
Lower Bounds for Kernelizations and Other Preprocessing
Procedures

Yijia Chen ∗

Shanghai Jiaotong University
Jörg Flum †

Albert-Ludwigs-Universität Freiburg

Moritz Müller ‡
Centre de Recerca Matemàtica Barcelona

Abstract

We first present a method to rule out the existence of parameter non-increasing polynomial kernelizations of
parameterized problems under the hypothesis P 6= NP. This method is applicable, for example, to the problem
SAT parameterized by the number of variables of the input formula. Then we obtain further improvements of
corresponding results in [1, 7] by refining the central lemma of their proof method, a lemma due to Fortnow and
Santhanam. In particular, assuming that the polynomial hierarchy does not collapse to its third level, we show that
every parameterized problem with a “linear OR” and with NP-hard underlying classical problem does not have
polynomial self-reductions that assign to every instance x with parameter k an instance y with |y| = kO(1) · |x|1−ε

(here ε is any given real number greater than zero). We give various applications of these results. On the structural
side we prove several results clarifying the relationship between the different notions of preprocessing procedures,
namely the various notions of kernelizations, self-reductions and compressions.

1. Introduction

Often, if a computationally hard problem must be solved in practice, one tries, in a preprocessing step, to reduce
the size of the input data. This approach has been widely studied and applied in parameterized complexity and it is
known as kernelization there. We recall the basic concepts.

Parameterized complexity is a refinement of classical complexity theory, in which one measures the complexity
of an algorithm not only in terms of the total input length, but also takes into account other aspects of the input
codified in a natural number, its parameter. Hence, a parameterized problem (Q,κ) consists of a classical problem
Q together with a function κ which assigns to every instance x of Q its parameter κ(x) ∈ N.

Central to parameterized complexity theory is the notion of fixed-parameter tractability. It relaxes the classical
notion of tractability by allowing algorithms whose running time can be exponential but only in terms of the pa-
rameter. This is based on the idea to choose the parameter in such a way that it can be assumed to be small for the
instances one is interested in. To be precise, a problem (Q,κ) is said to be fixed-parameter tractable if x ∈ Q can
be decided by an fpt-algorithm, that is, an algorithm whose running time is f(k) · p(n), where n denotes the length
|x| of x, k := κ(x), and where f is an arbitrary computable function and p a polynomial.

A kernelization K of a parameterized problem is a polynomial time algorithm that computes for every instance
x of the problem an equivalent instance K(x) of a size bounded in terms of the parameter κ(x). This suggests a
method for designing fpt-algorithms: To decide a given instance x, we compute the kernel K(x) and then decide
if K(x) is a yes-instance by brute-force. The converse holds, too: Every fixed-parameter tractable problem has a
kernelization. The proof of this fact is easy; however it gives only a “trivial” kernel with no algorithmic impact.

Besides efficient computability, an important quality of a good kernelization is small kernel size. The notion of
polynomial kernelization is an abstract model for small kernel size. A kernelization K is polynomial if there is a
polynomial p such that for all instances x the size of K(x) is bounded by p(κ(x)).

∗Email: yijia.chen@cs.sjtu.edu.cn
†Email: joerg.flum@math.uni-freiburg.de
‡Email: mmoeller@crm.cat The author wishes to thank the John Templeton Foundation for its support under Grant #13152, The

Myriad Aspects of Infinity.

1



Polynomial kernelizations are known for many parameterized problems (compare the survey [17]). However, till
recently, besides artificial problems, only few natural problems were known to have no polynomial kernelizations
(one being the model-checking for monadic second-order logic on trees parameterized by the length of the second-
order formula). This has changed, since a general method to exclude polynomial kernelizations has been developed
(cf. [1, 7]). It is based on a lemma due to Fortnow and Santhanam [7]: Recall that an OR for a classical problem Q
is a polynomially time computable function that assigns to every finitely many instances x1, . . . , xt of Q an instance
y such that (y ∈ Q if and only if xi ∈ Q for some i ∈ {1, . . . , t}). In [7] it is shown that no NP-complete problem
can have an OR with the additional property that the length |y| of y is polynomially bounded in max1≤i≤t|xi| unless
the polynomial hierarchy collapses to its third level.

However there are natural parameterized problems (Q,κ) with NP-complete problem Q having an OR such that
the parameter κ(y) of y is polynomially bounded in max1≤i≤t|xi|. If such a problem would have a polynomial
kernelization, then composing it with such an OR would yield an OR with the additional property excluded by the
lemma of Fortnow and Santhanam. Various applications of this result were given in [1, 7], in particular, in [7] it
was shown that the problem SAT parameterized by the number of propositional variables of the input formula has
no polynomial kernelizations (unless the polynomial hierarchy collapses to its third level). This settled a question
repeatedly posed in [6, p.231], [13], and implicitly already in [10].

As already mentioned, concrete kernelizations yield algorithms for solving parameterized problems efficiently
for small parameter values. Conceptually similar are compression algorithms, even though the intention is slightly
different. There the question is whether one can efficiently compress every “long” instance x of a problem Q
with “a short witness” to a shorter equivalent instance x′ of a problem Q′ (here equivalent means that x ∈ Q if
and only if x′ ∈ Q′). “Such compression enables to succinctly store instances until a future setting will allow
solving them, either via a technological or algorithmic breakthrough or simply until enough time has elapsed”
(see [13]). Using this terminology Harnik and Naor [13] addressed questions similar to that of the existence of
an OR with the additional property mentioned above. By suitably generalizing the notion of a kernelization of a
parameterized problem to the notion of a kernelization from some parameterized problem to another one, Fortnow
and Santhanam [7] introduce a framework which allows to deal with kernelizations and compressions at the same
time (in [7] a different terminology is used). Nevertheless we stick to the traditional notion of kernelization as we
mainly address problems of parameterized complexity.

We explain the contents of our paper. To the best of our knowledge all reasonable kernelizations K for concrete
parameterized problems (Q,κ) are parameter non-increasing, that is, the parameter of the kernel of an instance
x is less than or equal to the parameter of x, more succinctly, κ(K(x)) ≤ κ(x). Moreover it is known that
every parameterized problem that has a kernelization already has a parameter non-increasing kernelization. In
Section 4 we present a result (Theorem 4.2) with a quite simple proof showing that every parameterized problem
with “parameter decreasing” self-reductions has no parameter non-increasing polynomial kernelizations. This result
only requires that P 6= NP (instead of the assumption that the polynomial hierarchy does not collapse to its third
level). As an application we get that the problem SAT has no parameter non-increasing polynomial kernelization
if P 6= NP and no parameter non-increasing subexponential kernelization if the exponential time hypothesis (ETH)
holds.

However, polynomial kernelizations, which are not parameter non-increasing are not only interesting from a
theoretical point of view but also for practical purposes: such a polynomial kernelization for SAT would be sufficient
for some significant application in cryptography [13]. It is perfectly conceivable that a parameterized problem has
a useful preprocessing procedure that decreases the size of the input considerably at the cost of a slight increase
of the (small) parameter. Such a slight increase may even be necessary: In Section 3.1 we prove that there exist
parameterized problems that have polynomial kernelizations but all of them ‘slightly’ increase the parameter.

In Section 5 we recall results of Bodlaender et al. [1] and of Fortnow and Santhanam [7] relevant in our context
and we give some new applications, in particular to variants of the PATH problem. Then we refine the central lemma
due to Fortnow and Santhanam to obtain better lower bounds. Applied to the SAT problem we show in Section 6:

If the polynomial hierarchy does not collapse to its third level, then for every ε > 0 there is no polyno-
mial time algorithm that for every instance α of SAT with k variables computes an equivalent instance
α′ with

|α′| ≤ kO(1) · |α|1−ε. (1)

This result is a particular instance of a general theorem that yields lower bounds of the type in (1) for every pa-
rameterized problem “having a linear OR” (compare Theorem 6.5 for the precise statement). Note that nothing is

2



said about the number of variables of the formula α′. Thus, even though (in the main text) we state our results for
parameterized problems, it addresses arbitrary problems, where the inputs have a natural (not necessarily small)
parameter.

In Section 7 for problems satisfying an apparently weaker condition, namely only “having an OR for instances
with constant parameter” we still get quite good lower bounds; in case of SAT it would be:

|α′| ≤ kO(1) · |α|o(1). (2)

In the last section we compare the different notions of OR considered in this paper and we also compare the
notions of polynomial kernelizations and those of polynomial reductions leading to the lower bounds in (1) and (2)

Finally we should mention that after recalling some definitions and fixing our notation in Section 2, we consider
and analyze some basic questions concerning kernelizations in Section 3. In particular, we shall see that “most”
parameterized problems (more precisely, all problems in EXPT) have polynomial kernelizations if and only if they
are self-compressible.

2. Preliminaries

The set of natural numbers (that is, nonnegative integers) is denoted by N. For a natural number n let [n] :=
{1, . . . , n}. By log n we mean dlog ne if an integer is expected. For n = 0 the term log n is undefined. We trust
the reader’s common sense to interpret such terms reasonably.

We identify problems (or languages) with subsets Q of {0, 1}∗. Clearly, as done mostly, we present concrete
problems in a verbal, hence uncodified form or as a set of strings over an arbitrary finite alphabet. We use both P
and PTIME to denote the class of problems Q such that x ∈ Q is solvable in polynomial time.

A reduction from a problem Q to a problem Q′ is a mapping R : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗
we have (x ∈ Q ⇐⇒ R(x) ∈ Q′). We write R : Q ≤p Q′ if R is a reduction from Q to Q′ computable in
polynomial time, and Q ≤p Q′ if there is a polynomial time reduction from Q to Q′.

2.1. Parameterized Complexity. A parameterized problem is a pair (Q,κ) consisting of a classical problem
Q ⊆ {0, 1}∗ and a parameterization κ : {0, 1}∗ → N, which is required to be polynomial time computable even if
the result is encoded in unary.

We introduce some parameterized problems, which will be used later, thereby exemplifying our way to represent
parameterized problems. We denote by p-SAT the parameterized problem

p-SAT
Instance: A propositional formula α in conjunctive normal form.

Parameter: Number of variables of α.
Question: Is α satisfiable?

By p-PATH and p-CLIQUE we denote the problems:

p-PATH
Instance: A graph G and k ∈ N.

Parameter: k.
Question: Does G have a path of length k?

p-CLIQUE
Instance: A graph G and k ∈ N.

Parameter: k.
Question: Does G have a clique of cardinality k?

Similarly we define p-DOMINATING-SET. If C is a class of graphs, then p-PATH(C) denotes the problem

p-PATH(C)
Instance: A graph G in C and k ∈ N.

Parameter: k.
Question: Does G have a path of length k?

3



We use similar notations for other problems.

We recall the definitions of the classes FPT, EXPT, EPT and SUBEPT. A parameterized problem (Q,κ) is fixed-
parameter tractable (or, in FPT) if x ∈ Q is solvable in time f(κ(x)) · |x|O(1) for some computable f : N → N. If
f can be chosen such that f(k) = 2kO(1)

, then (Q, κ) is in EXPT. If f can be chosen such that f(k) = 2O(k), then
(Q,κ) is in EPT. If f can be chosen such that f(k) = 2oeff (k), then (Q,κ) is in SUBEPT.

