
A logic for PTIME and a parameterized halting problem

Yijia Chen
Department of Computer Science

Shanghai Jiaotong University
yijia.chen@cs.sjtu.edu.cn

Jörg Flum
Mathematisches Institut

Albert-Ludwigs Universität Freiburg
joerg.flum@math.uni-freiburg.de

Abstract

In [7] Nash, Remmel, and Vianu have raised the ques-
tion whether a logic L≤, already introduced by Gurevich
in 1988, captures polynomial time, and they give a re-
formulation of this question in terms of a parameterized
halting problem p-ACC≤ for nondeterministic Turing ma-
chines. We analyze the precise relationship between L≤
and p-ACC≤. We show that p-ACC≤ is not fixed-parameter
tractable if “P 6= NP holds for all time constructible and in-
creasing functions.” Moreover, a slightly stronger complex-
ity theoretic hypothesis implies that L≤ does not capture
polynomial time. Furthermore, we analyze the complexity
of various variants of p-ACC≤ and address its construction
problem.

1. Introduction

The existence of a logic expressing precisely the polynomial
time properties of structures remains the central problem in
descriptive complexity (recent articles addressing this ques-
tion are [4, 7]). A proof that such a logic does not exist
would yield that P 6= NP. By a result due to Immerman [6]
and Vardi [8] least fixed-point logic LFP captures polyno-
mial time on ordered structures. However the property of an
arbitrary structure of having a universe of even cardinality
is not expressible in LFP. There are artificial logics captur-
ing polynomial time on arbitrary structures, but they do not
fulfill a natural requirement to logics in this context:

There is an algorithm that decides whether A is a
model of ϕ for all structures A and sentences ϕ
of the logic and that does this for fixed ϕ in time
polynomial in the size ‖A‖ of A.

(1)

In [5] the author introduces a logic L≤ related to LFP
(cf. Section 3 for its definition), in which precisely the poly-
nomial time properties are expressible; one conjectures that
L≤ does not satisfy the effectivity condition (1). In [7] it
has been shown that the statement “L≤ satisfies (1)” can
be equivalently formulated as a statement concerning the

complexity of a halting problem for nondeterministic Tur-
ing machines (NTM). This reformulation is best expressed
in the terminology of parameterized complexity. We con-
sider the parameterized acceptance problem p-ACC≤ for
NTMs:

p-ACC≤
Instance: An NTM M and n ∈ N in unary.

Parameter: ‖M‖, the size of M.
Question: Does M accept the empty input tape

in at most n steps?

Then (see Theorem 10 (3), (4) for the precise statement)

L≤ satisfies (1) if and only if p-ACC≤ ∈ XP. (2)

In this paper we mainly deal with two questions:

(a) What does “p-ACC≤ is fixed-parameter tractable”
mean for the logic L≤?

(b) What is the complexity of p-ACC≤?

While we can answer question (a), we are only able to relate
the statements “p-ACC≤ ∈ XP” and “p-ACC≤ ∈ FPT”
with other open problems of complexity theory.

More precisely, the content of the different sections is
the following. It is known that the time bound for the
model-checking problem for LFP, that is, for the evaluation
of a sentence ϕ of LFP in a structure A, contains a fac-
tor ‖A‖O(|ϕ|); an analysis of the corresponding algorithm
shows that (at least for LFP-sentences in normal form) a
factor of the form ‖A‖O(width(ϕ)) suffices, where width(ϕ),
the width of ϕ, essentially is the maximum number of free
variables in a subformula of ϕ. The main result of Sec-
tion 4 shows that the existence of a bound of this type for
the model-checking problem of the logic L≤ is equivalent
to p-ACC≤ ∈ FPT.

Let P[TC] 6= NP[TC] mean that for all time constructible
and increasing functions h the class of problems decid-
able in deterministic polynomial time in h and the class of
problems decidable in nondeterministic polynomial time in

h are distinct, that is, DTIME(hO(1)) 6= NTIME(hO(1)).
In Section 6 we show that P[TC] 6= NP[TC] implies that
p-ACC≤ /∈ FPT. Furthermore a stronger hypothesis
where DTIME(hO(1)) 6= NTIME(hO(1)) is replaced by
NTIME(hO(1)) 6⊆ DTIME(hO(log h)) implies that p-ACC≤
/∈ XP (and thus by (2), it implies that L≤ does not cap-
ture polynomial time). In [2] we related these hypotheses
to other statements of complexity theory; in particular, we
saw that P[TC] 6= NP[TC] holds if there is a P-bi-immune
problem in NP.

We also study some variants of p-ACC≤. First we deal
with p-ACC=, the problem obtained from p-ACC≤ by ask-
ing for an accepting run of exactly n steps. We show that
p-ACC= is related to a logic L= as p-ACC≤ is to the logic
L≤. In Section 5 we improve a result of [1] by show-
ing that p-ACC= ∈ FPT if and only if E = NE (that is,
DTIME(2O(n)) = NTIME(2O(n))). Furthermore, in Sec-
tion 7 we introduce a halting problem for deterministic Tur-
ing machines, the “deterministic version” of p-ACC≤, and
show that it is an example of a problem nonuniformly fixed-
parameter tractable but not contained in uniform XP, to the
best of our knowledge, the first natural such example.

Finally, in Section 8, we consider the construction prob-
lem associated with p-ACC≤ and show that it is not fpt Tur-
ing reducible to p-ACC≤ in case p-ACC≤ /∈ XP.

2. Preliminaries

In this section we review some of the basic concepts of pa-
rameterized complexity and of logics and their complexity.
We refer to [3] for notions not defined here.

2.1. Parameterized complexity. We identify problems
with subsets Q of {0, 1}∗. Clearly, as done mostly, we
present concrete problems in a verbal, hence uncodified
form. All Turing machines have {0, 1} as their alphabet.

We view parameterized problems as pairs (Q, κ) con-
sisting of a problem Q ⊆ {0, 1}∗ and a parameterization
κ : {0, 1}∗ → N, which is required to be polynomial time
computable. We will present parameterized problems in the
form as we did for p-ACC≤ in the Introduction.

Recall that a parameterized problem (Q,κ) is fixed-
parameter tractable (or, in the class FPT) if x ∈ Q is solv-
able by an fpt-algorithm, that is, by an algorithm running in
time f(κ(x)) · |x|O(1) for some computable f : N → N.
The parameterized problem (Q,κ) is in the class XP if
x ∈ Q is solvable in time O(|x|f(κ(x))) for some com-
putable f : N→ N.

