
Lower Bounds for Kernelizations

Yijia Chen∗

Shanghai Jiaotong University

Jörg Flum†

Albert-Ludwigs-Universiẗat Freiburg

Moritz Müller ‡
Albert-Ludwigs-Universiẗat Freiburg

Abstract

Among others, we show that every parameterized problem with a “linear OR” and with NP-hard underlying
classical problem does not have a polynomial reduction to itself that assigns to every instancex with parameterk
an instancey with |y| = kO(1) · |x|1−ε unless the polynomial hierarchy collapses to its third level (hereε is any
given real number greater than zero).

1. Introduction

Often, if a computationally hard problem must be solved in practice, one tries, in a preprocessing step, to reduce
the size of the input data. This approach has been widely studied and applied in parameterized complexity and it is
known askernelizationthere. We recall the basic concepts.

Parameterized complexity is a refinement of classical complexity theory, in which one measures the complexity
of an algorithm not only in terms of the total input lengthn, but also takes into account other aspects of the input
codified as the parameterk. Central to parameterized complexity theory is the notion of fixed-parameter tractability.
It relaxes the classical notion of tractability by allowing algorithms whose running time can be exponential but only
in terms of the parameter. This is based on the idea to choose the parameter in such a way that it can be assumed to
be small for the instances one is interested in. To be precise, a problem is said to befixed-parameter tractableif it
can be decided by anfpt-algorithm, that is, an algorithm whose running time isf(k) · p(n), wheref is an arbitrary
computable function andp a polynomial.

A kernelizationK of a parameterized problem is a polynomial time algorithm that computes for every instance
x of the problem an equivalent instanceK(x) of a size bounded in terms ofk (the parameter of the instancex).
This suggests a new method for designing fpt-algorithms: To decide a given instancex, we compute the kernel
K(x) and then decide ifK(x) is a yes-instance by brute-force. The converse holds, too: Every fixed-parameter
tractable problem has a kernelization. The proof of this fact is easy; however it gives only a “trivial” kernel with no
algorithmic impact.

Besides efficient computability, an important quality of a good kernelization issmall kernel size. The notion of
polynomial kernelizationis an abstract model for small kernel size. A kernelizationK is polynomial if there is a
polynomialp such that for all instancesx (with parameterk), the size ofK(x) is bounded byp(k).

Polynomial kernelizations are known for many parameterized problems (compare [12]). However, till recently,
besides artificial problems, only few natural problems were known to haveno polynomial kernelization (one be-
ing the model-checking for monadic second-order logic on trees parameterized by the length of the second-order
formula). This has changed, since a machinery has been developed showing that no problem “having an OR” has
a polynomial kernelization unless the polynomial hierarchy collapses (cf. [4, 6]). Various applications of this ma-
chinery were given in [4, 6], in particular, in [6] it was shown that the problem SAT parameterized by the number
of propositional variables of the input formula has no polynomial kernelization.

In this paper we refine a central ingredient of this machinery to obtain better lower bounds. Applied to the SAT
problem we show:

∗Email:yijia.chen@cs.sjtu.edu.cn
†Email: joerg.flum@math.uni-freiburg.de
‡Email:moritz.mueller@math.uni-freiburg.de

1

Assume that the polynomial hierarchy does not collapse. Then for everyε > 0 there is no polynomial
time algorithm that for every instanceα of SAT with k variables computes an equivalent instanceα′

with
|α′| ≤ kO(1) · |α|1−ε. (1)

This result is a particular instance of a general theorem that yields lower bounds of the type in (1) for every problem
“having a linear OR” (compare Theorem 34 for the precise statement). For problems satisfying an apparently
weaker condition, namely only “having an OR for instances with constant parameter” we still get quite good lower
bounds; in case of SAT it would be:

|α′| ≤ kO(1) · |α|o(1). (2)

As already mentioned, concrete kernelizations yield algorithms for solving parameterized problems efficiently
for small parameter values. Conceptually similar are compression algorithms, even though the intention is slightly
different: the question is whether one can efficiently compress every “long” instancex of a problemQ with “a
short witness” to a shorter equivalent instancex′ of a problemQ′ (here equivalent means thatx ∈ Q if and only
if x′ ∈ Q′). “Such compression enables to succinctly store instances until a future setting will allow solving them,
either via a technological or algorithmic breakthrough or simply until enough time has elapsed” (see [10]). By
suitably generalizing the notion of a kernelization of a parameterized problem to the notion of a kernelization from
some parameterized problem to another one, Fortnow and Santhanam [6] introduce a framework which allows to
deal with kernelizations and compressions at the same time (in [6] a different terminology is used). Nevertheless
we stick to the traditional notion of kernelization as we mainly address problems of parameterized complexity.

More precisely, the content of the different sections is the following. After recalling some definitions and fixing
our notation in Section 2, we consider and analyze some basic questions concerning kernelizations in Section 3. In
particular, we shall see that “most” parameterized problems have a polynomial kernelization if and only if they are
self-compressible.

A kernelization isstrongif the parameter ofK(x) is less than or equal to the parameter ofx. It is known that
every parameterized problem that has a kernelization already has a strong kernelization. In Section 4 we derive a
general result (Corollary 13) that shows that parameterized problems satisfying certain conditions have no strong
polynomialkernelizations. As an application we get that the problem SAT has no strong polynomial kernelization
if P 6= NP and no strong subexponential kernelization if the exponential time hypothesis (ETH) holds.

In Section 5 we recall the results of Bodlaender et al. [4] and of Fortnow and Santhanam [6] relevant in our
context and give some new applications. Section 6 and Section 7 are devoted to the generalizations of these results
of type (1) and of type (2), respectively, already mentioned above.

2. Preliminaries

The set of natural numbers (that is, nonnegative integers) is denoted byN. For a natural numbern let [n] :=
{1, . . . , n}. By log n we meandlog ne if an integer is expected. Forn = 0 the term logn is undefined. We trust
the reader’s common sense to interpret such terms reasonably.

We identify problems (or languages) with subsetsQ of {0, 1}∗. Clearly, as done mostly, we present concrete
problems in a verbal, hence uncodified form or as a set of strings over an arbitrary finite alphabet. We use both P
and PTIME to denote the class of problemsQ such thatx ∈ Q is solvable in polynomial time.

A reduction from a problemQ to a problemQ′ is a mappingR : {0, 1}∗ → {0, 1}∗ such that for allx ∈ {0, 1}∗
we have(x ∈ Q ⇐⇒ R(x) ∈ Q′). We writeR : Q ≤p Q′ if R is a reduction fromQ to Q′ computable in
polynomial time, andQ ≤p Q′ if there is a polynomial time reduction fromQ to Q′.

2.1. Parameterized Complexity. A parameterized problemis a pair(Q, κ) consisting of a classical problem
Q ⊆ {0, 1}∗ and aparameterizationκ : {0, 1}∗ → N, which is required to be polynomial time computable even if
the result is encoded in unary.

We introduce some parameterized problems, which will be used later, thereby exemplifying our way to represent
parameterized problems. We denote byp-SAT the parameterized problem

2

p-SAT

Instance: A propositional formulaα in conjunctive normal form.
Parameter: Number of variables ofα.

Question: Is α satisfiable?

By p-PATH andp-CLIQUE we denote the problems:

p-PATH

Instance: A graphG andk ∈ N.
Parameter: k.

Question: DoesG have a path of lengthk?

p-CLIQUE

Instance: A graphG andk ∈ N.
Parameter: k.

Question: DoesG have a clique of sizek?

Similarly we definep-DOMINATING -SET. If C is a class of graphs, thenp-PATH(C) denotes the problem

p-PATH(C)
Instance: A graphG in C andk ∈ N.

Parameter: k.
Question: DoesG have a path of lengthk?

We use similar notations for other problems.

We recall the definitions of the classes FPT, EXPT, EPT and SUBEPT. A parameterized problem(Q,κ) is fixed-
parameter tractable(or, in FPT) ifx ∈ Q is solvable in timef(κ(x)) · |x|O(1) for some computablef : N → N. If
f can be chosen such thatf(k) = 2κ(x)O(1)

, then(Q,κ) is in EXPT. If f can be chosen such thatf(k) = 2O(k),
then(Q,κ) is in EPT. Iff can be chosen such thatf(k) = 2oeff (k), then(Q,κ) is in SUBEPT.

Hereoeff denotes the effective version of little oh: For computable functionsf, g : N → N we say thatf is
effectively little oh ofg and writef = oeff(g) if there is acomputable, nondecreasing and unbounded function
ι : N → N such that for sufficiently largek ∈ N

f(k) ≤ g(k)
ι(k)

.

As usual we often writef(k) = oeff(g(k)) instead off = oeff(g).

At some places in this paper, it will be convenient to considerpreparameterized problems; these are pairs(Q,κ),
where againQ is a classical problem andκ is apreparametrization, that is, an arbitrary function from{0, 1}∗ to
the setR≥0 of nonnegative real numbers.

3. Kernelizations

In this section we start by recalling the notion of kernelization and by introducing some refinements. We study
some basic properties of kernelizations and its relationship to the notion of compression.

Definition 1. Let (Q, κ) be a parameterized problem andf : N → N be a function. Anf -kernelizationfor (Q,κ)
is a polynomial time algorithmK that on inputx ∈ {0, 1}∗ outputsK(x) ∈ {0, 1}∗ such that

(x ∈ Q ⇐⇒ K(x) ∈ Q) and |K(x)| ≤ f(κ(x)).

