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1. Completeness

Recall that we have shown:

Lemma 1.1. Let ® C LS and J® be the term interpretation of ®. Then for every atomic ¢

IPEe = Ot . a

Theorem 1.2 (Henkin’s Theorem). Let ® C L® be consistent, negation complete, and contain wit-
nesses. Then for every S-formula ¢

IPEe = Ot . 5

Corollary 1.3. Let S be countable and ® C LS consistent with finite free(®). Then there is a © such
that

- OCOCLS;
— O is consistent, negation complete, and contains witnesses.
Therefore by Theorem 1.2 for every ¢ € L
PEe <« Ora.
In particular
ko,
thus @ is satisfiable. o

In the next step we eliminate the condition free(®) being finite.

Corollary 1.4. Let S be countable and ® C LS consistent. Then @ is satisfiable.
Proof: First, we let

S/ =S U{Co, Ci,.. }
For every ¢ € LS we define

n(@) :=min{n | free(p) C {vo,...,vn_1}, i.e, @ € L5},

and let
(p/ — (pCo...Cn((p),l'
Vo .- Vn(gp)-1
Then we set
o' ={¢' |pecd}CL®
Note free(®’) = ().

Claim. @' is consistent.



Once we establish the claim, together with free(®’) = (), Corollary 1.3 implies that there is an S’-
interpretation J' = (2, ') such that 3’ = ®’. Applying the Coincidence Lemma with free(®’) =
(), we can assume without loss of generality that

B'(vi) = ¢} =3'(cy). )
It follows that for every ¢ € @

Co...C —

j/):(p/ j/|=(p 0 n(e)—1

Vo .- Vn(p)-1
j/j/(CQJ ...jl(Cn((p),l)

Vo .- Vn(p)-1
3/6/(\)0)”-6/(\)71((4))71)

Vo.- - Vn(e)-1

ie,J E o.

We conclude that @ is satisfiable.

Eo (by the Substitution Lemma)

E o (by (1))

Now we prove the claim. It suffices to show that every finite subset of @’ is satisfiable. To that
end, let

O :={ol,...,00}
where @1, ..., ¢ € ©. Clearly free({@1,..., ¢n}) is finite, and {¢1, ..., ¢} is consistent by the

consistency of ®. By Corollary 1.3 there is an S-interpretation J = (2, 3) such that for every
ien]

JE @i (2)
We expand the S-structure 2 to an S’-structure 2l’ by setting for every i € N
= B(vy). 3)

Then for the S’-interpretation 3’ := (2’, ) and any ¢ € L®

Co...V _
5/ - (P/ 5/ . 0 n(e)—1
Vo .- Vn(p)-1

j,j/(CO) [N 3’(vn(q)),1)

<— E o (by the Substitution Lemma)
Vo.. ~Vn((p)71
VA
Vo.. ~Vn((p]fl
B(vo) ... B(Vn(p)—1)
T S (by (3))
Vo .- Vn(p)—1
— JEo
— JkEo (by the Coincidence Lemma).
It follows that 3’ = @] by (2). Thus @/ is satisfiable. a

1.1. The general case.

Lemma 1.5. Let ® C LS be consistent. Then there is a symbol set S’ with S C S’ and a consistent V¥
with ® C ¥ C LS’ such that ¥ contains witnesses. -

Lemma 1.6. Let W C LS be consistent. Then there is a consistent © with ¥ C © C LS such that © is

negation complete. o

Then the next corollary follows from Lemmas 1.5 and 1.6 in the same fashion as that of Corol-
lary 1.3.



Corollary 1.7. Let ® C LS be consistent. Then @ is satisfiable. =

We need some technical tools for proving Lemma 1.5. Let S be an arbitrary symbol set. For
every @ € L we introduce a new constant ¢, ¢ S. In particular, ¢, # cy for any ¢ # V. Then
we set

S*:==SU{caxe | Ixp € L5},
W(S) = {Elxq) — (pca% ’ Ixg € LS}‘

It is obvious that c34 is introduced as a witness for Ix¢@ as required by W(S). Nevertheless,
we pay a price for expanding the symbol set S to S*, i.e., there are formulas of the form Ix¢ in
LS"\ L%, e.g.,

Fvrcaxrx = V7.

Lemma 1.8. Assume that ® C LS is consistent. Then
OUW(S) C LS
is consistent as well.

Proof: It suffices to show that every finite subset @} of ® UW(S) C LS" is satisfiable. Let

Oy = Do U {wal S o1, T en — cpncn},
X1 Xn
where @, C O is finite, every Ix;@; € L, and ¢; = ¢35, ¢, fori € ml.

Choose a finite Sq C S such that ®y C L5°. Note that @ is consistent due to the consistency
of ®. Furthermore free(®) is finite!. Therefore @ is satisfiable by Corollary 1.3, i.e., there is an
Sp-interpretation Jo = (2o, ) such that

Jo E Do

Note that 2l is an So-structure. By choosing some arbitrary interpretation of the symbols in S\ Sg
we obtain an S-structure . Then the Coincidence Lemma guarantees that for the S-interpretation
J:=(2AB)

JE 0.