Here oeff denotes the effective version of little oh: For computable functions f, g : N → N we say that f is
effectively little oh of g and write f = oeff(g) if there is a computable, nondecreasing, and unbounded function
ι : N → N such that for sufficiently large k ∈ N

f(k) ≤ g(k)
ι(k)

.

As usual we often write f(k) = oeff(g(k)) instead of f = oeff(g).

At some places in this paper, it will be convenient to consider preparameterized problems; these are pairs (Q,κ),
where again Q is a classical problem and κ is a preparametrization, that is, an arbitrary function from {0, 1}∗ to
the set R≥0 of nonnegative real numbers.

3. Fundamentals of kernelization

In this section we start by recalling the notion of kernelization and by introducing some refinements. Then we
compare the different notions of kernelizations (in Subsection 3.1), study the complexity of problems with such
kernelizations (in Subsection 3.2) and finally, we analyze the relationship between polynomial kernelizations and
compressions (in Subsection 3.3).

Definition 3.1. Let (Q,κ) be a parameterized problem and f : N → N be a function. An f -kernelization for (Q, κ)
is a polynomial time algorithm K that on input x ∈ {0, 1}∗ outputs K(x) ∈ {0, 1}∗ such that(

x ∈ Q ⇐⇒ K(x) ∈ Q
)

and |K(x)| ≤ f(κ(x)).

In particular, K is a polynomial time reduction from Q to itself. If in addition for all x ∈ {0, 1}∗

κ(K(x)) ≤ κ(x),

then K is a parameter non-increasing f -kernelization. A (parameter non-increasing) kernelization is a (parameter
non-increasing) f -kernelization for some computable function f : N → N.

We say that (Q,κ) has a linear, polynomial, subexponential, simply exponential, and exponential kernelization
if there is an f -kernelization for (Q, κ) with f(k) = O(k), f(k) = kO(1), f(k) = 2oeff (k), f(k) = 2O(k), and
f(k) = 2kO(1)

, respectively.

The following result is well-known:

Proposition 3.2. Let (Q, κ) be a parameterized problem with decidable Q. The following statements are equivalent.

(1) (Q,κ) is fixed-parameter tractable.

(2) (Q,κ) has a kernelization.

(3) (Q,κ) has a parameter non-increasing kernelization.

Furthermore, if f is computable and x ∈ Q is solvable in time f(κ(x)) · |x|O(1), then (Q,κ) has a parameter
non-increasing f -kernelization.

3.1. Comparing the different notions of kernelizations. We are mainly interested in polynomial kernelizations.
First we show that the notions of polynomial kernelization and of parameter non-increasing polynomial kerneliza-
tion are distinct:

Proposition 3.3. There is a parameterized problem (Q,κ) that has a polynomial kernelization but no parameter
non-increasing polynomial kernelization.

4



Proof: Let Q be a classical problem that is not solvable in time 2O(|x|). We define a parameterized problem (P, κ)
with P ⊆ {0, 1}∗ × {1}∗ and with κ((x, 1k)) = k. By 1k we denote the string consisting of k many 1s. For each
k ∈ N we define the k-projection P [k] :=

{
x

∣∣ (x, 1k) ∈ P
}

of P by:

– If k = 2` + 1, then
P [k] := Q=`

(
:=

{
x ∈ Q

∣∣ |x| = `
})

.

Hence, all elements in P [k] have length `.

– If k = 2`, then
P [k] :=

{
x12` ∣∣ x ∈ Q=`

}
,

where x12`

is the concatenation of x with the string 12`

. Hence, all elements in P [k] have length ` + 2`.

Intuitively, an element in the 2`-projection is an element in the (2` + 1)-projection padded with 2` many 1s. It is
not hard to see that P has a linear kernelization (which “on the even projections” increases the parameter).

We claim that P has no parameter non-increasing polynomial kernelization. Assume K is such a kernelization
and c, d ∈ N such that ∣∣K((z, 1m))

∣∣ ≤ d ·mc.

We use K to solve x ∈ Q in time 2O(|x|): Let x be an instance of Q and let ` := |x|. We may assume that

d · (2`)c < 2`

(note that there are only finitely many x not satisfying this inequality). We compute (in time 2O(`))

(u, k) := K
(
(x12`

, 2`)
)
.

We know that k ≤ 2` and |u| ≤ d · (2`)c < 2`. If u does not have the length of the strings in P [k], then (u, k) /∈ P
and therefore x /∈ Q. In particular, this is the case if k = 2` (as |u| < 2`). If u has the length of the strings in P [k]
and hence k < 2`, then it is easy to read off from u an instance y with |y| < |x| and (y ∈ Q ⇐⇒ x ∈ Q). We
then apply the same procedure to y. 2

The survey [12] contains examples of natural problems whose currently best known kernelizations are polyno-
mial, simply exponential and exponential. We show that all these different degrees of kernelizability are indeed
different:

Proposition 3.4. The classes of parameterized problems with a linear, a polynomial, a subexponential, a simply
exponential, and an exponential kernelization are pairwise different.

The claim immediately follows from the following lemma.

Lemma 3.5. Let g : N → N be nondecreasing and unbounded and let f : N → N be such that f(k) ≤ g(k − 1)
for all sufficiently large k. Then there is a Q ⊆ {0, 1}∗ and a preparameterization κ such that (Q,κ) has a
g-kernelization but no f -kernelization.

If in addition g is increasing and time-constructible, then we can choose κ to be a parameterization.

Proof: Let g and f be as in the statement. We choose k0 such that f(k) ≤ g(k− 1) for all k ≥ k0. We consider the
“inverse function” ιg of g given by

ιg(m) := min{s ∈ N | g(s) ≥ m}.

Then for all n ∈ N
n ≤ g(ιg(n)) and if ιg(n) ≥ 1, then g(ιg(n)− 1) < n. (3)

Let Q be a problem not in PTIME and define the preparameterization κ by κ(x) := ιg(|x|). By the first inequality
in (3) the identity is a g-kernelization of (Q, κ), even a parameter non-increasing one.

Assume that there is an f -kernelization K of (Q,κ). As ιg is unbounded, we have ιg(|x|) ≥ k0 for sufficiently
long x ∈ {0, 1}∗. Then

|K(x)| ≤ f(κ(x)) = f(ιg(|x|)) ≤ g(ιg(|x|)− 1) < |x|.

5



Thus applying K at most |x| times we get an equivalent instance of length at most max0≤i<k0f(i). Therefore,
Q ∈ PTIME, a contradiction.

If g is increasing and time-constructible, then ιg is polynomial time computable and hence κ is a parameteriza-
tion. 2

3.2. Complexity of problems with kernelizations. We know that a parameterized problem is fixed-parameter
tractable if and only if it has a kernelization (see Proposition 3.2). The next result shows that a parameterized
problem (Q,κ) in FPT \ EXPT with Q ∈ NP cannot have polynomial kernelizations. We show a little bit more.
Recall that EXP is the class of classical problems Q such that x ∈ Q is solvable in deterministic time 2|x|

O(1)
.

Proposition 3.6. Let f, t : N → N be computable, non-decreasing and let (Q,κ) be a parameterized problem. If
Q is decidable in time t and has an f -kernelization, then (Q,κ) can be solved in time t(f(κ(x))) · |x|O(1).

In particular, if (Q, κ) has a polynomial kernelization and Q ∈ EXP, then (Q,κ) ∈ EXPT.

Proof: Let K be a f -kernelization of (Q,κ) and let A be an algorithm solving x ∈ Q in time t(|x|). The algorithm
that on x ∈ {0, 1}∗ first computes K(x) and then applies A to K(x) solves x ∈ Q in time |x|O(1) + t(|K(x)|) =
|x|O(1) + t(f(κ(x))). 2

The model-checking of monadic second-order logic on the class of trees is in EXP. The corresponding param-
eterized problem with the length of the formula as parameter is in FPT but, by a result of [9], not in EXPT unless
P = NP. Hence, by the preceding proposition, it has no polynomial kernelization (unless P = NP).

In later sections, under some complexity-theoretic assumptions, we will present various examples of natural
problems that are in EPT and have no polynomial kernelizations. Here we give a simple, artificial example that is
provably without polynomial kernelizations.

Example 3.7. Let Q be a classical problem not in PTIME but solvable in time O(|x|log |x|). Let κ be the parame-
terization mapping x to (log |x|)2. Then (Q,κ) ∈ EPT, because 2κ(x) = |x|log |x|.

For the sake of contradiction assume that (Q,κ) has a polynomial kernelization K. Then to decide if x ∈ Q it
suffices to decide if K(x) ∈ Q. Since |K(x)| = (log |x|)O(1) this can be done in time

|K(x)|log |K(x)| ≤ (log |x|)O(log log |x|) ≤ 2(log log |x|)O(1)
≤ |x|O(1).

Thus Q ∈ PTIME, a contradiction.

However, if we would allow kernelizations to have slightly superpolynomial running time, then every EPT
problem would have subexponential kernelizations:

Proposition 3.8. Let (Q,κ) ∈ EPT and ι : N → N be a nondecreasing unbounded and computable function.1

Then there is an algorithm K that for every instance x of Q outputs an instance K(x) in time

|x|O(ι(κ(x)))

such that (
x ∈ Q ⇐⇒ K(x) ∈ Q

)
and |K(x)| = 2o(κ(x)).

To obtain this proposition we just refine the “standard” proof of the implication (1) ⇒ (2) of Proposition 3.2
and show that every problem in EPT has arbitrarily small exponential kernelizations, that is, for every ε ∈ R with
ε > 0 there is a polynomial kernelization with kernels of size ≤ O(1) + (1 + ε)κ(x), even more:

Lemma 3.9. Let (Q,κ) be a parameterized problem in EPT. There is an algorithm I that takes as inputs an instance
x of Q and ` ∈ N and outputs an instance I(x, `) of Q in time |x|O(`) such that

(x ∈ Q ⇐⇒ I(x, `) ∈ Q) and |I(x, `)| = 2O(κ(x))/`.

1To get a “slightly superpolynomial running time” we choose as ι an “extremely slowly” growing function.

6



Proof: We choose c ∈ N and an algorithm A solving x ∈ Q in time 2c·κ(x) · |x|O(1). Furthermore we fix x+ ∈ Q
and x− /∈ Q. (If Q is trivial, that is, Q = ∅ or Q = {0, 1}∗, we let I(x, `) always be the empty string.) Then the
following is the desired algorithm.

I(x, `) // x an instance of Q and ` ∈ N.

1. if |x| ≤ 2κ(x)/` then output x.

2. else simulate A on x

// the running time is bounded by 2c·κ(x) · |x|O(1) ≤ |x|c·`+O(1).

3. if A accepts x then output x+ else output x−.

2

Proof of Proposition 3.8: We choose a polynomial time computable ν : N → N with ν ≤ ι and set K(x) :=
I(x, ν(κ(x))), where I is the algorithm of the preceding lemma. 2

3.3. Polynomial Kernelization and Compression. Most natural problems Q ∈ NP have a canonical representation
of the form

x ∈ Q ⇐⇒ there is y ∈ {0, 1}g(x) such that (x, y) ∈ Q0 (4)

for some polynomial time computable function g : {0, 1}∗ → N (with the output represented in unary) and some
Q0 ∈ PTIME. In [4] the problem (Q, g) has been called the canonical parameterization of Q (more precisely, one
should speak of the canonical parameterization induced by the representation (4) of Q). Clearly (Q, g) is fixed-
parameter tractable, it is even in EPT. If (Q, κ) was a parameterized problem, then (Q, g) is called the canonical
reparameterization of (Q,κ).