Besides these classes of the usual (strongly uniform) pa-
rameterized complexity theory we need their uniform ver-
sions FPTuni and XPuni and their nonuniform versions FPTnu
and XPnu. For example, (Q,κ) ∈ FPTuni if there is an al-
gorithm solving x ∈ Q in time f(κ(x)) · |x|O(1) for some
arbitrary f : N→ N; and (Q,κ) ∈ FPTnu if there is a con-

stant c ∈ N, an arbitrary function f : N→ N, and for every
k ∈ N an algorithm solving the problem x ∈ Q for all x
with κ(x) = k in time f(k) · |x|c.

We write (Q,κ) ≤fpt (Q′, κ′) if there is an fpt reduction
from (Q,κ) to (Q′, κ′) (this concept refers to the strongly
uniform parameterized complexity theory).

2.2. Logic. A vocabulary τ is a finite set of relation sym-
bols. Each relation symbol has an arity. A structure A of
vocabulary τ , or τ -structure (or, simply structure), consists
of a nonempty set A called the universe, and an interpreta-
tion RA ⊆ Ar of each r-ary relation symbol R ∈ τ . We
say that A is finite, if A is a finite set. All structures in this
paper are assumed to be finite.

For a structureAwe denote by ‖A‖ the size ofA, that is,
the length of a reasonable encoding ofA as string in {0, 1}∗
(e.g., cf. [3] for details). If necessary, we can assume that
the universe of a finite structure is [m] := {1, . . . ,m} for
some natural number m ≥ 1, as all the properties of struc-
tures we consider are invariant under isomorphisms; in par-
ticular, it suffices that from the encoding of A we can re-
coverA up to isomorphism. The reader will easily convince
himself that we can assume that there is a computable func-
tion lgth such that for every vocabulary τ and m ≥ 1 (we
just collect the properties of lgth we use in Section 4):

(a) ‖A‖ = lgth(τ,m) for every τ -structure A with uni-
verse of cardinality m (that is, for fixed τ and m, the
encoding of each τ -structure with universe of m ele-
ments has length equal to lgth(τ,m));

(b) lgth(τ,m) ≥ max{2,m};

(c) for fixed τ , the function m 7→ lgth(τ,m) is time con-
structible and lgth(τ,m) is polynomial in m;

(d) lgth(τ,m) < lgth(τ ′,m′) for all τ , τ ′ with τ ⊆ τ ′ and
m,m′ with m < m′;

(e) lgth(τ,m) = O(log |τ | · |τ | ·m) for every τ containing
only unary relation symbols;

(f) lgth(τ ∪ {R},m) = O(lgth(τ,m) + m2) for every
binary relation symbol R not in τ .

In effectivity considerations for a structure A we denote by
<A the ordering on A given by the encoding of A.

We assume familiarity with first-order logic FO and its
extension least fixed-point logic LFP. We denote by FO[τ]
and LFP[τ] the set of sentences of vocabulary τ of FO and
of LFP, respectively. It is known that LFP captures P on the
class of ordered structures.

As we will introduce further semantics for the formulas
of least fixed-point logic, we write A |=LFP ϕ if the struc-
ture A is a model of the LFP-sentence ϕ. An algorithm
based on the inductive definition of the satisfaction relation
for LFP shows (see [9]):

Proposition 1. The model-checking problemA |=LFP ϕ for
structures A and LFP-sentences ϕ can be solved in time

|ϕ| · ‖A‖O(|ϕ|).

It is known that every LFP-sentence is equivalent to an
LFP-sentence in normal form, where an LFP-sentence ϕ is
in normal form if it has the form

ϕ = ∃y1 . . .∃y`[LFPx1...x`,Xψ(x1 . . . x`, X)] ȳ, (3)

with a first-order formula ψ, an `-ary relation variable X
and ȳ = y1 . . . y`; moreover, x1, . . . , x` are the first-order
variables free in ψ. If in addition every subformula of ϕ
has at most ` free first-order variables, then the problem
A |=LFP ϕ can be solved in time O(|ϕ| · ‖A‖2` · `). To
state the corresponding result for arbitrary LFP-sentences
we introduce the width and the depth of LFP-formulas.

Let ϕ(x1, . . . , xr, Y1, . . . , Ys) be an LFP-formula and let
the pairwise distinct x1, . . . , xr be the first-order variables
free in ϕ and the pairwise distinct Y1, . . . , Ys be the second-
order variables free in ϕ. The variable-weight of ϕ is

r +
∑
i∈[s]

ar(Yi),

where ar(Yi) is the arity of Yi. The width of ϕ, denoted
by width(ϕ), is the maximum of the variable-weights of the
subformulas of ϕ. By depth(ϕ), the depth of ϕ, we denote
the maximum nesting depth of LFP-operators in ϕ.

Proposition 2. The model-checking problemA |=LFP ϕ for
structures A and LFP-sentences ϕ can be solved in time

|ϕ| · ‖A‖O
(
(1+depth(ϕ))·width(ϕ)

)
.

2.3. Logics capturing P. A logic L consists

– for every vocabulary τ of a decidable set L[τ] of
strings, the set of L-sentences of vocabulary τ ;

– of a satisfaction relation |=L; if (A, ϕ) ∈ |=L, then, for
some τ , we have that A is a τ -structure and ϕ ∈ L[τ];
furthermore for each ϕ ∈ L[τ] the class of structures
A with A |=L ϕ is closed under isomorphisms.

We say that A is a model of ϕ if A |=L ϕ (that is, if
(A, ϕ) ∈ |=L). We set ModL(ϕ) :=

{
A | A |=L ϕ

}
and say that ϕ axiomatizes the class ModL(ϕ).

We partly take over the following terminology from [7].

Definition 3. Let L be a logic.

(a) L is a logic for P if for all vocabularies τ and all
classes C (of encodings) of τ -structures closed under
isomorphisms we have

C ∈ P ⇐⇒ C = ModL(ϕ) for some ϕ ∈ L[τ].

(b) L is a P-bounded logic for P if (a) holds and if there is
an algorithm A deciding |=L, that is, for every struc-
ture A and L-sentence ϕ the algorithm A decides
whether A |=L ϕ. Moreover, for every fixed ϕ the
algorithm A runs in time polynomial in ‖A‖.

