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Abstract

Recently it has been shown that the miniaturization mapping M faithfully translates
subexponential parameterized complexity into (unbounded) parameterized complexity. We
determine the preimages under M of various (classes of) problems. For many parameter-
ized problems whose underlying classical problem is in NP we show that the preimages
coincide with natural reparameterizations which take into account the amount of nondeter-
minism needed to solve them.
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1. Introduction

The idea of fixed-parameter tractability is to approach hard algorithmic problems by isolating
problem parameters that can be expected to be small in certain applications and then develop
algorithms that are polynomial except for an arbitrary dependence on the parameter. More
precisely: A parameterized problem is a pair (Q,κ), where Q is a classical problem, say,
over the alphabet Σ and κ : Σ∗ → N is a polynomial time computable function assigning to
every x ∈ Σ∗ its parameter κ(x). The problem (Q, κ) is fixed-parameter tractable if it can
be solved by an algorithm the running time of which is bounded by f(κ(x)) · |x|O(1), where
f is an arbitrary computable function. The class of all fixed-parameter tractable problems is
denoted by FPT.

There are natural problems that are fixed-parameter tractable, but require a parameter de-

pendence f of the form f(k) := 222k

or even worse. However, even for small values of the

parameter κ(x), a running time such as 222κ(x)

· |x| is prohibitive. Hence, besides the un-
bounded fixed-parameter tractability, more restrictive notions of tractability have been studied
obtained by simply putting upper bounds on the growth of the “parameter dependence” f , the
most restrictive ones considered so far being f ∈ 2O(k) and f ∈ 2o(k). 1 The corresponding
class of “tractable” problems have been denoted by EPT and SUBEPT, respectively, and the
theory corresponding to SUBEPT by subexponential parameterized complexity.

It is a beautiful aspect of subexponential parameterized complexity theory that it can be
faithfully translated into unbounded parameterized complexity theory via the miniaturization
mapping M : Let (Q,κ) be a parameterized problem over the alphabet Σ. The miniaturization
M (Q,κ) of (Q,κ) is the parameterized problem

∗Email: yijia.chen@cs.sjtu.edu.cn
†Email: joerg.flum@math.uni-freiburg.de
1In the precise definition given in Section 2 we have to require f ∈ 2oeff (k) (which is an effective version of

f ∈ 2o(k)); this stronger requirement is necessary in order to relate it to our (strongly uniform) fixed-parameter
tractability.
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M (Q,κ)
Instance: x ∈ Σ∗ and m ∈ N in unary.

Parameter:
⌈

κ(x)
log m

⌉
.

Question: Is x ∈ Q?

As just remarked the miniaturization mapping M establishes a connection between the subex-
ponential theory and the unbounded theory and thereby M maps SUBEPT onto FPT. The
mapping M strongly preserves reducibilities and every parameterized problem in XP has a
preimage under the miniaturization map in EPT. Here XP denotes the class of parameterized
problems (Q, κ) solvable in time O(|x|f(κ(x))) for some computable f . To state the precise
result, proven in [3], we write (Q,κ) ≤serf (Q′, κ′) and (Q,κ) ≤fpt (Q′, κ′) if there are a
serf-reduction and an fpt-reduction, respectively, from (Q,κ) to (Q′, κ′). Serf-reductions and
fpt-reductions are the standard notions of many-one reductions in subexponential parameter-
ized complexity and in unbounded parameterized complexity, respectively (compare Section 2
for the definitions).

Theorem 1 (Miniaturization Theorem). (1) Let (Q,κ) be a parameterized problem. Then

(Q,κ) ∈ SUBEPT ⇐⇒ M (Q,κ) ∈ FPT.

(2) Let (Q,κ) and (Q′, κ′) be parameterized problems. Then

(Q,κ) ≤serf (Q′κ′) ⇐⇒ M (Q,κ) ≤fpt M (Q′, κ′).

(3) Let (Q,κ) ∈ XP. Then there exists a problem (Q′, κ′) in EPT such that

M (Q′, κ′) ≡fpt (Q,κ).

The class XP comprises the most important hierarchy of classes of intractable parameter-
ized problems, namely the W-hierarchy. We recall a property of this hierarchy. For a set Γ of
propositional formulas the parameterized weighted satisfiability problem for Γ is defined by

p-WSAT(Γ)
Instance: A propositional formula α ∈ Γ and k ∈ N.

Parameter: k.
Question: Does α have a satisfying assignment of weight k? 2

Then for the classes W[1],W[2], . . . of the W-hierarchy the following holds:

– If t, d ≥ 1 and t+ d ≥ 3, then p-WSAT(Γt,d) is W[t]-complete under fpt-reductions.

Here Γt,d contains the propositional formulas that are big conjunctions of big disjunctions of
big conjunctions . . . (t alternations) of conjunctions (if t is even) and disjunctions (if t is odd)
of d literals (see Section 5 for the precise definition).

In [3] the authors consider the reparameterization form-WSAT(Γ) of p-WSAT(Γ), where

form-WSAT(Γ)
Instance: A formula α ∈ Γ and k ≥ 1.

Parameter: k · dlog |α|e.
Question: Does α have a satisfying assignment of weight k?

They show for the Γ’s relevant for the W[t]’s that the problem form-WSAT(Γ) is the preimage
of p-WSAT(Γ) under the miniaturization mapping, that is:

2The weight of an assignment for the variables of α is the number of variables set to TRUE.
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– If t, d ≥ 1 and t+ d ≥ 3, then M (form-WSAT(Γt,d)) ≡fpt p-WSAT(Γt,d).

Already an analysis of the proof of part (3) of the Miniaturization Theorem shows that the
preimage of a parameterized problem (Q,κ) under the miniaturization mapping essentially
is a reparameterization of (Q,κ). How do we get this reparameterization? Is there a natural
reparameterization that is a preimage? Can we determine the preimages of a large class of
problems? These are the problems we address in this paper. In [3] the authors prove that
the reparameterization of problems obtained by multiplying the parameter by the logarithm
of the size of the instance gives an inverse for the miniaturization mapping for all problems
satisfying certain technical conditions. Essentially form-WSAT(Γ) is this reparameterization
of p-WSAT(Γ). We generalize this approach here.

Let (Q, κ) be a parameterized problem over the alphabet Σ. Often (the classical problem)
Q has a canonical representation of the form

x ∈ Q ⇐⇒ there is a y ∈ {0, 1}g(x) such that (x, y) ∈ Q0 (1)

for some polynomial time computable function g : Σ∗ → N and someQ0 ∈ PTIME. (We give
such a representation for Q := WSAT(Γ) below.) Consider the nondeterministic algorithm
solving x ∈ Q by guessing y ∈ {0, 1}g(x) and then verifying that (x, y) ∈ Q0 in polynomial
time. The deterministic procedure simulating all possible computation paths of this nonde-
terministic algorithm takes time 2g(x) · |x|O(1). Often the question arises whether we can do
better and solve the problem x ∈ Q in time

2o(g(x)) · |x|O(1),

which is equivalent to (Q, g) ∈ SUBEPT. We call (Q, g) the canonical parameterization
of Q (more precisely, one should speak of the canonical parameterization induced by the
representation (1) ofQ) and sometimes we say that (Q, g) is the canonical reparameterization
of (Q, κ).

Let Q be the weighted satisfiability problem WSAT(Γ) for formulas in Γ, that is, (α, k) ∈
Q if and only if α ∈ Γ and α has a satisfying assignment of weight k. A canonical represen-
tation of Q of the form (1) is

(α, k) ∈ Q ⇐⇒ there is a y ∈ {0, 1}k·dlog |var(α)|e such that ((α, k), y) ∈ Q0,

where var(α) is the set of variables of α and ((α, k), y) ∈ Q0 means that α ∈ Γ, that y contains
the binary representation of k distinct variables of α and that the assignment setting exactly
these variables to TRUE satisfies α. Clearly Q0 is in PTIME if Γ is. Hence the canonical
parameterization is the problem

var-WSAT(Γ)
Instance: A formula α ∈ Γ and k ≥ 1.

Parameter: dk · log |var(α)|e.
Question: Does α have a satisfying assignment of weight k?

We show that in addition to form-WSAT(Γt,d) also var-WSAT(Γt,d) is a preimage of the
problem p-WSAT(Γt,d), that is:

– If t, d ≥ 1 and t+ d ≥ 3, then M (var-WSAT(Γt,d)) ≡fpt p-WSAT(Γt,d).

The main question we address is: For what other parameterized problems is the canonical
reparameterization a preimage under the miniaturization map?

In Section 3 we show that the answer is positive for the parameterized dominating set
problem. In Section 4 we introduce a general framework that allows us to carry out the argu-
ments we use for the dominating set problem. In Section 5 we apply this abstract approach to
reprove and extend the results obtained in [3] for the weighted satisfiability problem. Perhaps
the most far-reaching positive answer to our main question is obtained in Section 6:
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If t ≥ 1 and the parameterized problem (Q, κ) is W[t]-complete and Fagin-
definable by a Πt-formula, then the preimage of (Q,κ) under the miniaturization
mapping is its canonical reparameterization.

To broaden the range of applicability of this result we deal with relativized Fagin-definable
problems. As an application we get:

If one can decide whether a hypergraph H has a hitting set of size k in time
2o(k·log (|V |+|E|)) · ‖H‖O(1), then one can even decide it in time 2o(k·log |V |) ·
‖H‖O(1).

In Section 7 we discuss the main question for model-checking problems and give an applica-
tion to the homomorphism problem. Finally, in Section 8 we determine parameterized prob-
lems complete in the preimages of the classes of the A-hierarchy. Here we face the additional
difficulty that problems complete in some class of the A-hierarchy have an underlying classical
problem which is not in NP (unless A[2] ⊆ para-NP), so that we have no notion of canonical
reparameterization.

As in [8] we consider the miniaturization mapping as an isomorphism between subexpo-
nential parameterized complexity and unbounded parameterized complexity. The authors of
[3] view the mapping as an isomorphism between exponential complexity and unbounded pa-
rameterized complexity. On the side of the exponential theory the parameterization is viewed
as a size function. We strongly recommend the worth reading introduction of [3].