In particular,K is a polynomial time reduction fromQ to itself. If in addition for allx ∈ {0, 1}∗

κ(K(x)) ≤ κ(x),

3

thenK is astrongf -kernelization.
We say that(Q, κ) has alinear, polynomial, subexponential, simply exponential, and exponential kernelization

if there is anf -kernelization for(Q, κ) with f(k) = O(k), f(k) = kO(1), f(k) = 2oeff (k), f(k) = 2O(k), and
f(k) = 2kO(1)

, respectively.

The following result is well-known:

Proposition 2. Let (Q,κ) be a parameterized problem with decidableQ. The following statements are equivalent.

(1) (Q,κ) is fixed-parameter tractable.

(2) (Q,κ) has anf -kernelization for some computablef .

(3) (Q,κ) has a strongf -kernelization for some computablef .

Furthermore, iff is computable andx ∈ Q is solvable in timef(κ(x)) · |x|O(1), then(Q,κ) has a strongf -ker-
nelization.

The recent survey [9] contains examples of natural problems whose currently best known kernelizations are
polynomial, simply exponential and exponential.

We are mainly interested in polynomial kernelizations. First we show that the notions of polynomial kerneliza-
tion and of strong polynomial kernelization are distinct:

Proposition 3. There is a parameterized problem(Q,κ) that has a polynomial kernelization but no strong polyno-
mial kernelization.

Proof: Let Q be a classical problem that is not solvable in time2O(|x|). We define a parameterized problem(P, κ)
with P ⊆ {0, 1}∗ × {1}∗ and withκ((x, 1k)) = k. By 1k we denote the string consisting ofk many 1s. For each
k ∈ N we define thek-projectionP [k] := {x | (x, 1k) ∈ P} of P by:

– If k = 2` + 1, then
P [k] := Q=` (:= {x ∈ Q | |x| = `}).

Hence, all elements inP [k] have length̀ .

– If k = 2`, then
P [k] :=

{
x12`

| x ∈ Q=`

}
,

wherex12`

is the concatenation ofx with the string12`

. Hence, all elements inP [k] have length̀ + 2`.

Intuitively, an element in the2`-projection is an element in the(2` + 1)-projection padded with2` many 1s. It is
not hard to see thatP has a linear kernelization (which on the even projections increases the parameter).

We claim thatP has no strong polynomial kernelization. AssumeK is such a kernelization andc ∈ N such that

|K((z, 1m))| ≤ mc.

We useK to solvex ∈ Q in time2O(|x|):
Let x be an instance ofQ and let` := |x|. We may assume that

(2`)c < 2`

(note that there are only finitely manyx not satisfying this inequality). We compute (in time2O(`))

(u, k) := K
(
(x12`

, 2`)
)
.

We know thatk ≤ 2` and|u| ≤ (2`)c < 2`. If u does not have the length of the strings inP [k], then(u, k) /∈ P
and thereforex /∈ Q. In particular, this is the case ifk = 2` (as|u| < 2`). If u has the length of the strings inP [k]
and hencek < 2`, then it is easy to read off fromu an instancey with |y| < |x| and (y ∈ Q ⇐⇒ x ∈ Q). We
then apply the same procedure toy. 2

Remark 4. Let c ∈ N. It is not hard to generalize the previous example and to show that there is a parameterized
problem with a polynomial kernelization but with no polynomial kernelizationK satisfying for allx ∈ {0, 1}∗

κ(K(x)) ≤ κ(x)c.

4

The next result shows that a parameterized problem(Q,κ) in FPT\EXPT withQ ∈ NP cannot have polynomial
kernelizations. We show a little bit more. Recall that EXP is the class of classical problemsQ such thatx ∈ Q is
solvable in deterministic time2|x|

O(1)
.

Proposition 5. Assume that the problem(Q, κ) has a polynomial kernelization and thatQ ∈ EXP. Then(Q, κ) ∈
EXPT.

Proof: Let K be a polynomial kernelization of(Q,κ). As Q ∈ EXP there is an algorithmA solvingx ∈ Q in time
2|x|

O(1)
. The algorithm that onx ∈ {0, 1}∗ first computesK(x) and then appliesA to K(x) solvesx ∈ Q in time

|x|O(1) + 2|K(x)|O(1)
= 2|κ(x)|O(1) · |x|O(1). 2

The model-checking of monadic second-order logic on the class of trees is in EXP. By a result of [8] the
corresponding parameterized problem with the length of the formula as parameter is in FPT\EXPT unless P= NP.
Hence, by the preceding proposition, it has no polynomial kernelization (unless P= NP).

In later sections, under some complexity-theoretic assumptions, we will present various examples of natural
problems that are in EPT and have no polynomial kernelization. Here we give a simple, artificial example without
polynomial kernelizations which holds unconditionally. Bodlaender et al. [4] claim the existence of a problem in
EPT without subexponential kernelizations.

Example 6. Let Q be a classical problem not in PTIME but solvable in timeO(|x|log |x|). Let κ be the parameteri-
zation mappingx to (log |x|)2. Then(Q,κ) ∈ EPT, because2κ(x) = |x|log |x|.

For the sake of contradiction assume that(Q,κ) has a polynomial kernelizationK. Then to decide ifx ∈ Q it
suffices to decide ifK(x) ∈ Q. Since|K(x)| = (log |x|)O(1) this can be done in time

|K(x)|log |K(x)| ≤ (log |x|)O(log log |x|) ≤ 2(log log |x|)O(1)
≤ |x|O(1).

ThusQ ∈ PTIME, a contradiction.

However, if we would allow kernelizations to have slightly superpolynomial running time, theneveryEPT
problem would have subexponential kernelizations:

Proposition 7. Let (Q,κ) ∈ EPTandι : N → N be a nondecreasing unbounded and computable function.1 Then
there is algorithmK that for every instancex of Q outputs an instanceK(x) in time

|x|O(ι(κ(x)))

such that
(x ∈ Q ⇐⇒ K(x) ∈ Q) and |K(x)| = 2o(κ(x)).

To obtain this proposition we just refine the “standard” proof of the implication(1) ⇒ (2) of Proposition 2 and
show that every problem in EPT has arbitrarily small exponential kernelizations, that is, for everyε ∈ R there is a
polynomial kernelization with kernels of size≤ (1 + ε)κ(x), even more:

Lemma 8. Let (Q,κ) be a parameterized problem inEPT. There is an algorithmI that takes as inputs an instance
x of Q and` ∈ N and outputs an instanceI(x, `) of Q in time|x|O(`) such that

(x ∈ Q ⇐⇒ I(x, `) ∈ Q) and |I(x, `)| = 2O(κ(x))/`.

Proof: We choosec ∈ N and an algorithmA solvingx ∈ Q is in time2c·κ(x) · |x|O(1). Furthermore we fixx+ ∈ Q
andx− /∈ Q. Then the following is the desired algorithm.

I(x, `) // x an instance ofQ and` ∈ N.

1. if |x| ≤ 2κ(x)/` then outputx.

2. elsesimulateA onx

// the running time is bounded by2c·κ(x) · |x|O(1) ≤ |x|c·`+O(1).

3. if A acceptsx then outputx+ elseoutputx−.

1To get a “slightly superpolynomial running time” we choose asι an “extremely slowly” growing function.

5

2

Proof of Proposition 7: We choose a polynomial time computableν : N → N with ν ≤ ι and setK(x) :=
I(x, ν(κ(x))), whereI is the algorithm of the preceding lemma. 2

Next we show that the different degrees of kernelizability introduced in Definition 1 are indeed different.

Proposition 9. The classes of parameterized problems with a linear, a polynomial, a subexponential, a simply
exponential, and an exponential kernelization are pairwise different.

The claim immediately follows from the following lemma.

Lemma 10. Let g : N → N be nondecreasing and unbounded andf : N → N such thatf(k) ≤ g(k − 1) for all
sufficiently largek. Then there is aQ ⊆ {0, 1}∗ and a preparameterizationκ such that(Q, κ) has ag-kernelization
but nof -kernelization.

If in additiong is increasing and time-constructible, then we can chooseκ to be a parameterization.

Proof: Let g andf be as in the statement. We choosek0 such thatf(k) ≤ g(k− 1) for all k ≥ k0. We consider the
“inverse function”ιg of g given by

ιg(m) := min{s ∈ N | g(s) ≥ m}.

Then for alln ∈ N
n ≤ g(ιg(n)) and if ιg(n) ≥ 1, then g(ιg(n)− 1) < n. (3)

Let Q be a problem not in PTIME and define the parameterizationκ by κ(x) := ιg(|x|). By the first inequality in
(3) the identity is ag-kernelization of(Q,κ).

Assume that there is anf -kernelizationK of (Q,κ). As ιg is unbounded, we haveιg(|x|) ≥ k0 for sufficiently
longx ∈ {0, 1}∗. Then

|K(x)| ≤ f(κ(x)) = f(ιg(|x|)) ≤ g(ιg(|x|)− 1) < |x|.

Thus applyingK at most|x| times we get an equivalent instance of length at mostf(k0). Therefore,Q ∈ PTIME,
a contradiction.

