.

Proof: Let (G, k) with G = (V, E) be an instance afini-PaTH. We may assume that = [0,n — 1] and (by

adding isolated points if necessary) that a power of 2. We will assign t6&, k) a formula« in CNF containing
variablesX; ; with s € [log n] andi € [k] with the intended meaning “theth bit of theith vertex of a path of

lengthk is 1.” Fori,j € [k], i # j one has to express by a clause that the selected verti¢dsarsd jth point of
the path are distinct and fére [k — 1] that theith and the(i + 1)th selected vertices are related by an edge. For
example the second one may be expressed by letting be forewelly — 1] and everyu,v € V with {u,v} ¢ F

Ve xBe,
s€(log n] s€[log n]
a clause ofa, where bifs,) denotes thesth bit in the binary representation af of length log » and where
X' := X andX? := - X for every variableX.
Then G has a path of lengtlk if and only if « is satisfiable. Asx hask - log |V| variables, the mapping
(G, k) — «is a polynomial reduction. O

Example 18 ([10]). p-SAT <P uni-DOMINATING-SET.
Polynomial reductions preserve polynomial kernelizations in the following sense:
Lemma 19. Let(Q, x) and (Q’, ') be parameterized problems. with

(Q,r) <P (Qr') and Q" <P Q.
If (@', k") has a polynomial kernelization, thé@,) has a polynomial kernelization.
Note thatQ’ <P @ is always satisfied for NP-complete proble@sand(Q’.

Proof of Lemma 19Let R : (Q,) <P (Q',«') andS : Q' <P Q. Assume thaK is a polynomial kernelization for
(Q',«'). ThenS o K o R is a polynomial kernelization fofQ, «), as for allz € {0,1}*

IS(K(R()))| = [K(R(x))|?") = &' (R(2))°") = k(2)°V).
O

In order to exclude polynomial kernelizations using the previous lemma one needs a primal problem without
a polynomial kernelization. A central ingredient needed to obtain such problems was provided by Fortnow and
Santhanam [6]. It is contained in the following theorem.

Definition 20 ([4]). Let Q, Q" C {0,1}* be classical problems. distillation from @ in Q' is a polynomial time
algorithmD that receives as inputs finite sequenges (z1,...,2:) with z; € {0,1}* for i € [t] and outputs a
stringD(z) € {0,1}* such that

_ o
(1) ID(3)| = (maxep) ”;
(2) D(z) € @' ifand only if for somei € [t] : z; € Q.
If Q" = Q we speak of aelf-distillation We say thaty has a distillationif there is a distillation fromQ in Q’ for
someQ’.

“Self-distillations” without property (1) has been called QRinctions in [1]. Their importance for classical
complexity has been studied in various papers (see [1] and its references). Every NP-complete @robkean
OR,, function: Take a polynomial time reduction of the probléfm;, ..., z;:) | t € Nandx; € Q for some: € [t]}
to Q. However:

Theorem 21 ([6]). No NP-hard problem has a distillation unle®H = ¥ (that is, unless the polynomial hierar-
chyPH collapses to its third leveLR).

To see how this result (and the polynomial reductions) can be used to exclude polynomial kernelizations we
include applications from [4] and [6].

Corollary 22 ([4]). p-PaTH has no polynomial kernelization unleBsi = Xf.

Proof: We assume that-PATH has a polynomial kernelizatidd and show that then the (classical) problenTi®
has a self-distillation to itself. In fact, I€G'1, k1), ..., (G, k;) be instances of A H. Letk := 1 + 2 - maxep k.
Let: € [t]. By adding toG; a path of lengthk — k; — 1 with one endpoint connected to all vertices@f we
obtain a graplG’; such that the instandgz’, k) of p-Path is equivalent t¢G;, k;). Let G be the disjoint union of
all the graphs,. Clearly, G has a path of lengtk if and only if there exists an € [t] such that& has a path
of lengthk and hence, if and only if there exists are [t] such thatG; has a path of length; As |K((G, k))| is
polynomially bounded ik and hence in max||(G;, k)|, the mappind Gy, k1), ..., (G, k) — K((G, k)) is a
self-distillation of RATH. a

Corollary 23 ([6]). The problems
p-SAT and uniDOMINATING-SET

have no polynomial kernelization unleRsl = XF.

Proof: Assume PH# YF. By the previous corollary we know thatPATH has no polynomial kernelization. Hence,
asp-PATH € EPT, its canonical reparametrizationi-PATH has no polynomial kernelization by Proposition 11.
The claims follow from Examples 17 and 18 by Lemma 19. |

The proof of Corollary 22 consists of two parts. L€, k1),..., (G, k) and(G, k) be as there. In the first
part we show tha® with O((G1, k1), ..., (G, kt)) := (G, k) is an OR forp-PATH in the sense of the following
definition.

Definition 24. Let (Q, x) be a parameterized problem. &R for(Q, x) is a polynomial time algorithr® that for
every finite tuplez = (x4, ..., z;) of instances of) outputs an instand®(z) of @ such that
(1) #5(0(2)) = (Maxepy |z:])°;
(2) O(z) € Q if and only if for somei € [t]: x; € Q.
The second part of the proof of Corollary 22 shows the following lemma (there the argument is presented for
(Q, k) := p-PATH).
Lemma 25. Assume thatQ, <) has anOR © and a polynomial kernelizatioK. ThenD with

D(xy,...,2¢) == KO((z1, ..., 2¢))

is a self-distillation of@.