Hence, if L is a P-bounded logic for P, then for every L-
sentence ϕ the algorithm A witnesses that ModL(ϕ) ∈ P.
However, we do not necessarily know ahead of time the
bounding polynomial.

(c) L is an effectively P-bounded logic for P if L is a P-
bounded logic for P and if in addition to the algorithm
A as in (b) there is a computable function that assigns
to every L-sentence ϕ a polynomial q ∈ N[X] such
that A decides whether A |=L ϕ in ≤ q(‖A‖) steps.

3. Order-invariant variants of LFP

For a vocabulary τ let τ< := τ ∪ {<}, where < is a binary
relation symbol not in τ .

For every class of τ -structures C in P closed under iso-
morphisms the class of τ<-structures

C< :=
{
(A, <A)

∣∣ A ∈ C and <A an ordering of A
}

(4)

is in P, too; hence, as the logic LFP captures polynomial
time on the class of ordered structures, there is a LFP[τ<]-
sentence axiomatizing C<. However, we are interested in a
sentence axiomatizing the class C.

In order to obtain a logic that captures polynomial time
on all structures one has considered variants of LFP ob-
tained by restricting to order-invariant sentences or by mod-
ifying the semantics such that all sentences are order-
invariant. In this section we recall the corresponding logics
and start by introducing the respective notions of invariance.

Definition 4. (a) A pair (ϕ,A) is in the relation INV if

– for some vocabulary τ we have that A is a τ -
structure and ϕ ∈ LFP[τ<];

– (ϕ is invariant in A under a change of the order-
ing) for all orderings <1 and <2 on A we have

(A, <1) |=LFP ϕ ⇐⇒ (A, <2) |=LFP ϕ.

(b) An LFP[τ<]-sentence ϕ is order-invariant if (ϕ,A) ∈
INV for all τ -structures A.

(c) For an LFP[τ<]-sentence ϕ and m ∈ N we write

(ϕ,m) ∈ INV

if (ϕ,A) ∈ INV for all τ -structures A with |A| = m.

(d) For an LFP[τ<]-sentence ϕ and m ∈ N we write

(ϕ, ≤ m) ∈ INV

if (ϕ,A) ∈ INV for all τ -structures A with |A| ≤ m.

Note that every LFP[τ<]-sentence axiomatizing a class of
the form C< (see (4)) is order-invariant.

The different degrees of invariance lead to the following
different logics. For all logics L we let

L[τ] := LFP[τ<].

Hence, these logics only differ in their semantics. The
logic Linv is the first naive attempt to get an (effectively)
P-bounded logic for P. Its semantics is fixed by

A |=Linv ϕ ⇐⇒
(
ϕ is order-invariant and

(A, <A) |=LFP ϕ
)

(recall that <A denotes the ordering on A given by the en-
coding of A).

Clearly (and this remark will also apply to the logics
Lstr, L=, and L≤ to be defined yet), for all classes C ∈ P
of τ -structures closed under isomorphisms every LFP[τ<]-
sentence axiomatizing the class C< is an Linv[τ]-sentence
axiomatizing C. Thus all properties in P are expressible in
Linv.

As ModLinv(ϕ) = ModLFP(ϕ) if ϕ ∈ LFP[τ<] is invari-
ant and ModLinv(ϕ) = ∅ otherwise, Linv is a logic for P.
However, as already remarked in [5], a simple application
of a theorem of Trachtenbrot shows that the set of invariant
LFP[τ<]-sentences is not decidable and thus |=Linv is not de-
cidable; hence Linv is not a P-bounded logic for P.

For the logic Lstr we require invariance in the corre-
sponding structure:

A |=Lstr ϕ ⇐⇒
(
(ϕ,A) ∈ INV and (A, <A) |=LFP ϕ

)
.

For a binary relation symbol E, consider an FO
[
{E}<

]
-

sentence ϕ expressing that E is not a graph or that in the
ordering < there are two consecutive elements which are
not related by an edge. The class ModLstr(ϕ) is the comple-
ment of the class of graphs having a Hamiltonian path and
hence it is coNP-complete (a different coNP-complete class
is axiomatized in [5, Theorem 1.16]).

As an easy consequence we get:

Proposition 5. Lstr is a logic for P iff P = NP
iff Lstr is an effectively P-bounded logic for P.

Proof: Assume that P = NP. To show that Lstr is an effec-
tively P-bounded logic for P we consider the problem

Instance: An Lstr-sentence ϕ, a structure A
and the number ‖A‖|ϕ| in unary.

Problem: Is (A, ϕ) ∈ INV?

By Proposition 1, it is in coNP and hence it is solvable in
polynomial time. This yields the algorithm A as required
by part (b) and (c) of Definition 3. 2

As coNP-complete problems can be axiomatized in Lstr,
we define the logic L= using a stronger invariance property:

A |=L= ϕ ⇐⇒
(
(ϕ, |A|) ∈ INV and (A, <A) |=LFP ϕ

)
;

in particular, A |=L= ϕ can only hold if ϕ is invariant in all
structures with universe of the same cardinality as A.

Note that for an L=-sentence ϕ it is not clear whether the
class of models of ϕ is in P. In fact, in Section 7 we show:

Proposition 6. L= is a logic for P iff E = NE
iff L= is an effectively P-bounded logic for P.

Finally we introduce the logic L≤, where invariance in
all structures of the same or smaller cardinality is required:

A |=L≤ ϕ⇐⇒
(
(ϕ,≤ |A|) ∈ INV and (A, <A) |=LFP ϕ

)
.

If an LFP[τ<]-sentence ϕ is not order-invariant, then the
class ModL≤(ϕ) only contains (up to isomorphism) finitely
many structures and hence it is in P. Therefore L≤ (as Linv)
is a logic for P.

In particular, Linv and L≤ have less expressive power
than Lstr (if P 6= NP) and less than L= (if E 6= NE). Clearly
if P = NP (and hence E = NE), then all, Linv, Lstr, L= and
L≤, have the same expressive power. Otherwise we have:

Proposition 7. (1) If P 6= NP, then there is a class ax-
iomatizable in Lstr but not in L=.

(2) If E 6= NE, then there is a class axiomatizable in L=

but not in Lstr.