If g is increasing and time-constructible, thenιg is polynomial time computable and henceκ is a parameteriza-
tion. 2

Polynomial Kernelization and Compression. Most natural problemsQ ∈ NP have acanonicalrepresentation
of the form

x ∈ Q ⇐⇒ there isy ∈ {0, 1}g(x) such that(x, y) ∈ Q0 (4)

for some polynomial time computable functiong : {0, 1}∗ → N and someQ0 ∈ PTIME. In [3] the problem
(Q, g) has been called thecanonical parameterizationof Q (more precisely, one should speak of the canonical
parameterization induced by the representation (4) ofQ). Clearly(Q, g) is fixed-parameter tractable, it is even in
EPT. If (Q,κ) was a parameterized problem, then(Q, g) is called thecanonical reparameterizationof (Q,κ).

The canonical reparameterization ofp-SAT is p-SAT itself; the canonical reparameterizations of the problems
p-PATH, p-CLIQUE andp-DOMINATING -SET are the problemsuni-PATH, uni-CLIQUE anduni-DOMINATING -SET,
respectively, where in the three cases, we haveg((G, k)) = k · log |V |; hence in particular,

uni-PATH

Instance: A graphG = (V,E) andk ∈ N.
Parameter: k · log |V |.

Question: DoesG have a path of lengthk?

Many fixed-parameter tractable problems, namely all in EXPT and hence, in particular,p-PATH, have a polyno-
mial kernelization if and only if their canonical reparameterizations have. This is shown by the following proposi-
tion.

6

Proposition 11. Let (Q, κ) ∈ EXPT and let(Q, g) be the canonical reparameterization of(Q,κ). Assume thatg
has the form

g(x) = κ(x) · log h(x) with h(x) = |x|O(1)

andh(x) ≥ 2 for sufficiently largex. Then

(Q,κ) has a polynomial kernelization iff(Q, g) has a polynomial kernelization.

Proof: Clearly, every polynomial kernelization of(Q, κ) is a polynomial kernelization of(Q, g). Conversely, letK
be a polynomial kernelization of(Q, g). Choosec, c′ ∈ N and an algorithmA solvingx ∈ Q in time 2κ(x)c |x|c′ .
We define a polynomial kernelizationK′ for (Q,κ).

Fix x+ ∈ Q andx− /∈ Q. (If Q is trivial, that is,Q = ∅ or Q = {0, 1}∗, we letK′ always output the empty
string.) Letx ∈ {0, 1}∗. If κ(x) < (log |x|)1/c, the algorithmA on inputx needs at most|x|c′+1 steps. In
this case we letK′(x) be x+ or x− according to the answer ofA. Otherwiseκ(x)c ≥ log |x|. Then|K(x)| =
(κ(x) · log h(x))O(1) = (κ(x) · log |x|)O(1) = κ(x)O(1), so we can setK′(x) := K(x). 2

The reader familiar with [10] will realize that this result shows that any parameterized problem(Q,κ) in EXPT
has a polynomial kernelization if and only if the problemQ is self-compressible.

4. Excluding strong kernelizations

In this section we exemplify how self-reducibility can be used to rule outstrongpolynomial kernelizations. This
method is very simple and works under the assumption that P6= NP. We use it to give two natural examples of
problems in EPT that do not havestrongpolynomial kernelizations.

We will revisit these examples in section 5. There we will see that these problems do not even have polynomial
kernelizations using the stronger assumption that the polynomial hierarchy does not collapse to its third level.

Lemma 12. Let (Q,κ) be a parameterized problem and assume that the 0th sliceQ(0) := {x ∈ Q | κ(x) = 0} is
in PTIME. If there is a polynomial (subexponential) kernelizationK such that for allx /∈ Q(0)

κ(K(x)) < κ(x), (5)

thenQ ∈ PTIME ((Q,κ) ∈ SUBEPT).

Proof: Let K be a kernelization satisfying (5). The following algorithmA decidesQ (using a polynomial time
decision procedureB for Q(0)). Given an instancex of Q, the algorithmA computesK(x), K(K(x)), . . .; by (5)
after at mostκ(x) steps we obtain an instancey with κ(y) = 0; hence(x ∈ Q ⇐⇒ y ∈ Q(0)); now A simulates
B ony.

If K was a polynomial kernelization, say,|K(x)| ≤ κ(x)c, then, again by (5), all of|K(K(x))|, |K(K(K(x)))|, . . .
are bounded byκ(x)c. Recall that parameterizations are computable in polynomial time even if the result is encoded
in unary. Henceκ(x) = |x|O(1). It follows thatA runs in polynomial time.

If K was a subexponential kernelization, say,|K(x)| ≤ 2κ(x)/ι(κ(x)) with computable, nondecreasing and
unboundedι andK(x) is computable in time|x|d, then to compute the equivalent instancey algorithmA needs at
most

|x|d + 2d·κ(x)/ι(κ(x)) + 2d·(κ(x)−1)/ι(κ(x)−1) + 2d·(κ(x)−2)/ι(κ(x)−2) + . . . + 2d·1/ι(1),

many steps. As we can assume that the functionj 7→ j/ι(j) is increasing, this number of steps is bounded by
|x|d + κ(x) · 2d·κ(x)/ι(κ(x), which shows that(Q, κ) ∈ SUBEPT. 2

Corollary 13. Let (Q, κ) be a parameterized problem withQ(0) ∈ PTIME. Assume that there is a polynomial
reductionR fromQ to itself which isparameter decreasing, that is, for allx /∈ Q(0),

κ(R(x)) < κ(x).

– If (Q,κ) has a strong polynomial kernelization, thenQ ∈ PTIME.

– If (Q,κ) has a strong subexponential kernelization, then(Q,κ) ∈ SUBEPT.

7

Proof: Let R be as in the statement and letK be a strong polynomial (subexponential) kernelization of(Q,κ).
Then the compositionK ◦R, that is, the mappingx 7→ K(R(x)), is a polynomial (subexponential) kernelization of
(Q,κ) satisfying (5); hence, by the previous lemma, we getQ ∈ PTIME (Q ∈ SUBEPT). 2

Examples 14.The classical problems underlying

p-SAT and p-POINTED-PATH

have parameter-decreasing polynomial reductions to themselves, where

p-POINTED-PATH

Instance: A graphG = (V,E), a vertexv ∈ V , andk ∈ N.
Parameter: k.

Question: DoesG have a path of lengthk starting atv?

Proof: p-SAT: We define a parameter-decreasing polynomial reductionR from p-SAT to itself as follows: Letα be
a CNF formula. Ifα has no variables, we setR(α) := α. Otherwise letX be the first variable inα. We letR(α)
be a formula in CNF equivalent to

(α
TRUE

X
∨ α

FALSE

X
),

where, for example,α TRUE
X is the formula obtained fromα by replacingX by TRUE everywhere. ClearlyR(α) can

be computed fromα in polynomial time.

p-POINTED-PATH: We define a parameter-decreasing polynomial reductionR from p-POINTED-PATH to itself
as follows: Let(G, v, k) be an instance ofp-POINTED-PATH and assumek ≥ 3. For any pathP : v, v1(P), v2(P)
of length2 starting fromv let GP be the graph obtained fromG by deleting the two verticesv, v1(P) (and all the
edges incident with one of these vertices). LetH be the graph obtained from the disjoint union of all the graphsGP

(whereP ranges over all paths of length 2 starting inv) by adding a new vertexw and all edges{w, v2(P)}. Then
H has a path of length(k − 1) starting atw if and only if G has a path of lengthk starting atv. Hence we can set
R((G, v, k)) := (H,w, k − 1). 2

Corollary 15. (1) If P 6= NP, thenp-SAT has no strong polynomial kernelization.

(2) If ETH holds, thenp-SAT has no strong subexponential kernelization.

(3) If P 6= NP, thenp-POINTED-PATH has no strong polynomial kernelization.

(4) If ETH holds, thenp-POINTED-PATH has no strong subexponential kernelization.

Proof: Part (1) and (3) are immediate by Corollary 13. Moreover, we know by this corollary that if one of the two
problems has a strong subexponential kernelization, then it is in SUBEPT. However then ETH would fail in the
case ofp-SAT by [11] and in the case ofp-POINTED-PATH by [2]. 2

5. Excluding polynomial kernelizations

The following type of reductions that preserve polynomial kernels was introduced in [6] (based on a notion of [10])
under the name “W -reductions.”

Definition 16. Let (Q,κ) and(Q′, κ′) be parameterized problems. Apolynomial reductionfrom (Q, κ) to (Q′, κ′)
is a polynomial reductionR from Q to Q′ such that

κ′(R(x)) = κ(x)O(1).

We then writeR : (Q,κ) ≤p (Q′, κ′). Furthermore(Q,κ) ≤p (Q′, κ′) means that there is a polynomial reduction
from (Q,κ) to (Q′, κ′).

Example 17. uni-PATH ≤p p-SAT.

