Mathematical Logic (XII)

Yijia Chen

1. The Undecidability of Arithmetic

For the alphabet $A = \{\}$ we consider the halting problem

$$\Pi_{\text{halt}} := \{ w_{\mathbb{P}} \mid \mathbb{P} \text{ a program over } \mathcal{A} \text{ and } \mathbb{P} : \square \to \text{halt} \}.$$

Let $\mathbb P$ be a program over $\mathcal A$. Assume that $\mathbb P$ consists of instructions α_0,\ldots,α_k . Let $\mathfrak n$ be the maximum index $\mathfrak i$ such that $R_{\mathfrak i}$ is used by $\mathbb P$. Then a configuration of $\mathbb P$ is an $(\mathfrak n+2)$ -tuple

$$(L, m_0, \ldots, m_n),$$

where $L\leqslant k$ and $m_0,\ldots,m_n\in\mathbb{N}$, meaning that α_L is the instruction to be executed next and every register R_i contains m_i , i.e., the word $\underbrace{||\cdots|}_{m_i \text{ times}}$.

We have shown:

Lemma 1.1. From the above program \mathbb{P} we can compute an S_{ar} -formula

$$\chi_{\mathbb{P}}(x_0,\ldots,x_n,z,y_0,\ldots,y_n)$$

such that for all $\ell_0, \ldots, \ell_n, L, m_0, \ldots, m_n \in \mathbb{N}$

$$\mathfrak{N} \models \chi_{\mathbb{P}}[\ell_0, \dots, \ell_n, L, m_0, \dots, m_n]$$

if and only if \mathbb{P} , beginning with the configuration $(0, \ell_0, \dots, \ell_n)$, after finitely many steps, reaches the configuration (L, m_0, \dots, m_n) .

Theorem 1.2. Th(\mathfrak{N}) is not R-decidable.

Proof: Let \mathbb{P} be a program over $\mathbb{A} = \{\}$. Using the formula $\chi_{\mathbb{P}}$ in Lemma 1.1, we define

$$\varphi_{\mathbb{P}} := \exists y_0 \cdots \exists y_n \exists \chi_{\mathbb{P}}(0, \dots, 0, \bar{k}, y_0, \dots, y_n),$$

where $\bar{k}:=\underbrace{1+\cdots+1}_{k \text{ times}}$. Then By Lemma 1.1, we conclude that $\mathfrak{N}\models\phi_{\mathbb{P}}$ if and only if \mathbb{P} , beginning

with the initial configuration $(0,0,\ldots,0)$, after finitely many steps, reaches the configuration (k,m_0,\ldots,m_n) , i.e., $\mathbb{P}:\square\to \text{halt}$. Thus, if $Th(\mathfrak{N})$ is R-decidable, so is Π_{halt} .

Proof of Lemma 1.1. Recall that $\chi_{\mathbb{P}}$ expresses in \mathfrak{N} that there is an $s \in \mathbb{N}$ and a sequence of configurations C_0, \ldots, C_s such that

- $C_0 = (0, x_0, \dots, x_n),$
- $C_s = (z, y_0, \dots, y_n),$
- for all i < s we have $C_i \stackrel{\mathbb{P}}{\to} C_{i+1}$, i.e., from the configuration C_i the program \mathbb{P} will reach C_{i+1} in one step.

We slightly rewrite the above formulation as that there is an $s \in \mathbb{N}$ and a sequence of natural numbers

$$\underbrace{\alpha_0, \dots, \alpha_{n+1}}_{C_0} \underbrace{\alpha_{n+2}, \dots, \alpha_{(n+2)+(n+1)}}_{C_1} \dots \underbrace{\alpha_{s \cdot (n+2)}, \dots, \alpha_{s \cdot (n+2)+(n+1)}}_{C_s} \tag{1}$$

such that

$$- a_0 = 0, a_1 = x_0, \ldots, a_{n+1} = x_n,$$

$$- a_{s\cdot(n+2)} = z, a_{s\cdot(n+2)+1} = y_0, \ldots, a_{s\cdot(n+2)+(n+1)} = y_n,$$

– for all i < s we have

$$\left(\alpha_{\mathfrak{i}\cdot(n+2)},\ldots,\alpha_{\mathfrak{i}\cdot(n+2)+(n+1)}\right)\overset{\mathbb{P}}{\longrightarrow}\left(\alpha_{(\mathfrak{i}+1)\cdot(n+2)},\ldots,\alpha_{(\mathfrak{i}+1)\cdot(n+2)+(n+1)}\right).$$

Observe that the length of the sequence (1) is unbounded, so we cannot quantify it directly in \mathfrak{N} . So we need the following beautiful (elementary) number-theoretic tool.

Lemma 1.3 (Gödel's β -function). There is a function $\beta : \mathbb{N}^s \to \mathbb{N}$ with the following properties.