The canonical reparameterization of p-SAT is p-SAT itself; the canonical reparameterizations of the problems
p-PATH, p-CLIQUE and p-DOMINATING-SET are the problems uni-PATH, uni-CLIQUE and uni-DOMINATING-SET2,
respectively, where for all three cases, we have g((G, k)) = k · log |V |; hence in particular,

uni-PATH
Instance: A graph G = (V,E) and k ∈ N.

Parameter: k · log |V |.
Question: Does G have a path of length k?

Many fixed-parameter tractable problems, namely all in EXPT and hence, in particular, p-PATH, have polynomial
kernelizations if and only if their canonical reparameterizations have. This is shown by the following proposition.

Proposition 3.10. Let (Q,κ) ∈ EXPT and let (Q, g) be the canonical reparameterization of (Q,κ). Assume that
g has the form

g(x) = κ(x) · log h(x) with h(x) = |x|O(1)

and h(x) ≥ 2 for sufficiently large x. Then

(Q,κ) has a polynomial kernelization if and only if (Q, g) has a polynomial kernelization.

Proof: Clearly, every polynomial kernelization of (Q, κ) is a polynomial kernelization of (Q, g). Conversely, let K
be a polynomial kernelization of (Q, g). Choose c, c′ ∈ N and an algorithm A solving x ∈ Q in time 2κ(x)c |x|c′ .
We define a polynomial kernelization K′ for (Q,κ).

Fix x+ ∈ Q and x− /∈ Q. Let x ∈ {0, 1}∗. If κ(x) < (log |x|)1/c, the algorithm A on input x needs at most
|x|c′+1 steps. In this case we let K′(x) be x+ or x− according to the answer of A. Otherwise κ(x)c ≥ log |x|.
Then |K(x)| = (κ(x) · log h(x))O(1) = (κ(x) · log |x|)O(1) = κ(x)O(1), so we can set K′(x) := K(x). 2

The reader familiar with [13] will realize that this result shows that any natural parameterized problem (Q,κ)
in EXPT with a canonical reparameterization of the specified form has a polynomial kernelization if and only if the
problem Q is self-compressible.

2We use the prefix uni to indicate that the parameter depends on the cardinality of the universe.

7



4. Excluding parameter non-increasing kernelizations

In this section we exemplify how self-reducibility can be used to rule out parameter non-increasing polynomial
kernelizations. This method is very simple and works under the assumption that P 6= NP. We use it to give three
natural examples of problems that do not have parameter non-increasing polynomial kernelizations, the first two
being in EPT.

We will revisit these examples in Section 5. There we will see that these problems do not even have polynomial
kernelizations using the stronger assumption that the polynomial hierarchy does not collapse to its third level.

The main result of this section is based on the following lemma.

Lemma 4.1. Let (Q,κ) be a parameterized problem and assume that the 0th slice Q(0) := {x ∈ Q | κ(x) = 0} is
in PTIME. If there is a polynomial (subexponential) kernelization K such that for all x with κ(x) > 0

κ(K(x)) < κ(x), (5)

then Q ∈ PTIME ((Q,κ) ∈ SUBEPT).

Proof: Let K be a kernelization satisfying (5). The following algorithm A decides Q (using a polynomial time
decision procedure B for Q(0)). Given an instance x of Q, the algorithm A computes K(x), K(K(x)), . . .; by (5)
after at most κ(x) steps we obtain an instance y with κ(y) = 0; hence (x ∈ Q ⇐⇒ y ∈ Q(0)); now A simulates
B on y.

If K was a polynomial kernelization, say, |K(x)| ≤ κ(x)c, then, again by (5), all of |K(K(x))|, |K(K(K(x)))|, . . .
are bounded by κ(x)c. Recall that parameterizations are computable in polynomial time even if the result is encoded
in unary. Hence κ(x) = |x|O(1). It follows that A runs in polynomial time.

If K was a subexponential kernelization, choose c, d ∈ N and a computable, nondecreasing and unbounded
ι : N → N such that K(x) is computable in time |x|c and |K(x)| ≤ 2d·κ(x)/ι(κ(x)). Then, by (5), the computation
of y by the algorithm A needs time at most

|x|c + 2c·d·κ(x)/ι(κ(x)) + 2c·d·(κ(x)−1)/ι(κ(x)−1) + . . . + 2c·d·1/ι(1). (6)

Write k := κ(x). Then

k∑
`=1

2c·d·`/ι(`) =
b
√

kc∑
`=1

2c·d·`/ι(`) +
k∑

`=b
√

kc+1

2c·d·`/ι(`)

≤b
√

kc · 2c·d·b
√

kc + k · 2c·d·k/ι(b
√

kc).

Since the function k 7→ ι(b
√

kc) is unbounded, the sum in (6) is bounded by |x|c + 2oeff (κ(x)); hence (Q, κ) ∈
SUBEPT. 2

Theorem 4.2. Let (Q, κ) be a parameterized problem with Q(0) ∈ PTIME. Assume that there is a polynomial
reduction R from Q to itself which is parameter decreasing, that is, for all x with κ(x) > 0

κ(R(x)) < κ(x).

– If (Q, κ) has a parameter non-increasing polynomial kernelization, then Q ∈ PTIME.

– If (Q, κ) has a parameter non-increasing subexponential kernelization, then (Q,κ) ∈ SUBEPT.

Proof: Let R be as in the statement and let K be a parameter non-increasing polynomial (subexponential) kerneliza-
tion of (Q,κ). Then the composition K ◦ R, that is, the mapping x 7→ K(R(x)), is a polynomial (subexponential)
kernelization of (Q,κ) satisfying (5); hence, by the previous lemma, we get Q ∈ PTIME (Q ∈ SUBEPT). 2

We close this section with some applications.

8



Example 4.3. The parameterized problem p-SAT has a parameter-decreasing polynomial reduction to itself.
Proof: We define a parameter-decreasing polynomial reduction R from p-SAT to itself as follows: Let α be a CNF
formula. If α has no variables, we set R(α) := α. Otherwise let X be the first variable in α. We let R(α) be a
formula in CNF equivalent to

(α
TRUE

X
∨ α

FALSE

X
),

where, for example, α TRUE
X is the formula obtained from α by replacing X by TRUE everywhere. Clearly R(α) can

be computed from α in polynomial time. 2

Example 4.4. The parameterized problem

p-POINTED-PATH
Instance: A graph G = (V,E), a vertex v ∈ V , and k ∈ N.

Parameter: k.
Question: Does G have a path of length k starting at v?

has a parameter-decreasing polynomial reduction to itself.
Proof: The following is a parameter-decreasing polynomial self-reduction R for p-POINTED-PATH: Let (G, v, k)
be an instance of p-POINTED-PATH and assume k ≥ 3. For any path P : v, v1(P ), v2(P ) of length 2 starting
from v let GP be the graph obtained from G by deleting the two vertices v, v1(P ) (and all the edges incident
with one of these vertices). Let H be the graph obtained from the disjoint union of all the graphs GP (where P
ranges over all paths of length 2 starting in v) by adding a new vertex w and all edges {w, v2(P )}. Then H has
a path of length (k − 1) starting at w if and only if G has a path of length k starting at v. Hence we can set
R((G, v, k)) := (H,w, k − 1). 2

Example 4.5. The parameterized problem

p-BIPARTITE-CLIQUE
Instance: A graph G = (V,E) and k ∈ N.

Parameter: k.
Question: Does G have a subgraph isomorphic to the Kk,k? Or equiva-

lently, do there exist A,B ⊆ V such that |A| = |B| = k and for
every u ∈ A, v ∈ B we have {u, v} ∈ E?

has a parameter-decreasing polynomial reduction to itself.
Proof: Let G = (V,E) and k ∈ N and let e = {u, v} be an edge of G. We create the following bipartite graph Ge:
on the left it contains a copy (u′, `) for each neighbor u′ of v in G with u′ 6= u, and on the right it contains a copy
(v′, r) for each neighbor v′ of u in G with v′ 6= v; we create an edge in Ge between (u′, `) and (v′, r) if and only
if there is an edge between u′ and v′ in G. Let G′ be the disjoint union of the graphs Ge for e ∈ E. Then

G′ contains a subgraph isomorphic to Kk−1,k−1

⇐⇒ there is e ∈ E such that Ge contains a subgraph isomorphic to Kk−1,k−1

⇐⇒ there is e ∈ E such that G contains a subgraph isomorphic to Kk,k including e

⇐⇒ G contains a subgraph isomorphic to Kk,k. 2

It is open if p-BIPARTITE-CLIQUE is fixed-parameter tractable (the question is posed e.g. in [6, p. 355]), thus at
present it is not known if it has a kernelization at all. The construction in the above example shows that it unlikely
has a parameter non-increasing polynomial kernelization:

Corollary 4.6. (1) If P 6= NP, then p-SAT, p-POINTED-PATH, and p-BIPARTITE-CLIQUE have no parameter
non-increasing polynomial kernelizations.

9



(2) If ETH3 holds, then p-SAT and p-POINTED-PATH have no parameter non-increasing subexponential kernel-
izations.

Proof: Part (1) is immediate by Theorem 4.2, as all three underlying problems are NP-hard.4 Moreover, we know
by this corollary that if one of the three problems has a parameter non-increasing subexponential kernelization, then
it is in SUBEPT. However then ETH would fail in the case of p-SAT by [14], in the case of p-POINTED-PATH
by [3]. 2

5. Excluding polynomial kernelizations

As mentioned in the introduction and Section 3.1, there are polynomial kernelizations which are not parameter
non-increasing. We cannot apply the technique of the previous section to rule out such kernelizations. Furthermore,
many parameterized problems apparently do not have parameter-decreasing polynomial self-reductions, so that
again we cannot apply the main result of the previous section. We use the method of [1, 7] to deal with these
situations.

The following type of reductions that preserve polynomial kernels was introduced in [7] (based on a notion
of [13]) under the name “W -reductions.”

Definition 5.1. Let (Q,κ) and (Q′, κ′) be parameterized problems. A polynomial reduction from (Q, κ) to (Q′, κ′)
is a polynomial reduction R from Q to Q′ such that

κ′(R(x)) = κ(x)O(1).

We then write R : (Q,κ) ≤p (Q′, κ′). Furthermore (Q, κ) ≤p (Q′, κ′) means that there is a polynomial reduction
from (Q,κ) to (Q′, κ′).

Example 5.2. uni-PATH ≤p p-SAT.
Proof: Let (G, k) with G = (V,E) be an instance of uni-PATH. We may assume that V = {0, 1, . . . , n−1} and (by
adding isolated points if necessary) that n is a power of 2. We will assign to (G, k) a formula α in CNF containing
variables Xs,i with s ∈ [log n] and i ∈ [k] with the intended meaning “the sth bit of the ith vertex of a path of
length k is 1.” For i, j ∈ [k], i 6= j, one has to express by a clause that the selected vertices as ith and jth point of
the path are distinct and for i ∈ [k − 1] that the ith and the (i + 1)th selected vertices are related by an edge. For
example the second one may be expressed by letting, for every i ∈ [k − 1] and every u, v ∈ V with {u, v} /∈ E,∨

s∈[log n]

¬X
bit(s,u)
s,i ∨

∨
s∈[log n]

¬X
bit(s,v)
s,i+1 ,

be a clause of α, where bit(s, u) denotes the sth bit in the binary representation of u of length log n and where
X1 := X and X0 := ¬X for every variable X .