Proof: Let (G, k) with G = (V,E) be an instance ofuni-PATH. We may assume thatV = [0, n − 1] and (by
adding isolated points if necessary) thatn is a power of 2. We will assign to(G, k) a formulaα in CNF containing
variablesXs,i with s ∈ [log n] andi ∈ [k] with the intended meaning “thesth bit of theith vertex of a path of

8

lengthk is 1.” For i, j ∈ [k], i 6= j one has to express by a clause that the selected vertices asith andjth point of
the path are distinct and fori ∈ [k − 1] that theith and the(i + 1)th selected vertices are related by an edge. For
example the second one may be expressed by letting be for everyi ∈ [k − 1] and everyu, v ∈ V with {u, v} /∈ E∨

s∈[log n]

¬X
bit(s,u)
s,i ∨

∨
s∈[log n]

¬X
bit(s,v)
s,i+1 ,

a clause ofα, where bit(s, u) denotes thesth bit in the binary representation ofu of length log n and where
X1 := X andX0 := ¬X for every variableX.

ThenG has a path of lengthk if and only if α is satisfiable. Asα hask · log |V | variables, the mapping
(G, k) 7→ α is a polynomial reduction. 2

Example 18 ([10]). p-SAT ≤p uni-DOMINATING -SET.

Polynomial reductions preserve polynomial kernelizations in the following sense:

Lemma 19. Let (Q, κ) and(Q′, κ′) be parameterized problems. with

(Q, κ) ≤p (Q′, κ′) and Q′ ≤p Q.

If (Q′, κ′) has a polynomial kernelization, then(Q,κ) has a polynomial kernelization.

Note thatQ′ ≤p Q is always satisfied for NP-complete problemsQ andQ′.

Proof of Lemma 19: Let R : (Q,κ) ≤p (Q′, κ′) andS : Q′ ≤p Q. Assume thatK is a polynomial kernelization for
(Q′, κ′). ThenS ◦K ◦R is a polynomial kernelization for(Q,κ), as for allx ∈ {0, 1}∗

|S(K(R(x)))| = |K(R(x))|O(1) = κ′(R(x))O(1) = κ(x)O(1).

2

In order to exclude polynomial kernelizations using the previous lemma one needs a primal problem without
a polynomial kernelization. A central ingredient needed to obtain such problems was provided by Fortnow and
Santhanam [6]. It is contained in the following theorem.

Definition 20 ([4]). Let Q, Q′ ⊆ {0, 1}∗ be classical problems. Adistillation fromQ in Q′ is a polynomial time
algorithmD that receives as inputs finite sequencesx̄ = (x1, . . . , xt) with xi ∈ {0, 1}∗ for i ∈ [t] and outputs a
stringD(x̄) ∈ {0, 1}∗ such that

(1) |D(x̄)| =
(
maxi∈[t]|xi|

)O(1)
;

(2) D(x̄) ∈ Q′ if and only if for somei ∈ [t] : xi ∈ Q.

If Q′ = Q we speak of aself-distillation. We say thatQ has a distillationif there is a distillation fromQ in Q′ for
someQ′.

“Self-distillations” without property (1) has been called ORω functions in [1]. Their importance for classical
complexity has been studied in various papers (see [1] and its references). Every NP-complete problemQ has an
ORω function: Take a polynomial time reduction of the problem{(x1, . . . , xt) | t ∈ N andxi ∈ Q for somei ∈ [t]}
to Q. However:

Theorem 21 ([6]). No NP-hard problem has a distillation unlessPH = ΣP
3 (that is, unless the polynomial hierar-

chyPHcollapses to its third levelΣP
3).

To see how this result (and the polynomial reductions) can be used to exclude polynomial kernelizations we
include applications from [4] and [6].

Corollary 22 ([4]). p-PATH has no polynomial kernelization unlessPH = ΣP
3.

Proof: We assume thatp-PATH has a polynomial kernelizationK and show that then the (classical) problem PATH

has a self-distillation to itself. In fact, let(G1, k1), . . . , (Gt, kt) be instances of PATH. Let k := 1 + 2 ·maxi∈[t]ki.
Let i ∈ [t]. By adding toGi a path of lengthk − ki − 1 with one endpoint connected to all vertices ofGi we
obtain a graphG′

i such that the instance(G′
i, k) of p-Path is equivalent to(Gi, ki). Let G be the disjoint union of

all the graphsG′
i. Clearly,G has a path of lengthk if and only if there exists ani ∈ [t] such thatG′

i has a path
of lengthk and hence, if and only if there exists ani ∈ [t] such thatGi has a path of lengthki As |K((G, k))| is
polynomially bounded ink and hence in maxi∈[t]‖(Gi, ki)‖, the mapping(G1, k1), . . . , (Gt, kt) 7→ K((G, k)) is a
self-distillation of PATH. 2

9

Corollary 23 ([6]). The problems
p-SAT and uni-DOMINATING -SET

have no polynomial kernelization unlessPH = ΣP
3.

Proof: Assume PH6= ΣP
3. By the previous corollary we know thatp-PATH has no polynomial kernelization. Hence,

asp-PATH ∈ EPT, its canonical reparametrizationuni-PATH has no polynomial kernelization by Proposition 11.
The claims follow from Examples 17 and 18 by Lemma 19. 2

The proof of Corollary 22 consists of two parts. Let(G1, k1), . . . , (Gt, kt) and(G, k) be as there. In the first
part we show thatO with O((G1, k1), . . . , (Gt, kt)) := (G, k) is an OR forp-PATH in the sense of the following
definition.

Definition 24. Let (Q, κ) be a parameterized problem. AnOR for(Q,κ) is a polynomial time algorithmO that for
every finite tuplēx = (x1, . . . , xt) of instances ofQ outputs an instanceO(x̄) of Q such that

(1) κ(O(x̄)) = (maxi∈[t]|xi|)O(1);

(2) O(x̄) ∈ Q if and only if for somei ∈ [t]: xi ∈ Q.

The second part of the proof of Corollary 22 shows the following lemma (there the argument is presented for
(Q,κ) := p-PATH).

Lemma 25. Assume that(Q,κ) has anORO and a polynomial kernelizationK. ThenD with

D(x1, . . . , xt) := K(O((x1, . . . , xt))

is a self-distillation ofQ.

Hence by Theorem 21:

Corollary 26. Assume that(Q,κ) has anORO and thatQ is NP-hard. Then(Q,κ) has no polynomial kerneliza-
tion unlessPH = ΣP

3.

Perhaps the reader might object that the proof of Corollary 22 is algorithmically not convincing, as the OR
function used in the first part essentially yields the disjoint union of given graphs, while probably any reasonable
algorithm for determining whether a graph has a path of a given length will first compute its connected components
and then check these components for such a path. Hence the question arises whether the path problem for the class
of connectedgraphs has a polynomial kernelization. We deny this, we even show that the path problem for the class
PLAN-CONN of planar connected graphs has no polynomial kernelization:

Proposition 27. p-PATH(PLAN-CONN) has no polynomial kernelization unlessPH = ΣP
3.

To show this claim we show in a first step:

Lemma 28. p-POINTED-PATH(PLAN-CONN) has no polynomial kernelization unlessPH = ΣP
3.

Proof: We showp-POINTED-PATH(PLAN-CONN) has an OR (then our claim follows from Corollary 26). Let
(G1, v1, k1) . . . , (Gt, vt, kt) be instances of the problem. First let us assume that for everyi ∈ [t], we take a drawing
of Gi

2 such thatvi lies on the boundary of its outer face. Letk := maxi∈[t]ki. By adding to everyGi a path of
lengthk − ki starting invi and ending in a vertexv′i we obtain an equivalent instance(G′

i, v
′
i, k). Let G be the

planar and connected graph obtained from the disjoint union of theG′
is by adding a new vertexv and edges fromv

to all v′i. It is easy to verify that

G has a path of lengthk + 1 starting atv

⇐⇒ there exists ani ∈ [t] such thatGi has a path of lengthk starting atvi.

Hence we can setO((G1, v1, k1) . . . , (Gt, vt, kt)) := (G, v, k + 1). 2

Proof of Proposition 27:We show that there is a polynomial reduction fromp-POINTED-PATH(PLAN-CONN) to
p-PATH(PLAN-CONN). Then our claim follows from the previous lemma by Lemma 19.

2Note that we actually do not need to compute the drawing ofGi. It is only needed to show that the graphG we construct is planar.

10

Let (G, v, k) be an instance ofp-POINTED-PATH(PLAN-CONN). Using the connectedness ofG one easily
verifies:

if G contains a path of length2k − 1, thenG contains a path of lengthk starting atv. (6)

We add toG in v a pathP of lengthk − 1 of new vertices, thereby obtaining the planar and connected graph
G′. We show that

(G, v, k) ∈ p-POINTED-PATH(PLAN-CONN)
⇐⇒ (G′, 2k − 1) ∈ p-PATH(PLAN-CONN).

Then(G, v, k) 7→ (G′, 2k − 1) is the desired reduction.
Assume first thatG has a path of lengthk starting atv. Clearly, thenG′ has a path of length2k−1. Conversely,

let P ′ be a path of length2k − 1 in G′. If v is a vertex ofP ′, then the vertices ofP ′ contained inG constitute a
path ofG of length at leastk starting atv. If v is not a vertex ofP ′, thenP ′ is a path inG and by (6) the graphG
contains a path of lengthk starting atv. 2

We know that no NP-hard problem has a self-distillation (unless PH= ΣP
3). Clearly each problem in PTIME

has a self-distillation.

Proposition 29. If NE 6= E, then there is a problem inNP\ P that has a self-distillation.

By E and NE we denote the class of problemsQ such thatx ∈ Q is solvable by a deterministic algorithm and a
nondeterministic algorithm, respectively, in time2O(|x|).