(i) For every $r \in \mathbb{N}$ and every sequence (a_0, \ldots, a_r) in \mathbb{N} there exist $t, p \in \mathbb{N}$ such that for all $i \leq r$

$$\beta(t, p, i) = a_i$$
.

(ii) β is definable in $L^{S_{ar}}.$ That is, there is an S_{ar} -formula $\phi_{\beta}(x,y,z,w)$ such that for all $t,q,i,\alpha\in\mathbb{N}$

$$\mathfrak{N} \models \phi_{\beta}[t,q,\mathfrak{i},\mathfrak{a}] \quad \Longleftrightarrow \quad \beta(t,q,\mathfrak{i}) = \mathfrak{a}.$$

 \dashv

Equipped with the above β function and the formula φ_{β} , we define the desired $\chi_{\mathbb{P}}$ as follows.

$$\begin{split} \exists \mathsf{p} \exists \mathsf{t} \exists \mathsf{s} \bigg(\phi_\beta(t, \mathsf{p}, 0, 0) \wedge \phi_\beta(t, \mathsf{p}, 1, x_0) \wedge \dots \wedge \phi_\beta(t, \mathsf{p}, \overline{\mathsf{n}+1}, x_\mathsf{n}) \\ \wedge \phi_\beta(t, \mathsf{p}, \mathsf{s} \cdot \overline{\mathsf{n}+2}, z) \wedge \phi_\beta(t, \mathsf{p}, \mathsf{s} \cdot \overline{\mathsf{n}+2} + 1, y_0) \\ \wedge \dots \wedge \phi_\beta(t, \mathsf{p}, \mathsf{s} \cdot \overline{\mathsf{n}+2} + \overline{\mathsf{n}+1}, y_\mathsf{n}) \\ \wedge \forall \mathsf{i} \Big(\mathsf{i} < \mathsf{s} \to \forall \mathsf{u} \forall \mathsf{u}_0 \dots \forall \mathsf{u}_\mathsf{n} \forall \mathsf{u}' \forall \mathsf{u}'_0 \dots \forall \mathsf{u}'_\mathsf{n} \\ & \big(\phi_\beta(t, \mathsf{p}, \mathsf{i} \cdot \overline{\mathsf{n}+2}, \mathsf{u}) \wedge \phi_\beta(t, \mathsf{p}, \mathsf{i} \cdot \overline{\mathsf{n}+2} + 1, \mathsf{u}_0) \\ \wedge \dots \wedge \phi_\beta(t, \mathsf{p}, \mathsf{i} \cdot \overline{\mathsf{n}+2} + \overline{\mathsf{n}+1}, \mathsf{u}_\mathsf{n}) \\ \wedge \phi_\beta(t, \mathsf{p}, (\mathsf{i}+1) \cdot \overline{\mathsf{n}+2}, \mathsf{u}') \wedge \phi_\beta(t, \mathsf{p}, (\mathsf{i}+1) \cdot \overline{\mathsf{n}+2} + 1, \mathsf{u}'_0) \\ \wedge \dots \wedge \phi_\beta(t, \mathsf{p}, (\mathsf{i}+1) \cdot \overline{\mathsf{n}+2} + \overline{\mathsf{n}+1}, \mathsf{u}'_\mathsf{n}) \\ \to ``(\mathsf{u}, \mathsf{u}_0, \dots, \mathsf{u}_\mathsf{n}) \xrightarrow{\mathbb{P}} (\mathsf{u}', \mathsf{u}'_0, \dots, \mathsf{u}'_\mathsf{n})" \Big). \end{split}$$

Here,

"
$$(u, u_0, \dots, u_n) \stackrel{\mathbb{P}}{\longrightarrow} (u', u'_0, \dots, u'_n)$$
"

stands for a formula describing one-step computation of \mathbb{P} from configuration $(\mathfrak{u},\mathfrak{u}_0,\ldots,\mathfrak{u}_n)$ to configuration $(\mathfrak{u}',\mathfrak{u}'_0,\ldots,\mathfrak{u}'_n)$. Such a formula can be defined as a conjunction

$$\psi_0 \wedge \cdots \wedge \psi_{k-1}$$
.

2

Recall that the program $\mathbb P$ consists of instructions α_0,\ldots,α_k where the last α_k is the halt instruction. Thus, say α_i is

j **LET**
$$R_1 = R_1 + |$$

then we let

$$\psi_{\mathfrak{j}}:=\mathfrak{u}\equiv\bar{\mathfrak{j}}\to\Big(\mathfrak{u}'\equiv\mathfrak{u}+1\wedge\mathfrak{u}'_0\equiv\mathfrak{u}_0\wedge\mathfrak{u}'_1\equiv\mathfrak{u}_1+1\wedge\mathfrak{u}'_2\equiv\mathfrak{u}_2\wedge\dots\wedge\mathfrak{u}'_n\equiv\mathfrak{u}_n\Big).$$

The remaining details are left to the reader.