Then G has a path of length k if and only if α is satisfiable. As α has k · log |V | variables, the mapping
(G, k) 7→ α is a polynomial reduction. 2

Example 5.3 ([13]). p-SAT ≤p uni-DOMINATING-SET.

Polynomial reductions preserve polynomial kernelizations in the following sense:

Lemma 5.4. Let (Q,κ) and (Q′, κ′) be parameterized problems with

(Q,κ) ≤p (Q′, κ′) and Q′ ≤p Q.

If (Q′, κ′) has a polynomial kernelization, then (Q,κ) has a polynomial kernelization.

3Recall that ETH, the exponential time hypothesis, is the statement SAT /∈ 2o(n).
4In the case of p-BIPARTITE-CLIQUE, see [15].

10



Note that Q′ ≤p Q is always satisfied for NP-complete problems Q and Q′.

Proof of Lemma 5.4: Let R : (Q,κ) ≤p (Q′, κ′) and S : Q′ ≤p Q. Assume that K is a polynomial kernelization
for (Q′, κ′). Then S ◦K ◦R is a polynomial kernelization for (Q,κ), as for all x ∈ {0, 1}∗

|S(K(R(x)))| = |K(R(x))|O(1) = κ′(R(x))O(1) = κ(x)O(1). 2

In order to exclude polynomial kernelizations using the previous lemma one needs a primal problem without
a polynomial kernelization. A central ingredient needed to obtain such problems was provided by Fortnow and
Santhanam [7]. It is contained in Theorem 5.6.

Definition 5.5 ([1]). Let Q, Q′ ⊆ {0, 1}∗ be classical problems. A distillation from Q in Q′ is a polynomial time
algorithm D that receives as inputs finite sequences x̄ = (x1, . . . , xt) with xi ∈ {0, 1}∗ for i ∈ [t] and outputs a
string D(x̄) ∈ {0, 1}∗ such that

(1) |D(x̄)| =
(
maxi∈[t]|xi|

)O(1)
;

(2) D(x̄) ∈ Q′ if and only if for some i ∈ [t] : xi ∈ Q.

If Q′ = Q we speak of a self-distillation. We say that Q has a distillation if there is a distillation from Q in Q′ for
some Q′.

“Self-distillations” without property (1) has been called ORω functions in [2]. Their importance for classical
complexity has been studied in various papers (see [2] and its references). Every NP-complete problem Q has an
ORω function: Take a polynomial time reduction of the problem

{
(x1, . . . , xt)

∣∣ t ∈ N and xi ∈ Q for some i ∈ [t]
}

to Q. However:

Theorem 5.6 ([7]). If PH 6= ΣP
3 (that is, if the polynomial hierarchy PH does not collapse to its third level), then

no NP-hard problem has distillations.

Clearly each problem in PTIME has a self-distillation. However, we prove that NP-problems with a self-
distillation are not necessarily in PTIME (under some plausible complexity assumption):

Proposition 5.7. If NE 6= E, then there is a problem in NP \ P that has a self-distillation.

By E and NE we denote the class of problems Q such that x ∈ Q is solvable by a deterministic algorithm and a
nondeterministic algorithm, respectively, in time 2O(|x|).

Proof of Proposition 5.7: Let Q0 ⊆ {0, 1}∗ be a language in NE \ E. We assume that each yes instance of Q0

starts with a 1, and can thus be viewed as a natural number in binary. For n ∈ N let bin(n) denote its binary
representation. We set

Q := {1n | bin(n) ∈ Q0} .

It is easy to see that Q ∈ NP \ P. Now let Q′ be the “OR-closure” of Q, that is

Q′ :=
{
(x1, . . . , xm) | m ≥ 1 and xi ∈ Q for some i ∈ [m]

}
.

Again it is easy to see that Q′ ∈ NP \ P. We claim that Q′ has a self-distillation.
Let (x11, . . . , x1m1), . . . , (xt1, . . . , xtmt

) be a sequence of instances of Q′. We can assume that all xij are
sequences of 1s (otherwise we simply ignore those which are not). Let n be the maximal length of the xij . Then

{x11, . . . , x1m1 , . . . , xt1, . . . , xtmt
} = {y1, . . . , yq}

for some q ≤ n. Thus (y1, . . . , yq) has length O(n2). Clearly (y1, . . . , yq) is in Q′ if and only if (xi1, . . . , ximi
) ∈

Q′ for some i ∈ [t]. 2

To see how Theorem 5.6 (and the polynomial reductions) can be used to exclude polynomial kernelizations we
include applications from [1] and [7].

Corollary 5.8 ([1]). If PH 6= ΣP
3, then p-PATH has no polynomial kernelizations.

11



Proof: We assume that p-PATH has a polynomial kernelization K and show that then the (classical) problem PATH
has a self-distillation. In fact, let (G1, k1), . . . , (Gt, kt) be instances of PATH. Let k := 1+2·maxi∈[t]ki. Let i ∈ [t].
By adding to Gi a path of length k − ki − 1 with one endpoint connected to all vertices of Gi we obtain a graph
G′

i such that the instance (G′
i, k) of PATH is equivalent to (Gi, ki). Let G be the disjoint union of all the graphs G′

i.
Clearly, G has a path of length k if and only if there exists an i ∈ [t] such that G′

i has a path of length k and hence,
if and only if there exists an i ∈ [t] such that Gi has a path of length ki. As |K((G, k))| is polynomially bounded in
k and hence in maxi∈[t]‖(Gi, ki)‖, the mapping (G1, k1), . . . , (Gt, kt) 7→ K((G, k)) is a self-distillation of PATH.
Here, by ‖(G, k)‖ we denote the size of (G, k), that is the length of a (reasonable) encoding of the instance (G, k).
2

Corollary 5.9 ([7]). If PH 6= ΣP
3, then p-SAT and uni-DOMINATING-SET have no polynomial kernelizations.

Proof: Assume PH 6= ΣP
3. By the previous corollary we know that p-PATH has no polynomial kernelization. Hence,

as p-PATH ∈ EPT, its canonical reparametrization uni-PATH has no polynomial kernelization by Proposition 3.10.
The claims follow from Examples 5.2 and 5.3 by Lemma 5.4. 2

The proof of Corollary 5.8 consists of two parts. Let (G1, k1), . . . , (Gt, kt) and (G, k) be as there. In the first
part we show that O with O((G1, k1), . . . , (Gt, kt)) := (G, k) is an OR for p-PATH in the sense of the following
definition.

Definition 5.10. Let (Q,κ) be a parameterized problem. An OR for (Q,κ) is a polynomial time algorithm O that
for every finite tuple x̄ = (x1, . . . , xt) of instances of Q outputs an instance O(x̄) of Q such that

(1) κ(O(x̄)) = (maxi∈[t]|xi|)O(1);

(2) O(x̄) ∈ Q if and only if for some i ∈ [t]: xi ∈ Q.

The second part of the proof of Corollary 5.8 shows the following lemma (there the argument is presented for
(Q,κ) := p-PATH).

Lemma 5.11. Assume that (Q,κ) has an OR O and a polynomial kernelization K. Then D with

D(x1, . . . , xt) := K(O(x1, . . . , xt))

is a self-distillation of Q.

Hence by Theorem 5.6:

Corollary 5.12. Assume that (Q,κ) has an OR O and that Q is NP-hard. If PH 6= ΣP
3, then (Q,κ) has no

polynomial kernelizations.

5.1. Some further applications. Perhaps the reader might object that the proof of Corollary 5.8 is algorithmically
not convincing, as the OR function used in the first part essentially yields the disjoint union of given graphs, while
probably any reasonable algorithm for determining whether a graph has a path of a given length will first compute
its connected components and then check these components for such a path. Hence the question arises whether the
path problem for the class of connected graphs has polynomial kernelizations. Assuming PH 6= ΣP

3, we deny this,
we even show that the path problem for the class PLAN-CONN of planar connected graphs has no polynomial
kernelizations:

Proposition 5.13. If PH 6= ΣP
3, then p-PATH(PLAN-CONN) has no polynomial kernelizations.

To show this claim we show in a first step:

Lemma 5.14. If PH 6= ΣP
3, then p-POINTED-PATH(PLAN-CONN) has no polynomial kernelizations.

Proof: We show that p-POINTED-PATH(PLAN-CONN) has an OR (then our claim follows from Corollary 5.12).
Let (G1, v1, k1) . . . , (Gt, vt, kt) be instances of the problem. First let us assume that for every i ∈ [t], we take a
drawing of Gi such that vi lies on the boundary of its outer face.5 Let k := maxi∈[t]ki. By adding to every Gi a

5Note that we actually do not need to compute the drawing of Gi. It is only needed to show that the graph G we construct is planar.

12



path of length k − ki starting in vi and ending in a vertex v′i we obtain an equivalent instance (G′
i, v

′
i, k). Let G

be the planar and connected graph obtained from the disjoint union of the G′
is by adding a new vertex v and edges

from v to all v′i. It is easy to verify that

G has a path of length k + 1 starting at v

⇐⇒ there exists an i ∈ [t] such that Gi has a path of length k starting at vi.

Hence we can set O((G1, v1, k1) . . . , (Gt, vt, kt)) := (G, v, k + 1). 2

Remark 5.15. For the NP-complete problem p-POINTED-PATH introduced in Section 4, obviously we have

p-POINTED-PATH(PLAN-CONN) ≤p p-POINTED-PATH.

Therefore, by Lemma 5.14 and Lemma 5.4, if PH 6= ΣP
3, then p-POINTED-PATH has no polynomial kernelizations.

Proof of Proposition 5.13: We show that there is a polynomial reduction from p-POINTED-PATH(PLAN-CONN)
to p-PATH(PLAN-CONN). Then our claim follows from the previous lemma by Lemma 5.4.

Let (G, v, k) be an instance of p-POINTED-PATH(PLAN-CONN). Using the connectedness of G one easily
verifies:

if G contains a path of length 2k − 1, then G contains a path of length k starting at v. (7)

We add to G in v a path P of length k − 1 of new vertices, thereby obtaining the planar and connected graph G′.
We show that

(G, v, k) ∈ p-POINTED-PATH(PLAN-CONN)
⇐⇒ (G′, 2k − 1) ∈ p-PATH(PLAN-CONN).

Then (G, v, k) 7→ (G′, 2k − 1) is the desired reduction.
Assume first that G has a path of length k starting at v. Clearly, then G′ has a path of length 2k−1. Conversely,

let P ′ be a path of length 2k − 1 in G′. If v is a vertex of P ′, then the vertices of P ′ contained in G constitute a
path of G of length at least k starting at v. If v is not a vertex of P ′, then P ′ is a path in G and by (7) the graph G
contains a path of length k starting at v. 2

We have already seen in Corollary 4.6 that p-BIPARTITE-CLIQUE has no parameter non-increasing polyno-
mial kernelizations assuming NP 6= P. Now we show that p-BIPARTITE-CLIQUE has an OR; thus, by its NP-
hardness [15], it is unlikely that it has polynomial kernelizations.