Proof of Proposition 29: Let Q0 ⊆ {0, 1}∗ be a language in NE\ E. We assume that each yes instance ofQ0

starts with a 1, and can thus be viewed as a natural number in binary. Forn ∈ N let bin(n) denote its binary
representation. We set

Q := {1n | bin(n) ∈ Q0} .

It is easy to see thatQ ∈ NP\ P. Now letQ′ be the “OR-closure” ofQ, that is

Q′ := {(x1, . . . , xm) | m ≥ 1 andxi ∈ Q for somei ∈ [m]} .

Again it is easy to see thatQ′ ∈ NP\ P. We claim thatQ′ has a self-distillation.
Let (x11, . . . , x1m1), . . . , (xt1, . . . , xtmt) be a sequence of instances ofQ′. We can assume that allxij are

sequences of 1s (otherwise we simply ignore those which are not). Letn be the maximal length of thexij . Then

{x11, . . . , x1m1 , . . . , xt1, . . . , xtmt
} = {y1, . . . , yq}

for someq ≤ n. Thus(y1, . . . , yq) has lengthO(n2). Clearly(y1, . . . , yq) is in Q′ if and only if (xi1, . . . , ximi
) ∈

Q′ for somei ∈ [t]. 2

6. Strong lower bounds

In this section and the next one, by a careful analysis of the proof of Theorem 21, we obtain improvements, which
yield better lower bounds for kernelizations. In particular for the path problem we will show:

Theorem 30. Letε > 0 and assumePH 6= ΣP
3. Then there isnopolynomial reduction fromPATH to itself computing

for each instance(G, k) of PATH an instance(G′, k′) with

‖G′‖ = kO(1) · ‖G‖1−ε.

We define:

Definition 31. Letε > 0. A parameterized problem(Q, κ) has anε self-reductionif there is a polynomial reduction
from Q to itself that assigns to every instancex of Q an instancey with

|y| = κ(x)O(1) · |x|1−ε.

Note that it is not required that the parameter ofy is bounded in terms of the parameter ofx.

11

Clearly, if (Q,κ) has a polynomial kernelization, then(Q,κ) has anε self-reduction for everyε > 0. Now
we can rephrase Theorem 30 by saying that, unless PH= ΣP

3, for everyε > 0 the problemp-PATH has noε self-
reduction. This result will be a special instance of a more general result stating similar lower bounds for problems
with a linear OR.

Definition 32. Let (Q,κ) be a parameterized problem. Alinear OR for(Q,κ) is a polynomial time algorithmO
that for every finite tuplēx = (x1, . . . , xt) of instances ofQ outputs an instanceO(x̄) of Q such that

(1) |O(x̄)| = t ·
(
maxi∈[t]|xi|

)O(1)
;

(2) κ(O(x̄)) =
(
maxi∈[t]|xi|

)O(1)
;

(3) O(x̄) ∈ Q if and only if for somei ∈ [t]: xi ∈ Q.

Hence a linear OR is an OR with the additional property (1).

Examples 33. (a) The parameterized problemsp-PATH andp-POINTED-PATH(PLAN-CONN) have a linear OR.
In fact, the ORs defined in the proofs of Corollary 22 and of Lemma 28 are linear ones.

(b) The parameterized problemp-SAT has a linear OR.

Proof: We define a linear ORO. Let α1, . . . , αt be CNF formulas, say,αi a formula withni variables. We set

n := maxi∈[t]ni and m := maxi∈[t]|αi|.

We may assume that allαi have variables in{X1, . . . , Xn} and that logt is a natural number (ift is not a power of
two we duplicate one of the formulas for an appropriate number of times).

If t ≥ 2n, the algorithmO proves whether one of theαis is satisfiable (by systematically checking all assign-
ments) and outputs a CNF formulaO(α1, . . . , αt) satisfying condition (3) of the preceding definition.

Assumet < 2n. We introduce logt new variablesY1, . . . , Ylog t. For i ∈ [t] we set

βi :=
∧

s∈[log t]

Y bit(s,i)
s

(recall that bit(s, i) denotes thesth bit in the binary representation ofi and thatX1 = X andX0 = ¬X for every
variableX).

We bring each(βi → αi) into conjunctive normal form: Assumeαi =
∧

`

∨
`′ λ``′ with literals λ``′ , then

(βi → αi) is equivalent to

γi :=
∧
`

(∨
s∈[log t]

Y 1−bit(s,i)
s ∨

∨
`′

λ``′
)
.

We letγ be the CNF formulaγ :=
∧

i∈[t] γi. We setO(α1, . . . , αt) := γ.
ClearlyO is computable in polynomial time. Furthermore, by construction the formulaO(α1, . . . , αt) is equiv-

alent to
∧

i∈[t](βi → αi). Because any assignment toY1, . . . , Ylog t satisfies exactly one of theβis, the formula
O(α1, . . . , αt) is satisfiable if and only if there is ani ∈ [t] such thatαi is satisfiable; hence condition (3) of Defini-
tion 32 is satisfied . Furthermore,O also satisfies the conditions (1) and (2). For (2) note thatγ hasn + log t vari-
ables. By our assumption ont, we haven+log t ≤ 2n ≤ 2m. For (1) note that eachγi has lengthO(m·(m+log t))
and hence,O(α1, . . . , αt) has lengthO(m3). 2

(c) The parameterized problemuni-CLIQUE has a linear OR.

Proof: Let (G1, k1), . . . , (Gt, kt) be instances ofuni-CLIQUE. Of course, we can assume thatki ≤ |Vi|, whereVi is
the set of vertices ofGi. Letk := maxi∈[t]ki. By adding a clique ofk−ki new vertices toGi and connecting all new
vertices to all old vertices inVi we can pass to an instance(G′

i, k) equivalent to(Gi, ki). Letm := maxi∈[t]|V ′
i | (≤

2 ·maxi∈[t]|Vi|).
If t ≥ 2m, by exhaustive search the algorithmO checks whether one of theG′

is has a clique of sizek; if this is
the caseO outputs(Gi, ki) for such aG′

i and otherwise it outputs, say,(G1, k1).
Assume thatt < 2m. We setO((G1, k1), . . . , (Gt, kt)) := (G, k), whereG denotes the disjoint union of the

graphsG′
i. Clearly,O is computable in polynomial time and condition (3) is satisfied. For condition (1) note that

we have for the setV of vertices ofG the inequality|V | ≤ t · m. The parameter ofO((G1, k1), . . . , (Gt, kt)) is
k · log |V | ≤ k · log (t ·m) ≤ k · (m + log m) = O(m2). 2

12

(d) The parameterized problemuni-DOMINATING -SET has a linear OR.

Proof: Let (G1, k1), . . . , (Gt, kt) be instances ofuni-DOMINATING -SET. Let k := maxi∈[t]ki. By addingk − ki

isolated vertices, we can pass to equivalent instances(G′
1, k), . . . , (G′

t, k). LetG′
i = (V ′

i , E′
i). We may assume that

t > k and that the vertex setsV ′
i are pairwise disjoint.

If t ≥ 2m, wherem := maxi∈[t]|V ′
i |, the algorithmO checks by exhaustive search whether one of theG′

is has
a dominating set of sizek; if so O outputs(Gi, ki) for such aG′

i and otherwise it outputs(G1, k1).
Assume thatt < 2m. For i ∈ [t] andj ∈ [0, k] := {0, 1, . . . , k} let V ′

i (j) be a copy ofV ′
i , say,

V ′
i (j) := {(v, j) | v ∈ V ′

i }.

Let G = (V,E) be the graph with vertex set

V :=
⋃

s∈[log t]

{s(−), s(0), s(1)} ∪
⋃

i∈[t],j∈[0,k]

V ′
i (j).

The edge setE contains

– edges that make{s(−), s(0), s(1)} a clique fors ∈ [log t];

– for s ∈ [log t] andi ∈ [t] edges froms(1) to all vertices inV ′
i (0) if bit(s, i) = 0 and edges froms(0) to all

vertices inV ′
i (0) if bit(s, i) = 1;

– for i, i′ ∈ [t], v ∈ V ′
i , w ∈ V ′

i′ , andj, j′ ∈ [0, k] the edge{(v, j), (w, j′)} if

– i 6= i′ andj = j′ > 0 or

– i = i′ and{v, w} ∈ Ei or

– i = i′, j 6= j′ andv = w.

We claim that

(G, k + log t) ∈ uni-DOMINATING -SET ⇐⇒ there is ani ∈ [t]: (G′
i, k) ∈ uni-DOMINATING -SET. (7)

For the backward direction assume fori ∈ [t] that{v1, . . . , vk} is a dominating set inG′
i. Then

{(v1, 1), . . . , (vk, k)} ∪ {s(bit(s, i)) | s ∈ [log t]}

is a dominating set ofG.
For the forward direction letX be a dominating set ofG of sizek + log t. Fors ∈ [log t] in order to dominate

the points(−) we see that at least one point of the clique{s(−), s(0), s(1)} has to be contained inX.
Clearly, ask < t, there is ani0 ∈ [t] such that

X ∩
⋃

j∈[0,k]

V ′
i0(j) = ∅.