Next, we need to further expand 2 to an S*-structure 2I* by giving interpretation of all new
constants c3x,. Let a € A be an arbitrary but fixed element. Then for every i € [n] we set

a; ifthereisan a; € A with J k= @i,

c; = (choose an arbitrary one, if there are more than one such a;),
a otherwise.
For all the other new constants cs,, we simply let c%, := a. Then for the S*-interpretation

J* = (A*, B) we claim

. c c
T E DU {Exlcpl = @1, PP — @n“}-
X1 Xn
J* E @y is immediate by J  ®¢ and the Coincidence Lemma. Let i € [n] and assume J* E 3x; @1,
or equivalently J = 3x; @i. Then by our choice of a; € A

~e a'
JE @i—,
X{

1Here, we can also apply Corollary 1.4 without using the finiteness of free(®¢). But then this would introduce a further
layer of construction as in the proof of Corollary 1.4.



hence s
T E iy — @i;l: “@

i
by the Coincidence Lemma and by the Substitution Lemma. Note (4) trivially holds if 7* £ 3x; @;.
This finishes the proof. a

Lemma 1.9. Let
S50C5C---CS,C---

be a sequence of symbol sets. Furthermore, for every n € N let ®@,, be a set of S,,-formulas such that
QP C---CDC -

We set

SS:USn and (D::U(Dn.

neN neN

Then @ is a consistent set of S-formulas if and only if every @, is consistent.
Proof: We prove that
® is inconsistent <= @, is inconsistent for some n € N.

The direction from right to left is trivial. So assume that @ is inconsistent. In particular, for some
@ € LS there are proofs of ¢ and —¢ from @. Since proofs in sequent calculus are all finite, we can
choose a finite S’ C S such that every formula used in the proofs of ¢ and —¢ is an S’-formulas.
For the same reason, for a sufficiently large n € N we have

() S"C Sy,

(i) &, F @ and ©, F —@.
Thus @, is inconsistent. O
Remark 1.10. Note at this point we have not shown the following seemingly trivial result. Let S
be an (infinite) set of symbols, a finite ® C L5, and ¢ € LS such that ® - ¢. Furthermore, let

So C S be the set of symbols that occur in ® and ¢. Then there is a proof of sequence calculus for
® + @ such that every formula occurs in the proof is an Sp-formula, i.e., only uses symbols in So.

This is the reason in the proof of Lemma 1.9 we need to emphasize (i). -

Proof of Lemma 1.5: Let
So:=S and S,i1:=(5+)%,
Yo:=® and W, .1:=¥,UW(S,).
Therefore

S=S,C---
O=Y,C .-

Sn
Wn

Sny1 € ---
Yni1 ©-oe

N 1N
N 1N

Then we set

S/ = U S, and V¥:= U ("

neN neN



By Lemma 1.8 and induction on n we conclude that every ¥, is consistent. Thus Lemma 1.9
implies that @ is a consistent set of S’-formulas.

By our construction of W(S,,), the set ® trivially contains witnesses. a
The proof of Lemma 1.6 relies on well-known Zorn’s Lemma. Let M be a set and U C

Zow(M) ={T | T C M}. We say that a nonempty subset C C U is a chain in U if for every
Tl,Tz € C either T1 - T2 or T2 - Tl.

Lemma 1.11 (Zorn’s Lemma). Assume that for every chain C in U we have
UC::{alaeTforsomeTe Cle .

Then U has a maximal element T, i.e., thereisno T’ € Uwith T C T'. -

Proof of Lemma 1.6 In order to apply Zorn’s Lemma we let M := L and
U:={O©| ¥ C O CL®and O is consistent }.
Let C be a chain in U. We set
Oc ::UC: {¢| ¢ €O forsome® € C}.

C # 0 implies ¥ C Oc¢. To see that O is consistent, let {¢1,..., @n} be a finite subset of O, in
particular, there are ®; € C such that ¢; € ©;. As C is a chain, without loss of generality, we
can assume that every ©; C ©,,. Since ©,, € C is consistent by the definition of U, we conclude
{@1,...,@n}is consistent as well.

Thus the condition in Zorn’s Lemma is satisfied. It follows that U has a maximal element ©.
We claim that © is negation complete. Otherwise, for some ¢ € LS we have © I/ ¢ and © I/ —.
Therefore ¢ ¢ © and © U {@} is consistent. As a consequence ® C O U {p} € U. This is a
contradiction to the maximality of ©. a

Now we are ready to prove the completeness theorem.

Theorem 1.12. Let ® C LS and ¢ € LS. Then

O = OEo.

Proof: The direction from left to right is easy by the definition of sequent calculus. Conversely,
assume that @ t/ ¢, then ®U—{—¢} is consistent. Corollary 1.7 implies that ®U—{—¢} is satisfiable.
In particular, there is an S-interpretation J with J = ® and J = —¢ (i.e., J £ ¢). But this means
that @ t . ]

2. Exercises
Prove Remark 1.10, that is:

Exercise 2.1. Let ® C L° be finite, and let ¢ € LS with ® - . Note that a proof might use
formulas built on any symbol in S.

Define So C S to be the set of symbols that occur in ® and ¢. Then there is a proof for ® + ¢
such that every formula occurs in the proof is an So-formula. |

Definition 2.2. A total order on a set A is a binary relation < C A x A with the following
properties. Let a, b, c € A be arbitrary.

(i) a < a (i.e., < is reflexive).



(i) fa<bandb < q, then a = b (i.e., < is anti-symmetric).
(iii) If a < band b < ¢, then a < ¢ (i.e., < is transitive).
(iv) a<borb <a(ie., <istotal).
If furthermore
(v) every nonempty A’ C A has a minimum element a, i.e., a € A’ and a < a’ forany a’ € A’,

then < is a well order. =

Exercise 2.3. Assume that for every set A there is a well order < C A x A. Prove Zorn’s Lemma.
_|