Proposition 5.16. If PH 6= ΣP
3, then p-BIPARTITE-CLIQUE has no polynomial kernelizations.

As a technical tool, we first show that there is a “parameter increasing” self-reduction for p-BIPARTITE-CLIQUE.

Lemma 5.17. There is an algorithm A such that for every graph G and k ≤ k′ ∈ N, the algorithm A computes in
time polynomial in ‖G‖+ k′ a graph G′ such that

G has a subgraph isomorphic to Kk,k ⇐⇒ G′ has a subgraph isomorphic to Kk′,k′ .

Proof: Let G, k, and k′ be as stated above. First we construct a bipartite graph Gb = (Vb, Eb) with

Vb := V × {0, 1},
Eb :=

{
{(u, 0), (v, 1)}

∣∣ {u, v} ∈ E
}
.

It is easy to verify that

(G, k) ∈ p-BIPARTITE-CLIQUE ⇐⇒ (Gb, k) ∈ p-BIPARTITE-CLIQUE.

13



Now the desired graph G′ = (V ′, E′) is defined by

V ′ := Vb ∪̇
{
(p, i)

∣∣ k < p ≤ k′ and i ∈ {0, 1}
}
,

E′ := Eb ∪
{
{(u, i), (p, 1− i)}

∣∣ u ∈ V , i ∈ {0, 1}, and k < p ≤ k′
}
. 2

Proof of Proposition 5.16: We show that p-BIPARTITE-CLIQUE has an OR. Let (G1, k1), . . ., (Gt, kt) be instances
of p-BIPARTITE-CLIQUE. By Lemma 5.17, we can assume that k1 = · · · = kt =: k. Moreover, let G be the
disjoint union of all Gi. Clearly

G has a subgraph isomorphic to Kk,k

⇐⇒ there exists an i ∈ [t] such that Gi has a subgraph isomorphic to Kki,ki . 2

6. Strong lower bounds

In this section and the next one, by a careful analysis of the proof of Theorem 5.6 as given in [7], we obtain
improvements, which yield better lower bounds for kernelizations. In particular for the path problem we will show:

Theorem 6.1. Let ε > 0. If PH 6= ΣP
3, then there is no polynomial reduction from PATH to itself computing for

each instance (G, k) of PATH an instance (G′, k′) with

‖G′‖ = kO(1) · ‖G‖1−ε.

We define:

Definition 6.2. Let ε > 0. A parameterized problem (Q,κ) has an ε self-reduction if there is a polynomial
reduction from Q to itself that assigns to every instance x of Q an instance y with

|y| = κ(x)O(1) · |x|1−ε.

Note that it is not required that the parameter of y is bounded in terms of the parameter of x.

Clearly, if (Q,κ) has a polynomial kernelization, then (Q,κ) has an ε self-reduction for every ε > 0. The
converse does not hold, as shown in Section 8.2. Now we can rephrase Theorem 6.1 by saying that, if PH 6= ΣP

3,
then for every ε > 0 the problem p-PATH has no ε self-reductions. This result will be a special instance of a more
general result stating similar lower bounds for problems with a linear OR.

Definition 6.3. Let (Q,κ) be a parameterized problem. A linear OR for (Q,κ) is a polynomial time algorithm O
that for every finite tuple x̄ = (x1, . . . , xt) of instances of Q outputs an instance O(x̄) of Q such that

(1) |O(x̄)| = t ·
(
maxi∈[t]|xi|

)O(1)
;

(2) κ(O(x̄)) =
(
maxi∈[t]|xi|

)O(1)
;

(3) O(x̄) ∈ Q if and only if for some i ∈ [t]: xi ∈ Q.

Hence a linear OR is an OR with the additional property (1).

Examples 6.4. The parameterized problems p-PATH and p-POINTED-PATH(PLAN-CONN) have a linear OR. In
fact, the ORs defined in the proofs of Corollary 5.8 and of Lemma 5.14 are linear ones.

Theorem 6.5. Let ε > 0. Let (Q,κ) be a parameterized problem with a linear OR and with NP-hard Q. If
PH 6= ΣP

3, then the problem (Q,κ) has no ε self-reductions.

In particular, if PH 6= ΣP
3, then the problems mentioned in Examples 6.4 do not have ε self-reductions. This

proves Theorem 6.1.

6.1. Some further applications. Before proving Theorem 6.5 in Section 6.2 we first give more applications.

14



Example 6.6. The parameterized problem p-SAT has a linear OR.
Proof: We define a linear OR O. Let α1, . . . , αt be CNF formulas, say, αi a formula with ni variables. We set

n := maxi∈[t]ni and m := maxi∈[t]|αi|.

We may assume that all αi have variables in {X1, . . . , Xn} and that log t is a natural number (if t is not a power of
two we duplicate one of the formulas for an appropriate number of times).

If t ≥ 2n, the algorithm O proves whether one of the αis is satisfiable (by systematically checking all assign-
ments) and outputs a CNF formula O(α1, . . . , αt) satisfying condition (3) of the preceding definition.

Assume t < 2n. We introduce log t new variables Y1, . . . , Ylog t. For i ∈ [t] we set

βi :=
∧

s∈[log t]

Y bit(s,i)
s

(recall that bit(s, i) denotes the sth bit in the binary representation of i and that X1 = X and X0 = ¬X for every
variable X).

We bring each (βi → αi) into conjunctive normal form: Assume αi =
∧

`

∨
`′ λ``′ with literals λ``′ , then

(βi → αi) is equivalent to
γi :=

∧
`

( ∨
s∈[log t]

Y 1−bit(s,i)
s ∨

∨
`′

λ``′
)
.

We let γ be the CNF formula γ :=
∧

i∈[t] γi. We set O(α1, . . . , αt) := γ.
Clearly O is computable in polynomial time. Furthermore, by construction the formula O(α1, . . . , αt) is equiv-

alent to
∧

i∈[t](βi → αi). Because any assignment to Y1, . . . , Ylog t satisfies exactly one of the βis, the formula
O(α1, . . . , αt) is satisfiable if and only if there is an i ∈ [t] such that αi is satisfiable; hence condition (3) of Defini-
tion 6.3 is satisfied. Furthermore, O also satisfies the conditions (1) and (2). For (2) note that γ has n + log t vari-
ables. By our assumption on t, we have n+log t ≤ 2n ≤ 2m. For (1) note that each γi has length O(m·(m+log t))
and hence, O(α1, . . . , αt) has length O(m3). 2

Example 6.7. The parameterized problem

p-CYCLE
Instance: A graph G and k ∈ N.

Parameter: k.
Question: Does G have a cycle of length k?

has a linear OR. This example is due to Martin Grohe [11].
If (G1, k1), . . . , (Gt, kt) are instances of p-CYCLE with the same parameter, k1 = . . . = kt =: k, then for the

disjoint union G of the Gis we have (G, k) ∈ p-CYCLE if and only if (Gi, ki) ∈ p-CYCLE for some i ∈ [t]. With
the following observations we will reduce the general case to the case of instances with the same parameter.

So let (G1, k1), . . . , (Gt, kt) be instances of p-CYCLE. We set p := maxi∈[t]|Vi|, where Vi is the vertex set of
Gi, and k := maxi∈[t]ki. For i ∈ [t] and v ∈ Vi we let Gi(v) be the graph obtained from Gi by replacing the vertex
v by a path Pi(v) of length p + k − ki of new vertices and by replacing edges of Gi of the form {v, w} by two
edges, namely by edges incident with w and one of the endpoints of the path Pi(v). Clearly,

Gi(v) has a cycle of length p + k ⇐⇒ Gi has a cycle through v of length ki.

Hence, we can set O((G1, k1), . . . , (Gt, kt)) := (G, p + k), where G denotes the disjoint union of the graphs
Gi(v) for all i ∈ [t] and v ∈ Vi. 2

Example 6.8. The parameterized problem uni-CLIQUE has a linear OR.
Proof: Let (G1, k1), . . . , (Gt, kt) be instances of uni-CLIQUE. Of course, we can assume that ki ≤ |Vi|, where Vi is
the set of vertices of Gi. Let k := maxi∈[t]ki. By adding a clique of k−ki new vertices to Gi and connecting all new
vertices to all old vertices in Vi we can pass to an instance (G′

i, k) equivalent to (Gi, ki). Let m := maxi∈[t]|V ′
i | (≤

2 · maxi∈[t]|Vi|).

15



If t ≥ 2m, by exhaustive search the algorithm O checks whether one of the G′
is has a clique of size k; if this is

the case O outputs (Gi, ki) for such a G′
i and otherwise it outputs, say, (G1, k1).

Assume that t < 2m. We set O((G1, k1), . . . , (Gt, kt)) := (G, k), where G denotes the disjoint union of the
graphs G′

i. Clearly, O is computable in polynomial time and condition (3) is satisfied. For condition (1) note that
we have for the set V of vertices of G the inequality |V | ≤ t · m. The parameter of O((G1, k1), . . . , (Gt, kt)) is
k · log |V | ≤ k · log (t ·m) ≤ k · (m + log m) = O(m2). 2

Example 6.9. The parameterized problem uni-DOMINATING-SET has a linear OR.
Proof: Let (G1, k1), . . . , (Gt, kt) be instances of uni-DOMINATING-SET. Let k := maxi∈[t]ki. By adding k − ki

isolated vertices, we can pass to equivalent instances (G′
1, k), . . . , (G′

t, k). Let G′
i = (V ′

i , E′
i). We may assume that

t > k and that the vertex sets V ′
i are pairwise disjoint.

If t ≥ 2m, where m := maxi∈[t]|V ′
i |, the algorithm O checks by exhaustive search whether one of the G′

is has
a dominating set of size k; if so O outputs (Gi, ki) for such a G′

i and otherwise it outputs (G1, k1).
Assume that t < 2m. For i ∈ [t] and j ∈ [0, k] := {0, 1, . . . , k} let V ′

i (j) be a copy of V ′
i , say,

V ′
i (j) := {(v, j) | v ∈ V ′

i }.

Let G = (V,E) be the graph with vertex set

V :=
⋃

s∈[log t]

{s(−), s(0), s(1)} ∪
⋃

i∈[t],j∈[0,k]

V ′
i (j).

The edge set E contains

– edges that make {s(−), s(0), s(1)} a clique for s ∈ [log t];

– for s ∈ [log t] and i ∈ [t] edges from s(1) to all vertices in V ′
i (0) if bit(s, i) = 0 and edges from s(0) to all

vertices in V ′
i (0) if bit(s, i) = 1;

– for i, i′ ∈ [t], v ∈ V ′
i , w ∈ V ′

i′ , and j, j′ ∈ [0, k] the edge {(v, j), (w, j′)} if

– i 6= i′ and j = j′ > 0 or

– i = i′ and {v, w} ∈ Ei or

– i = i′, j 6= j′ and v = w.