Hence by Theorem 21:

Corollary 26. Assume that@,) has anOR O and that@ is NP-hard. Then(Q,) has no polynomial kerneliza-
tion unlessPH = xF.

Perhaps the reader might object that the proof of Corollary 22 is algorithmically not convincing, as the OR
function used in the first part essentially yields the disjoint union of given graphs, while probably any reasonable
algorithm for determining whether a graph has a path of a given length will first compute its connected components
and then check these components for such a path. Hence the question arises whether the path problem for the class
of connectedyraphs has a polynomial kernelization. We deny this, we even show that the path problem for the class
PLAN-CONN of planar connected graphs has no polynomial kernelization:

Proposition 27. p-PATH(PLAN-CONN) has no polynomial kernelization unleBsl = XF.
To show this claim we show in a first step:
Lemma 28. p-POINTED-PATH(PLAN-CONN) has no polynomial kernelization unleBsl = 3F.
Proof: We showp-PoINTED-PATH(PLAN-CONN) has an OR (then our claim follows from Corollary 26). Let
(G1,v1,k1) ..., (G, v, ki) be instances of the problem. First let us assume that for évery], we take a drawing

of G;2 such that; lies on the boundary of its outer face. Let= maxc(, k;. By adding to evenyw; a path of
lengthk — k; starting inv; and ending in a vertex; we obtain an equivalent instan¢é’, v, k). Let G be the

planar and connected graph obtained from the disjoint union affeéy adding a new vertexand edges from
to all vj. It is easy to verify that

G has a path of length + 1 starting at
<= there exists an € [t] such thai7; has a path of length starting at;.

Hence we can sé((G1,v1, k1) ..., (Ge,ve, k) := (G, v,k + 1). ad

Proof of Proposition 27\We show that there is a polynomial reduction froaPOINTED-PATH(PLAN-CONN) to
p-PATH(PLAN-CONN). Then our claim follows from the previous lemma by Lemma 19.

2Note that we actually do not need to compute the drawingoflt is only needed to show that the graghwe construct is planar.

10

Let (G, v, k) be an instance gf-POINTED-PATH(PLAN-CONN). Using the connectedness Gfone easily
verifies:

if G contains a path of lengt2% — 1, thenG contains a path of length starting at. (6)

We add toG in v a pathP of lengthk — 1 of new vertices, thereby obtaining the planar and connected graph
G'. We show that
(G, v, k) € p-POINTED-PATH(PLAN-CONN)
<= (G',2k — 1) € p-PATH(PLAN-CONN).
Then(G,v, k) — (G’,2k — 1) is the desired reduction.
Assume first tha€? has a path of length starting a. Clearly, then’ has a path of lengtbk — 1. Conversely,
let P’ be a path of lengtRk — 1 in G’. If v is a vertex ofP’, then the vertices o’ contained inG constitute a

path of G of length at leask starting atw. If v is not a vertex of?’, thenP’ is a path inG and by (6) the graply
contains a path of length starting at. |

We know that no NP-hard problem has a self-distillation (unless=PHE). Clearly each problem in PTIME
has a self-distillation.
Proposition 29. If NE # E, then there is a problem iNP\ P that has a self-distillation.

By E and NE we denote the class of probleghsuch that: € () is solvable by a deterministic algorithm and a
nondeterministic algorithm, respectively, in tir@(=)),

Proof of Proposition 29 Let @y C {0,1}* be a language in NE E. We assume that each yes instanc&)ef
starts with a 1, and can thus be viewed as a natural number in binarya EoN let bin(n) denote its binary
representation. We set

Q = {1” | bln(n) € Q()} .
Itis easy to see th& < NP\ P. Now letQ’ be the “OR-closure” ofy, that is

Q' = {(x1,...,7y) | m>1andz; € Q for somei € [m]} .

Again it is easy to see th&)’ € NP\ P. We claim that)’ has a self-distillation.
Let (z11,..., Z1my)s-- -, (@41, .., Tem,) DE @ sequence of instances@f. We can assume that all; are
sequences of 1s (otherwise we simply ignore those which are noty lhethe maximal length of the;;. Then

{Z11, Zimyy o Tty oo Ty b = {Y15 - Yg)

for someg < n. Thus(ys, ..., y,) has lengthO(n?). Clearly(y1, ..., y,) isin Q" if and only if (z;1, ..., zim,) €
Q' for somei € [t]. U

6. Strong lower bounds

In this section and the next one, by a careful analysis of the proof of Theorem 21, we obtain improvements, which
yield better lower bounds for kernelizations. In particular for the path problem we will show:

Theorem 30. Lete > 0 and assum®@H # X}. Then there isopolynomial reduction fronPATH to itself computing
for each instancé€G, k) of PATH an instancqG’, k') with

IG"[| = KOO - GJIte.