2. Some basic notions from Parameterized Complexity

The set of natural numbers (that is, nonnegative integers) is denoted by N. For a natural
number n let [n] := {1, . . . , n}. By log n we mean dlog ne if an integer is expected. For
n = 0 the term log n is undefined. We trust the reader’s common sense to interpret such terms
reasonably.

Recall from the Introduction that a parameterized problem is a pair (Q, κ), where Q is a
classical problem, say, over the alphabet Σ and κ : Σ∗ → N is a polynomial time computable
function assigning to every x ∈ Σ∗ its parameter κ(x). We also recall the definition of FPT
and SUBEPT, the classes of tractable problems from the point of view of (unbounded) fixed-
parameter tractability and of subexponential fixed-parameter tractability, respectively.

The problem (Q,κ) is fixed-parameter tractable if there is an algorithm solving x ∈ Q
in time f(κ(x)) · |x|O(1), where f is a computable function. The class of all fixed-parameter
tractable problems is denoted by FPT.

Let f, g : N → N be computable functions. Then f ∈ oeff(g) if there is a computable
function h such that for all ` ≥ 1 and k ≥ h(`),

f(k) ≤ g(k)
`

or, equivalently, f ∈ oeff(g) if there exist k0 ∈ N and a computable function ι that is nonde-
creasing and unbounded such that for all k ≥ k0,

f(k) ≤ g(k)
ι(k)

.

We often write f(k) ∈ oeff(g(k)) instead of f ∈ oeff(g). A parameterized problem (Q,κ) is in
SUBEPT if x ∈ Q is solvable in time f(κ(x)) · |x|O(1) for some computable function f with
f(k) ∈ 2oeff (k).

We recall the notion of reducibility for the unbounded and for the subexponential param-
eterized complexity. Let (Q,κ) and (Q′, κ′) be parameterized problems over the alphabets Σ
and Σ′, respectively.

An fpt-reduction from (Q,κ) to (Q′, κ′) is a mapping R : Σ∗ → (Σ′)∗ such that:
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– For all x ∈ Σ∗ we have
x ∈ Q ⇐⇒ R(x) ∈ Q′.

– There is a computable f : N → N such that for all x ∈ Σ∗, the valueR(x) is computable
in time

f(κ(x)) · |x|O(1).

– There is a computable function g : N → N such that κ′(R(x)) ≤ g(κ(x)) for all
x ∈ Σ∗.

We write (Q,κ) ≤fpt (Q′, κ′) if there is an fpt-reduction from (Q,κ) to (Q′, κ′), and we write
(Q,κ) ≡fpt (Q′, κ′) if (Q,κ) ≤fpt (Q′, κ′) and (Q′, κ′) ≤fpt (Q,κ).

The classes W[1],W[2],. . . of the W-hierarchy, the classes W[SAT] and W[P], and the
classes A[1], A[2],. . . of the A-hierarchy are defined in (or, characterized by) Theorem 13 and
Proposition 36, respectively, via complete problems under fpt-reductions.

A subexponential reduction family, or simply serf-reduction, from (Q, κ) to (Q′, κ′) is a
mapping S : Σ∗ × N → (Σ′)∗ such that:

– For all (x, `) ∈ Σ∗ × N we have

x ∈ Q ⇐⇒ S(x, `) ∈ Q′.

– There is a computable function f such that for all (x, `) ∈ Σ∗ × N the value S(x, `) is
computable in time

f(`) · 2κ(x)/` · |x|O(1).

– There is a computable function g such that for all (x, `) ∈ Σ∗ × N,

κ′(S(x, `)) ≤ g(`) · (κ(x) + log |x|).

We write (Q, κ) ≤serf (Q′, κ′) if there is a serf-reduction from (Q,κ) to (Q′, κ′) and use the
derived notation ≡serf.

Note that (Q,κ) ≤serf (Q′, κ′) if there is a mapping R : Σ∗ → (Σ′)∗ such that:

– For all x ∈ Σ∗ we have
(
x ∈ Q ⇐⇒ R(x) ∈ Q′).

– R(x) is computable in time 2oeff (κ(x)) · |x|O(1).

– κ′(R(x) ≤ O(κ(x)).

As then S(x, `) := R(x) is a serf-reduction, we often call R a serf-reduction.

3. An example

We consider the parameterized dominating set problem

p-DOMINATING-SET
Instance: A graph G = (V,E) and k ∈ N.

Parameter: k.
Question: Does G have a dominating set of size k?

and its canonical reparameterization

uni-DOMINATING-SET
Instance: A graph G = (V,E) and r ∈ N.

Parameter: r · log |V |.
Question: Does G have a dominating set of size r?
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and show (recall the definition of the miniaturization M (Q,κ) of (Q,κ) from the Introduc-
tion):

Theorem 2. M (uni-DOMINATING-SET) ≡fpt p-DOMINATING-SET.

Proof: p-DOMINATING-SET ≤fpt M (uni-DOMINATING-SET): Let (G, k) be an instance of
p-DOMINATING-SET with G = (V,E). We set

r := k and m := |V |.

The instance (G, r,m) of M (uni-DOMINATING-SET) has the parameter⌈
r · log |V |

log m

⌉
= k;

hence, the mapping (G, k) 7→ (G, r,m) is an fpt-reduction.

M (uni-DOMINATING-SET) ≤fpt p-DOMINATING-SET: Let (G, r,m) be an instance of the
problem M (uni-DOMINATING-SET) with G = (V,E). We can assume that

2 ≤ r ≤ |V |. (2)

Recall that the parameter of (G, r,m) is

k :=
⌈
r · log |V |

log m

⌉
. (3)

Now we distinguish two cases. If |V | > m, then k > r by (3). It follows that we can map
(G, r,m) to the equivalent instance (G, r) of p-DOMINATING-SET (its parameter r is bounded
by k). In case |V | ≤ m we have

k ≤ r. (4)

Moreover, r · log |V | ≤ k · log m and hence

|V |r/k ≤ m. (5)

We want to get from the instance (G, r,m) of M (uni-DOMINATING-SET) in fpt-time a pair
(G′, k′) such that

G has a dominating set of size r ⇐⇒ G′ has a dominating set of size k′

and such that k′ ≤ g(k) for some computable g. The next lemma, which finishes this proof,
shows that we can even get such a (G′, k′) with k′ = k in time polynomial in |V |r/k, and
hence by (4) and (5), in time polynomial in m. Note that by (4) and (2) the assumptions of the
lemma are satisfied. 2

Lemma 3. There is an algorithm that assigns to every graph G = (V,E) and r, k ∈ N with

k ≤ r ≤ |V | and 2 ≤ |V |

a graph G′ in time polynomial in |V |r/k such that

G has a dominating set of size r ⇐⇒ G′ has a dominating set of size k.

Proof: Assume that G = (V,E) is a graph, k ≤ r ≤ |V |, and 2 ≤ |V |. We choose the
uniquely determined q and s in N such that

k · q = r + s with 0 ≤ s < k.

We first add s new isolated vertices to G thus obtaining a graph G0 = (V0, E0) such that

G has a dominating set of size r ⇐⇒ G0 has a dominating set of size k · q. (6)
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Then |V0| = |V |+ s ≤ 2|V |. Let [V0]q be the set of subsets of V0 of q elements. Let the graph
G′ have the set of vertices

V ′ := V0 ∪ [V0]q

and as edges the edges in E0, the edge {X,Y } for every distinct X,Y ∈ [V0]q, and edges
{u,X} for u ∈ V0 and X ∈ [V0]q such that

u ∈ X or there is v ∈ X with {u, v} ∈ E0.

Note that G′ can be constructed from G in time polynomial in |V |q and hence in time polyno-
mial in |V |r/k.

Furthermore (in this yields the desired equivalence in view of (6))

G0 has a dominating set of size k · q ⇐⇒ G′ has a dominating set of size k.

In fact, if G0 has a dominatingD set of size k ·q, then we partitionD into k setsX1, . . . , Xk all
of size q. One easily verifies that {X1, . . . , Xk} is a dominating set of G′. Conversely, assume
that G′ has a dominating set of size k consisting of X1, . . . , X` ∈ [V0]q and u1, . . . , um ∈ V0.
Then

D := X1 ∪ . . . ∪X` ∪ {u1, . . . , um}
is a dominating set of G0 of size ≤ k · q; hence there is a dominating set of size k · q. 2

As p-DOMINATING-SET is W[2]-complete under fpt-reductions, we get from Theorem 2
and the Miniaturization Theorem:

Corollary 4. W[2] = FPT if and only if there is an algorithm deciding whether a graph
G = (V,E) has a dominating set of size k in time 2oeff (k·log |V |) · |V |O(1).

4. The general framework

We show that the result obtained in the previous section for the dominating set problem can
be generalized to any parameterized problem satisfying an analogue of Lemma 3.

We start with a simple observation that often will be useful.

Proposition 5. Let (Q, κ) be a parameterized problem over the alphabet Σ and κ′ : Σ∗ → N
a further parameterization of Q such that κ′(x) ≤ O(κ(x) · log |x|). Then:

(Q, κ) ≤fpt M (Q,κ′).

In particular,
(Q,κ) ≤fpt M (Q,κ).

Proof: Immediate as the function x 7→ (x, |x|) is an fpt-reduction from (Q,κ) to M (Q,κ′).
2

Corollary 6. Let (Q,κ) be a parameterized problem over the alphabet Σ and κ′ a further
parameterization such that κ′(x) ≤ O(κ(x) · log |x|). Furthermore let C be a class of
parameterized problems.

If (Q,κ) is C-complete under fpt-reductions and M (Q,κ′) ∈ C, then M (Q,κ′) is C-
complete under fpt-reductions.

Now we turn to a generalization of the results of the previous section.

Definition 7. Let (Q,κ) be a parameterized problem over the alphabet Σ. Let h : Σ∗ → N
be a function. We say that (Q,κ) has the h-condensation property if there are a computable
function f : N → N and an algorithm that for every x ∈ Σ∗ and k ∈ N with 1 ≤ k ≤ κ(x)
computes an x′ ∈ Σ∗ in time polynomial in

h(x)κ(x)/k + |x|

such that
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– x ∈ Q ⇐⇒ x′ ∈ Q;

– κ(x′) ≤ f(k).