Proof: To get (1) we observe that the complement of the
class of graphs having a Hamiltonian path, a class axioma-
tizable in Lstr as we have seen, is not axiomatizable in L=

if P 6= NP; this is shown by the following claim.

Claim 1: Let C be a class of τ -structures. Assume that
C /∈ P. Furthermore assume that for every m ∈ N with
m ≥ 2 there is a structure Am ∈ C such that |Am| = m.
Then C is not axiomatizable in L=.

Proof of Claim 1: Assume thatC = ModL=(ϕ). Form ≥ 2
we have (ϕ,m) ∈ INV, as Am |=L= ϕ. Clearly, (ϕ, 1) ∈
INV. Hence ϕ is order-invariant and thus ModLFP(ϕ) =
C<. So C< and hence C are in P, a contradiction. a

A proof of part (2), based on the following claim, will be
presented in Section 4.1.

Claim 2: Let X be a set of natural numbers in unary with
X /∈ P. Assume that the class C of τ -structures has the
property: For all τ -structures A

A ∈ C ⇐⇒ |A| ∈ X.

Then C is not axiomatizable in Lstr.

Proof of Claim 2: Assume that C = ModLstr(ϕ) with ϕ ∈
Lstr[τ]. Clearly (ψ,A) ∈ INV for all LFP[τ<]-sentences ψ
and every τ -structure A of the form A = (A, (∅)P∈τ) (all
relations P ∈ τ are interpreted by the empty set). Then for
every m ≥ 1 and for the natural ordering < on [m]:(

[m], (∅)P∈τ , <
)
|=LFP ϕ ⇐⇒

(
[m], (∅)P∈τ

)
|=Lstr ϕ

⇐⇒ m ∈ X

As
(
[m], (∅)P∈τ , <

)
|=LFP ϕ can be checked in time poly-

nomial in
∥∥(

[m], (∅)P∈τ , <
)∥∥ and hence, polynomial in

m, we see that X ∈ P, a contradiction. 2

This paper mainly addresses the question whether L≤
is an effectively P-bounded logic for P, a question raised
in [7]. It is conjectured that it is not a P-bounded logic for P.
In [7] this question (or conjecture) is reformulated as an ef-
fectivity property for a halting problem for nondeterministic
Turing machines. We analyze the relationship between the
logic and the halting problem in the next section.

4. A halting problem and its relationship to L≤

We defined the parameterized acceptance problem p-ACC≤
for NTMs in the Introduction. We shall see in this section
how the complexity of this problem is related to properties
of the logic L≤. We start with the following simple obser-
vation on the complexity of p-ACC≤.

Proposition 8. The problem p-ACC≤ is in the class FPTnu.

Proof: Fix k ∈ N; then there are only finitely many NTMs
M with ‖M‖ = k, say, M1, . . . ,Ms. For each i ∈ [s] let
`i be the smallest natural number ` such that there exists an
accepting run of Mi, started with empty input tape, of length
`. We set `i = ∞ if Mi does not accept the empty input
tape. Consider the algorithm Ak that on any instance (M, n)
of p-ACC≤ with ‖M‖ = k determines the i with M = Mi,
and then accepts if and only if `i ≤ n. It has running time
O(‖M‖+ n); thus it witnesses that p-ACC≤ ∈ FPTnu. 2

This observation can easily be generalized. We call a
parameterized problem (Q,κ) slicewise monotone if its in-
stances have the form (x, n), where x ∈ {0, 1}∗ and n ∈ N
is given in unary, if κ(x, n) = |x|, and finally if for all
x ∈ {0, 1}∗ and n, n′ ∈ N we have

(x, n) ∈ Q and n < n′ imply (x, n′) ∈ Q.

In particular, p-ACC≤ is slicewise monotone and the pre-
ceding argument shows:

Lemma 9. (Q, κ) ∈ FPTnu for slicewise monotone (Q,κ).

Is p-ACC≤ ∈ FPTuni or, at least, p-ACC≤ ∈ XPuni?
By [7] the conjecture “L≤ is not a P-bounded logic for P”
mentioned in the previous section is equivalent to the state-
ment p-ACC≤ /∈ XPuni (and similarly, the statement “L≤
is not an effectively P-bounded logic for P” is equivalent to
p-ACC≤ /∈ XP).

However it is not even clear whether p-ACC≤ /∈ FPT.
Do the statements p-ACC≤ ∈ FPT and p-ACC≤ ∈ FPTuni
also correspond to natural properties of the logic L≤? We
address this problem in this section.

Proposition 2 motivates the introduction of the following
notion. We say that L≤ is an (effectively) depth-width P-
bounded logic for P if there is an algorithm A deciding |=L≤

in such a way that there is a (computable) function h such
that A |=L≤ ϕ can be solved in time

h(|ϕ|) · ‖A‖O
(
(1+depth(ϕ))·width(ϕ)

)
.

By Proposition 2, the logic LFP “is an effectively depth-
width P-bounded logic for P on ordered structures.”
Parts (1) and (2) of the following theorem are the main re-
sult of this section, (3) and (4) are already mentioned in [7].

Theorem 10. (1) L≤ is an effectively depth-width P-
bounded logic for P if and only if p-ACC≤ ∈ FPT.

(2) L≤ is a depth-width P-bounded logic for P if and only
if p-ACC≤ ∈ FPTuni.

(3) L≤ is an effectively P-bounded logic for P if and only
if p-ACC≤ ∈ XP.

(4) L≤ is a P-bounded logic for P if and only if p-ACC≤ ∈
XPuni.

4.1. Proof of Theorem 10 and some consequences. The
following observations will lead to a proof of the direction
“from right to left” in the statements of Theorem 10.