We define:

Definition 31. Lete > 0. A parameterized problefd),) has are self-reductiorif there is a polynomial reduction
from @ to itself that assigns to every instancef () an instance with

lyl = w(2)OD - fz]' .

Note that it is not required that the parametey & bounded in terms of the parameternof

11

Clearly, if (@, k) has a polynomial kernelization, th€f),) has anc self-reduction for every > 0. Now
we can rephrase Theorem 30 by saying that, unless-PEE, for everye > 0 the problenp-PATH has noe self-
reduction. This result will be a special instance of a more general result stating similar lower bounds for problems
with a linear OR.

Definition 32. Let (@, k) be a parameterized problem. likear OR for(Q,) is a polynomial time algorithn@)
that for every finite tuple = (z1, ..., z;) of instances of) outputs an instanc®(z) of @ such that

1) |0(z)| =t- (ma&qt]moou);

(2) k(O(z)) = (maxie[t]|177:|)o(1);

(3) O(z) € Q ifand only if for somei € [t]: z; € Q.
Hence a linear OR is an OR with the additional property (1).
Examples 33.(a) The parameterized problemdPATH andp-POINTED-PATH(PLAN-CONN) have a linear OR.
In fact, the ORs defined in the proofs of Corollary 22 and of Lemma 28 are linear ones.
(b) The parameterized problepaSAT has a linear OR.
Proof: We define a linear OR). Letay, ..., a; be CNF formulas, sayy; a formula withn,; variables. We set

n = Max%cyn; and m = maXey|al.

We may assume that all; have variables if X, ..., X,,} and that log is a natural number (if is not a power of
two we duplicate one of the formulas for an appropriate number of times).

If t > 27, the algorithmO proves whether one of the;s is satisfiable (by systematically checking all assign-
ments) and outputs a CNF formulx«;, . . ., o) satisfying condition (3) of the preceding definition.

Assumet < 2". We introduce log new variables, .. ., Yioq. Fori € [t] we set
B; = /\ Ysbit(m)
s€(log t]

(recall that bits, i) denotes theth bit in the binary representation 6aind thatX! = X and X° = - X for every
variable X).
We bring each(3; — «;) into conjunctive normal form: Assume; = A,\/, Ae with literals Ay, then

(B; — «;) is equivalent to
Yi = /\ (\/ Ysl_bit(s’i) V \/)\[@/),
£ sellogt] o

We lety be the CNF formulay := /\ie[t] ~vi. We setO(ay, ..., qq) := 7.

ClearlyQ is computable in polynomial time. Furthermore, by construction the for@a, . . ., a;) is equiv-
alent to/\ie[t] (B; — ;). Because any assignmentY®, .. ., Yoy Satisfies exactly one of thgs, the formula
O(a, ..., aq) is satisfiable if and only if there is ane [¢] such thaty; is satisfiable; hence condition (3) of Defini-
tion 32 is satisfied . Furthermor®, also satisfies the conditions (1) and (2). For (2) note 4haésn + log ¢ vari-
ables. By our assumption enwe haven—+log ¢ < 2n < 2m. For (1) note that each has lengttO(m-(m+log t))

and henceQ(ay, . .., o) has lengttO(m?). O
(c) The parameterized problemmi-CLIQUE has a linear OR.
Proof: Let(G1, k1), . ., (G, kt) be instances afni-CLIQUE. Of course, we can assume that< |V;|, whereV is

the set of vertices af;. Letk := maxc |, k;. By adding a clique ok —k; new vertices t@~; and connecting all new
vertices to all old vertices ifV; we can pass to an instan@@;, k) equivalent ta G;, k;). Letm := maxepq|V;/| (<
2-maxe(y|Vil).

If t > 2™, by exhaustive search the algorittiinchecks whether one of th&,s has a clique of sizg; if this is
the case) outputs(G;, k;) for such a&;, and otherwise it outputs, sayi1, k1).

Assume that < 2™. We setO((G1, k1), ..., (Gt k) := (G, k), whereG denotes the disjoint union of the
graphsG.. Clearly,O is computable in polynomial time and condition (3) is satisfied. For condition (1) note that
we have for the sel’ of vertices ofG the inequality|V'| < ¢t - m. The parameter dD((G1, k1), .., (Gt, kt)) is
k-log|V| <k-log(t-m) <k-(m+logm) = O(m?).]

12

(d) The parameterized probleumi-DOMINATING -SET has a linear OR.

Proof: Let (G, k1), ..., (G4, kt) be instances afini-DOMINATING -SET. Letk := maxck;. By addingk — k;
isolated vertices, we can pass to equivalent instaf@ésk), . . ., (G}, k). LetG} = (V/, E!). We may assume that
t > k and that the vertex sel§’ are pairwise disjoint.

If £ > 2™, wherem := max;|V/|, the algorithmO checks by exhaustive search whether one oftfehas
a dominating set of sizk; if so O outputs(G;, k;) for such aG’; and otherwise it outputs=, k7).