We claim that

(G, k + log t) ∈ uni-DOMINATING-SET ⇐⇒ there is an i ∈ [t]: (G′
i, k) ∈ uni-DOMINATING-SET. (8)

For the backward direction assume for i ∈ [t] that {v1, . . . , vk} is a dominating set in G′
i. Then

{(v1, 1), . . . , (vk, k)} ∪ {s(bit(s, i)) | s ∈ [log t]}

is a dominating set of G.
For the forward direction let X be a dominating set of G of size k + log t. For s ∈ [log t] in order to dominate

the point s(−) we see that at least one point of the clique {s(−), s(0), s(1)} has to be contained in X .
Clearly, as k < t, there is an i0 ∈ [t] such that

X ∩
⋃

j∈[0,k]

V ′
i0(j) = ∅.

For j ∈ [k] (in particular j 6= 0), in order to dominate the elements of V ′
i0

(j), the set X must contain an element of
the form (vj , j) with vj ∈ V ′

ij
for some ij 6= i0. Moreover, as X only contains k + log t elements, the vertex vj

(and hence ij) are uniquely determined by j. Then it is not hard to see that the set {vj | j ∈ [k] and ij = i1} is a
dominating set in G′

i1
. This finishes the proof of the equivalence (8).

We set O((G1, k1), . . . , (Gt, kt)) := (G, k). That O also satisfies condition (2) of a linear OR is shown as in
the case of uni-CLIQUE. 2

16



Example 6.10. The problem alpha-LCS has a linear OR. Here alpha-LCS denotes the canonical parameterization
of the longest common subsequence problem:

alpha-LCS
Instance: An alphabet Σ, strings X1, . . . , X` ∈ Σ∗, and m ∈ N.

Parameter: m · log |Σ|.
Question: Is there a common subsequence of X1, . . . , X` of length m?

Proof: Let (Σ1, X11, . . . , X1`1 ,m1) . . . (Σt, Xt1, . . . , Xt`t
,mt) be instances of alpha-LCS. We can assume that

`1 = · · · = `t = ` (by repeating a sequence if necessary) and that m1 = · · · = mt = m (by adding cm−mi
i to each

Xij for some new letter ci). Moreover we can assume that the alphabets Σi are disjoint. Now we consider the `
strings over Σ1 ∪ . . . ∪ Σt

X11X21 . . . Xt1, X12X22 . . . Xt2, . . . X1`X2` . . . Xt`

and the string Xt1X(t−1)1 . . . X11.
One easily verifies that these (`+1) strings have a common subsequence of length m if and only if for some i ∈

[t] the strings Xi1, . . . , Xi`i
have one (for the forward direction note that a common subsequence of X11X21 . . . Xt1

and Xt1X(t−1)1 . . . X11 is a sequence over Σi for some i ∈ [t]). Now, if t ≥ maxi∈[t]|Σi|m we determine the value
of O by exhaustive search and otherwise, we use the set of strings just constructed. 2

Even though we could add further examples of parameterized problems with a linear OR, there are also many
problems where we do not know whether they have a linear OR. We just mention one example, the problem
uni-RED/BLUE-NONBLOCKER, the canonical reparametrization of the problem p-RED/BLUE-NONBLOCKER.

6.2. Proof of Theorem 6.5. It will be convenient to reformulate Theorem 6.5. For this purpose we need some
further notions.

Definition 6.11. A function f : N → R≥0 is pseudo-linear if there is some c ∈ N and some ε ∈ R with ε > 0 such
that for all t ∈ N

f(t) ≤ c · t1−ε.

The property that we need of pseudo-linear functions is contained in the following lemma. It is easy to prove.

Lemma 6.12. Let ε > 0 and f : N → R≥0 be a pseudo-linear function. Then for every c ∈ N there exists a d ∈ N
such that for sufficiently large n we have

f(nd) · nc + 1 ≤ nd.

Remark 6.13. It is worthwhile to note that a weak converse of the previous lemma holds: Let f satisfy the conclu-
sion of Lemma 6.12. Then there is some ε > 0 such that f(t) < t1−ε for infinitely many t.

To see this write f(t) = tg(t) for some g. Then for c = 1 there are d, n0 ∈ N such that nd·g(nd) < nd−1 for all
n ≥ n0. Thus g(t) < 1− 1/d, i.e. f(t) ≤ t1−1/d, for t = nd

0, (n0 + 1)d, (n0 + 2)d . . .. a

For a parameterized problem (Q,κ), a constant c ∈ N, and a function f : N → R≥0 consider the preparameter-
ized problem

(Q,κc × f)
Instance: x ∈ {0, 1}∗.

Parameter: κ(x)c · f(|x|).
Question: x ∈ Q?

Theorem 6.5 follows from:

Lemma 6.14. Let c ∈ N and f : N → R≥0 be pseudo-linear. Let (Q,κ) be a parameterized problem with a linear
OR and with NP-hard Q. If PH 6= ΣP

3, then (Q,κc × f) has no linear kernelizations.

We prove this lemma by generalizing Theorem 5.6.

17



Definition 6.15. Let Q,Q′ ⊆ {0, 1}∗ be classical problems and let f : N → R≥0 be a function. An f -distillation
from Q in Q′ is a polynomial time algorithm D that receives as inputs finite sequences x̄ = (x1, . . . , xt) with
xi ∈ {0, 1}∗ for i ∈ [t] and outputs a string D(x̄) ∈ {0, 1}∗ such that

(1) |D(x̄)| = f(t) · (maxi∈[t]|xi|)O(1);

(2) D(x̄) ∈ Q′ if and only if for some i ∈ [t] : xi ∈ Q.

We say that Q has an f -distillation if there is an f -distillation from Q in Q′ for some problem Q′.

Lemma 6.16. Let f : N → R≥0 be pseudo-linear. If PH 6= ΣP
3, then no NP-hard problem has f -distillations.

Proof: Let f : N → R≥0 be pseudo-linear and Q ⊆ {0, 1}∗ be NP-hard. Assume that D is an f -distillation from Q
in some problem Q′. We choose a constant c ∈ N such that

|D(x̄)| ≤ f(t) ·
(

maxi∈[t]|xi|
)c

(9)

for all t ∈ N and all sequences x̄ of t instances of Q.
Let Q := {0, 1}∗ \Q be the complement of Q and similarly Q′ the complement of Q′. Clearly Q is coNP-hard.

We show that Q ∈ NP
/

poly and hence, coNP ⊆ NP
/

poly. This yields our claim, as then PH = ΣP
3 by a result of

Yap [18, Theorem 2]. Note that for all x̄ = (x1, . . . , xt) we have

D(x̄) ∈ Q′ ⇐⇒ for all i ∈ [t] : xi ∈ Q. (10)

To prove Q ∈ NP
/

poly it suffices to show that for sufficiently large n ∈ N there is a t = nO(1) and a set S of
strings with ‖S‖ :=

∑
x∈S |x| = nO(1) such that for all x ∈ {0, 1}n

x ∈ Q ⇐⇒ ∃x1, . . . , xt ∈ {0, 1}n :
(
x ∈ {x1, . . . , xt} and D(x1, . . . , xt) ∈ S

)
. (11)

In other words, S can be viewed as a polynomial size advice string for instances of length n. As we will see, the
elements of S are strings in Q′, more precisely, we will choose D-values “with many preimages.”

For every m ∈ N, we have |{0, 1}≤m| ≤ 2m+1, in particular,

|{0, 1}≤f(m)·nc

| ≤ 2f(m)·nc+1 (12)

As f is pseudo-linear, by Lemma 6.12 there is a constant d ∈ N such that for all sufficiently large n ∈ N

f(nd) · nc + 1
nd

≤ 1. (13)

For n ≥ 1 we set
t := nd.

Then (12) and (13) imply for Y := Q′ ∩ {0, 1}≤f(t)·nc

that

|Y |1/t ≤ 2. (14)

Recall that Q=n := Q ∩ {0, 1}n. By (9) we can define a function g : (Q=n)t → Y by

g(x̄) := D(x̄).

We construct the advice string S inductively. First we let X0 := Q=n. Choose y0 ∈ Y such that

g−1(y0) :=
{
x̄ ∈ Xt

0 | g(x̄) = y0

}
contains at least |X0|t/|Y | many tuples. Let string(g−1(y0)) be the set components of tuples in g−1(y0), that is,

string(g−1(y0)) :=
{
x ∈ X0 | there exists some (x1, . . . , xt) ∈ g−1(y0) such that x ∈ {x1, . . . , xt}

}
.

18



It follows that g−1(y0) ⊆
(
string(g−1(y0))

)t
and hence

∣∣string(g−1(y0))
∣∣ ≥ |g−1(y0)|1/t ≥

(
|X0|t

|Y |

)1/t

≥ |X0|
2

,

the last inequality holding by (14). If X0 6= string(g−1(y0)), then let X1 := X0 \ string(g−1(y0)). Now, we view
g as a function of X1 to Y and, by the same argument as above, we choose y1 ∈ Y such that |string(g−1(y1))| ≥
|X1|/2. We iterate this process until we reach the first ` ∈ N with X` = string(g−1(y`)). We let

S := {y0, . . . , y`}.

Then S ⊆ Y ⊆ Q′ and |S| = ` ≤ log |X0| ≤ n and thus ‖S‖ ≤ n · f(t) · nc ≤ nd+1 (by (13)). Hence ‖S‖ is
polynomially bounded in n.

We show the equivalence (11). Let x ∈ {0, 1}n. If x ∈ Q, by our construction of S, there is a tuple x̄ containing
x as a component such that g(x̄) = D(x̄) ∈ S.

Conversely, assume x /∈ Q. Then for every x̄ := (x1, . . . , xt) with x1, . . . , xt ∈ {0, 1}n and x ∈ {x1, . . . , xt},
we have, by (10), that D(x̄) /∈ Q′ and hence D(x̄) /∈ S ⊆ Q′. 2

Proof of Lemma 6.14: Let c ∈ N and f be pseudo-linear, say f(t) = O(t1−ε). Assume that (Q,κ) is a parame-
terized problem with a linear OR O and NP-hard Q. Assume ΣP

3 6= PH. For the sake of contradiction assume that
(Q,κc × f) has a linear kernelization K. By Lemma 6.16 it suffices to show that Q has an f -distillation D.

We define D on finite sequences x̄ = (x1, . . . , xt) by

D(x̄) := K(O(x̄)).

It is clear that
D(x̄) ∈ Q ⇐⇒ for some i ∈ [t] : xi ∈ Q.

Write n := maxi∈[t]|xi|. Then, because K is a linear kernelization for (Q,κc × f),

|D(x̄)| = O
(
κ(O(x̄))c · f(|O(x̄)|)

)
= nO(1) · |O(x̄)|1−ε,

where the second equality follows from Definition 6.3 (2). Now, by Definition 6.3 (1) we know |O(x̄)| = t · nO(1).
Hence |D(x̄)| = t1−ε · nO(1) and therefore D is a f -distillation from Q in itself. 2

7. Lower bounds for problems with an OR for instances with constant parameter

Recall that a hole in a graph is an induced cycle of length at least four. While the problems whether a graph contains
a hole and whether it contains an even hole are solvable in polynomial time, it is not known whether there is such an
algorithm deciding if a graph has an odd hole. Recently problems concerning holes have received much attention
as they are related to the Strong Perfect Graph Theorem [5] (“A graph is perfect if it contains neither an odd hole
nor the complement of an odd hole”). We consider the parameterized problem (see [3])

p-ODD-HOLE≤
Instance: A graph G and k ∈ N.

Parameter: k.
Question: Does G have a hole of odd length at most k?