For an L≤-sentence ϕ let τϕ be the set of relation sym-
bols distinct from < that do occur in ϕ. For a suitable
time constructible function t : N → N we will need an
NTM Mϕ(t) that, started with empty tape, operates as fol-
lows: In a first phase it writes a word of the form 1m

for some m ≥ 1 on some tape. The second phase (the
main phase) consists of at most t(m) + 1 steps (this can
be ensured as t is time constructible). If Mϕ(t) does not
stop during the first t(m) steps of the main phase, then it
stops in the next step and rejects. During this t(m) steps,
Mϕ(t) guesses (the encoding of) a τϕ-structureA with uni-
verse [m] and two orderings <1 and <2 on [m] and checks
whether

(
(A, <1) |=LFP ϕ ⇐⇒ (A, <2) |=LFP ϕ

)
. If this

is not the case, then Mϕ(t) accepts; otherwise it rejects.
The first phase takes m steps. To guess a τϕ-structure

A with universe [m] and two orderings <1 and <2 requires

O(lgth(τϕ,m) + 2m2) bits (see Section 2.2); thus for some
d1 ∈ N the machine Mϕ(t) needs

t1ϕ(m) := d1 · (lgth(τϕ,m) + 2m2)

steps. Finally, by Proposition 2, to check the equivalence(
(A, <1) |=LFP ϕ iff (A, <2) |=LFP ϕ

)
takes at most

t2ϕ(m) := |ϕ| · lgth((τϕ)<,m)d2·(1+depth(ϕ))·width(ϕ)

steps for some d2 ∈ N. By the time constructibility of the
function m 7→ lgth((τϕ)<,m) we can arrange the machine
in such a way that it needs exactly the number of steps given
by the upper bounds t1ϕ(m) and t2ϕ(m) (if it is not stopped
by the time bound t(m)). Thus, if in the first phase of a
run Mϕ(t) has written the word 1m, then Mϕ(t) performs
exactly

tϕ(m) := t1ϕ(m) + t2ϕ(m) (5)

additionally steps before it stops (assuming tϕ(m) ≤
t(m)). Note that tϕ is increasing. Therefore we have

(ϕ,≤ m) ∈ INV ⇐⇒
(Mϕ(tϕ),m+ tϕ(m)) /∈ p-ACC≤.

(6)

We collect some facts we are going to use:

(i) There is an algorithm assigning to every L≤-sentence
ϕ the machine Mϕ(tϕ).

(ii) For every L≤-sentence ϕ and all τϕ-structures A:

A |=L≤ ϕ ⇐⇒
(
(Mϕ(tϕ),m+ tϕ(|A|)) /∈ p-ACC≤

and (A, <A) |=LFP ϕ
)
.

(iii) There is a computable function g such that for every
L≤-sentence ϕ and all τϕ-structures A we have

tϕ(|A|) ≤ g(|ϕ|) · ‖A‖O
(
(1+depth(ϕ))·width(ϕ)

)
(by the definition (5) of the function tϕ and the prop-
erties of the lgth-function mentioned in Section 2.2).

Now we can show the direction “from right to left” in the
statements of Theorem 10. We give the proof for the claims
(1) and (2); obvious modifications yield (3) and (4).

Assume p-ACC≤ ∈ FPTuni (p-ACC≤ ∈ FPT), that is,
assume that (M, n) ∈ p-ACC≤ can be solved in time

f(‖M‖) · ne

for some e ∈ N and some (computable) function f : N →
N. We consider the problem A |=L≤ ϕ where A is a struc-
ture and ϕ an L≤-sentence. We may assume that A is a
τϕ-structure (if A contains more relations, we omit them;

this can be done in O(|ϕ| + ‖A‖) steps). Using (i), (iii),
and Proposition 2 we see that there is an algorithm and a
(computable) function h such that the condition

(Mϕ(tϕ), |A|+ tϕ(|A|)) /∈ p-ACC≤ and (A, <A) |=LFP ϕ

and hence, by (ii), the problem A |=L≤ ϕ can be solved in

time h(|ϕ|) · ‖A‖O
(
(1+depth(ϕ))·width(ϕ)

)
. 2

Before we proceed with the proof of Theorem 10, it is
worthwhile to extract from the previous argument informa-
tion relevant for the logic L=. The corresponding halting
problem p-ACC= is obtained from p-ACC≤ by replacing
its question by:

Does M accept the empty input tape in exactly n steps?

Lemma 11. If p-ACC= ∈ FPT, then L= is an effectively
depth-width P-bounded logic for P.1

Proof: Note that the following variant of (6) holds:

(ϕ,m) ∈ INV ⇐⇒ (Mϕ(tϕ),m+ tϕ(m)) /∈ p-ACC=,

and thus, A |=L= ϕ is equivalent to

(Mϕ(tϕ), |A|+ tϕ(|A|)) /∈ p-ACC= and (A, <A) |=LFP ϕ.

Thus our claim can be derived in exactly the same way as
the corresponding statement for L≤. 2

We turn to a proof of the directions from “left to right”
in Theorem 10. Let M be an NTM and let m0 := m0(M)
be the maximum of the number of states and the number of
tapes. We can assume that [k] is the set of states of M (for
some k ≤ m0) and that 1 is its initial state. Furthermore, we
may assume that every two distinct successor configurations
of a given configuration of M have distinct states. We let
P0, P1, . . . , Pk be unary relation symbols. We shall see that
for τ := {P0, . . . , Pk} there is a ϕM ∈ LFP[τ<] in normal
form with the following properties: For every τ -structureA

(a) If |A| < m0, then (A, <A) |=LFP ϕM for all orderings
<A on A.

(b) If |A| ≥ m0 and the subsets PA
0 , . . . , P

A
k do not form

a partition of A, then (A, <A) |=LFP ϕM for all order-
ings <A on A.

(c) Let |A| ≥ m0 and assume that PA
0 , . . . , P

A
k form

a partition of A and <A is an ordering on A. Let
a1, . . . , a|A| be the enumeration of the elements of A
according to the ordering <A and choose is such that
as ∈ PA

is
for s ∈ [|A|].

1Along the lines of the proof the reader will easily verify the analogues
for p-ACC= and L= of the directions “from right to left” of all statements
of Theorem 10. However, all the others will follow from Corollary 14.

(i) If there is a j ∈ [|A| − 1] such that 1, i1, . . . , ij
is the sequence of states of a complete run of M,
started with empty input tape (in particular, is 6=
0 for all s ∈ [j]), then (A, <A) |=LFP ϕM if and
only if this run of M is a rejecting one.

(ii) If for all j ∈ [|A| − 1] the sequence 1, i1, . . . , ij
does not correspond to a complete run of M with
empty input tape, then (A, <A) |=LFP ϕM.

We show that for every m ≥ m0(M)

(M,m) ∈ p-ACC≤ ⇐⇒ (ϕM, ≤ m) /∈ INV. (7)

First assume that (M,m) ∈ p-ACC≤. Then there are j ∈
[m − 1] and i1, . . . , ij ∈ [k] such that 1, i1, . . . , ij is the
sequence of states of an accepting run of M. By (c)(i) there
is a structure A on [m] such that (A, <A) 6|=LFP ϕM for the
natural ordering <A on [m] and PA

0 = {m}. We choose
an ordering <′ on [m] such that m is the first element of <′

and hence, i1 = 0 under <′. By (c)(ii) we see that (A, <′)
|=LFP ϕM. Hence, (ϕM, ≤ m) /∈ INV.