In most examples we can choose as f the identity function (and then we do not mention f
explicitly). In these cases the last condition turns into

– κ(x′) ≤ k.

In [3] the authors introduce the notion of scalable parameterized problem and prove Theo-
rem 10 below for scalable problems. The reader familiar with that paper will easily show
that a parameterized problem is scalable if and only if it has the h-condensation property for
h(x) := |x| and we can choose as f the identity function.

Examples 8. (a) Lemma 3 shows that p-DOMINATING-SET has the h-condensation property
for the function h given by h(G, r) := |V |.3

(b) p-INDEPENDENT-SET has the h-condensation property for h with h(G, r) := |V |. The
verification is similar to the case of the dominating set problem and is implicit in [3].

(c) The parameterized problem:

p-RED/BLUE-NONBLOCKER
Instance: A graph G = (V,E), a partition of V into two sets R and

B (the red and the blue vertices, respectively), and r ∈ N.
Parameter: r.

Question: Does there exist a set S of size r of red vertices such that
every blue vertex has at least one red neighbor that does
not belong to S?

has the h-condensation property for the function h given by h(G, R,B, r) := |R|.
In fact, let (G, R,B, r) be an instance of the problem and let k ∈ N with 1 ≤ k ≤ r.

By adding less than k isolated vertices to the red part we can assume that k divides r, say,
q · k = r. Now we pass to the graph G′ = (V ′, E′) with V ′ = R′ ∪ B′. Here, R′, the set of
its red vertices, is [R]q, the set of subsets of R of size q, and B′ contains the old blue vertices
and for every pair {X,Y } of distinct elements of [R]q with nonempty intersection a vertex
b{X,Y }. That is,

B′ := B ∪ {b{X,Y } | X,Y ∈ [R]q and X ∩ Y 6= ∅}.

Furthermore, let

E′ :=
{
{b,X} | b ∈ B, X ∈ [R]q, and {b, a} ∈ E for some a ∈ X

}
∪

{
{b{X,Y }, X} | X,Y ∈ [R]q and X ∩ Y 6= ∅

}
.

One easily verifies that (G, R,B, r) is a positive instance of p-RED/BLUE-NONBLOCKER
if and only if (G′, R′, B′, k) is. Moreover, (G′, R′, B′, k) can be obtained in time polynomial
in |R|r/k + |V |.

Further examples will be given in the next sections.

Definition 9. Let (Q,κ) be a parameterized problem over the alphabet Σ. Let h : Σ∗ → N
be a function computable in polynomial time. The h-reparameterization (Q,κh) of (Q,κ) is
then given by

κh(x) := κ(x) · log h(x).

The next result shows that h-reparameterizations of problems (Q, κ) with the h-conden-
sation property are preimages of (Q,κ).

3Lemma 3 only shows that the relevant inequality holds for k 6= 1. As usual, the failure for finitely many values
is not relevant here and thus we do not mention it in the following.
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Theorem 10. Let (Q, κ) be a parameterized problem over Σ. Let h : Σ∗ → N be a function
computable in polynomial time such that h(x) ≤ |x| for all x ∈ Σ∗. Furthermore assume that
(Q,κ) has the h-condensation property. Then

M (Q,κh) ≡fpt (Q,κ).

Proof: (Q,κ) ≤fpt M (Q,κh): As h(x) ≤ |x|, we have

κh(x) = κ(x) · log h(x) ≤ κ(x) · log |x|;

thus the result follows from Proposition 5.

M (Q,κh) ≤fpt (Q,κ): Let (x,m) be an instance of M (Q, κh). The parameter of (x,m) is

k :=
⌈
κh(x)
log m

⌉
=

⌈
κ(x) · log h(x)

log m

⌉
.

– If h(x) > m, then k > κ(x). Hence, x is an instance of Q equivalent to (x,m); its
parameter κ(x) is bounded by k, the parameter of (x,m).

– If h(x) ≤ m, then k ≤ κ(x). Furthermore, κ(x) · log h(x) ≤ k · log m and thus,

h(x)κ(x)/k ≤ m.

As (Q,κ) has the h-condensation property, we find in time polynomial in h(x)κ(x)/k +
|x| an instance x′ such that (x ∈ Q ⇐⇒ x′ ∈ Q) and κ(x′) ≤ f(k) (where f is the
computable function according to Definition 7). Since h(x)κ(x)/k + |x| ≤ m+ |x|, the
time required is actually polynomial in m+ |x|.

Altogether, the function

R(x,m) :=

x h(x) > m,

x′ h(x) ≤ m,

is an fpt-reduction from M (Q,κh) to (Q,κ). 2

Corollary 11. Let (Q,κ) be a parameterized problem over Σ. Let h : Σ∗ → N be a function
computable in polynomial time such that h(x) ≤ |x| for all x ∈ Σ∗. Furthermore assume that
(Q,κ) has the h-condensation property. Then

(Q, κ) is fixed-parameter tractable

⇐⇒ x ∈ Q is solvable in time 2oeff (κ(x)·log h(x)) · |x|O(1).

Example 8(c) together with Theorem 10 yield:

Proposition 12. M (red-RED/BLUE-NONBLOCKER) ≡fpt p-RED/BLUE-NONBLOCKER,
where the problem red-RED/BLUE-NONBLOCKER is the reparameterization of p-RED/BLUE-
NONBLOCKER obtained by changing the parameter to r · log |R|.

5. Further applications

In this section we give applications to weighted satisfiability problems for formulas of propo-
sitional logic and Boolean circuits. First we recall some notions thereby using the notations
from [8].

We denote the class of Boolean circuits by CIRC and the class of propositional formulas
by PROP. For t ≥ 0 and d ≥ 1 we inductively define the following classes Γt,d and ∆t,d of
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formulas:

Γ0,d :=
{
λ1 ∧ . . . ∧ λs | s ∈ [d], λ1, . . . , λs literals

}
,

∆0,d :=
{
λ1 ∨ . . . ∨ λs | s ∈ [d], λ1, . . . , λs literals

}
,

Γt+1,d :=
{ ∧

i∈I

δi | I a finite nonempty index set and δi ∈ ∆t,d for all i ∈ I
}
,

∆t+1,d :=
{ ∨

i∈I

γi | I a finite nonempty index set and γi ∈ Γt,d for all i ∈ I
}
.

That is, in propositional formulas we distinguish between small conjunctions, denoted by ∧,
which are just conjunctions of two formulas, and big conjunctions, denoted by

∧
, which are

conjunctions of finite sets of formulas. Analogously, we distinguish between small disjunc-
tions, ∨, and big disjunctions,

∨
.

If in the definition of Γ0,d and ∆0,d we require that all literals are positive (negative), then
we obtain the sets denoted by Γ+

t,d and ∆+
t,d (Γ−t,d and ∆−

t,d), respectively.
Let V be a set of propositional variables. Often we tacitly identify an assignment S : V →

{TRUE, FALSE} with the set {X ∈ V | S(X) = TRUE}. The weight of an assignment S is
|S|, the number of variables set to TRUE. A propositional formula α is k-satisfiable (where
k ∈ N), if there is an assignment for the set var(α) of variables of α of weight k satisfying
α. Similarly we define the k-satisfiability of a circuit. For a set Γ of propositional formulas or
circuits the parameterized weighted satisfiability problem for Γ is defined by

p-WSAT(Γ)
Instance: γ ∈ Γ and k ∈ N.

Parameter: k.
Question: Does γ have a satisfying assignment of weight k?

We shall use the following result (which we also can read as definition of the classes W[1],
W[2], . . . of the W-hierarchy and of the classes W[SAT] and W[P]).
Theorem 13. Let t, d ∈ N with t+ d ≥ 3.

– If t is even, then p-WSAT(Γ+
t,d) is W[t]-complete under fpt-reductions.

– If t is odd, then p-WSAT(Γ−t,d) is W[t]-complete under fpt-reductions.

– p-WSAT(PROP) is W[SAT]-complete under fpt-reductions.

– p-WSAT(CIRC) is W[P]-complete under fpt-reductions.

Again let Γ be a set of propositional formulas or circuits. We shall consider the h-re-
parameterizations var-WSAT(Γ) and form-WSAT(Γ) of p-WSAT(Γ) obtained for h(γ, r) :=
|var(γ)| (= number of variables of γ) and h(γ, r) := |γ| (= size of γ), respectively; that is,

var-WSAT(Γ)
Instance: γ ∈ Γ and r ∈ N.

Parameter: r · log |var(γ)|.
Question: Does γ have a satisfying assignment of weight r?

and

form-WSAT(Γ)
Instance: γ ∈ Γ and r ∈ N.

Parameter: r · log |γ|.
Question: Does γ have a satisfying assignment of weight r?

For relevant classes the first function h has the condensation property:
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Example 14. For the function h given by h(γ, r) := |var(γ)| the problem p-WSAT(Γ) has
the h-condensation property for

– for Γ := Γ+
t,d with even t ≥ 1 and d ≥ 1

– for Γ := Γ−t,d with odd t ≥ 1, d ≥ 1 and t+ d ≥ 3
– for Γ := PROP and for Γ := CIRC.

We show this for Γ := Γ+
t,d with even t. Consider an instance (α, r) of p-WSAT(Γ+

t,d) and let
1 ≤ k ≤ r ≤ |var(α)|. We choose the uniquely determined q, s ∈ N such that

k · q = r + s with 0 ≤ s < k.

We take s new variables Y1, . . . , Ys and let

α0 := α ∧
∧

i∈[s]

Yi.

It is easy to see that α0 is in Γ+
t,d, up to logical equivalence, and that

(α, r) ∈ p-WSAT(Γ+
t,d) ⇐⇒ (α0, r + s) ∈ p-WSAT(Γ+

t,d). (7)

Let [var(α0)]q be the set of subsets of var(α0) of size q. For each Y ∈ [var(α0)]q let X(Y) be
a new variable. Now we replace each variable X in α0 by∨

Y∈[var(α0)]
q

with X ∈ Y

X(Y).

