
Expander Graphs and Their Applications (IX)

Yijia Chen
Shanghai Jiaotong University

Review of the Previous Lecture

The Base Graphs

Recall:

1. In the inductive construction of expander graph family using the zig-zag
product, we start with a (d4, d , 1/4)-graph.

2. In Reingold’s algorithm, we start with a (d16, d , 1/2)-graph.

In the following, we

I provide some explicit construction,

I and prove their existence by the probabilistic method.

The Affine Plane

Let q := pt where p is a prime and t ∈ N. And let Fq be the finite field of size
q.

Then APq is a graph with vertex set F2
q and edge set{

an edge between (a, b) and (c, d)

| a, b, c, d ∈ Fq and ac = b + d
}
.

Equivalently, we connect the vertex (a, b) to all points on the line

La,b :=
{
(x , y) | y = ax − b

}
.

Lemma
APq is a (q2, q, 1/

√
q)-graph.

The Affine Plane (cont’d)

Let

AP1
q := APq ⊗ APq

AP i+1
q := AP i

q ©z APq.

Theorem
AP i

q is an (q2(i+1), q2, i/
√

q)-graph.

Choosing some sufficiently large q, we can get a (d4, d , 1/4)-graph or a
(d16, d , 1/2) graph.

Main Theorem

Theorem
There exists a constant c > 0 such that for all sufficiently large n ∈ N three
exists an n-vertex, 3-regular graphs with h(G) ≥ c.

Random Perfect Matching

Definition
Let G be a graph. A matching M of G is a subset of E(G) (without selfloop)
such that every vertex appears in at most one edge of the subset. M is a
perfect matching of G if every vertex is incident to one edge in M.

Let k ∈ N and V := [2k]. Consider the following random process P(k):

1. S ← V and E ← ∅.
2. while S 6= ∅ do

3. Choose a pair (u, v) ∈ S2 uniformly at random.

4. S ← S \ {u, v} and E ← E ∪ {an edge between u and v}.
5. Output E .

P(k) is a random perfect matching on [2k].

Random d-Regular Graph

Let k, d ∈ N and consider the random process Rd(k).

1. V ← [2k] and E ← ∅.
2. for ` = 1 to d do

3. E ← E ∪ P(k)

4. Output (V , E).

Rd(k) is a d-regular graph on vertices [2k].

An Important Warning: Rd(k) is not uniformly distributed over all d-regular
graphs on vertices [2k].

Main Theorem (Restated)

Theorem
There exists a constant c > 0 such that for all sufficiently large k ∈ N

Pr
[
h(R3(k)) ≥ c

]
> 0

Introduction to PCP

Probabilistic Verifier

Definition
A verifier V is a probabilistic polynomial time algorithm with access to an input
x ∈ Σ∗ and a string τ ∈ Σ∗ of (internal) random binary bits. Furthermore, V
has access to a proof π ∈ Σ∗.

V will either accept or reject the input x , depending on (x , τ, π).

We require that V is non-adaptive, i.e., it first reads the input x and the
random bits τ , and then decides which positions in the proof τ it wants to
query. That is, the positions V queries do not depend on the answers that V
got from previous queries.

The result of V ’s computation on x , τ and π is denoted by V (x , τ, π). As
usual 1 means accepting, 0 for rejecting.

Probabilistic Verifier (cont’d)

1. V is polynomial time in |x |.
2. The query positions depend on and only on x and τ (non-adaptive), so we

might view the query positions as a function

pV : Σ∗ × Σ∗ → N∗,

such that pV (x , τ) is computable in time polynomial in |x |. We may
assume pV is given explicitly with the verifier V .

3. The run of V (x , τ, π) that does not involve π might also depend on the
random string τ .

4. We can divide the computation of V (x , τ, π) into 3 parts:
(i) Compute from x and τ a sequence of positions p̄ = p1p2 . . . p` = pV (x , τ).
(ii) Read the letters on the positions p̄ of π to form a string

π � p̄ := π(p1)π(p2) . . . π(p`),

where π(p) denotes the letter in the p-th position of π.