Conversely, if (M,m) /∈ p-ACC≤, it is easy to see, using
(a)–(c), that A |=L≤ ϕM for every structure A with |A| ≤
m; hence, (ϕM,≤ m) ∈ INV.

The sentence ϕM (in normal form and hence of depth 1)
is obtained by standard techniques. (We will sketch its con-
struction in the full version of the paper.) The sentence ϕM
depends on the machine M, however, and this is important,
as in ϕM we have to take care of a run of at most as many
steps as the cardinality of the universe, it can be defined in
such a way that its width is independent of M; thereby we
use the fact that we can address the ith element in the order-
ing < by a formula of width 3.

Now we are able to finish the proof of the directions
“from left to right” in Theorem 10. Again we present the
argument for claims (1) and (2) of this theorem. Assume
that L≤ is an (effectively) depth-width P-bounded logic for
P and choose c ∈ N and a (computable) function h : N→ N
such that the model-checking problem A |=L≤ ϕ for struc-
tures A and L≤-sentences ϕ can be solved in time

h(|ϕ|) · ‖A‖c·(1+depth(ϕ))·width(ϕ). (8)

We show that p-ACC≤ ∈ FPTuni (p-ACC≤ ∈ FPT).
Let (M,m) be an arbitrary instance of p-ACC≤. If m <
m0(M) (≤ ‖M‖), we check whether (M,m) ∈ p-ACC≤
by brute force. Otherwise, we construct from M the sen-
tence ϕM. We choose the τ -structure Am with Am = [m]
and empty relations. By property (d) of the lgth-function
(see Section 2.2), we have ‖Am‖ = O(log |τ |·|τ |·|Am|) =
O(|ϕM|2 ·m). As

(ϕM, ≤ m) ∈ INV iff (Am |=L≤ ϕM or Am |=L≤ ¬ϕM),

we obtain by (7)

(M,m) /∈ p-ACC≤ iff (Am |=L≤ ϕM or Am |=L≤ ¬ϕM).

Therefore, by (8), there is a (computable) function f and a
constant e ∈ N (recall that for all NTMs M the depth of
ϕM is one and that there is a constant bounding the width
of ϕM) such that (M,m) ∈ p-ACC≤ can be solved in time
f(‖M‖) ·me. This finishes the proof of Theorem 10. 2

Again we extract from the proof the information on
p-ACC= and L= that we shall need in Section 5.

Lemma 12. If L= is a logic for P, then p-ACC= ∈ XPnu.

Proof: A minor change in the definition of ϕM in the previ-
ous proof yields an LFP-sentence χM with

(M,m) ∈ p-ACC= ⇐⇒ (χM,m) /∈ INV

instead of (7), and hence

(M,m) /∈ p-ACC= iff (Am |=L= χM or Am |=L= ¬χM).

Assume L= is a logic for P. Fix k ∈ N and let M1, . . . ,Ms

be the finitely many NTMs M with ‖M‖ = k. As L= is
a logic for P, for all i ∈ [s] there is an algorithm solving
A |=L= χMi in time polynomial in ‖A‖. Then the last
equivalence yields the claim p-ACC= ∈ XPnu. 2

We close this section by a proof of Proposition 7 (2).

Proof of Proposition 7 (2): Let X be a set of natural num-
bers in binary in NE \ E. Then X(un) ∈ NP \ P, where
X(un) is the set of natural numbers of X in unary. Hence
there is an NTM M that given m ∈ N in unary decides
whetherm ∈ X(un) in polynomial time, say, in time c ·md.
We may assume that every run of M on input m has length
c · md. Similar to the ϕM in the proof of Theorem 7, we
construct an LFP-sentence ρM expressing that

if for some m ∈ N the universe has cardinality
c ·md and the relations P0, . . . , Pk code a run of
M with input 1m, then it is not accepting.

Then for every {P0, . . . , Ps}-structure A we have

A |=L= ρM ⇐⇒ |A| /∈ {c ·md | m ∈ X(un)}. (9)

As the set {c · md | m ∈ X(un)} of natural numbers in
unary is not in P, we get that ModL=(ρM) is not axiomatiz-
able in Lstr by Claim 2 in the proof of Proposition 7. 2

5. The parameterized complexity of p-ACC=.

Let M be an NTM. By suitably adding to M a state, which
can be accessed and left nondeterministically, one obtains
a machine M∗ such that for all n ∈ N the machine M∗

accepts the empty input tape in exactly n steps if and only
if M accepts the empty input tape in ≤ n steps. Hence
p-ACC≤ ≤fpt p-ACC=. Recall that p-ACC≤ ∈ FPTnu. On
the other hand, p-ACC= /∈ FPTnu if E 6= NE, as shown by
the main result of this section:

Theorem 13. The following statements are equivalent:

p-ACC= /∈ FPT, p-ACC= /∈ XPnu, E 6= NE.

In [1] it is shown that p-ACC= ∈ XP implies E = NE.
By Lemmas 11 and 12 we get as a consequence of Theo-
rem 13 the following improvement of Proposition 6.

Corollary 14. L= is a logic for P iff E = NE
iff L= is an effectively depth-width P-bounded logic for P.

We prove Theorem 13 by the following two lemmas.

Lemma 15. If E = NE, then p-ACC= ∈ FPT.

Proof: Consider the classical problem:

Instance: An NTM M and n ∈ N in binary.
Problem: Does M accept the empty input tape

in exactly n many steps?

Clearly, it is NE. By the assumption E = NE, we can solve
it in time 2O(‖M‖+log n). It follows that p-ACC= is decidable
in time O(n)+2O(‖M‖+log n) = 2O(‖M‖) ·nO(1), and hence
p-ACC= ∈ FPT. 2

Lemma 16. If p-ACC= ∈ XPnu, then E = NE.