Assume that < 2™. Fori € [t]andj € [0, k] := {0,1,...,k} letV/(j) be a copy ofV/, say,

Vi(g) = {(v.j) [v eV}

Let G = (V, E) be the graph with vertex set

V= {J {s(s0)sy v U VG
s€[log t] i€[t],5€[0,k]
The edge seF contains
— edges that makés(—), s(0), s(1)} a clique fors € [log ¢];
— for s € [log t] andi € [t] edges froms(1) to all vertices inV;/(0) if bit(s,7) = 0 and edges from(0) to all
vertices inV;(0) if bit (s, i) = 1;
— fori,i' € [t],v e V/, we V), andj, j' € [0, k] the edge{(v, j), (w, j')} if
—i#dandj =35>0 or
—i=17and{v,w} € E; or
—i=1,7+# 7 andv = w.
We claim that

G,k +logt) € uni-DOMINATING-SET <= thereis an ¢ [t]: (G}, k) € uni-DOMINATING -SET. 7
g i

For the backward direction assume fof [¢] that{vy, ..., v} is @ dominating set id’;. Then

{(v1,1),..., (vi, k) } U {s(bit(s,7)) | s € [logt]}

is a dominating set ofs.

For the forward direction leX be a dominating set af of sizek + log ¢. Fors € [log t] in order to dominate
the points(—) we see that at least one point of the cliqué—), s(0), s(1)} has to be contained iX .

Clearly, ask < t, there is anj € [¢] such that

xn | viG)=o.

J€[0,k]

For j € [k] (in particularj # 0), in order to dominate the elementsidf (), the setX must contain an element of
the form(v;, j) with v; € V/ for somei; # io. Moreover, asY only containst + log ¢ elements, the vertex;
(and hence;) are uniquely determined by Then it is not hard to see that the §et | j € [k] andi; = i1} isa
dominating set irG;, . This finishes the proof of the equivalence (7).

We setO((G1, k1), - -, (G, ki) == (G, k). ThatO also satisfies condition (2) of a linear OR is shown as in
the case ofini-CLIQUE.]

(e) The problenalphaLCS has a linear OR. Headpha LCS denotes the canonical parameterization of the longest
common subsequence problem:

alphaLCS
Instance: An alphabet, stringsXy,..., X, € ¥*, andm € N.
Parameter: m -log |X|.
Question: Is there a common subsequenceXaf, . . ., X, of lengthm?

13

Proof: Let (X1, X11,..., X10,,m1) ... (B¢, X1, - - ., X4e,, m¢) be instances ddlpha-LCS. We can assume that
¢y =--- ={, = £ (by repeating a sequence if necessary) andithat= - - - = m; = m (by addingc;"~ "™ to each
X,; for some new lettee;). Moreover we can assume that the alphabgtare disjoint. Now we consider the
strings overx; U...U Y,

X11X21...Xt1, X12X22...Xt2, Xl[XQ[...Xte

and the stringXy; X(;_1)1 - - - X11-
One easily verifies that the$é+ 1) strings have a common subsequence of lengthand only if for some €

[t] the stringsX1, . . ., X,¢, have one (for the forward direction note that a common subsequeiég &f; ... X4y
and X1 X ;1) ... X11 is a sequence ovel; for somei € [t]). Now, if £ > maxc[4|X;|™ we determine the value
of O by exhaustive search and otherwise, we use the set of strings just constructed. |

Even though we could add further examples of parameterized problems with a linear OR, there are also many
problems where we do not know whether they have a linear OR. We just mention one example, the problem
uni-RED/BLUE-NONBLOCKER, the canonical reparametrization of the problefRED/BLUE-NONBLOCKER.

As we have seen thatPATH has a linear OR, Theorem 30 follows from:

Theorem 34. Lete > 0. Let(Q, k) be a parameterized problem with a line@R and withNP-hard). Unless
PH = 3F, the problem @,) has nos self-reduction.

As we have seen thatPATH has a linear OR, Theorem 30 is a special instance of Theorem 34. It will be
convenient to reformulate Theorem 34. For this purpose we need some further notions.

Definition 35. A function f : N — R> is pseudo-lineaif there is some: € N and some € R with € > 0 such
that for allt € N
ft) <c-t'=.

The property that we need of pseudo-linear functions is contained in the following lemma. It is easy to prove.

Lemma 36. Lete > 0 and f : N — R>(be a pseudo-linear function. Then for everg N there exists & € N
such that for sufficiently large we have
f(n?) -n°4+1<nd

Remark 37. As f will determine the lower bound stated in Theorem 34, it is worthwhile to note that a weak
converse of the above lemma holds: Ifetatisfy the conclusion of Lemma 36. Then there is seme0 such that
f(t) < tt== for infinitely manyt.
To see this writef (¢) = t9() for someg. Then forc = 1 there arel, ng € N such thatd9(") < nd=1 for all
n > ng. Thusg(t) < 1—1/d,i.e. f(t) <t'=V4 fort = nd, (ng +1)%, (no +2)%.

For a parameterized problef®, «), a constant € N, and a functioryf : N — R consider the preparameter-
ized problem

(Q, 5 x f)
Instance: z € {0,1}*.
Parameter: x(x)¢- f(|z|).
Question: z € Q?

Theorem 34 follows from:

Lemma 38. Letc € Nand f : N — Rx(be pseudo-linear. Lgt,) be a parameterized problem with a linear
ORand withNP-hard Q. Then(Q, ¢ x f) has no linear kernelization, unle®H = 3F.