For j ∈ [k] (in particularj 6= 0), in order to dominate the elements ofV ′
i0

(j), the setX must contain an element of
the form(vj , j) with vj ∈ V ′

ij
for someij 6= i0. Moreover, asX only containsk + log t elements, the vertexvj

(and henceij) are uniquely determined byj. Then it is not hard to see that the set{vj | j ∈ [k] andij = i1} is a
dominating set inG′

i1
. This finishes the proof of the equivalence (7).

We setO((G1, k1), . . . , (Gt, kt)) := (G, k). ThatO also satisfies condition (2) of a linear OR is shown as in
the case ofuni-CLIQUE. 2

(e) The problemalpha-LCS has a linear OR. Herealpha-LCS denotes the canonical parameterization of the longest
common subsequence problem:

alpha-LCS
Instance: An alphabetΣ, stringsX1, . . . , X` ∈ Σ∗, andm ∈ N.

Parameter: m · log |Σ|.
Question: Is there a common subsequence ofX1, . . . , X` of lengthm?

13

Proof: Let (Σ1, X11, . . . , X1`1 ,m1) . . . (Σt, Xt1, . . . , Xt`t
,mt) be instances ofalpha-LCS. We can assume that

`1 = · · · = `t = ` (by repeating a sequence if necessary) and thatm1 = · · · = mt = m (by addingcm−mi
i to each

Xij for some new letterci). Moreover we can assume that the alphabetsΣi are disjoint. Now we consider thè
strings overΣ1 ∪ . . . ∪ Σt

X11X21 . . . Xt1, X12X22 . . . Xt2, . . . X1`X2` . . . Xt`

and the stringXt1X(t−1)1 . . . X11.
One easily verifies that these(`+1) strings have a common subsequence of lengthm if and only if for somei ∈

[t] the stringsXi1, . . . , Xi`i
have one (for the forward direction note that a common subsequence ofX11X21 . . . Xt1

andXt1X(t−1)1 . . . X11 is a sequence overΣi for somei ∈ [t]). Now, if t ≥ maxi∈[t]|Σi|m we determine the value
of O by exhaustive search and otherwise, we use the set of strings just constructed. 2

Even though we could add further examples of parameterized problems with a linear OR, there are also many
problems where we do not know whether they have a linear OR. We just mention one example, the problem
uni-RED/BLUE-NONBLOCKER, the canonical reparametrization of the problemp-RED/BLUE-NONBLOCKER.

As we have seen thatp-PATH has a linear OR, Theorem 30 follows from:

Theorem 34. Let ε > 0. Let (Q, κ) be a parameterized problem with a linearOR and withNP-hard Q. Unless
PH = ΣP

3, the problem(Q,κ) has noε self-reduction.

As we have seen thatp-PATH has a linear OR, Theorem 30 is a special instance of Theorem 34. It will be
convenient to reformulate Theorem 34. For this purpose we need some further notions.

Definition 35. A function f : N → R≥0 is pseudo-linearif there is somec ∈ N and someε ∈ R with ε > 0 such
that for allt ∈ N

f(t) ≤ c · t1−ε.

The property that we need of pseudo-linear functions is contained in the following lemma. It is easy to prove.

Lemma 36. Let ε > 0 andf : N → R≥0 be a pseudo-linear function. Then for everyc ∈ N there exists ad ∈ N
such that for sufficiently largen we have

f(nd) · nc + 1 ≤ nd.

Remark 37. As f will determine the lower bound stated in Theorem 34, it is worthwhile to note that a weak
converse of the above lemma holds: Letf satisfy the conclusion of Lemma 36. Then there is someε > 0 such that
f(t) < t1−ε for infinitely manyt.

To see this writef(t) = tg(t) for someg. Then forc = 1 there ared, n0 ∈ N such thatnd·g(nd) < nd−1 for all
n ≥ n0. Thusg(t) < 1− 1/d, i.e. f(t) ≤ t1−1/d, for t = nd

0, (n0 + 1)d, (n0 + 2)d a
For a parameterized problem(Q,κ), a constantc ∈ N, and a functionf : N → R≥0 consider the preparameter-

ized problem

(Q,κc × f)
Instance: x ∈ {0, 1}∗.

Parameter: κ(x)c · f(|x|).
Question: x ∈ Q?

Theorem 34 follows from:

Lemma 38. Let c ∈ N andf : N → R≥0 be pseudo-linear. Let(Q, κ) be a parameterized problem with a linear
OR and withNP-hardQ. Then(Q,κc × f) has no linear kernelization, unlessPH = ΣP

3.

We prove this lemma by generalizing Theorem 21.

Definition 39. Let Q,Q′ ⊆ {0, 1}∗ be classical problems and letf : N → R≥0 be a function. Alinear f -
distillation fromQ in Q′ is a polynomial time algorithmD that receives as inputs finite sequencesx̄ = (x1, . . . , xt)
with xi ∈ {0, 1}∗ for i ∈ [t] and outputs a stringD(x̄) ∈ {0, 1}∗ such that

(1) |D(x̄)| = f(t) · (maxi∈[t]|xi|)O(1);

(2) D(x̄) ∈ Q′ if and only if for somei ∈ [t] : xi ∈ Q.

14

We say thatQ has a linearf -distillation if there is a linearf -distillation fromQ in Q′ for some problemQ′.

Lemma 40. Letf : N → R≥0 be pseudo-linear. NoNP-hard problem has a linearf -distillation unlessPH = ΣP
3.

Proof: Let f : N → R≥0 be pseudo-linear andQ ⊆ {0, 1}∗ be NP-hard. Assume thatD is anf -distillation fromQ
in some problemQ′. We choose a constantc ∈ N such that

|D(x̄)| ≤ f(t) ·
(

maxi∈[t]|xi|
)c

(8)

for all t ∈ N and all sequences̄x of t instances ofQ.
Let Q := {0, 1}∗ \Q be the complement ofQ and similarlyQ′ the complement ofQ′. ClearlyQ is coNP-hard.

We show thatQ ∈ NP
/

poly and hence, coNP⊆ NP
/

poly. This yields our claim, as then PH= ΣP
3 by a result of

Yap [13, Theorem 2]. Note that for all̄x = (x1, . . . , xt) we have

D(x̄) ∈ Q′ ⇐⇒ for all i ∈ [t] : xi ∈ Q. (9)

To proveQ ∈ NP
/

poly it suffices to show that for sufficiently largen ∈ N there is at = nO(1) and a setS of
strings with‖S‖ :=

∑
x∈S |x| = nO(1) such that for allx ∈ {0, 1}n

x ∈ Q ⇐⇒ ∃x1, . . . , xt ∈ {0, 1}n :
(
x ∈ {x1, . . . , xt} andD(x1, . . . , xt) ∈ S

)
.

In other words,S can be viewed as a polynomial size advice string for instances of lengthn. As we will see, the
elements ofS are strings inQ′, more precisely, we will chooseD-values “with many preimages.”

For everym ∈ N, we have|{0, 1}≤m| ≤ 2m+1, in particular,

|{0, 1}≤f(m)·nc

| ≤ 2f(m)·nc+1 (10)

As f is pseudo-linear, by Lemma 36 there is a constantd ∈ N such that for all sufficiently largen ∈ N

f(nd) · nc + 1
nd

≤ 1. (11)

Forn ≥ 1 we set
t := nd.

Then (10) and (11) imply forY := Q′ ∩ {0, 1}≤f(t)·nc

that

|Y |1/t ≤ 2. (12)

Recall thatQ=n := Q ∩ {0, 1}n. By (8) we can define a functiong : (Q=n)t → Y by

g(x̄) := D(x̄).

We construct the advice stringS inductively. First we letX0 := Q=n. Choosey0 ∈ Y such that

g−1(y0) :=
{
x̄ ∈ Xt

0 | g(x̄) = y0

}
contains at least|X0|t/|Y | many tuples. Letstring(g−1(y0)) be the set components of tuples ing−1(y0), that is,

string(g−1(y0)) :=
{
x ∈ X0 | there exists some(x1, . . . , xt) ∈ g−1(y0) such thatx ∈ {x1, . . . , xt}

}
.

It follows thatg−1(y0) ⊆
(
string(g−1(y0))

)t
and hence

∣∣string(g−1(y0))
∣∣ ≥ |g−1(y0)|1/t ≥

(
|X0|t

|Y |

)1/t

≥ |X0|
2

,

the last inequality holding by (12). IfX0 6= string(g−1(y0)), then letX1 := X0 \ string(g−1(y0)). Now, we view
g as a function ofX1 to Y and, by the same argument as above, we choosey1 ∈ Y such that|string(g−1(y1))| ≥
|X1|/2. We iterate this process until we reach the first` ∈ N with X` = string(g−1(y`)). We let

S := {y0, . . . , y`}.

15

ThenS ⊆ Y ⊆ Q′ and|S| = ` ≤ log |X0| ≤ n and thus‖S‖ ≤ n · f(t) · nc ≤ nd+1 (by (11)). Hence‖S‖ is
polynomially bounded inn.

We show the equivalence (10). Letx ∈ {0, 1}n. If x ∈ Q, by our construction ofS, there is a tuplēx containing
x as a component such thatg(x̄) = D(x̄) ∈ S.