(iii) Compute an answer from x , τ , and π � p̄.

(r(n), q(n))-Restricted Verifier

Definition
Let r , q : N→ N be two monotone functions.

An (r(n), q(n))-restricted verifier is a verifier that for inputs of length n uses at
most O(r(n)) random bits and queries at most O(q(n)) bits from the proof.

1. If V is (r(n), q(n))-restricted, then for any input x ∈ Σ∗, Then
|τ | = O(r(n)) and |pV (x , τ)| = O(q(n)).

2. There is no restriction on the length of the proof π.

PCP Classes

Definition
Let r , q : N→ N be two monotone functions.
The class PCP(r(n), q(n)) consists of all languages Q where there exists an
(r(n), q(n))-restricted verifier V such that for all x

x ∈ L ⇐⇒ ∃π Pr
τ

[V (x , τ, π) = 1] = 1,

x 6∈ L ⇐⇒ ∀π Pr
τ

[V (x , τ, π) = 1] <
1

2
.

Here in Prτ [. . .] the probability is taken over all random strings τ of length
O(r(n)).

Remark. 1/2 in the above definition can be replaced by any 0 < ε < 1.

Definition
Let R, Q ⊆ N→ N be two classes of monotone functions.

PCP(R, Q) :=
⋃

r∈R,q∈Q

PCP(r(n), q(n)).

Let poly denote the class of all polynomials over N, i.e. N[x].

Theorem

PCP(poly, 0) = coRP,

PCP(0, poly) = NP.

Proof of PCP(poly, 0) = coRP

For every problem Q ∈ Σ∗, its complement is

Q̄ :=
{
x ∈ Σ∗ | x /∈ Q

}
.

Let Q ⊆ Σ∗ with Q̄ ∈ RP. Then there is a polynomial time probabilistic
algorithm A such that for every x ∈ Σ∗

x 6∈ Q ⇐⇒ x ∈ Q̄ ⇐⇒ Prτ [A(x , τ) = 1] ≥ 1
2
,

x ∈ Q ⇐⇒ x 6∈ Q̄ ⇐⇒ Prτ [A(x , τ) = 1] = 0,

where τ is a random string of length polynomial in |x |.
By swapping accepting and rejecting of A we get an algorithm Ā:

x 6∈ Q ⇐⇒ Pr
τ

[Ā(x , τ) = 0] ≤ 1

2
,

x ∈ Q ⇐⇒ Pr
τ

[Ā(x , τ) = 0] = 1.

That is, Q ∈ PCP(poly, 0).

PCP(poly, 0) ⊆ coRP can be proved similarly. a

Proof of PCP(0, poly) = NP

NP ⊆ PCP(0, poly) is trivial.

Let Q ∈ PCP(0, poly). Since no random bit is needed, there is a polynomial
time deterministic verifier V such that

x ∈ Q ⇐⇒ ∃π V (x , π) = 1,

x 6∈ Q ⇐⇒ ∀π V (x , π) = 0.

with |pV (x)| = q(|x |) for some polynomial q.

Consider the following algorithm A(x).

1. `← q(|x |).
2. Guess a string ā = a1 . . . a` ∈ Σ`.

3. p̄ = p1 . . . p` ← pV (x).

4. Simulate V (x , π) for an “imaginary” π by replacing each πpi by ai for
1 ≤ i ≤ `.

If x ∈ Q, then we have a π witnessing the membership. Thus A can guess
ā = π � pV (x), and accept x .
If x 6∈ Q, then there is no way for A to guess an ā to accept x . a

	Review of the Previous Lecture
	The Base Graphs
	Explicit Construction
	The Probabilistic Method

	Introduction to PCP
	Probabilistic Verifier
	PCP Classes