As t is even, the formula thus obtained is equivalent to a formula α′ in Γ+
t,d. Altogether, we

obtain α′ in time polynomial in h(α, r)r/k + |α| (recall that h(α, r) = |var(α)| and note that
α0 has at most 2h(α, r) variables and that q = (r + s)/k ≤ r/k + 1). Using the fact that α0

is monotone, it is routine to verify

(α0, r + s) ∈ p-WSAT(Γ+
t,d) ⇐⇒ (α′, k) ∈ p-WSAT(Γ+

t,d). (8)

Now (7) and (8) yield the desired equivalence.
As already remarked in [3]:

Lemma 15. Let t, d ∈ N with t+ d ≥ 3. Then for even t

var-WSAT(Γt,d) ≡serf var-WSAT(Γ+
t,d)

and for odd t
var-WSAT(Γt,d) ≡serf var-WSAT(Γ−t,d).

Proof: Let t be even. In [9], the authors exhibit a polynomial time reduction R from the
problem p-WSAT(Γt,d) to p-WSAT(Γ+

t,d), which has the following property: Let α ∈ Γt,d

and 1 ≤ k ≤ n, where n is the number of variables of α. If R(α, k) = (α′, k′) and α′ has n′

variables, then

k′ = O(k) and n′ = nO(1).

Hence
k′ · log n′ = O(k · log n).

Thus R is a serf-reduction from var-WSAT(Γt,d) to var-WSAT(Γ+
t,d). Obviously we have

var-WSAT(Γ+
t,d) ≤serf var-WSAT(Γt,d), so we get the claimed equivalence.

For odd t, we use the corresponding reduction from p-WSAT(Γt,d) to p-WSAT(Γ−t,d) of
[9]. 2

The following theorem yields problems complete under serf-reductions in the preimage of
W[t].
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Theorem 16. Let t, d ∈ N with t + d ≥ 3. If t is even, then the following problems are
W[t]-complete under fpt-reductions:

(1) M (var-WSAT(Γt,d));

(2) M (var-WSAT(Γ+
t,d));

(3) M (form-WSAT(Γt,d));

(4) M (form-WSAT(Γ+
t,d)).

For odd t one has to replace Γ+
t,d by Γ−t,d.

Proof: Let t be even. By Example 14 and Theorem 10 we know that

M (var-WSAT(Γ+
t,d)) ≡

fpt p-WSAT(Γ+
t,d).

As p-WSAT(Γ+
t,d) is W[t]-complete under fpt-reductions, this yields part (2). Part (1) follows

from part (2) by the preceding lemma and the Miniaturization Theorem.
Clearly, form-WSAT(Γ) ≤serf var-WSAT(Γ) for every Γ. Hence

p-WSAT(Γ) ≤fpt M (form-WSAT(Γ)) ≤fpt M (var-WSAT(Γ)),

where the first ≤fpt holds by Proposition 5. Now parts (3) and (4) follow from parts (1) and
(2). 2

Similarly one gets:

Corollary 17. (1) The problems M (var-WSAT(PROP)) and M (form-WSAT(PROP)) are
W[SAT]-complete under fpt-reductions.

(2) The problems M (var-WSAT(CIRC)) and M (form-WSAT(CIRC)) are W[P]-complete
under fpt-reductions.

The previous results have the following surprising consequence.
Corollary 18. Let t, d ∈ N with t + d ≥ 3. Let Γ := Γt,d, or Γ := Γ+

t,d for even t, or
Γ := Γ−t,d for odd t, or Γ := PROP, or Γ := CIRC. Then

var-WSAT(Γ) ≡serf form-WSAT(Γ).

We do not know for what other sets Γ this equivalence holds.

Note that the well-known [5] (k · log n)-trick and its “reverse” can be reformulated (or at
least imply)

var-WSAT(PROP) ≡serf p-SAT(PROP) and var-WSAT(CIRC) ≡serf p-SAT(CIRC),

where p-SAT(Γ) denotes the satisfiability problem for Γ parameterized by the number of
variables. From Corollary 17 we obtain the following result first derived in [1] (also see [5]):
Corollary 19. (1) M (p-SAT(PROP)) is W[SAT]-complete under fpt-reductions.

(2) M (p-SAT(CIRC)) is W[P]-complete under fpt-reductions.

Recall that the classes M[1], M[2],. . . of the M-hierarchy M-hierarchy and the classes
M[SAT] and M[P] are defined by

– M[t] is the class of parameterized problems fpt-reducible to M (p-SAT(Γt,d)) for some
d ≥ 1:

– M[SAT] is the class of parameterized problems fpt-reducible to M (p-SAT(PROP));

– M[P] is the class of parameterized problems fpt-reducible to M (p-SAT(CIRC)).
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Furthermore, the following relationship between the classes of the M-hierarchy and the classes
of the W-hierarchy holds: for every t ≥ 1, M[t] ⊆ W[t] ⊆ M[t + 1], moreover, M[SAT] =
W[SAT] and M[P] = W[P] (see [6, 8]).

Part (2) of the following theorem is due to Chen et al. [2].
Theorem 20. Let t, d ∈ N with t+ d ≥ 3.

(1) If W[t] = FPT, then one can decide p-WSAT(Γt,d) in time |var(α)|oeff (k) · |α|O(1) for
every instance (α, k).

(2) If M[t] 6= FPT, then one cannot decide p-WSAT(Γt,d) in time |var(α)|oeff (k) · |α|O(1) for
every instance (α, k).

Proof: To prove (1) we assume that W[t] = FPT. Then, by Theorem 16 (1), we have
M (var-WSAT(Γt,d)) ∈ FPT and hence, by the Miniaturization Theorem, var-WSAT(Γt,d) ∈
SUBEPT. Therefore for some computable, unbounded and nondecreasing function ι there is
an algorithm that, for any Γt,d-formula α and k ∈ N, decides whether α has a satisfying
assignment of weight k in time

2(k·log |var(α)|)/ι(k·log |var(α)|) · |α|O(1).

We get our claim as

2(k·log |var(α)|)/ι(k·log |var(α)|) · |α|O(1)

= |var(α)|k/ι(k·log |var(α)|) · |α|O(1) = |var(α)|o
eff (k) · |α|O(1).

As already remarked the reader can find a proof of (2) in [2]. 2

By the same method we get:
Theorem 21. – W[SAT] = FPT if and only if one can decide p-WSAT(PROP) in time

|var(α)|oeff (k) · |α|O(1) for every instance (α, k).

– W[P] = FPT if and only if one can decide p-WSAT(CIRC) in time |var(α)|oeff (k)·|α|O(1)

for every instance (α, k).

6. Fagin-definable problems

In this section we consider Fagin-definable problems. We first recall their definition and fix
our notation for first-order logic.

A vocabulary τ is a finite set of relation symbols. Each relation symbol has an arity. The
arity of a vocabulary is the maximum of the arities of its symbols. As all vocabularies contain
the binary equality symbol =, we do not mention it explicitly. A τ -structure A consists of a
set A called the universe, which we assume to be finite, and an interpretation RA ⊆ Ar of
each r-ary relation symbol R ∈ τ . For example, we view a graph as a structure G = (G,EG),
where E is a binary relation symbol and EG is an irreflexive and symmetric binary relation
on the set G of vertices. Nevertheless, as in the previous sections, we often denote the vertex
set of a graph G by V and the edge set by E (instead of G and EG) and use the set notation
{v, w} for edges.

For a τ -structure A we denote by ‖A‖ its size, that is, the length of a string encoding A in
a natural way. The number ‖A‖ will be within a polynomial factor of the term

|τ |+ |A|+
∑
R∈τ

|RA| · arity(R).

Formulas of first-order logic of vocabulary τ are built up from atomic formulas x = y and
Rx1 . . . xr where x, y, x1, . . . , xr are variables and R ∈ τ is of arity r, using the boolean
connectives and existential and universal quantification. For t ≥ 0 let Πt denote the class of
all first-order formulas of the form

∀x11 . . .∀x1k1∃x21 . . .∃x2k2 . . . Qxt1 . . . Qxtkt
ψ,
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where Q = ∃ if t is even and Q = ∀ otherwise, and where ψ is quantifier-free. Σt-formulas
are defined analogously starting with a block of existential quantifiers.

Let ϕ(X) be any first-order formula with a (second-order) set variable X (and with no
other free variables). It Fagin-defines the parameterized problem (cf. [8] to see where the no-
tation p-WDϕ comes from and what is the relationship to Fagin’s descrpitive characterization
of NP).

p-WDϕ

Instance: A structure A and k ∈ N.
Parameter: k.

Question: Does there exist a subset S ofA of size k withA |= ϕ(S)?

Here A |= ϕ(S) means that ϕ(X) holds in A if Xis interpreted by S. Its canonical reparam-
eterization is the problem

uni-WDϕ

Instance: A structure A and r ∈ N.
Parameter: r · log |A|.

Question: Does there exist a subset S ofA of size r withA |= ϕ(S)?

Our main result reads as follows:
Theorem 22. Let ϕ(X) be a Πt-formula and assume that p-WDϕ is W[t]-complete under
fpt-reductions. Then M (uni-WDϕ) is W[t]-complete under fpt-reductions.

This result has many applications. For example, the problems p-CLIQUE and p-SET-PACK-
ING are W[1]-complete problems Fagin-definable by Π1-formulas and the problems p-TOURN-
AMENT-DOMINATING-SET, p-KERNEL are W[2]-complete problems Fagin-definable by Π2-
formulas. Thus the miniaturizations of their canonical reparameterizations are W[1]-complete
and W[2]-complete, respectively (cf. [8] for the definitions of the problems).

Before we turn to a proof of Theorem 22, we consider an example which suggests to prove
a more general result. HITTING-SET is the problem:

HITTING-SET
Instance: A hypergraph H = (V,E) and r ∈ N.
Question: Does there exist a set S ⊆ V of size r such that S∩e 6= ∅

for all e ∈ E?

Its canonical parameterization is:

vert-HITTING-SET
Instance: A hypergraph H = (V,E) and r ∈ N.

Parameter: r · log |V |.
Question: Does there exist a set S ⊆ V of size r such that S∩e 6= ∅

for all e ∈ E?