Proof: Assume that p-ACC= ∈ XPnu. Let Q ⊆ {0, 1}∗ be
in NE. We have to show Q ∈ E. Without loss of generality
we may assume that every x ∈ Q starts with a “1.” Let n(x)
be the natural number with binary representation x; then

n(x) 6= n(y) for x, y ∈ Q with x 6= y. (10)

As Q ∈ NE there is an NTM M and a c ∈ N such that M
decides whether x ∈ Q in time 2c·|x| and every run of M
on input x has length at most 2c·|x|. Note that for x starting
with a “1”, we have 2c·|x| = n(x)c.

We define an NTM M∗ that started with empty input tape
runs as follows:

1. Guess a string y ∈ {0, 1}∗

2. if y does not start with a “1”, then reject

3. simulate M on input y for n(y)c many steps

4. if M rejects, then reject

5. make some additional dummy steps such
that so far the total running time of M∗

is 2 · n(y)c − 1

6. Accept.

By (10) we have for every x ∈ {0, 1}∗ starting with a “1”
that x ∈ Q if and only if M∗ accepts the empty input tape
in exactly 2 · n(x)c many steps. As p-ACC= ∈ XPnu, for
some d ∈ N we can decide whether M∗ accepts the empty
string in exactly 2 · n(x)c many steps in time

(2 · n(x)c)d.

Hence, x ∈ Q can be decided in time 2O(|x|). 2

Proof of Theorem 13: Immediate by Lemmas 15 and 16. 2

6. The parameterized complexity of p-ACC≤.

We already know that the parameterized problem p-ACC≤
is in FPTnu; however, is it fixed-parameter tractable or at
least in XP? We address these questions in this section.

Let
P[TC] 6= NP[TC]

mean that DTIME(hO(1)) 6= NTIME(hO(1)) for all time
constructible and increasing functions h.

The assumption P[TC] 6= NP[TC] implies P 6= NP, even
E 6= NE, as seen by taking as h the identity function and
the function 2n, respectively. At the end of this section we
are going to relate P[TC] 6= NP[TC] to further statements of
complexity theory. The main result of this section is:

Theorem 17. If P[TC] 6= NP[TC], then p-ACC≤ /∈ FPT.

The following idea underlies the proof (given in the full ver-
sion of the paper) of this result. Assume that p-ACC≤ ∈
FPT. Then, in particular we have a deterministic algorithm
deciding p-ACC≤, the (parameterized) acceptance problem
for nondeterministic Turing machines. This yields a way
(different from brute force) to translate nondeterministic al-
gorithms into deterministic ones; a careful analysis of this
translation shows that NTIME(hO(1)) ⊆ DTIME(hO(1))
for a suitable time constructible and increasing function h.

Refining the argument we get p-ACC≤ /∈ XP; how-
ever we need a complexity-theoretic assumption (appar-
ently) stronger than P[TC] 6= NP[TC] (again for a proof we
refer to the full version of the paper).

Theorem 18. Assume NTIME(hO(1)) 6⊆DTIME(hO(log h))
for every time constructible and increasing function h.
Then p-ACC≤ /∈ XP.

6.1. Relating P[TC] 6= NP[TC] to other statements. We
partly report on results from [2] relating P[TC] 6= NP[TC]
and the hypothesis in Theorem 18 to further statements of
complexity theory.

Let C be a classical complexity class. Recall that a prob-
lem Q ⊆ {0, 1}∗ is C-bi-immune if both Q and the com-
plement of Q do not have an infinite subset that belongs to
C. It has been conjectured that NP contains a P-bi-immune
problem.

Proposition 19. The following statement (a) implies (b).

(a) NP contains a P-bi-immune problem.

(b) P[TC] 6= NP[TC].

It seems that the statement (a) is much stronger than (b).
In fact as shown in [2] “not (b)” implies

there is an infinite I ∈ P such that for all Q ∈ NP
at least one of the setsQ∩I and

(
{0, 1}∗ \Q

)
∩I

is an infinite set in P,

while “not (b)” can be reformulated as

for all Q ∈ NP there is an infinite I ∈ P such that
at least one of the sets Q∩ I or

(
{0, 1}∗ \Q

)
∩ I

is an infinite set in P.

Furthermore it is shown in [2]:

Proposition 20. If NP contains an E-bi-immune problem,
then NTIME(hO(1)) 6⊆ DTIME(hO(log h)) for every time
constructible and increasing function h.

7. A deterministic variant of p-ACC≤

If in the problem p-ACC≤ we replace the NTM M by a
deterministic Turing machine (DTM) simulating all com-
putation paths of length n of M with empty input tape we
“arrive at” p-DTM-EXP-ACC≤:

p-DTM-EXP-ACC≤
Instance: A DTM M and n ∈ N in unary.

Parameter: ‖M‖.
Question: Does M accept the empty input tape

in at most 2n steps?

Thus, p-ACC≤ ≤fpt p-DTM-EXP-ACC≤. As the lat-
ter problem is slicewise monotone, we know that it is in
FPTnu by Lemma 9. Clearly, FPTnu ⊆ XPnu and XP ⊆
XPuni ⊆ XPnu. The problem p-DTM-EXP-ACC≤ lies in
FPTnu \ XPuni, as we show:

Theorem 21. p-DTM-EXP-ACC≤ /∈ XPuni.

Proof: One easily verifies that p-DTM-EXP-ACC≤ is fpt
equivalent to

p-DTM-INP-EXP-ACC≤
Instance: A DTM M, x ∈ {0, 1}∗, and n ∈ N

in unary.
Parameter: ‖M‖+ |x|.

Question: Does M accept x in ≤ 2n steps?

Thus, it suffices to show that p-DTM-INP-EXP-ACC≤ /∈
XPuni. By contradiction, assume there exists an algo-
rithm A that for every instance (M, x, n) decides whether
(M, x, n) ∈ p-DTM-INP-EXP-ACC≤ in time c·nf(‖M‖+|x|)

for some f : N→ N and c ∈ N.
We denote by enc(M) the encoding of the DTM M by a

string in {0, 1}∗. We consider the following DTM M0:

M0(x) // x ∈ {0, 1}∗

1. if x is not the encoding of a DTM, then reject

2. determine the DTM M with x = enc(M)

3. m← number of steps performed by M0 so far

4. simulate at most 2m steps of A on (M, x,m+3)

5. if the simulation does not halt, thenm← m+1
and goto 4

6. if A accepts (M, x,m + 3) in at most 2m steps
then reject else accept.