Conversely, assumex /∈ Q. Then for everȳx := (x1, . . . , xt) with x1, . . . , xt ∈ {0, 1}n andx ∈ {x1, . . . , xt},
we have, by (9), thatD(x̄) /∈ Q′ and henceD(x̄) /∈ S ⊆ Q′. 2

Proof of Lemma 38:Let c ∈ N andf be pseudo-linear, sayf(t) = O(t1−ε). Assume that(Q, κ) is a parameterized
problem with a linear ORO and NP-hardQ. AssumeΣP

3 6= PH. For the sake of contradiction assume that
(Q,κc × f) has a linear kernelizationK. By Lemma 40 it suffices to show thatQ has a linearf -distillationD.

We defineD on finite sequences̄x = (x1, . . . , xt) by

D(x̄) := K(O(x̄)).

It is clear that
D(x̄) ∈ Q ⇐⇒ for somei ∈ [t] : xi ∈ Q.

Write n := maxi∈[t]|xi|. Then, becauseK is a linear kernelization for(Q,κc × f),

|D(x̄)| = O
(
κ(O(x̄))c · f(|O(x̄)|)

)
= O(nO(1) · |O(x̄)|1−ε) = nO(1) · |O(x̄)|1−ε,

where the second equality follow from Definition 32 (2). Now, by Definition 32 (1) we know|O(x̄)| = t · nO(1).
Hence|D(x̄)| = t1−ε · nO(1) and thereforeD is a linearf -distillation fromQ in itself. 2

In particular the problems mentioned in Examples 33 do not have anε self-reduction unless PH= ΣP
3.

7. Lower bounds for problems with an OR for instances with constant parameter

We consider the parameterized problem

p-CYCLE

Instance: A graphG andk ∈ N.
Parameter: k.

Question: DoesG have a cycle of lengthk?

Let (G1, k1), . . . , (Gt, kt) be instances ofp-CYCLE. If k1 = . . . = kt =: k, then for the disjoint unionG of the
Gis we have(G, k) ∈ p-CYCLE if and only if (Gi, ki) ∈ p-CYCLE for somei ∈ [t]. However, it is not clear how
to define such an instance(G, k) if k1, . . . , kt are distinct, more precisely, we do not know whetherp-CYCLE has
an OR. The following concept is tailored for such situations.

Definition 41. Let (Q,κ) be a parameterized problem and letλ be a further parameterization. AnOR forλ-constant
instances of(Q,κ) is a polynomial time algorithmO that for every finite tuplēx = (x1, . . . , xt) of instances ofQ
with λ(x1) = . . . = λ(xt) outputs an instanceO(x̄) of Q such that

(1) κ(O(x̄)) = (maxi∈[t]|xi|)O(1);

(2) O(x̄) ∈ Q if and only if for somei ∈ [t]: xi ∈ Q.

Examples 42.The instances of the following problems are pairs(G, k), whereG is a graph andk ∈ N. We let
λ always be the function withλ(G, k) := k. In all examples we get the claimed OR forλ-constant instances by
settingO((G1, k), . . . , (Gt, k)) := (G, k), where the graphG is the disjoint union of theGis. In all cases we do
not know whether the corresponding problem has an OR.

(a) The problemp-CYCLE has an OR forλ-constant instances.

(b) The problemsuni-CHORDLESS-PATH anduni-CHORDLESS-CYCLE have an OR forλ-constant instances. Here,
for example,

16

uni-CHORDLESS-CYCLE

Instance: A graphG = (V,E) andk ∈ N.
Parameter: k · log |V |.

Question: DoesG have a chordless cycle of lengthk?

Note that in the last exampleλ(G, k) = k is not the parameter of(G, k) as instance ofuni-CHORDLESS-CYCLE.

For problems with an OR for constant instances we get a slightly weaker result than that in Theorem 34 for
problems with a linear OR. To state the result we first define:

Definition 43. Let (Q, κ) be a parameterized problem. Asubexponential self-reduction of(Q,κ) is a polynomial
reduction fromQ to itself that assigns to every instancex of Q an instancey with

|y| = κ(x)O(1) · |x|o(1).

Clearly if (Q,κ) has a subexponential self-reduction, then it has anε self-reduction for everyε > 0.

Theorem 44. Let (Q,κ) be a parameterized problem withNP-completeQ. Furthermore assume that(Q,κ) has
anOR for λ-constant instances, whereλ is a further parameterization. UnlessPH = ΣP

3, there isnosubexponential
self-reduction of(Q,κ).

In particular, (Q,κ) has no polynomial kernelization (a result shown in [4]).

Recall the reparameterization(Q,κc × f) of (Q,κ) for c ∈ N andf : N → R≥0. Clearly(Q,κc × f) has a
polynomial kernelization if and only if(Q, κ× f), the problem forc = 1, has one.

For the purposes of the proof of Theorem 44 we call a functionf : N → R≥0 goodif f(t) = to(1) for all t ∈ N
(that is, if we can writef(t) = t1/h(t) for some functionh : N → R≥0 with limt→∞ h(t) = ∞).

The statement of this theorem can be equivalently formulated as:

Lemma 45. Let (Q,κ) be a parameterized problem withNP-completeQ. Furthermore assume that(Q,κ) has
an OR for λ-constant instances, whereλ is a further parameterization. Then, unlessPH = ΣP

3, for every good
f : N → R≥0 the problem(Q,κ× f) has no polynomial kernelization.

Proof: Assume PH6= ΣP
3. Furthermore, we choose for(Q,κ) an ORO for λ-constant instances.

Let f : N → R≥0 be good. One easily sees that there is a good increasing functionf ′ : N → R≥0 of the form

f ′(t) = 2log t/ι(log t) (13)

with a nondecreasing and unbounded functionι : N → R≥0 such thatf(t) ≤ f ′(t) for all (sufficiently large)t.
For the sake of contradiction assume also that(Q,κ × f) has a polynomial kernelization. Of course, then

(Q,κ× f ′) has a polynomial kernelizationK. We show that thenQ has a linearg-distillation D for some pseudo-
linearg, which contradicts Lemma 40.

Let x1, . . . , xt be instances ofQ. We letn := maxi∈[t]|xi| and` := maxi∈[t]λ(xi). Then` = nO(1). Forj ≤ `
let

yj := K(O(x̄j)),

wherex̄j stands for the subsequence ofx1, . . . , xt consisting of the instances withλ-valuej.
We show that for some good functionf1 and allj ≤ `

|yj | = f1(t) · nO(1). (14)

In fact, asK is a polynomial kernelization of(Q,κ× f ′), we know

|yj | = |K(O(x̄j))| =
(
κ(O(x̄j)) · f ′(|O(x̄j)|)

)O(1)

= nO(1) · f ′(|O(x̄)|)O(1),

where the last equality holds by Definition 41 (1). We show thatf ′(|O(x̄)|) = f ′(t)d · nd for somed ∈ N. Then
we get (14) forf1(t) := f ′(t)d.

AsO is polynomial time computable, we know|O(x̄j)| ≤ tc ·nc for some constantc ∈ N. Sincef ′ is increasing,
it is enough to show

f ′(tc · nc) ≤ (f ′(t) · n)2c.

17

By (13)

f ′(tc · nc) = 2

c · log t + c · log n

ι(c · log t + c · log n) .

We distinguish two cases.

- If t ≥ n, then, asι is nondecreasing, we get

f ′(tc · nc) ≤ 2

2c · log t

ι(log t) = f ′(t)2c.

- If t < n, then
f ′(tc · nc) ≤ 22c·log n = n2c.

This finishes the proof of (14).
As by assumptionQ is NP-complete, there are polynomial time reductionsR andS from Q to SAT and from

SAT to Q, respectively. Applying the reductionR : Q ≤p SAT we have|R(yj)| = f1(t)O(1) · nO(1). Hence∣∣ ∨
j∈[`]

R(yj)
∣∣ = O

(
` · f1(t)O(1) · nO(1)

)
= f1(t)O(1) · nO(1),

becausè = nO(1). As S : SAT ≤p Q, there is ae ∈ N such that∣∣S(∨
j∈[`]

R(yj)
)∣∣ ≤ f1(t)e · ne

Howeverg(t) := f1(t)e is good and in particular, pseudo-linear. ThereforeD(x1, . . . , xt) := S
(∨

j∈[`] R(yj)
)

defines a linearg-distillation fromQ in itself. 2

In particular, we can apply Theorem 44 to the problems listed in Examples 42.

Clearly, every parameterized problem(Q,κ) with an OR has an OR forκ-constant instances. In this case we
do not need the reduction to the problem SAT in the previous proof. Hence, we get the following improvement of
Corollary 26:

Theorem 46. Let (Q, κ) be a parameterized problem with anOR and withNP-hard Q. UnlessPH = ΣP
3, the

problem(Q,κ) has no subexponential self-reduction.

We omit the proof of the following lemma, which is simple and similar to that of Lemma 19.

Lemma 47. Let (Q, κ) and(Q′, κ′) be parameterized problems. with

(Q, κ) ≤p (Q′, κ′) and Q′ ≤p Q.

If (Q′, κ′) has a subexponential self-reduction, then(Q,κ) has a subexponential self-reduction.

We finish this section with an example.

Example 48. Unless PH= ΣP
3, the problemp-PATH(PLAN-CONN) has no subexponential self-reduction.