In order to rewrite the problem as a Fagin-definable one, we represent a hypergraph H as a
τHG-structure A(H), where

τHG =
{

VERT,EDGE, I
}

with unary relation symbols VERT and EDGE and binary relation symbol I: We let

A(H) := V ∪ E, VERTA(H) := V, EDGEA(H) := E,

and
IA(H) :=

{
(v, e) | v ∈ V, e ∈ E, and v ∈ e

}
.
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The following formula expresses that X is a hitting set:

hit0(X) := ∀x∃y
(
(Xx→ VERT x) ∧ (EDGE x→ (Xy ∧ Iyx))

)
. (9)

Furthermore, it is not hard to see that there is a Π2-sentence hyp of vocabulary τHG, which
is satisfied exactly by those τHG-structures that, up to isomorphism, have the form A(H) for
some hypergraph H. We set

hit(X) := hyp ∧ hit0(X).

Then hit(X) is (equivalent to) a Π2-formula and

uni-WDhit ≤serf vert-HITTING-SET, (10)

as shown by the mapping (A(H), r) 7→ (H, r). However uni-WDhit does not coincide with
vert-HITTING-SET, because the former has the parameter r · log (|V |+ |E|) and the latter the
parameter r · log |V |. Note that |E| can be as large as 2|V |.

Therefore, we consider a more general reparameterization of the problem Fagin-defined
by a formula ϕ(X), namely a relativized version, where a subset of the universe is part of the
instance. This subset must contain the solution:

uni-rela-WDϕ

Instance: A structure A, a set U ⊆ A, and r ∈ N.
Parameter: r · log |U |.

Question: Does there exist S ⊆ U of size r such that A |= ϕ(S)?

As shown by the reduction (A, r) 7→ (A, A, r), we have

uni-WDϕ ≤serf uni-rela-WDϕ; (11)

hence, by the Miniaturization Theorem

M (uni-WDϕ) ≤fpt M (uni-rela-WDϕ). (12)

Furthermore, the reduction (H, r) 7→ (A(H), V, r) shows that

vert-HITTING-SET ≤serf uni-rela-WDhit. (13)

The main technical lemma of this section reads as follows:
Lemma 23. Let t ≥ 1 and ϕ(X) ∈ Πt. Then M (uni-rela-WDϕ) ∈ W[t].

Proof: By Theorem 16 and the Miniaturization Theorem, we only need to prove that there
exists some d ≥ 1 such that

uni-rela-WDϕ ≤serf var-WSAT(Γt,d).

We argue as in the proof of [8, Lemma 7.2]: For the sake of simplicity we assume t = 2 and

ϕ(X) = ∀x∃y
∨
i∈I

∧
j∈J

λij ,

where all λij are literals. We let d := max
{
2, |J |

}
. To every structure A of the vocabulary of

ϕ and every U ⊆ A we assign a Γ2,d-formula α such that for all r ∈ N:

(A, U, r) ∈ uni-rela-WDϕ ⇐⇒ (α, r) ∈ var-WSAT(Γt,d). (14)

For every a ∈ U let Ya be a propositional variable with the intended meaning “a is in the
(interpretation of the) relation symbol X”. We define α′ by

α′ :=
∧
a∈A

∨
b∈A,
i∈I

γi,a,b,

where γi,a,b is the conjunction obtained from
∧

j∈J λij as follows:
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– If a ∈ U , then we replace literals Xx by Ya and ¬Xx by ¬Ya; similarly, if b ∈ U , then
we replace literals Xy by Yb and ¬Xy by ¬Yb.

– If a /∈ U , then we omit λij = ¬Xx, and we omit the whole γi,a,b if λi,j = Xx;
similarly we proceed for b /∈ U with the literals ¬Xy and Xy.

– If λij does not contain the relation variable X , then we omit λij if A |= λij(a, b), and
we omit the whole γi,a,b if A 6|= λij(a, b). Here A |= λij(a, b) means that λij holds in
A if x and y are interpreted by a and b, respectively.

Then for an arbitrary S ⊆ U one easily verifies that

A |= ϕ(S) ⇐⇒
{
Ya | a ∈ S

}
satisfies α′.

We pass to the formula
α := α′ ∧

∧
a∈U

(Ya ∨ ¬Ya)

to ensure that all variables Ya with a ∈ U occur in α. Then the equivalence (14) holds and as
α contains exactly |U | many variables, the mapping

(A, U, r) 7→ (α, r)

is a serf-reduction from uni-rela-WDϕ to var-WSAT(Γt,d). 2

Proof of Theorem 22: By Proposition 5

p-WDϕ ≤fpt M (uni-WDϕ).

Then, by Lemma 23 and the W[t]-hardness of p-WDϕ, we conclude that M (uni-WDϕ) is
W[t]-complete. 2

As an application we get:
Proposition 24. The miniaturizations of the following problems are W[2]-complete under fpt-
reductions:

size-HITTING-SET and vert-HITTING-SET,

where

size-HITTING-SET
Instance: A hypergraph H = (V,E) and r ≥ 1.

Parameter: r · log (|V |+ |E|).
Question: Does there exist a set S ⊆ V of size r such that S∩e 6= ∅

for all e ∈ E?

Proof: Clearly, size-HITTING-SET ≡serf uni-WDhit. Thus, by (10) and (13), we have

size-HITTING-SET ≡serf uni-WDhit ≤serf vert-HITTING-SET ≤serf uni-rela-WDhit. (15)

Furthermore, we know that the parameterized hitting set problem and thus p-WDhit are W[2]-
complete. Hence, so is M (uni-WDhit) by Theorem 22. Therefore M (uni-rela-WDhit) is
W[2]-complete by (12) and Lemma 23. Now we get our claim from (15) by the Miniaturization
Theorem. 2

As an immediate consequence, we get:

Corollary 25. If there is an algorithm solving HITTING-SET in time 2oeff (r·log (|V |+|E|)) ·
‖H‖O(1), then HITTING-SET is solvable in time 2oeff (r·log |V |) · ‖H‖O(1).
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We turn to the clique problem. As the W[1]-complete problem p-CLIQUE is Fagin-defin-
able by a Π1-formula, by Theorem 22 we see that M (uni-CLIQUE) is W[1]-complete. There-
fore:
Corollary 26. W[1] = FPT if and only if one can decide whether a graph G = (V,E) has a
clique of size k in time

2oeff(k·log |V |) · |V |O(1).

Similarly as Theorem 20, one can show (part (2) is again proved by Chen et al. [2]):
Theorem 27. (1) If W[1] = FPT, then one can decide whether a graph G = (V,E) has a

clique of size k in time |V |oeff (k).

(2) If M[1] 6= FPT, then one cannot decide whether a graph G = (V,E) has a clique of size
k in time |V |oeff (k).

We close this section with two open problems. From Proposition 5 we know that

p-WDϕ ≤fpt M (uni-WDϕ) (16)

holds for every formula ϕ(X). Is there a natural Fagin-definable problem p-WDϕ, for which
≤fpt cannot be replaced by ≡fpt in (16) (modulo complexity theoretic assumptions)? We be-
lieve that this could be the case for p-CLIQUE-OR-INDEPENDENT-SET, where

p-CLIQUE-OR-INDEPENDENT-SET
Instance: A graph G and k ∈ N.

Parameter: k.
Question: Does G have a clique of size k or an independent set of

size k?

It is known that the problem is fixed-parameter tractable [11]. However, is it solvable in time
2oeff (k·log |V |) · |V |O(1)?

By the way, the problem p-RED/BLUE-NONBLOCKER (cf. Example 8(c)) can not be writ-
ten as p-WDϕ with a Π1-formula ϕ; it has the form p-WDϕ0 for some Π2-formula ϕ0. As
the problem is W[1]-complete we cannot apply Theorem 22 to get M (red-RED/BLUE-NON-
BLOCKER) ≡fpt p-RED/BLUE-NONBLOCKER. However we know that this equivalence holds
(cf. Proposition 12).

We come to our second open question. We consider the problem of computing the Vapnik–
Chervonenkis dimension of a hypergraph. We let

p-VC-DIMENSION
Instance: A hypergraph H = (V,E) and r ∈ N.

Parameter: r.
Question: Is there is a subset Y of V of size r such for every Z ⊆ Y

there is an e ∈ E such that Z = Y ∩ e?

It is known that p-VC-DIMENSION is W[1]-complete. From Proposition 5 we know that

p-VC-DIMENSION ≤fpt M (uni-VC-DIMENSION).

Again we do not know whether we can replace ≤fpt by ≡fpt. We cannot apply Theorem 10,
as we are not able to prove the corresponding condensation property and we cannot apply
Theorem 22, as the problem p-VC-DIMENSION is not Fagin-definable by a Π1-formula.
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7. Model-checking problems

It is well-known (see Theorem 28) that the classes of the W-hierarchy can also be characterized
in terms of model-checking problems. However, are there model-checking problems complete
for the preimages of the classes of the W-hierarchy or, equivalently, are there miniaturizations
of model-checking problems complete for the classes of the W-hierarchy? We determine such
problems and give some applications.

If ϕ is a first-order formula, we write ϕ(x1, . . . , xm) to indicate that the free variables in
ϕ are among x1, . . . , xm. The formula ϕ is a sentence if no variable is free in ϕ.

The parameterized model-checking problem for a class Φ of first-order formulas is

p-MC(Φ)
Instance: A structure A and a sentence ϕ ∈ Φ.

Parameter: |ϕ|.
Question: A |= ϕ?

We turn to the fragments of first-order logic whose model-checking problems are complete
for the classes W[t]. Recall that for t ≥ 0 and u ≥ 1 a formula is in Π0

t,u if it is in Πt and all
quantifier blocks have length bounded by u. For t, u ≥ 1 a formula is in Σt,u if it has the form

∃x1 . . .∃xrψ

with r ≥ 1 and ψ ∈ Π0
t−1,u. Note that Σ1 = Σ1,u. Finally, for s ≥ 1 and a class Φ of

first-order formulas, let Φ[s] denote the class of formulas in Φ whose vocabulary has arity
≤ s.

Theorem 28. Let t, u ≥ 1 and s ≥ 2. Then p-MC(Σt,u) and p-MC(Σt,u[s]) are W[t]-
complete under fpt-reductions.