We prove this lemma by generalizing Theorem 21.

Definition 39. Let Q,Q" C {0,1}* be classical problems and I¢t: N — R be a function. Alinear f-
distillation from@ in Q' is a polynomial time algorithrid that receives as inputs finite sequenges (z1, ..., z)
with z; € {0,1}* for i € [¢] and outputs a strin§(z) € {0, 1}* such that

(1) ID@)[= f(t)- (maxie[t]\xiDO(l);
(2) D(z) € Q' ifand only if for somei € [t] : z; € Q.

14

We say that) has a linearf-distillation if there is a linearf-distillation fromQ in Q’ for some problent)’.
Lemma 40. Let f : N — Rxq be pseudo-linear. NbIP-hard problem has a lineaf-distillation unlessPH = £,

Proof: Let f : N — R>(be pseudo-linear an@ C {0, 1}* be NP-hard. Assume thatis an f-distillation from@Q
in some problen®)’. We choose a constante N such that

D@)| < £(t) - (maxeiled) ®)

for all t € N and all sequencesof ¢ instances of).

Let@ := {0,1}*\ Q be the complement @ and similarlyQ’ the complement of)’. ClearlyQ is coNP-hard.
We show that) € NP/poly and hence, coNE NP/poly. This yields our claim, as then PH Xf by a result of
Yap [13, Theorem 2]. Note that for all = (x4, ..., x;) we have

D(z) € Q) +— forallie[t]: x; € Q.)
To proveQ € NP/pon it suffices to show that for sufficiently largec N there is & = n°(") and a sefS of
strings with||S|| := 3" ¢ |z| = n°(M such that for alk € {0,1}"
r€Q < Fry,...,7, €{0,1}": (x € {x1,...,z}andD(xy,...,z) € S).

In other words,S can be viewed as a polynomial size advice string for instances of lengls we will see, the
elements of5 are strings irnR)’, more precisely, we will chooge-values “with many preimages.”

For everym € N, we have {0,1}=™| < 2™+ in particular,
{0, 1}§f(m)'nc‘ < 9f(m)n+1 (10)
As f is pseudo-linear, by Lemma 36 there is a constantN such that for all sufficiently large € N

fot) weet g "

Forn > 1 we set
d

t:=n".

Then (10) and (11) imply fo¥ := Q" N {0, 1}</®)"" that

Y|V <. (12)
Recall that)_,, :== Q N {0,1}". By (8) we can define a function: (Q_,,)* — Y by

9(z) = D(a).
We construct the advice strirf§jinductively. First we letX, := @Q_,,. Choosey, € Y such that

97 yo) = {7 € X5 | 9(&) = w0}

contains at leagtXy|/|Y'| many tuples. Lestring(¢~(yo)) be the set components of tuplesgin®(y), that is,

string(g ™" (vo)) := {z € X, | there exists somery, ..., z;) € g~ (yo) such thatr € {z1,...,2:}}.

It follows thatg ! (yo) C (string(g*l(yo)))t and hence

1/t
Xo|t) " Xl
- 2 b

Istring(g ™" (vo)| > g~ (40)|/* > (ly

the last inequality holding by (12). K, # string(g—*(yo)), then letX; := X \ string(g~!(yo)). Now, we view
g as a function ofX; to Y and, by the same argument as above, we chgoseY such thafstring(¢—*(y1))| >
| X1|/2. We iterate this process until we reach the first N with X, = string(g—* (y,)). We let

S :={yo,...,ye}

15

ThenS C Y C Q" and|S| = ¢ < log | Xo| < n and thus|S|| < n - f(¢) - n¢ < ndtl (by (11)). Hence|S|| is
polynomially bounded im.

We show the equivalence (10). Let {0,1}". If x € Q, by our construction of, there is a tupl& containing
x as a component such thgiz) = D(z) € S.

Conversely, assume¢ Q. Then for everys := (zy,...,2¢) Withzy,..., 2, € {0,1}" andz € {z1,..., 7},
we have, by (9), thab(z) ¢ Q' and henc®(z) ¢ S C Q'. O

Proof of Lemma 38Let c € N andf be pseudo-linear, saf(t) = O(t'~¢). Assume thatQ,) is a parameterized
problem with a linear ORD and NP-hard). AssumeXf # PH. For the sake of contradiction assume that
(Q, k° x f) has alinear kernelizatid. By Lemma 40 it suffices to show th@t has a lineayf-distillation D.

We defineD on finite sequences = (z1,...,z:) by

D(z) := K(O(z)).

Itis clear that
D(z) € Q < forsomei € [t] : =z; € Q.

Write n := maxc |z;|. Then, becausK is a linear kernelization fofQ, ¢ x f),
D(@)] = O(k(0@)° - F(I0(@)])) = OO - [0(@)]'~*) = nOD - |0()[**,

where the second equality follow from Definition 32 (2). Now, by Definition 32 (1) we k{@@)| = ¢ - n®).
Hence|D(z)| = t'—¢ - n°() and thereford is a linearf-distillation fromQ in itself. 0

In particular the problems mentioned in Examples 33 do not havesatf-reduction unless PH Xf.