Proof: We know that the problemp-POINTED-PATH(PLAN-CONN) has an OR and hence no subexponential self-

reduction. In the proof of Proposition 27 we showed that there is a polynomial reduction fromp-POINTED-PATH(PLAN-CONN)
to p-PATH(PLAN-CONN). Hence, the claim follows from the previous lemma.

8. Concluding remarks

8.1. Comparing the different notions of OR. From Theorem 21, Corollary 26, and Theorem 34 we know:

Proposition 49. Assume thatPH 6= ΣP
3. Then:

(1) NoNP-complete problem has a self-distillation.

18

(2) No parameterized problem(Q,κ) with polynomial kernelization and withNP-completeQ has anOR.

(3) No parameterized problem(Q,κ) with polynomial kernelization and withNP-completeQ has a linearOR.

We do not know whether one of the three conclusions holds under weaker assumptions, say, under P6= NP. In
this context it might be interesting to be aware of:

Proposition 50. The conclusions (1), (2), and (3) of Proposition 49 are mutually equivalent.

Proof: The implication (2)⇒ (3) is trivial. For (3)⇒ (1) assume, by contradiction, thatQ is NP-complete and has
a self-distillationD. Defineκ(x) := |x|. Thenx 7→ x is a polynomial kernelization of(Q,κ) andD is a linear OR
of (Q,κ), the desired contradiction to (3).

For the implication (1)⇒ (2) assume that(Q,κ) with NP-completeQ has a polynomial kernelizationK and an
ORO. ThenK ◦O is a self-distillation, as

K(O(x̄)) = κ(O(x̄))O(1) = (maxi|xi|)O(1).

2

The next result shows in particular that every parameterized problem(Q, κ) with polynomial kernelization and
NP-completeQ already has no OR if it has no linear OR. For example,p-VC has no linear OR if and only if it nas
no OR.

Proposition 51. Assume that(Q,κ) and(Q′, κ′) are parameterized problems withNP-completeQ andQ′ and that
(Q′, κ′) has a polynomial kernelization. If(Q, κ) has no linear OR, then(Q′, κ′) has noOR.

Proof: Let R : Q → Q′ andS : Q′ → Q be polynomial reductions andK a polynomial kernelization of(Q′, κ′)
and assume thatO is a OR ofQ′, then

x1, . . . , xt 7→ S(K(O(R(x1), . . . , R(xt))))

is a linear OR of(Q,κ). 2

8.2. Comparing the different notions of self-reduction. Clearly, every parameterized problem with a polynomial
kernelization has a subexponential self-reduction, and every parameterized problem with a subexponential self-
reduction has anε self-reduction for everyε > 0. Proposition 53 and Proposition 52 show that the reverse of the
first implication and of the second implication fail, respectively.

Proposition 52. Let Q ⊆ N be a classical problem such that everyx ∈ Q is a power of 2 with an odd exponent
and is written in unary. We define the parameterized problemp-Q by

p-Q
Instance: m, k ∈ N in unary with logk ≥ log m

log log m .
Parameter: k.

Question: Is (log m) · (log k) ∈ Q?

Then:

(1) If Q is decidable, thenp-Q is fixed-parameter tractable.

(2) For everyε > 0 the problemp-Q has anε self-reduction.

(3) If Q /∈ E, thenp-Q has no subexponential reduction.

Proof: (1) As for yes-instances(m, k) of p-Q, we have logk ≥ log m/log log m, the problemp-Q has a
kernelization and hence is fixed-parameter tractable by Proposition 2.

(2) Let t ∈ N. We show that there is an1/d self-reduction ofp-Q for d := 2t.
Let (m, k) be an instance ofp-Q. We can assume thatm = 22u

andk = 22v

(otherwise,(m, k) is a no-instance
of p-Q).

We set
m′ := 22u−t

(= (22u

)1/d) and k′ := 22v+t

(= (22v

)d).

19

Clearly, (m, k) ∈ p-Q if and only if (m′, k′) ∈ p-Q. Moreover,|m′| = |m|1/d and |k′| = |k|d and hence,
|(m′, k′)| = O(kd ·m1/d). Altogether,(m, k) 7→ (m′, k′) is an1/d self-reduction ofp-Q.

(3) We assume thatp-Q has a subexponential self-reduction(m, k) 7→ (m′, k′). Then

|(m′, k′)| = kc · (m + k)o(1) = kc ·mo(1)

for somec ∈ N. We can assume thatc is a power of 2. We show thatQ ∈ E.
Let x be an instance ofQ with x ≥ d ≥ 24c2

, whered ∈ N will be fixed later. We assume thatx is an odd
power of 2 (otherwise,x /∈ Q). We set

u :=
√

2c2 · x and v :=
u

2c2
.

Then,u andv are powers of 2 (note thatv =
√

x/2c2) andu · v = x. Moreover,v ≥ u/log u by our assumption
x ≥ 24c2

. Hence,(2u, 2v) ∈ p-Q if and only if x ∈ Q. We apply the subexponential self-reduction to(2u, 2v)
obtaining an equivalent instance(m′, k′) of p-Q with

m′, k′ ≤ 2v·c · (2u)o(1) = 2v·c+u·o(1).

If d has been chosen big enough, we have

x′ := (log m′) · (log k′) ≤ (v · c)2 + v · u · o(1) + u2 · o(1) ≤ (u/2c)2 + u2 · o(1) < u2/2c2 = uv = x.

Thus,x′ < x. If k′ < m′/log m′, then(m′, k′) /∈ p-Q and hence,x /∈ Q. Otherwise, (x′ ∈ Q ⇐⇒ x ∈ Q).
We continue this way and obtain equivalent instancesx′′, x′′′, . . . of Q till we get an instance≤ d, which is decided
directly. Altogether, we have a single exponential decision procedure forQ. 2

Proposition 53. LetQ ⊆ N be a classical problem such that everyx ∈ Q is represented in unary and has the form

x = 22t

(15)

for somet ∈ N. We define the parameterized problemp-EXP(Q) by

p-EXP(Q)
Instance: m, k ∈ N in unary withk ≥ log log m.

Parameter: k.
Question: Is mk ∈ Q?

Then:

(1) If Q is decidable, thenp-EXP(Q) is fixed-parameter tractable.

(2) The problemp-EXP(Q) has a subexponential self-reduction.

(3) If Q /∈ PTIME, thenp-EXP(Q) has no polynomial kernelization.

Proof: (1) As for yes-instances(m, k) of p-EXP(Q), we havek ≥ log log m, the problemp-EXP(Q) has a
kernelization and hence is fixed-parameter tractable by Proposition 2.

(2) Let (m, k) be an instance ofp-EXP(Q). By (15), we can assume thatm = 22t

for somet ∈ N (otherwise,
(m, k) is a no-instance ofp-EXP(Q)). Then

(m, k) ∈ p-EXP(Q) ⇐⇒ 2k·2t

∈ Q ⇐⇒ (2, k · 2t) ∈ p-EXP(Q).

Therefore the mapping(m, k) 7→ (2, k · log m) is the desired reduction.

(3) We assume thatK is a polynomial kernelization ofp-EXP(Q) and show thatQ ∈ PTIME.
Let x = 22t

be an instance ofQ. We lett′ be the minimum power of 2 witht′ ≥ t. Thus,2t ≥ t′ ≥ t. Clearly

x ∈ Q ⇐⇒ (22t/t′ , t′) ∈ p-EXP(Q).

20

Furthermore we set(m, k) := K(22t/t′ , t′). We know that

|(m, k)| = t′O(1) = tO(1)

and thatx ∈ Q if and only if mk ∈ Q. As

mk = tO(tO(1)) = 2tO(1)

we see that this is strictly smaller thanx if x is sufficiently large. 2

References

[1] R. Chang and Y. Kadin. On computing boolean connectives of characteristic functions.Math. Systems
Theory, 28:173 – 198, 1995.

[2] Y. Chen and J. Flum. On parameterized path and chordless path problems. InProceedings of the 22nd IEEE
Conference on Computational Complexity (CCC’07), page 250 – 263, 2007

[3] Y. Chen and J. Flum. Subexponential time and fixed-parameter tractability: exploiting the miniaturization
mapping. InProceedings of the 21st International Workshop on Computer Science Logic (CSL’07), Lecture
Notes in Computer Science 4646, page 389 – 404, 2007.

[4] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without polynomial kernels.
Submitted, 2007.

[5] J. Flum and M. Grohe.Parameterized Complexity Theory, Springer, 2006.

[6] L. Fortnow and Santhanam. Infeasibility of instance compression and succinct PCPs for NP. Available at
http://lance.fortnow.com/papers/

[7] M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable structures.Journal of
the ACM, 48:1184-1206, 2001.

[8] M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revisited.Annals of
Pure and Applied Logic, 130:3 – 31, 2004.

[9] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization.ACM SIGACT News, Vol.
38, No. 1, 2007.

[10] D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applications, In
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06),
page 719 – 728, 2006. Full version appears as TR06-022 in ECCC Reports 2006, available at
http://eccc.hpi-web.de/eccc-local/Lists/TR-2006.html

[11] R. Impagliazzo, R.Paturi, and F. Zane. Which problems have strongly exponential complexity?Journal of
Computer and System Sciences, 63:512 – 530, 2001.

[12] R. Niedermeier.Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

[13] C. K. Yap. Some consequences of non-uniform conditions on uniform classes.Theoretical Computer Science
26, page 287 – 300, 1983.

21