Fix t, u ≥ 1. The following nondeterministic polynomial time algorithm solves the prob-
lem p-MC(Σt,u): Given an instance (A, ϕ), where ϕ = ∃x1 . . .∃xrψ with ψ ∈ Π0

t−1,u,
the algorithm guesses elements a1, . . . , ar of A (that is, r · log |A| bits) and then checks if
a1, . . . , ar satisfy ψ, that is, if A |= ψ(a1, . . . , ar). Note that A |= ψ(a1, . . . , ar) can be
checked in time O(|ϕ| · ‖A‖t·u).

This yields the canonical reparameterization uni-lead-MC(Φ) of p-MC(Σt,u). For a Σt,u-
formula ϕ as above we set lead(ϕ) := r; that is, lead(ϕ) is the number of variables quantified
in the leading existential quantifier block.

uni-lead-MC(Σt,u)
Instance: A structure A and a sentence ϕ ∈ Σt,u.

Parameter: lead(ϕ) · log |A|.
Question: A |= ϕ?

By Theorem 28 one might conjecture that for s ≥ 2

M (uni-lead-MC(Σt,u)) and M (uni-lead-MC(Σt,u)[2]) are W[t]-complete under
fpt-reductions.

However this is unlikely as:

Theorem 29. For t, u ≥ 1

M (uni-lead-MC(Σt,u)) and M (uni-lead-MC(Σt,u)[2])

are W[SAT]-complete under fpt-reductions.
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Proof: By Corollary 19 we know that M (p-SAT(PROP)) is W[SAT]-complete. Therefore
by the Miniaturization Theorem it suffices to show that

p-SAT(PROP) ≤serf uni-lead-MC(Σ1)[2] and uni-lead-MC(Σt,u) ≤serf p-SAT(PROP).

p-SAT(PROP) ≤serf uni-lead-MC(Σ1)[2]: Let τ be the empty vocabulary and A the τ -
structure with A := {0, 1}. Let α be a propositional formula. For every propositional variable
X let y(X) and z(X) be variables of first-order logic. Consider the quantifier-free first-order
formula obtained from α by replacing every occurrence of each variable X by y(X) = z(X)
and let ϕα be the Σ1-sentence obtained from it by existentially quantifying all variables oc-
curring in it. Then α 7→ (A, ϕα) is the desired reduction.

uni-lead-MC(Σt,u) ≤serf p-SAT(PROP): Let (A, ϕ) be an instance of uni-lead-MC(Σt,u)
and r := lead(ϕ), say, ϕ = ∃x1 . . .∃xrψ. We define a propositional formula α with r · log |A|
variables such that

A |= ϕ ⇐⇒ α is satisfiable. (17)

This will yield the desired serf-reduction. The r · log |A| variables of α are grouped into r
blocks of length log |A|,

X̄1, . . . , X̄r

with X̄i := Xi,1, . . . , Xi,log |A| for i ∈ [r]. We may assume that A := {0, . . . , |A| − 1} and
we identify each a ∈ A with its binary representation of length log |A|.

The formula α will have the property that for every ā = (a1, . . . , ar) ∈ Ar

A |= ψ(ā) ⇐⇒ the assignment Sā satisfies α, (18)

where for each i ∈ [r] and j ∈ [log |A|]

Xi,j ∈ Sā ⇐⇒ the jth bit of ai is 1.

As a first step to get α, for each e ∈ A and i ∈ [r] we introduce the propositional formula
γe,i :=

∧
j∈[log |A|] λe,i,j with

λe,i,j :=

Xi,j the jth bit of e is 1,

¬Xi,j otherwise.

Then for every ā = (a1, . . . , ar) ∈ Ar

e = ai ⇐⇒ the assignment Sā satisfies γe,i.

and for each assignment S ⊆
{
X̄1, . . . , X̄r

}
we have

S satisfies
∧

i∈[r]

∨
e∈A

γe,i ⇐⇒ there exists some ā ∈ Ar such that S = Sā. (19)

For simplicity, let us assume that t = 2, u = 1 and that ψ = ∀y∃z
(
R1x1yx3z ∧ ¬R2yx2

)
.

Then we let

α :=
∧

i∈[r]

∨
e∈A

γe,i ∧
∧
a∈A

∨
b∈A

( ∨
e1,e3∈A with

(e1,a,e3,b) ∈ RA
1

(γe1,1 ∧ γe3,3) ∧ ¬
∨

e2∈A with
(a,e2) ∈ RA

2

γe2,2

)
.

Using (19) and (18) it is easy to verify (17). As |α| ≤ |A|t·u · |ϕ| · ‖A‖, the formula α can be
computed from A and ϕ in polynomial time. 2

To obtain a W[t]-complete problem we have to consider a subclass of Σt,u. A Σ∗
t,u-formula

is a Σt,u-formula
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– if t is even and its quantifier-free part is in conjunctive normal form, or

– if t is odd and its quantifier-free part is in disjunctive normal form.

Note that p-MC(Σ∗
t,u) ≡fpt p-MC(Σt,u), as in time allowed by an fpt-reduction, the quanti-

fier-free part of a formula ϕ in Σt,u can be transformed into conjunctive or disjunctive normal
form (as |ϕ| is the parameter). However, it is not clear whether uni-lead-MC(Σ∗

t,u) ≡serf

uni-lead-MC(Σt,u). It seems improbable, as:

Theorem 30. Let t, u ≥ 1 and s ≥ 2. Then M (uni-lead-MC(Σ∗
t,u[s])) is W[t]-complete

under fpt-reductions.

Proof: Fix t, u ≥ 1 and s ≥ 2. By Proposition 5 we know that

p-MC(Σ∗
t,u[s]) ≤fpt M (uni-lead-MC(Σ∗

t,u[s]))

and thus M (uni-lead-MC(Σ∗
t,u[s])) is W[t]-hard. Therefore, by Theorem 16 it suffices to

show that
uni-lead-MC(Σ∗

t,u[s]) ≤serf var-WSAT(Γt,s). (20)

Let (A, ϕ) be an instance of uni-lead-MC(Σ∗
t,u[s]) with r := lead(ϕ), say, ϕ = ∃x1 . . .∃xrψ.

We argue as in the proof of [8, Lemma 7.23]. We assume that t is odd (in case t is even
one argues similarly) and for notational simplicity that t = 3. Hence

ψ = ∀ȳ∃z̄
∨

i∈[m]

∧
j∈[ni]

λij , (21)

where |ȳ|, |z̄| ≤ u and where the λij are literals.
Let us first assume that r ≤ |A|. We shall define a propositional formula α ∈ Γt,s such

that
A |= ϕ ⇐⇒ α is r-satisfiable. (22)

The formula α will have propositional variables Xi,a for all i ∈ [r] and a ∈ A. The intended
meaning of Xi,a is: “First-order variable xi takes value a.” Note that an assignment of weight
r satisfies the formula

χ :=
∧

i∈[r]

∧
a,b∈A
a6=b

(¬Xi,a ∨ ¬Xi,b)

if and only if for every i ∈ [r] there is exactly one a such that Xi,a is set to TRUE.
We translate the formula in (21) into propositional logic by setting

α′ :=
∧

b̄∈A|ȳ|

∨
c̄∈A|z̄|

∨
i∈[m]

∧
j∈[ni]

ξij(b̄, c̄),

where ξij(b̄, c̄) is the following formula in ∆1,s: Let xi1 , . . ., xi`
be the variables from

x1, . . . , xr in λij ; hence, ` ≤ s and λij = λij(xi1 , . . . , xi`
, ȳ, z̄). Then, we set

ξij(b̄, c̄) :=
∧

a1,...,a`∈A
A6|=λij(a1,...,a`,b̄,c̄)

(¬Xi1,a1 ∨ . . . ∨ ¬Xi`,a`
)

Note that (χ ∧ α′) is r-satisfiable if and only if A |= ϕ, and that (χ ∧ α′) is equivalent to
a Γt,s-formula α obtainable in time allowed by a serf-reduction; hence, we get (22). As the
number of variables of α is r · |A| and, by assumption, r ≤ |A|, we see that the parameter
r · log (r · |A|) of the instance (α, r) of var-WSAT(Γt,s) is O(r · log |A|) (and r · log |A| is
the parameter of the instance (A, ϕ) of uni-lead-MC(Σ∗

t,u[s])).

Now we turn to the case r > |A|. One easily sees that we can assume that |A| ≥ 2 and
that e :=

√
r is a natural number. Clearly, e ≤ |A|e. Then we introduce a structure B with

universe A ∪Ae. Its vocabulary contains, among others, a unary relation symbol U with

UB := A.
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Recall that ψ = ψ(x1, . . . , xr). Let u1, . . . , ue be new first-order variables. We intend to
interpret them in B by elements from Ae, more precisely, u1 represents the (interpretation
of the) tuple (x1, . . . , xe), the variable u2 the tuple (xe+1, . . . , x2e),. . . . For every atomic
subformula λ of ϕ, the vocabulary contains a relation symbol R(λ). For example, if λ =
Rx2y3z4x9z1 and e = 4, then the relation symbol R(λ) will be 5-ary and

(ā, b̄, c, d, d′) ∈ R(λ)B ⇐⇒
(
ā, b̄ ∈ Ae, c, d, d′ ∈ A, and (a2, c, d, b1, d

′) ∈ RA
)
,

where a2 is the second member of ā and b1 the first member of b̄.
We set

ϕ′ := ∃u1 . . .∃ue∀ȳ∃z̄
( ∧

i∈[e]

¬Uei ∧ (
∧

i∈[|ȳ|]

Uyi → (
∧

i∈[|z̄|]

Uzi ∧
∨

i∈[m]

∧
j∈[ni]

λ′ij)
)
, (23)

where λ′ij is R(λij)u1u3y3z4z1 in case λij = Rx2y3z4x9z1. In time polymomial in ϕ′ we
obtain an equivalent formula ϕ′′ in Σ∗

t,u. Therefore the transition (A, ϕ) 7→ (B, ϕ′′) can be
carried out in time polynomial in |A|e and

|A|e = |A|
√

r = 2
√

r·log |A| = 2oeff (r·log |A|), (24)

the last equality holding as r > |A|. Furthermore, note that

e · log |A ∪Ae| ∈ O(r · log |A|). (25)

For i ∈ [e] and ā ∈ Ae we let Xi,ā be a propositional variable. Now we transform the formula
ϕ′′ into a propositional formula β essentially as we did it previously for the formula ϕ. Note
that lead(ϕ′′) = e ≤ |A|e ≤ |B|. Altogether, it is not hard to verify using (24) and (25) that
we obtain the desired serf-reduction. 2

We give an application of the preceding result. Let s ≥ 1. The parameterized homomor-
phism problem p-HOM[s] for structures of arity ≤ s is the following problem:

p-HOM[s]
Instance: Structures A and B of arity ≤ s.