Let (G1, k1), . . . , (Gt, kt) be instances of p-ODD-HOLE≤. If k1 = . . . = kt =: k, then for the disjoint union G of
the Gis we have (G, k) ∈ p-ODD-HOLE≤ if and only if (Gi, ki) ∈ p-ODD-HOLE≤ for some i ∈ [t]. However, it
is not clear how to define such an instance (G, k) if k1, . . . , kt are distinct, more precisely, we do not know whether
p-ODD-HOLE≤ has an OR. The following concept is tailored for such situations.

Definition 7.1. Let (Q, κ) be a parameterized problem and let λ be a further parameterization. An OR for λ-
constant instances of (Q,κ) is a polynomial time algorithm O that for every finite tuple x̄ = (x1, . . . , xt) of
instances of Q with λ(x1) = . . . = λ(xt) outputs an instance O(x̄) of Q such that

19



(1) κ(O(x̄)) = (maxi∈[t]|xi|)O(1);

(2) O(x̄) ∈ Q if and only if for some i ∈ [t]: xi ∈ Q.

Examples 7.2. The instances of the following problems are pairs (G, k), where G is a graph and k ∈ N. We let
λ always be the function with λ(G, k) := k. In all examples we get the claimed OR for λ-constant instances by
setting O((G1, k), . . . , (Gt, k)) := (G, k), where the graph G is the disjoint union of the Gis. In all cases we do
not know whether the corresponding problem has an OR.

(a) The problem p-ODD-HOLE≤ has an OR for λ-constant instances.

(b) The problems uni-CHORDLESS-PATH and uni-CHORDLESS-CYCLE have an OR for λ-constant instances. Here,
for example,

uni-CHORDLESS-CYCLE
Instance: A graph G = (V,E) and k ∈ N.

Parameter: k · log |V |.
Question: Does G have a chordless cycle of length k?

Note that in the last example λ(G, k) = k is not the parameter of (G, k) as instance of uni-CHORDLESS-CYCLE.

For problems with an OR for constant instances we get a slightly weaker result than that in Theorem 6.5 for
problems with a linear OR. To state the result we first define:

Definition 7.3. Let (Q, κ) be a parameterized problem. A subexponential self-reduction of (Q, κ) is a polynomial
reduction from Q to itself that assigns to every instance x of Q an instance y with

|y| = κ(x)O(1) · |x|o(1).

Clearly if (Q,κ) has a subexponential self-reduction, then it has an ε self-reduction for every ε > 0.

Theorem 7.4. Let (Q,κ) be a parameterized problem with NP-hard Q. Furthermore assume that (Q,κ) has an OR
for λ-constant instances, where λ is a further parameterization. If PH 6= ΣP

3, then (Q,κ) has no subexponential
self-reductions.

This improves the corresponding result of [1] in the following respects:

– it assumes Q to be only NP-hard instead of NP-complete;

– it assumes a weaker notion of OR (the OR used in [1] is ours for λ = κ);

– it excludes subexponential self-reductions instead of polynomial kernelizations.

In particular, we can apply Theorem 7.4 to the problems in Examples 7.2 (b). It is not known whether p-HOLE≤
is in FPT. If not, then it would not have polynomial kernelizations. At the moment we cannot apply Theorem 7.4
to rule out polynomial kernelizations, as to the best of knowledge it is not known whether the underlying problem
is NP-hard. To get a further application of the theorem we need the following lemma whose proof is simple and
similar to that of Lemma 5.4.

Lemma 7.5. Let (Q,κ) and (Q′, κ′) be parameterized problems.with

(Q, κ) ≤p (Q′, κ′) and Q′ ≤p Q.

If (Q′, κ′) has a subexponential self-reduction, then (Q,κ) has a subexponential self-reduction.

Example 7.6. If PH 6= ΣP
3, then p-PATH(PLAN-CONN) has no subexponential self-reductions.

Proof: We know that the problem p-POINTED-PATH(PLAN-CONN) has an OR and hence no subexponential
self-reduction. In the proof of Proposition 5.13 we showed that there is a polynomial reduction from the prob-
lem p-POINTED-PATH(PLAN-CONN) to p-PATH(PLAN-CONN). Hence, the claim follows from the previous
lemma.

20



7.1. Proof of Theorem 7.4. Recall the reparameterization (Q,κc × f) of (Q,κ) for c ∈ N and f : N → R≥0.
Clearly (Q,κc × f) has a polynomial kernelization if and only if (Q,κ× f), the problem for c = 1, has one.

For the purposes of the proof of Theorem 7.4 we call a function f : N → R≥0 good if f(t) = to(1) (that is, if
we can write f(t) = t1/h(t) for some function h : N → R≥0 with limt→∞ h(t) = ∞).

The statement of this theorem can be equivalently formulated as:

Lemma 7.7. Let (Q,κ) be a parameterized problem with NP-hard Q. Furthermore assume that (Q,κ) has an OR
for λ-constant instances, where λ is a further parameterization. If PH 6= ΣP

3, then, for every good f : N → R≥0 the
problem (Q,κ× f) has no polynomial kernelizations.

Proof: Assume PH 6= ΣP
3. Furthermore, we choose for (Q,κ) an OR O for λ-constant instances.

Let f : N → R≥0 be good. One easily sees that there is a good increasing function f ′ : N → R≥0 of the form

f ′(t) = 2log t/ι(log t) (15)

with a nondecreasing and unbounded function ι : N → R≥0 such that f(t) ≤ f ′(t) for all (sufficiently large) t.
For the sake of contradiction assume also that (Q,κ × f) has a polynomial kernelization. Of course, then

(Q,κ× f ′) has a polynomial kernelization K. Now let Q′ be the “OR-closure” of Q, that is

Q′ :=
{
(x1, . . . , xm)

∣∣ m ≥ 1 and xi ∈ Q for some i ∈ [m]
}
.

Let x1, . . . , xt be instances of Q. We let n := maxi∈[t]|xi| and ` := maxi∈[t]λ(xi). Then ` = nO(1). For j ≤ `
let

yj := K(O(x̄j)),

where x̄j stands for the subsequence of x1, . . . , xt consisting of the instances with λ-value j.
We show that for some good function f1 and all j ≤ `

|yj | = f1(t) · nO(1). (16)

In fact, as K is a polynomial kernelization of (Q,κ× f ′), we know

|yj | = |K(O(x̄j))| =
(
κ(O(x̄j)) · f ′(|O(x̄j)|)

)O(1)

= nO(1) · f ′(|O(x̄)|)O(1),

where the last equality holds by Definition 7.1 (1). We show that f ′(|O(x̄)|) = f ′(t)d · nd for some d ∈ N. Then
we get (16) for f1(t) := f ′(t)d. As f ′ is good, so is f1.

As O is polynomial time computable, we know |O(x̄j)| ≤ tc ·nc for some constant c ∈ N. Since f ′ is increasing,
it is enough to show

f ′(tc · nc) ≤ (f ′(t) · n)2c.

By (15)

f ′(tc · nc) = 2

c · log t + c · log n

ι(c · log t + c · log n) .

We distinguish two cases.

- If t ≥ n, then, as ι is nondecreasing, we get

f ′(tc · nc) ≤ 2

2c · log t

ι(log t) = f ′(t)2c.

- If t < n, then
f ′(tc · nc) ≤ 22c·log n = n2c.

21



This finishes the proof of (16).
Now we claim that

D(x1, . . . , xt) :=
(
y1, . . . , y`

)
defines an f1-distillation from Q to Q′ (cf. Definition 6.15). As f1 is good and hence, pseudo-linear, this contradicts
Lemma 6.16. Obviously the condition (2) in Definition 6.15 is satisfied. To see (1), we observe that∣∣(y1, . . . , y`

)∣∣ ≤ ` · f1(t) · nO(1) (by (16)),

= f1(t) · nO(1) (by ` = nO(1)).

Altogether D is an f1-distillation from Q and Q′. 2

8. Concluding remarks

8.1. Comparing the different notions of OR. From Theorem 5.6, Corollary 5.12, and Theorem 6.5 we know:

Proposition 8.1. Assume that PH 6= ΣP
3. Then:

(1) No NP-complete problem has a self-distillation.

(2) No parameterized problem (Q,κ) with polynomial kernelization and with NP-complete Q has an OR.

(3) No parameterized problem (Q,κ) with polynomial kernelization and with NP-complete Q has a linear OR.

We do not know whether one of the three conclusions holds under weaker assumptions, say, under P 6= NP. In
this context it might be interesting to be aware of:

Proposition 8.2. The conclusions (1), (2), and (3) of Proposition 8.1 are mutually equivalent.

Proof: The implication (2) ⇒ (3) is trivial. For (3) ⇒ (1) assume, by contradiction, that Q is NP-complete and has
a self-distillation D. Define κ(x) := |x|. Then x 7→ x is a polynomial kernelization of (Q,κ) and D is a linear OR
of (Q,κ), the desired contradiction to (3).

For the implication (1) ⇒ (2) assume that (Q,κ) with NP-complete Q has a polynomial kernelization K and an
OR O. Then K ◦O is a self-distillation, as

K(O(x̄)) = κ(O(x̄))O(1) = (maxi|xi|)O(1). 2

The next result shows in particular that every parameterized problem (Q,κ) with polynomial kernelization and
NP-complete Q already has no OR if it has no linear OR. For example, the parameterized vertex cover problem
p-VC has no linear OR if and only if it has no OR.

Proposition 8.3. Assume that (Q, κ) and (Q′, κ′) are parameterized problems with NP-complete Q and Q′ and
that (Q′, κ′) has a polynomial kernelization. If (Q,κ) has no linear OR, then (Q′, κ′) has no OR.

Proof: Let R : Q ≤p Q′ and S : Q′ ≤p Q be polynomial reductions and K a polynomial kernelization of (Q′, κ′)
and assume that O is an OR of Q′, then

x1, . . . , xt 7→ S(K(O(R(x1), . . . , R(xt))))

is a linear OR of (Q,κ). 2

8.2. Comparing the different notions of self-reduction. Clearly, every parameterized problem with a polynomial
kernelization has a subexponential self-reduction, and every parameterized problem with a subexponential self-
reduction has an ε self-reduction for every ε > 0. The following two propositions establish that these inclusions are
proper.

Proposition 8.4. There exists a fixed-parameter tractable parameterized problem that has ε self-reductions for all
ε > 0 but does not have subexponential self-reductions.

22



Proposition 8.5. There exists a fixed-parameter tractable problem that has subexponential self-reductions but does
not have polynomial kernelizations.

Proof of Proposition 8.4. Let Q ⊆ N be a classical problem such that every x ∈ Q is a power of 2 with an odd
exponent and is written in unary. We define the parameterized problem p-Q by

p-Q
Instance: m, k ∈ N in unary with log k ≥ log m

log log m .
Parameter: k.

Question: Is (log m) · (log k) ∈ Q?

It suffices to show

(1) If Q is decidable, then p-Q is fixed-parameter tractable.

(2) For every ε > 0 the problem p-Q has an ε self-reduction.

(3) If Q /∈ E, then p-Q has no subexponential reductions.

(1) As for yes-instances (m, k) of p-Q, we have log k ≥ log m/log log m, the problem p-Q has a kernelization
and hence is fixed-parameter tractable by Proposition 3.2.