We finish the proof by a diagonal argument: We set x0 :=
enc(M0) and start M0 with input x0. For sufficiently large
m ∈ N we have c · (m + 3)f(‖M0‖+|x0|) ≤ 2m. Therefore
eventually M0 with input x0 reaches an m, we call it m0,
such that the simulation in Line 4 halts, more precisely,

A halts on (M0, x0,m0 + 3) in at most 2m0 steps. (11)

At that point the number of steps (of the run of M0 on input
x0) is bounded by 2m0+2. Hence

M0 on x0 halts in ≤ 2 + 2m0+2 ≤ 2m0+3 steps. (12)

Putting all together we get the desired contradiction:

M0 accepts x0

iff M0 accepts x0 in ≤ 2m0+3 steps (by (12))
iff A accepts (M0, x0,m0 + 3) (by definition of A)
iff A accepts (M0, x0,m0 + 3) in at most 2m0 steps

(by (11))
iff M0 rejects x0 (by Line 6 in the definition of M0).

2

8. The construction problem associated with p-ACC≤

We consider the construction problem associated with
p-ACC≤:

p-CONSTR-ACC≤
Instance: An NTM M and n ∈ N in unary.

Parameter: ‖M‖.
Problem: Construct an accepting run of ≤ n

steps of M started with empty input
tape if there is one (otherwise report
that there is no such run).

Similarly as we showed p-ACC≤ ∈ FPTnu one gets that
p-CONSTR-ACC≤ is nonuniformly fixed-parameter tract-
able (it should be clear what this means).

Definition 22. An fptuni Turing reduction (fpt Turing reduc-
tion) from a parameterized construction problem (Q,κ) to
a parameterized decision problem (Q′, κ′) is a determinis-
tic algorithm T with an oracle to (Q′, κ′) solving the con-
struction problem (Q,κ) and with the property that there
are (computable) functions f, g : N → N, and c ∈ N such
that for every instance x of Q

– the run of T with input x has length ≤ f(κ(x)) · |x|c;
– for every oracle query “x′ ∈ Q′?” of the run of A with

input x we have κ(x′) ≤ g(κ(x)).

Often a decision problem and its construction problem have
the same complexity; for p-CONSTR-ACC≤ we can show:

Theorem 23. (1) There is an fptuni Turing reduction from
p-CONSTR-ACC≤ to p-ACC≤.

(2) If p-ACC≤ /∈ XP, then there is no fpt Turing reduction
from p-CONSTR-ACC≤ to p-ACC≤.

Proof: (1) On an instance (M, n) of p-CONSTR-ACC≤ the
desired reduction T first asks the oracle query “(M, n) ∈
p-ACC≤?”. If the answer is no, then T answers accordingly.
Otherwise T, by brute force, constructs an accepting run of
at most n steps of M. We analyze the running time of T. For
m ∈ N let M1, . . . ,M` be the finitely many NTMs with
‖Mi‖ ≤ m and with an accepting run started with empty
input tape. Let ρi be such a run of Mi of minimum length.
We set f(m) := max{|ρ1|, . . . , |ρ`|}. Now it is not hard to
see that the running time of T on the instance (M, n) can be
bounded by ‖M‖O(f(‖M‖)).

(2) By contradiction, assume there is an fpt Turing reduc-
tion T from p-CONSTR-ACC≤ to p-ACC≤. We show how T
can be turned into an algorithm witnessing p-ACC≤ ∈ XP.

According to the definition of fpt Turing reduction there
are computable functions f, g and c ∈ N such that for every
instance (M, n) of p-CONSTR-ACC≤, the algorithm T will
only make queries “(M′, n′) ∈ p-ACC≤?” with

‖M′‖ ≤ g(‖M‖) and n′ ≤ f(‖M‖) · nc.

There are at most 2g(‖M‖)+1 machines M′ with ‖M′‖ ≤
g(‖M‖). For each such machine M′ the answer to queries of
the form “(M′, n′) ∈ p-ACC≤?” with n′ ≤ f(‖M‖) · nc is
determined by everyone of the following f(‖M‖) · nc + 1
many statements: “the length of an accepting run of M′ of
minimum length is 1”,. . . , “the length of an accepting run
of M′ of minimum length is f(‖M‖) · nc”, and “there is no
accepting run of M′ of length ≤ f(‖M‖) · nc.” Therefore
the table of theoretically possible answers contains at most(

f(‖M‖) · nc + 1
)2g(‖M‖)+1

entries, that is O(nh(‖M‖)) many for some computable h.
For each such possibility we simulate T by replacing the
oracle queries accordingly. For those possibilities where T
yields a purported accepting run of M, we check whether it
is really an accepting run of M. 2

The previous theorem is a special case of a result holding
for slicewise monotone problems. We will present it in the
full version of the paper together with further applications.

9. Conclusions

We have studied the relationship between the complex-
ity of the model-checking problems of the logics L= and
L≤ and the complexity of the parameterized problems
p-ACC= and p-ACC≤. We have introduced the assumption
P[TC] 6= NP[TC] and seen that it implies that p-ACC≤ /∈
FPT . We believe that a study of the strength of this assump-
tion and of its consequences deserves further attention.

Acknowledgement. The first author is partially sup-
ported by the National Nature Science Foundation of China
(60673049).

References

[1] Y. Aumann, Y. Dombb. Fixed structure complexity.
In IWPEC 2008, LNCS 5018, 31–42, 2008.

[2] Y. Chen, J. Flum. On the complexity of Gödel’s
proof predicate. To appear in The Journal of Sym-
bolic Logic, 2009.

[3] J. Flum, M. Grohe. Parameterized Complexity The-
ory, Springer, 2006.

[4] M. Grohe. The quest for a logic capturing PTIME.
In LICS’08, pages 267–271, 2008.

[5] Y. Gurevich. Logic and the challenge of computer
science. In Current Trends in Theoretical Computer
Science, Computer Science Press, 1–57, 1988.

[6] N. Immerman. Relational queries computable in
polynomial time. Information and Control, 68:86–
104, 1986.

[7] A. Nash, J. Remmel, V. Vianu. PTIME queries revis-
ited. In ICDT 2005, LNCS 3363, 274–288, 2005.

[8] M.Y. Vardi. The complexity of relational query lan-
guages. In STOC’82, 137–146, 1982.

[9] M.Y. Vardi. On the complexity of bounded-variable
queries. In PODS’95, 266–276, 1995.