Parameter: ‖A‖.
Question: Is there a homomorphism from A to B?

The following is known (cf. [8]).
Theorem 31. Let s ≥ 2. Then p-HOM[s] is W[1]-complete under fpt-reductions.

The canonical reparameterization of p-HOM[s] is the problem

uni-HOM[s]
Instance: Structures A and B of arity ≤ s.

Parameter: |A| · log |B|.
Question: Is there a homomorphism from A to B?

A further reparameterization of p-HOM[s] is

size-HOM[s]
Instance: Structures A and B of arity ≤ s.

Parameter: ‖A‖ · log ‖B‖.
Question: Is there a homomorphism from A to B?

By Proposition 5 we have:
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Lemma 32. Let s ≥ 1. Then

p-HOM[s] ≤fpt M (size-HOM[s]) ≤fpt M (uni-HOM[s]). (26)

We show that the three problems are equivalent:

Theorem 33. Let s ≥ 2. Then

p-HOM[s] ≡fpt M (size-HOM[s]) ≡fpt M (uni-HOM[s]).

Proof: Let s ≥ 2. By Theorem 31 and (26), it suffices to show that M (uni-HOM[s]) ∈ W[1].
For that purpose, we prove

uni-HOM[s] ≤serf uni-lead-MC(Σ∗
1,1[s]).

Then the result follows from Theorem 30 and the Miniaturization Theorem.
Let (A,B) be an instance of uni-HOM[s]. Clearly we can assume that both structures have

the same vocabulary τ (otherwise, (A,B) is a negative instance of uni-HOM[s]). Let k := |A|
and A = {a1, . . . , ak}. Then we let

ϕ := ∃x1 . . .∃xk

∧
r∈[s]

∧
R ∈ τ

of arity r

∧
(ai1 ,...,air )∈RA

Rxi1 . . . xir
.

It is easy to see that

there is a homomorphism from A to B ⇐⇒ B |= ϕ.

This gives the desired serf-reduction from uni-HOM[s] to uni-lead-MC(Σ∗
1,1[s]). 2

Corollary 34. Let s ≥ 2. M (size-HOM[s]) and M (uni-HOM[s]) are W[1]-complete under
fpt-reductions.

Corollary 35. Let s ≥ 2. If there is an algorithm solving HOM[s] in time 2oeff (‖A‖·log ‖B‖) ·
‖B‖O(1), then HOM[s] is solvable in time 2oeff (|A|·log |B|) · ‖B‖O(1).

8. The preimage of the A-hierarchy

In this section, among others, we determine model-checking problems complete for the preim-
ages of the classes of the A-hierarchy.

The A-hierarchy can be characterized in terms of model-checking problem (see [8]):
Proposition 36. For t ≥ 1 and s ≥ 2 the problems p-MC(Σt) and p-MC(Σt[s]) are A[t]-
complete under fpt-reductions.

An example of a graph problem complete for A[2] is

p-CLIQUE-DOMINATING-SET
Instance: A graph G and k, ` ∈ N.

Parameter: k + `.
Question: Does G contain a set of k vertices that dom-

inates every clique of size `?

A set X of vertices of G = (V,E) dominates the set of vertices Y if there are v ∈ X and
w ∈ Y such that v = w or {v, w} ∈ E.

For these problems we have no notion of canonical reparameterization, as their underlying
classical problems are not in NP apparently. In fact, it is well-known that the classical problem
underlying p-MC(Σt[s]) is Σp

t -complete.
Nevertheless we introduce the following reparameterization of the graph problem
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uni-CLIQUE-DOMINATING-SET
Instance: A graph G = (V,E) and k, ` ∈ N.

Parameter: (k + `) · log |V |.
Question: Does G contain a set of k vertices that dom-

inates every clique of size `?

and ask whether M (uni-CLIQUE-DOMINATING-SET) ≡fpt p-CLIQUE-DOMINATING-SET.
We were not able to answer this problem directly but only after determining a model-checking
problem complete for the preimage of A[2].

We denote by var(ϕ) the set of variables occurring (free or bounded) in ϕ and consider the
following parameterizations of the model-checking problem:

var-MC(Φ)
Instance: A structure A and a sentence ϕ ∈ Φ.

Parameter: |var(ϕ)|.
Question: A |= ϕ?

uni-var-MC(Φ)
Instance: A structure A and a sentence ϕ ∈ Φ.

Parameter: |var(ϕ)| · log |A|.
Question: A |= ϕ?

For every s ≥ 1 we have uni-var-MC(Σ1[s]) = uni-lead-MC(Σ1[s]). It was shown in [12]
that var-MC(Σ1[s]) is W[SAT]-complete for s ≥ 2. As by Theorem 29 also the problem
M (uni-lead-MC(Σ1[s])) is W[SAT]-complete we get

M (uni-var-MC(Σ1[s])) = M (uni-lead-MC(Σ1[s])) ≡fpt var-MC(Σ1[s]).

First we generalize this equivalence and show:
Proposition 37. For t, s ≥ 1

M (uni-var-MC(Σt[s])) ≡fpt var-MC(Σt[s]).

The core of the proof is the following lemma:

Lemma 38. Let t, s ≥ 1. Then var-MC(Σt[s]) has the h-condensation property, where

h(A, ϕ) := |A|.

Proof: Let (A, ϕ) be an instance of var-MC(Σt[s]) and let 1 ≤ k ≤ |var(ϕ)|. By adding
dummy variables we can pass to an equivalent Σt[s]-sentence ϕ′ such that

– each quantifier block in ϕ′ has the same length d and k divides d, say, r := d/k.

– d ≤ |var(ϕ)|+ k.

Now we proceed similarly as in the second part of the proof of Theorem 30. In each quantifier
block we replace sequences of quantified variables of length r by a single quantified variable
(there we did so for the variables of the first block only).

More precisely, we will define a structure A∗ with universe Ar. We replace in ϕ′ the
existential block ∃x1 . . .∃xd by ∃y1 . . .∃yk, where y1 represents the (interpretation of the)
tuple (x1, . . . , xr), the variable y2 the tuple (xr+1, . . . , x2r), . . . . Similarly we replace the
remaining blocks of quantifiers. Furthermore any atomic formula λ = Rz1 . . . zs is replaced
by R(λ)z′1 . . . z

′
s, where R(λ) is a new relation symbol and z′i is the variable representing

the tuple containing the variable zi. Let ϕ∗ be the Σt[s]-sentence obtained in this way. The
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relations R(λ)A
∗

are defined accordingly (compare the proof of Theorem 30). Then (A |=
ϕ ⇐⇒ A∗ |= ϕ∗). As |Ar| = |A|d/k ≤ |A||var(ϕ)|/k · |A| and |var(ϕ∗)| ≤ k · t, we see that
var-MC(Σt[s]) has the h-condensation property (where as function f : N → N according to
Definition 7 we take the function f(k) := k · t). 2

Proof of Proposition 37: In view of the preceding lemma the claim is obvious by Theorem 10.
2

For s ≥ 2 the problem M (uni-var-MC(Σt[s])) is W[SAT]-hard and therefore it is highly
improbable that it is A[t]-complete. As for the W-hierarchy, in order to get a complete problem
we have to restrict the model-checking problem to a subclass Σ∗

t of Σt defined as there: A Σt-
formula is in Σ∗

t

– if t is even and its quantifier-free part is in conjunctive normal form, and

– if t is odd and its quantifier-free part is in disjunctive normal form.

We show:
Theorem 39. Let t ≥ 1. Then M (uni-var-MC(Σ∗

t [2])) is A[t]-complete under fpt-reductions.
To prove this theorem we need a long detour through propositional logic. We consider the

following parameterized problem for a set of propositional formulas Γ:

p-AWSATt(Γ)
Instance: α ∈ Γ, a partition of var(α) into sets X1, . . . ,Xt, and

k1, . . . , kt ∈ N.
Parameter: k1 + . . .+ kt.

Question: Does there exist a subset S1 of X1 with |S1| = k1 such
that for every subset S2 of X2 with |S2| = k2 there exists
. . . such that the truth value assignment S1 ∪ . . . ∪ St

satisfies α?

and its reparameterization

var-AWSATt(Γ)
Instance: α ∈ Γ, a partition of the propositional variables of α into

sets X1, . . . ,Xt, and k1, . . . , kt ∈ N.
Parameter: (k1 + . . .+ kt) · log |var(α)|.

Question: Does there exist a subset S1 of X1 with |S1| = k1 such
that for every subset S2 of X2 with |S2| = k2 there exists
. . . such that the truth value assignment S1 ∪ . . . ∪ St

satisfies α

It is known [7]:
Proposition 40. If t ≥ 1is even,then p-AWSATt(∆+

1,2) is A[t]-complete under fpt-reductions,
and if t ≥ 1 is odd, then so is p-AWSATt(Γ−1,2).

We first prove (thereby already getting a problem complete in the preimage of A[t]):
Proposition 41. If t ≥ 1 is even, then M (var-AWSATt(∆+

1,2)) is A[t]-complete under fpt-
reductions, and if t ≥ 1 is odd, then so is M (var-AWSATt(Γ−1,2)).
Sketch of a proof : For simplicity we consider the case t = 2: Then it suffices to show
p-AWSAT2(∆+

1,2) ≤fpt M (var-AWSAT2(∆+
1,2)) ≤fpt p-MC(Σ2[2]).

p-AWSAT2(∆+
1,2) ≤fpt M (var-AWSAT2(∆+

1,2)): This is clear by Proposition 5.