(2) Let t ∈ N. We show that there is an 1/d self-reduction of p-Q for d := 2t.
Let (m, k) be an instance of p-Q. We can assume that m = 22u

and k = 22v

(otherwise, (m, k) is a no-instance
of p-Q).

We set
m′ := 22u−t

(= (22u

)1/d) and k′ := 22v+t

(= (22v

)d).

Clearly, (m, k) ∈ p-Q if and only if (m′, k′) ∈ p-Q. Moreover, |m′| = |m|1/d and |k′| = |k|d and hence,
|(m′, k′)| = O(kd ·m1/d). Altogether, (m, k) 7→ (m′, k′) is an 1/d self-reduction of p-Q.

(3) We assume that p-Q has a subexponential self-reduction (m, k) 7→ (m′, k′). Then

|(m′, k′)| = kc · (m + k)o(1) = kc ·mo(1)

for some c ∈ N. We can assume that c is a power of 2. We show that Q ∈ E.
Let x be an instance of Q with x ≥ d ≥ 24c2

, where d ∈ N will be fixed later. We assume that x is an odd
power of 2 (otherwise, x /∈ Q). We set

u :=
√

2c2 · x and v :=
u

2c2
.

Then, u and v are powers of 2 (note that v =
√

x/2c2) and u · v = x. Moreover, v ≥ u/log u by our assumption
x ≥ 24c2

. Hence, (2u, 2v) ∈ p-Q if and only if x ∈ Q. We apply the subexponential self-reduction to (2u, 2v)
obtaining an equivalent instance (m′, k′) of p-Q with

m′, k′ ≤ 2v·c · (2u)o(1) = 2v·c+u·o(1).

If d has been chosen big enough, we have

x′ := (log m′) · (log k′) ≤ (v · c)2 + v · u · o(1) + u2 · o(1) ≤ (u/2c)2 + u2 · o(1) < u2/2c2 = uv = x.

Thus, x′ < x. If k′ < m′/log m′, then (m′, k′) /∈ p-Q and hence, x /∈ Q. Otherwise, (x′ ∈ Q ⇐⇒ x ∈ Q).
We continue this way and obtain equivalent instances x′′, x′′′, . . . of Q till we get an instance ≤ d, which is decided
directly. Altogether, we have a single exponential decision procedure for Q. 2

Proof of Proposition 8.5. Let Q ⊆ N be a classical problem such that every x ∈ Q is represented in unary and has
the form

x = 22t

(17)

for some t ∈ N. We define the parameterized problem p-EXP(Q) by

23



p-EXP(Q)
Instance: m, k ∈ N in unary with k ≥ log log m.

Parameter: k.
Question: Is mk ∈ Q?

It is sufficient to show

(1) If Q is decidable, then p-EXP(Q) is fixed-parameter tractable.

(2) The problem p-EXP(Q) has a subexponential self-reduction.

(3) If Q /∈ PTIME, then p-EXP(Q) has no polynomial kernelizations.

(1) As for yes-instances (m, k) of p-EXP(Q), we have k ≥ log log m, the problem p-EXP(Q) has a kernelization
and hence is fixed-parameter tractable by Proposition 3.2.

(2) Let (m, k) be an instance of p-EXP(Q). By (17), we can assume that m = 22t

for some t ∈ N (otherwise,
(m, k) is a no-instance of p-EXP(Q)). Then

(m, k) ∈ p-EXP(Q) ⇐⇒ 2k·2t

∈ Q ⇐⇒ (2, k · 2t) ∈ p-EXP(Q).

Therefore the mapping (m, k) 7→ (2, k · log m) is the desired reduction.

(3) We assume that K is a polynomial kernelization of p-EXP(Q) and show that Q ∈ PTIME.
Let x = 22t

be an instance of Q. We let t′ be the minimum power of 2 with t′ ≥ t. Thus, 2t ≥ t′ ≥ t. Clearly

x ∈ Q ⇐⇒ (22t/t′ , t′) ∈ p-EXP(Q).

Furthermore we set (m, k) := K(22t/t′ , t′). We know that

|(m, k)| = t′O(1) = tO(1)

and that x ∈ Q if and only if mk ∈ Q. As

mk = tO(tO(1)) = 2tO(1)

we see that this is strictly smaller than x if x is sufficiently large. 2

8.3. Comparing ε self-reductions and kernelizations. We showed (Theorem 6.5) that a refinement of the method
used in [1, 7] to exclude polynomial kernelizations, actually works to exclude ε self-reductions. Although this gives
some interest to the concept of ε self-reduction, the question remains how natural this concept is. In this last section
we want to present results clarifying how close the concepts of polynomial kernelization and of ε self-reductions
are.

Note that ε self-reductions are allowed to increase the parameter arbitrarily. By a straightforward argument
we shall see in Proposition 8.6 that a parameterized problem has an ε self-reduction which does not increase the
parameter if and only if it has a parameter non-increasing polynomial kernelization. We then look what happens
if we allow some ‘moderate’ increase in the parameter. Different renderings of what ‘moderate’ means, allow to
iterate ε self-reductions to yield polynomial or subexponential kernelizations.

Given ` ∈ N and a function f whose range is included in its domain, let f ` denote the function given by
f `(a) := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

` times

(a).

Proposition 8.6. Let 0 < ε < 1 and let (Q, κ) be a parameterized problem. Then (Q,κ) has a parameter non-
increasing polynomial kernelization if and only if it has parameter non-increasing ε self-reduction R.

24



Sketch of proof: The forward direction is trivial. Conversely, let R be an ε self-reduction of (Q,κ) such that
κ ◦R ≤ κ. Choose c ∈ N such that |R(x)| ≤ κ(x)c · |x|(1−ε) for all x ∈ Σ∗. A straightforward induction shows

|R`(x)| ≤ κ(x)c·
∑

0≤i≤`−1(1−ε)i

· |x|(1−ε)`

, (18)

for all ` ≥ 1 and x ∈ Σ∗. Furthermore, a simple computation shows that for m := (log log |x|)/ε we get

|x|(1−ε)m

≤ 2. (19)

Using
∑∞

i=0(1− ε)i = 1/ε, the inequalities (18) and (19) imply

|Rm(x)| ≤ κ(x)c/ε · 2 ≤ κ(x)O(1).

By (18) we get |R`(x)| ≤ κ(x)c/ε · |x| ≤ |x|O(1) for all ` ≥ 1 (recall κ(x) ≤ |x|O(1)), and hence Rm can be
computed in polynomial time. Thus Rm is a parameter non-increasing polynomial kernelization of (Q,κ). 2

Definition 8.7. A function f : N → N is moderate (strongly moderate) if and only if it is nondecreasing and
f `(k) ≤ kO(`) (respectively f `(k) ≤ kO(1)) for all k, ` ∈ N with k/` sufficiently large.

E.g. linear functions are moderate. On the other hand, a “slightly polynomial” function k 7→ bk1+εc for a
constant ε > 0 is not moderate. Clearly, the identity is strongly moderate, but k 7→ bk · (1 + ε)c for ε > 0 is not.
We give further examples.

Examples 8.8. (a) The function given by f(k) := bk · log kc is moderate.

Proof: It is enough to show f `(k) ≤ k` · (log k)` for all k, ` ∈ N with k/` ≥ 2. Inductively

f `+1(k) ≤ f `(k) · log f `(k)
≤ k`(log k)` · log

(
k`(log k)`

)
= k`(log k)` · (`log k + `log log k) (20)

Now, log k + log log k ≤ 2log k, so k/2 · (log k + log log k) ≤ klog k. But if k/` ≥ 2, i.e. ` ≤ k/2, we get
(`log k + `log log k) ≤ klog k. Hence by (20) we get f `+1(k) ≤ k`+1(log k)`+1 as we want. 2

(b) The function given by f(k) := bk · k
√

kc is strongly moderate.

Proof: An easy induction shows f `(k) ≤ k(1+1/k)`

for all `, k ∈ N. If k/` ≥ 1, i.e. k ≥ `, this is at most
k(1+1/k)k

= kO(1). 2

Proposition 8.9. Let 0 < ε < 1 and let (Q,κ) be a parameterized problem in EXPT with an ε self-reduction R.
Then

(1) if κ ◦R ≤ f ◦ κ for some strongly moderate f , then (Q, κ) has a polynomial kernelization;

(2) if κ ◦ R ≤ f ◦ κ for some moderate f , then (Q,κ) has a subexponential kernelization; more specifically, it
has a kO(log k)-kernelization.

We omit the proof as it consists mainly in tedious computations along the line of argument for Proposition 8.6.
For details see the third author’s PhD Thesis [16].

Acknowledgement. The third author wants to thank Mike Fellows, Danny Hermelin, Mihai Prunescu and Frances
Rosamond for helpful discussions.

25



References

[1] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems without polynomial kernels.
In Proceedings of the 35th International Colloquium on Automata, Languages and Programming (ICALP’08,
Track A), Lecture Notes in Computer Science 5125, 563–574, 2008.

[2] R. Chang and Y. Kadin. On computing boolean connectives of characteristic functions. Math. Systems
Theory, 28:173–198, 1995.

[3] Y. Chen and J. Flum. On parameterized path and chordless path problems. In Proceedings of the 22nd IEEE
Conference on Computational Complexity (CCC’07), page 250–263, 2007

[4] Y. Chen and J. Flum. Subexponential time and fixed-parameter tractability: exploiting the miniaturization
mapping. Journal of Logic and Computation, 19(1):89–122, 2009.

[5] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem. Annals of
Mathematics, 164:51–229, 2006.

[6] J. Flum and M. Grohe. Parameterized Complexity Theory, Springer, 2006.

[7] L. Fortnow and Santhanam. Infeasibility of instance compression and succinct PCPs for NP. In Proceedings
of the 40th ACM Symposium on the Theory of Computing (STOC’08), 133–142. ACM, New York, 2008. Full
version available at: http://lance.fortnow.com/papers/

[8] M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable structures. Journal of
the ACM, 48:1184-1206, 2001.

[9] M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revisited. Annals of
Pure and Applied Logic, 130:3 – 31, 2004.

[10] E. Grandjean and H. Kleine-Büning. SAT-problems and reductions with respect to the number of variables.
Journal of Logic and Computation 7(4): 457–471, 1997.

[11] M. Grohe. Private communication, 2008.

[12] J. Guo and R. Niedermeier. Invitation to data reduction and problem kernelization. ACM SIGACT News, Vol.
38, No. 1, 2007.

[13] D. Harnik and M. Naor. On the compressibility of NP instances and cryptographic applica-
tions, In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), 719–728, 2006. Full version appears as TR06-022 in ECCC Reports 2006, available at
http://eccc.hpi-web.de/eccc-local/Lists/TR-2006.html

[14] R. Impagliazzo, R.Paturi, and F. Zane. Which problems have strongly exponential complexity? Journal of
Computer and System Sciences, 63:512–530, 2001.

[15] D. Johnson. Announcements, updates, and greatest hits. Journal of Algorithms, 8:3, 438–448, 1987.

[16] M. Müller. Parameterized Randomization. PhD Thesis Albert-Ludwigs-Universität Freiburg i.Br., URN:
urn:nbn:de:bsz:25-opus-64017, URL: http://www.freidok.uni-freiburg.de/volltexte/6401/, 2009.

[17] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.

[18] C. K. Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical Computer Science,
26:287 – 300, 1983.

26


