Expander Graphs and Their Applications (I1X)

Yijia Chen
Shanghai Jiaotong University

Review of the Previous Lecture

The Base Graphs

Recall:

1. In the inductive construction of expander graph family using the zig-zag
product, we start with a (d*, d,1/4)-graph.

2. In Reingold’s algorithm, we start with a (d'°, d, 1/2)-graph.

In the following, we
> provide some explicit construction,

> and prove their existence by the probabilistic method.

The Affine Plane

Let g := p" where p is a prime and t € N. And let g be the finite field of size
q.
Then APq is a graph with vertex set]Ff7 and edge set

{an edge between (a, b) and (c, d)
| a,b,c,d € Fg and ac = b+d}.

Equivalently, we connect the vertex (a, b) to all points on the line

[—— {(X,y) |y =ax— b}.

Lemma
AP, is a (¢°, q, 1/./q)-graph.

The Affine Plane (cont'd)

Let

AP} == AP, @ AP,
AP = AP) @ AP,.

Theorem
AP} is an (¢*"*V, %, i/\/q)-graph.

Choosing some sufficiently large g, we can get a (d*, d, 1/4)-graph or a
(d*®,d,1/2) graph.

Main Theorem

Theorem
There exists a constant ¢ > 0 such that for all sufficiently large n € N three
exists an n-vertex, 3-regular graphs with h(G) > c.

Random Perfect Matching

Definition

Let G be a graph. A matching M of G is a subset of E(G) (without selfloop)
such that every vertex appears in at most one edge of the subset. M is a
perfect matching of G if every vertex is incident to one edge in M.

Let k € N and V := [2k]. Consider the following random process P(k):

1. S« Vand E « 0.

2. while S # () do

3. Choose a pair (u,v) € S? uniformly at random.

4 S — S\ {u,v} and E «— E U{an edge between u and v}.
5. Output E.

P(k) is a random perfect matching on [2k].

Random d-Regular Graph

Let k,d € N and consider the random process Rq(k).
1. V < [2k] and E «— 0.
2. for { =1to d do
3. E — EUP(k)
4. Output (V, E).

Ry(k) is a d-regular graph on vertices [2k].

An Important Warning: Ry(k) is not uniformly distributed over all d-regular
graphs on vertices [2k].

Main Theorem (Restated)

Theorem
There exists a constant ¢ > 0 such that for all sufficiently large k € N

Pr[h(Rs(k)) >c] >0

Introduction to PCP

Probabilistic Verifier

Definition

A verifier V is a probabilistic polynomial time algorithm with access to an input
x € X and a string 7 € X" of (internal) random binary bits. Furthermore, V
has access to a proof m € X*.

V will either accept or reject the input x, depending on (x, T,).

We require that V is non-adaptive, i.e., it first reads the input x and the
random bits 7, and then decides which positions in the proof 7 it wants to
query. That is, the positions V' queries do not depend on the answers that V
got from previous queries.

The result of V's computation on x, 7 and 7 is denoted by V(x,7,7). As
usual 1 means accepting, O for rejecting.

Probabilistic Verifier (cont'd)

1. Vis polynomial time in |x|.
2. The query positions depend on and only on x and 7 (non-adaptive), so we
might view the query positions as a function

py X x ¥ — N*,

such that pv(x, 7) is computable in time polynomial in |x|. We may
assume py is given explicitly with the verifier V.
3. The run of V(x, T, 7) that does not involve m might also depend on the
random string 7.
4. We can divide the computation of V(x,,7) into 3 parts:
(i) Compute from x and 7 a sequence of positions p = pip2...ps = py(x, 7).
(ii) Read the letters on the positions p of 7 to form a string
7 | pi=m(p)w(p2) ... 7(Pe),

where 7(p) denotes the letter in the p-th position of 7.
(iii) Compute an answer from x, 7, and 7 | p.

(r(n), g(n))-Restricted Verifier

Definition

Let r,q : N — N be two monotone functions.

An (r(n), q(n))-restricted verifier is a verifier that for inputs of length n uses at
most O(r(n)) random bits and queries at most O(q(n)) bits from the proof.

1. If Vis (r(n), g(n))-restricted, then for any input x € X*, Then
7| = O(r(n)) and |pv(x,7)| = O(q(n)).
2. There is no restriction on the length of the proof .

PCP Classes

Definition

Let r,q : N — N be two monotone functions.

The class PCP(r(n), g(n)) consists of all languages Q where there exists an
(r(n), g(n))-restricted verifier V such that for all x

xel < 3Irm PrlV(x,7,m)=1]=1,
1
x¢L <= Vm Pr[V(x,7,m)=1] < 5

Here in Pr.[...] the probability is taken over all random strings 7 of length
O(r(n)).
Remark. 1/2 in the above definition can be replaced by any 0 < ¢ < 1.

Definition
Let R, @ C N — N be two classes of monotone functions.

PCP(R, Q)= |J PCP(r(n),q(n)).

reR,qeQ

Let poly denote the class of all polynomials over N, i.e. N[x].

Theorem

PCP(poly, 0) = coRP,
PCP(0, poly) = NP.

Proof of PCP(poly, 0) = coRP

For every problem Q € X*, its complement is
Q::{XEZ*|X¢Q}.

Let Q C X* with @ € RP. Then there is a polynomial time probabilistic
algorithm A such that for every x € ©*

x¢Q <+ xeQ <+ Pr]A(x,7)=1]>1

XEQ +— x¢Q <« PrfAx,7)=1]=0,
where T is a random string of length polynomial in |x]|. _
By swapping accepting and rejecting of A we get an algorithm A:
1
27
Xx€EQ <= PrlA(x,7)=0]=1.

XE€Q <+— PTI’[A(X,T) =0] <

That is, Q@ € PCP(poly,0).

PCP(poly, 0) C coRP can be proved similarly.

Proof of PCP(0, poly) = NP

NP C PCP(0, poly) is trivial.

Let Q € PCP(0,poly). Since no random bit is needed, there is a polynomial
time deterministic verifier V such that

XxXEQ <<= IrV(x,7m)=1,
x€Q <+ VrV(x,m)=0.
with |pv(x)| = q(|x|) for some polynomial g.
Consider the following algorithm A(x).
1. £+~ q(|x]).
2. Guess astringa=ai...as € PR
3. p=p1...pe— pv(x).
4. Simulate V(x,) for an “imaginary” 7 by replacing each m,, by a; for

1<i<¢.

If x € Q, then we have a 7 witnessing the membership. Thus A can guess
a=m | pv(x), and accept x.
If x ¢ Q, then there is no way for A to guess an 3 to accept x.

	Review of the Previous Lecture
	The Base Graphs
	Explicit Construction
	The Probabilistic Method

	Introduction to PCP
	Probabilistic Verifier
	PCP Classes