7. Lower bounds for problems with an OR for instances with constant parameter

We consider the parameterized problem

p-CYCLE
Instance: A graphG andk € N.
Parameter: k.
Question: DoesG have a cycle of length?

Let (G1,k1), ..., (G4, ki) be instances of-CYCLE. If k; = ... = k; =: k, then for the disjoint unioriz of the
G;s we havgG, k) € p-CycLE if and only if (G;, k;) € p-CyCLE for somei € [t]. However, it is not clear how
to define such an instan¢&, k) if k1,. .., k; are distinct, more precisely, we do not know whethe€yCLE has
an OR. The following concept is tailored for such situations.

Definition 41. Let(Q,) be a parameterized problem and)dde a further parameterization. AR for \-constant
instances of @, x) is a polynomial time algorithn® that for every finite tuplec = (x4, ..., z;) of instances of)
with A(z1) = ... = A(a;) outputs an instanc®(z) of Q such that

1) k(0(z)) = (Maxepy|z:)°W;
(2) O(z) € Q if and only if for somei € [t]: z; € Q.

Examples 42. The instances of the following problems are pdits k), whereG is a graph and € N. We let
A always be the function with(G, k) := k. In all examples we get the claimed OR fobrconstant instances by
settingO((G1, k), ..., (G, k)) := (G, k), where the grapld” is the disjoint union of th&7;s. In all cases we do
not know whether the corresponding problem has an OR.

(a) The problenp-CycLE has an OR fon-constant instances.

(b) The problemsini-CHORDLESS PATH anduni-CHORDLESS CYCLE have an OR foA-constant instances. Here,
for example,

16

uni-CHORDLESSCYCLE
Instance: A graphG = (V, E) andk € N.
Parameter: £ -log|V]|.
Question: DoesG have a chordless cycle of lengtR?

Note that in the last exampleG, k) = k is not the parameter d¢f7, k) as instance ofini-CHORDLESS CYCLE.

For problems with an OR for constant instances we get a slightly weaker result than that in Theorem 34 for
problems with a linear OR. To state the result we first define:

Definition 43. Let (Q, k) be a parameterized problem.stibexponential self-reduction 6f),) is a polynomial
reduction fromQ to itself that assigns to every instancef () an instance; with

lyl = w(2)0D - |z]°.

Clearly if (Q, x) has a subexponential self-reduction, then it has self-reduction for every > 0.

Theorem 44. Let (Q, x) be a parameterized problem witiP-complete@). Furthermore assume th&g),) has
anORfor A-constant instances, whekds a further parameterization. Unle®H = X%, there isno subexponential
self-reduction of @,).

In particular, (Q, <) has no polynomial kernelization (a result shown in [4]).

Recall the reparameterizatidfy, ¢ x f) of (Q,x) forc € Nandf : N — Rx(. Clearly (Q, x° x f) has a
polynomial kernelization if and only ifQ, x f), the problem for = 1, has one.

For the purposes of the proof of Theorem 44 we call a funcfiolN — R, goodif f(t) = t°() forallt € N
(that s, if we can writef () = t'/"(®) for some functior : N — R with lim; ., h(t) = o).

The statement of this theorem can be equivalently formulated as:

Lemma 45. Let (Q, x) be a parameterized problem withP-complete). Furthermore assume that), <) has
an OR for \-constant instances, whepeis a further parameterization. Then, unleBsl = XF, for every good
f N — Rx(the problem @, x x f) has no polynomial kernelization.

Proof: Assume PH# X£. Furthermore, we choose 6@, x) an ORO for A-constant instances.
Let f : N — R>(be good. One easily sees that there is a good increasing furf¢tidd — R, of the form

f/(t) _ 2Iog t/u(log t) (13)

with a nondecreasing and unbounded functiotN — Rx, such thatf (¢) < f’(¢) for all (sufficiently large}.

For the sake of contradiction assume also {@atx x f) has a polynomial kernelization. Of course, then
(Q, k x f’) has a polynomial kernelizatidd. We show that the® has a lineay-distillation D for some pseudo-
linear g, which contradicts Lemma 40.

Letzy,...,z, be instances of). We letn := max|z;| and? := maxcyA(z;). Thent = @) Forj < ¢
let

y; = K(0(z;)),

wherez; stands for the subsequencewf . . ., z, consisting of the instances withvaluej.
We show that for some good functigi and allj < ¢

ly;| = fu(t) - nOW. (14)

In fact, asK is a polynomial kernelization ofQ, « x f’), we know

0(1)
=nOW. f(lo())°",

5] = IK(O(;)] = (+(0(;)) - £(10(z;)]))
where the last equality holds by Definition 41 (1). We show tH&atO(z)|) = f/(¢)¢ - n for somed € N. Then
we get (14) forf, (t) := f'(¢)%

As O is polynomial time computable, we kng®(z;)| < t°-n° for some constant € N. Sincef’ is increasing,
it is enough to show

FI(#ne) < (f1(8) -)™

17

By (13)
c-logt+c-logn

£t ne) = gt(c-logt+c-logn)

We distinguish two cases.
- If t > n, then, as is nondecreasing, we get

2¢-logt
f/(tc nf) <2 t(logt) _ f/(t)Qc.