M (var-AWSAT2(∆+
1,2)) ≤fpt p-MC(Σ2[2]): Let (α,X1,X2, k1, k2,m) be an instance of

M (var-AWSAT2(∆+
1,2)). Let k := k1 + k2. The parameter of this instance is

` :=
⌈
k · log |var(α)|

log m

⌉
.
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The case ` > k is easy, so let us assume that ` ≤ k. Note that

|var(α)|k/` ≤ m. (27)

From the proof of [8, Lemma 8.18] we know that

(α,X1,X2, k1, k2) ∈ p-AWSAT2(∆+
1,2) ⇐⇒ A |= ϕk1,k2

with

ϕk1,k2 :=∃x1 . . .∃xk1

( ∧
i∈[k1]

P1xi ∧
∧

1≤i<j≤k1

xi 6= xj ∧ ∀xk1+1 . . .∀xk1+k2(( ∧
k1+1≤i≤k1+k2

P2xi ∧
∧

k1+1≤i<j≤k1+k2

xi 6= xj

)
→

∨
1≤i,j≤k

Rxixj

))
,

for unary relation symbols P1, P2 and a binary R; moreover |A| = var(α) and

RA := {(i, j) | (Xi ∧Xj) is a term of α }

(we identify terms of the form X by (X ∧X)).
Note that to get an fpt-reduction to p-MC(Σ2[2]) we need a formula whose total length

(not only the length of the prefix) is bounded in terms of `. The crucial observation is that due
to the homogeneous form of ϕk1,k2 and RA this formula can be condensed completely, that
is, we can condense its prefix and its quantifier-free part. We leave the details to the reader. In
this way one gets in time polynomial in m a structure A∗ and a Σ∗

2[2]-sentence ϕ∗ of length
bounded in terms of ` such that

(α,X1,X2, k1, k2) ∈ p-AWSAT2(∆+
1,2) ⇐⇒ A∗ |= ϕ∗. 2

Sketch of a proof of Theorem 39: p-MC(Σt[2]) ≤fpt M (uni-var-MC(Σ∗
t [2])): As for the

given parameterization every sentence in Σt[2] can be transformed into an equivalent sentence
in Σ∗

t [2] in fpt-time, we get the result from Proposition 5.

M (uni-var-MC(Σ∗
t [2])) ≤fpt p-MC(Σt[2]): For notational simplicity let t = 2. By the

Miniaturization Theorem and Proposition 41 it suffices to show that uni-var-MC(Σ∗
2[s]) ≤serf

var-AWSAT2(∆+
1,2).

Let (A, ϕ) be an instance of uni-var-MC(Σ∗
2[s]). By standard techniques (cf. [8, Sec-

tion 8.2]) we can further assume that

ϕ = ∃x1 . . .∃x`∀y1 . . .∀ym

∨
i∈[s]

λi

where the λi’s are literals. Let us first assume that `+m ≤ log |A|.
Now we follow the proof of [8, Lemma 8.18]. We define a formula α′ with variables

X := {Xi,a | i ∈ [`], a ∈ A} and Y := {Yi,a | i ∈ [m], a ∈ A}

such that

A |= ϕ ⇐⇒ (α′,X ,Y, h, k) ∈ AWSAT2(PROP).

Then the parameter of the instance on the right hand side is ≤ (`+m) · log (` · |A|+m · |A|).
As `+m ≤ log |A|, this is bounded in terms of (`+m) · log |A|, the parameter of the instance
(A, ϕ) of uni-var-MC(Σ∗

2[s]). We can set

α′ := γX ∧ (¬γY ∨ β),
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where

γX :=
∧

i∈[`]

∧
a,b∈A
a6=b

(¬Xi,a ∨ ¬Xi,b), γY :=
∧

i∈[m]

∧
a,b∈A
a6=b

(¬Yi,a ∨ ¬Yi,b),

and

β :=
∨

i∈[s]

∨
a,b∈A

A|=λi(a,b)

δi,a,b.

Here, δi,a,b is the following formula: if λi contains variables x3, y2, then δi,a,b := (X3,a ∧
Y2,b); if λi only contains x3, then δi,a,b := (X3,a ∧X3,a). Note that (¬γY ∨ β) ∈ ∆+

1,2. So
one has to transform γX ∧ . . . into an equivalent (in the given context) formula in ∆+

1,2. This
can be done as in the proof of [8, Lemma 8.18].

The case ` +m > log |A| is reduced to preceding one in a similar way as it was done in
the proof of Theorem 30. 2

As an application we get:
Proposition 42. M (uni-CLIQUE-DOMINATING-SET)is A[2]-complete under fpt-reductions.

Proof: Proposition 5 shows that

p-CLIQUE-DOMINATING-SET ≤fpt M (uni-CLIQUE-DOMINATING-SET);

therefore, M (uni-CLIQUE-DOMINATING-SET) is A[2]-hard under fpt-reductions. To obtain
membership in A[2], by the previous theorem it suffices to show that

uni-CLIQUE-DOMINATING-SET ≤serf uni-var-MC(Σ∗
2[2]).

The mapping (G, k, `) 7→ (G, ϕk,`) is a such a serf-reduction, where

ϕk,` := ∃x1 . . .∃xk∀y1 . . .∀y`

( ∧
1≤i<j≤k

xi 6= xj

∧
( ∨

1≤i<j≤`

¬Eyiyj ∨
∨

i∈[k], j∈[`]

(xi = yj ∨ Exiyj)
))
. 2

9. Remarks and conclusions

We introduced the notion of canonical (re)parameterization of a (parameterized) problem and
showed, among others, that this reparameterization is the preimage under the miniaturization
mapping of Fagin-definable problems complete for some level of the W-hierarchy. One of the
main open questions is whether this is true for all Fagin-definable problems.

We have seen that for many natural parameterized problem (Q,κ) whose instances are of
the form (x, y) with κ(x, y) = |y|

(Q,κ) is fixed-parameter tractable (28)

⇐⇒ Q is decidable in time 2oeff (|y|·log |x|) · |x|O(1).

This equivalence is important; for example, it tells us that to prove that the dominating set
problem is not solvable in subexponential time is as hard as to prove W[2] 6= FPT.

We should mention that the direction from right to left in (28) is true for all parameterized
problems (Q,κ):

Proposition 43. Let (Q,κ) be a parameterized problem over the alphabet Σ. If there is an
algorithm that for every x ∈ Σ∗ decides whether x ∈ Q in time 2oeff (κ(x)·log |x|) · |x|O(1), then
(Q,κ) is fixed-parameter tractable.
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Proof: Let x ∈ Q be solvable in time 2(k·log |x|)/ι(k·log |x|) · |x|O(1), where k := κ(x) and ι
is a nondecreasing and unbounded computable function (thereby we assume that k · log |x| is
sufficiently large).

We define h : N → N by

h(`) := max{m | ι(m) ≤ `}

(and set h(`) := 0 in case {m | ι(m) ≤ `} = ∅). If k · log |x| > h(k), then ι(k · log |x|) > k
and hence

2(k·log |x|)/ι(k·log |x|) ≤ |x|.

If k · log |x| ≤ h(k), then

2(k·log |x|)/ι(k·log |x|) ≤ 2k·log |x| ≤ 2h(k).

Hence, for all x we have 2(k·log |x|)/ι(k·log |x|) ≤ |x|+ 2h(k). 2

However to establish the converse direction of (28), we mostly needed the condensation
property for each individual problem. There are problems that (apparently) do not have the
condensation property, for example p-WSAT(Γt,d). Nevertheless, the equivalence (28) still
holds for p-WSAT(Γt,d) by Theorem 16 and the Miniaturization Theorem. The purpose of
this section is to give natural problems for which (28) does not hold.

Recall the parameterized model-checking problem for monadic second-order logic (MSO)
on trees

p-MC(TREE,MSO)
Instance: A tree T and an MSO-sentence ϕ.

Parameter: |ϕ|.
Question: T |= ϕ?

We do not give the precise definition of MSO and of trees, as we do not need them. The
reader is referred to [10] or [8, Chapter 10] for the definitions and for details. What we need
is contained in Lemma 45.

The equivalence (28) does not hold for p-MC(TREE,MSO) (unless FPT = M[1]). In
fact, it is well-known that p-MC(TREE,MSO) is fixed-parameter tractable [4, 13]. However
we show that:
Theorem 44. The miniaturization of the problem

Instance: A tree T and an MSO-sentence ϕ.
Parameter: |ϕ| · log ‖T ‖.

Problem: T |= ϕ?

is M[1]-hard under serf-reductions.
We need the following lemma which is a very weak version of a result due to Frick and

Grohe [10] (see also Corollary 10.27 in [8]). Thereby we use the encoding, computable in
polynomial time, of CNF-formulas α by trees T (α) of size |α|Θ(1) from [8].

Lemma 45. Let n ≥ 1 and h :=
√
n. There is a sentence ϕh of monadic second-order logic,

computable in time O(h), such that for all CNF-formulas α with at most n variables we have

T (α) |= ϕh ⇐⇒ α is satisfiable. (29)

Proof of Theorem 44: We give a serf-reduction from p-SAT(3-CNF), a problem whose minia-
turization is known to be M[1]-complete. Let α be a formula in 3-CNF with n variables and
let h :=

√
n. By Lemma 45, there is an MSO-sentence ϕh of length O(h) such that

α is satisfiable ⇐⇒ T (α) |= ϕh.

27



We know that ϕh is computable in time O(h) and hence in time polynomial in |α|. Moreover

|ϕh| · log ‖T (α)‖

= O(h · log |α|)

= O(
√
n · log n)

(
by |α| = O(n3), since α is in 3-CNF

)
= O(n).

Therefore the mapping α 7→ (T (α), ϕh) is a serf-reduction. 2

The reader might wonder why we do not use Theorem 29 and its proof to show Theo-
rem 44. In that proof we considered a single fixed structure, which can be easily turned into a
tree. The parameter of an instance (A, ϕ) was lead(ϕ) · log |A|. However lead(ϕ) = oeff(|ϕ|).
Hence checking whether A |= ϕ can be done in time

|A|lead(ϕ) · |ϕ| · ‖A‖ = 2oeff (|ϕ|·log ‖A‖).
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