- If t <n, then
f/(tc . nc) < 22c-|ogn _ nQC.

This finishes the proof of (14).
As by assumptiorf) is NP-complete, there are polynomial time reductidghand S from @ to SAT and from
SAT to), respectively. Applying the reductiaR : Q <P SAT we have|R(y;)| = f1(t)°1) - n®(). Hence

\ \/ R(y;)| =0(C- f1(t)°M - nCW) = f, (1)1 . nOW),

J€le)

becausé = n®1). As S : SAT <P @, there is & € N such that

SV Rw)| < A

JE[€]

Howeverg(t) := f1(t)¢ is good and in particular, pseudo-linear. Theref®fe,...,z;) = S(V]ee] R(yj))
defines a lineag-distillation from @ in itself.

In particular, we can apply Theorem 44 to the problems listed in Examples 42.

Clearly, every parameterized probldi®,) with an OR has an OR fot-constant instances. In this case we
do not need the reduction to the problemrSn the previous proof. Hence, we get the following improvement of
Corollary 26:

Theorem 46. Let (Q,) be a parameterized problem with &R and withNP-hard Q. UnlessPH = XF, the
problem(Q,) has no subexponential self-reduction.

We omit the proof of the following lemma, which is simple and similar to that of Lemma 19.
Lemma 47. Let(Q, k) and(Q’, ') be parameterized problems. with

Q. k) < (Q,+') and Q<P Q.
If (@', k") has a subexponential self-reduction, thHéh) has a subexponential self-reduction.
We finish this section with an example.
Example 48. Unless PH= X, the problenp-PATH(PLAN-CONN) has no subexponential self-reduction.

Proof: We know that the problem-PoINTED-PATH(PLAN-CONN) has an OR and hence no subexponential self-

reduction. In the proof of Proposition 27 we showed that there is a polynomial reductiopfRomNTED-PATH(PLAN-CONN)
to p-PATH(PLAN-CONN). Hence, the claim follows from the previous lemma.

8. Concluding remarks

8.1. Comparing the different notions of OR. From Theorem 21, Corollary 26, and Theorem 34 we know:
Proposition 49. Assume thaPH # Xf. Then:
(1) NoNP-complete problem has a self-distillation.

18

(2) No parameterized probleii®),) with polynomial kernelization and witkP-complete) has anOR.
(3) No parameterized probleii®),) with polynomial kernelization and withP-complete? has a linearOR.

We do not know whether one of the three conclusions holds under weaker assumptions, say,£mhier
this context it might be interesting to be aware of:

Proposition 50. The conclusions (1), (2), and (3) of Proposition 49 are mutually equivalent.
Proof: The implication (2)= (3) is trivial. For (3)=- (1) assume, by contradiction, th@tis NP-complete and has
a self-distillationD. Definex(z) := |x|. Thenz — z is a polynomial kernelization df@), x) andD is a linear OR
of (@,), the desired contradiction to (3).

For the implication (1)= (2) assume that?), «) with NP-complete& has a polynomial kernelizatidd and an
ORQ. ThenK o O is a self-distillation, as

K(0(z)) = #(0(2))°") = (max;|) 7).
0O

The next result shows in particular that every parameterized profglem) with polynomial kernelization and
NP-complete? already has no OR if it has no linear OR. For examp}®,C has no linear OR if and only if it nas
no OR.

Proposition 51. Assume that@,) and(Q’, ') are parameterized problems wiP-completel and@’ and that
(Q', k") has a polynomial kernelization. (£), <) has no linear OR, the(’, ') has noOR.

Proof: Let R : Q@ — Q' andS : Q' — @ be polynomial reductions arid a polynomial kernelization of@’, x’)
and assume thé is a OR of@Q’, then

Z1, ..., 2 = S(K(O(R(z1), . .., R(xt))))
is alinear OR of Q, k). a

8.2. Comparing the different notions of self-reduction. Clearly, every parameterized problem with a polynomial
kernelization has a subexponential self-reduction, and every parameterized problem with a subexponential self-
reduction has an self-reduction for every > 0. Proposition 53 and Proposition 52 show that the reverse of the
first implication and of the second implication fail, respectively.

Proposition 52. Let @ C N be a classical problem such that everye @ is a power of 2 with an odd exponent
and is written in unary. We define the parameterized probhleghby

p-Q

log m

Instance: m, k € Nin unary with logk > Tog fog 71 -

Parameter: k.
Question: Is(logm) - (log k) € Q?

Then:
(1) If @ is decidable, thep-Q is fixed-parameter tractable.
(2) For everye > 0 the problenp-@ has ane self-reduction.
(3) If Q ¢ E, thenp-Q has no subexponential reduction.

Proof: (1) As for yes-instanceém, k) of p-Q, we have logk > log m/log log m, the problemp-Q has a
kernelization and hence is fixed-parameter tractable by Proposition 2.

(2) Lett € N. We show that there is alyd self-reduction op-(for d := 2t.’

Let (m, k) be an instance of-Q. We can assume that = 22" andk = 22" (otherwise(m, k) is a no-instance
of p-Q).

We set

m' =22 (= (22)VY) and K =22 (= (22)9)

19

Clearly, (m,k) € p-Q if and only if (m/, k") € p-Q. Moreover,|m/| = |m|"/? and|k'| = |k|? and hence,
|(m/,K')| = O(k? - m'/?). Altogether,(m, k) — (m/, k') is an1/d self-reduction op-Q.

(3) We assume thatQ has a subexponential self-reductign, k) — (m’,k’). Then
|(m/7k/)| — kC. (m + k)o(l) — k. me)

for somec € N. We can assume thaiis a power of 2. We show th& € E.
Let x be an instance of) with z > d > 24“’2, whered € N will be fixed later. We assume thatis an odd
power of 2 (otherwisey ¢ Q). We set

u:i=V2? x and V= Y

=52

Then,u andv are powers of 2 (note that= \/x/2¢?) andu - v = 2. Moreover,p > u/log u by our assumption
z > 24 Hence,(2%,2") € p-Q if and only if z € Q. We apply the subexponential self-reduction(28, 2*)
obtaining an equivalent instan¢e’, k') of p-Q with

m/’ k' < gve. (Qu)o(l) — 21}-c+u-o(1)'
If d has been chosen big enough, we have
z' = (logm’) - (log k') < (v-¢)®> +v-u-o(l) +u?-o(1) < (u/2c)* +u? - o(1) < u?/2¢* = uv = .

Thus,2’ < z. If ¥’ < m//log m/, then(m/, k') ¢ p-Q and hencez ¢ Q. Otherwise, {’ € Q < =z € Q).
We continue this way and obtain equivalent instanc¢es’”, . . . of Q till we get an instance d, which is decided
directly. Altogether, we have a single exponential decision procedux@.for |

Proposition 53. Let@ C N be a classical problem such that every @ is represented in unary and has the form
z =22 (15)

for somet € N. We define the parameterized problgrE XP(Q) by

p-EXP(Q)
Instance: m, k € Nin unary withk > log log m.
Parameter: k.
Question: Ism* € Q?

Then:
(1) If Q is decidable, thep-EXP(Q) is fixed-parameter tractable.
(2) The problenp-EXP(Q) has a subexponential self-reduction.
(3) If @ ¢ PTIME, thenp-EXP(Q) has no polynomial kernelization.

Proof: (1) As for yes-instancegén, k) of p-EXP(Q), we havek > log log m, the problemp-EXP(Q) has a
kernelization and hence is fixed-parameter tractable by Proposition 2.

(2) Let(m,k) be an instance gf-EXP(Q). By (15), we can assume that = 22" for somet € N (otherwise,
(m, k) is a no-instance gf-EXP(Q)). Then

(m,k) € p-ExP(Q) < 2"* €Q < (2,k-2") € p-EXP(Q).

Therefore the mappingn, k) — (2, k - log m) is the desired reduction.

(3) We assume thd is a polynomial kernelization gf-Exp(Q) and show thaf) € PTIME.
Letz = 22 be an instance af. We lett’ be the minimum power of 2 with > ¢. Thus,2¢t > ¢’ > t. Clearly

reQ <« (2% ¢) e p-ExP(Q).

20

Furthermore we sétm, k) := K(22'/*' /). We know that

(m, k)| = O = OO

and thatr € Q if and only if m* € Q. As

o(1) o(1)
mkt — tO(t) — 2t

we see that this is strictly smaller thanf z is sufficiently large. a

(1]

(2]

(3]

(4]

(5]
(6]

(7]

(8]

9]

[10]

[11]

[12]
[13]

References

R. Chang and Y. Kadin. On computing boolean connectives of characteristic functidath. Systems
Theory 28:173 — 198, 1995.

Y. Chen and J. Flum. On parameterized path and chordless path problerecéedings of the 22nd IEEE
Conference on Computational Complexity (CCC;q¥ge 250 — 263, 2007

Y. Chen and J. Flum. Subexponential time and fixed-parameter tractability: exploiting the miniaturization
mapping. InProceedings of the 21st International Workshop on Computer Science Logic (C3ledi)re
Notes in Computer Science 4646, page 389 — 404, 2007.

H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without polynomial kernels.
Submitted, 2007.

J. Flum and M. GroheParameterized Complexity Theo§pringer, 2006.

L. Fortnow and Santhanam. Infeasibility of instance compression and succinct PCPs for NP. Available at
http://lance.fortnow.com/papers/

M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable struciotgsal of
the ACM 48:1184-1206, 2001.

M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revigitethls of
Pure and Applied Logic130:3 — 31, 2004.

J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelizA@M.SIGACT News/ol.
38, No. 1, 2007.

D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applications, In
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06)
page 719 — 728, 2006. Full version appears as TR06-022 in ECCC Reports 2006, available at
http://eccc.hpi-web.de/eccc-local/Lists/TR-2006.html

R. Impagliazzo, R.Paturi, and F. Zane. Which problems have strongly exponential compléaity?al of
Computer and System Sciencg3:512 — 530, 2001.

R. Niedermeierlnvitation to Fixed-Parameter Algorithm®xford University Press, 2006.

C. K. Yap. Some consequences of non-uniform conditions on uniform cladsesretical Computer Science
26, page 287 — 300, 1983.

21