Using Lemma 1.1 we can prove similarly:

Theorem 1.4. *Let* $r \ge 1$.

(i) Let $\mathscr{R} \subseteq N^r$ be an R-decidable relation. Then there is an $L^{S_{ar}}$ -formula $\phi(v_0,\ldots,v_{r-1}) \in \mathbb{N}$ such that for all $\ell_0,\ldots,\ell_{r-1} \in \mathbb{N}$

$$\left(\ell_0,\ldots,\ell_{r-1}\right)\in\mathscr{R}\quad\Longleftrightarrow\quad\mathfrak{N}\models\phi(\bar{\ell}_0,\ldots,\bar{\ell}_{r-1}).$$

(ii) Let $f: \mathbb{N}^r \to \mathbb{N}$ be an R-computable function. Then there is an $L^{S_{ar}}$ -formula $\phi(\nu_0, \dots, \nu_{r-1}, \nu_r)$ such that for all $\ell_0, \dots, \ell_{r-1}, \ell_r \in \mathbb{N}$

$$f(\ell_0, \dots, \ell_{r-1}) = \ell_r \iff \mathfrak{N} \models \phi(\overline{\ell}_0, \dots, \overline{\ell}_{r-1}, \overline{\ell}_r).$$

Therefore,

$$\mathfrak{N} \models \exists^{-1} \nu_r \ \phi(\overline{\ell}_0, \dots, \overline{\ell}_{r-1}, \nu_r),$$

where $\exists^{=1}x \ \theta(x)$ denotes the formula

$$\exists x \Big(\theta(x) \land \forall y \big(\phi(y) \to y \equiv x \big) \Big).$$

2. Gödel's Incompleteness Theorems

Let $\Phi \subseteq L_0^{S_{ar}}$.

Definition 2.1. Let $r \geqslant 1$.

(i) A relation $\mathscr{R}\subseteq\mathbb{N}^r$ is representable in Φ if there is an $L^{S_{ar}}$ -formula $\phi(\nu_0,\ldots,\nu_{r-1})$ such that for all $n_0,\ldots,n_{r-1}\in\mathbb{N}$

$$\begin{pmatrix} n_0, \dots, n_{r-1} \end{pmatrix} \in \mathscr{R} \implies \Phi \vdash \phi(\bar{n}_0, \dots, \bar{n}_{r-1}),$$

$$\begin{pmatrix} n_0, \dots, n_{r-1} \end{pmatrix} \notin \mathscr{R} \implies \Phi \vdash \neg \phi(\bar{n}_0, \dots, \bar{n}_{r-1}).$$

(ii) A function $F: \mathbb{N}^r \to \mathbb{N}$ is representable in Φ if there is an $L^{S_{ar}}$ -formula $\phi(\nu_0, \dots, \nu_{r-1}, \nu_r)$ such that for all $n_0, \dots, n_{r-1}, n_r \in \mathbb{N}$

$$\begin{split} f(n_0,\dots,n_{r-1}) &= n_r &\implies & \Phi \vdash \phi(\bar{n}_0,\dots,\bar{n}_{r-1},\bar{n}_r), \\ f(n_0,\dots,n_{r-1}) &\neq n_r &\implies & \Phi \vdash \neg \phi(\bar{n}_0,\dots,\bar{n}_{r-1},\bar{n}_r). \end{split}$$

Moreover,

$$\Phi \vdash \exists^{=1} \nu_r \ \varphi(\bar{n}_0, \dots, \bar{n}_{r-1}, \nu_r).$$

Lemma 2.2. (i) If Φ is inconsistent, then every relation over $\mathbb N$ and every function over $\mathbb N$ is representable in Φ .

(ii) Let $\Phi \subseteq \Phi' \subseteq L_0^{S_{ar}}$. Then every relation representable in Φ is also representable in Φ' . Similarly, every function representable in Φ is representable in Φ' as well.

(iii) Let Φ be consistent. If Φ is R-decidable, then every relation representable in Φ is R-decidable, and every function representable in Φ is R-computable.

Proof: Routine. □

Definition 2.3. Φ *allows representations* if all R-decidable relations and all R-computable functions over \mathbb{N} are representable in Φ .

By Theorem 1.4:

Theorem 2.4. Th(\mathfrak{N}) allows representations.

A standard but tedious analysis shows that the proof of Theorem 1.4 can be "carried" out in Φ_{PA} .

Theorem 2.5. Φ_{PA} allows representations.

Recall that we have exhibited the so-called Gödel numbering of register programs. For later purposes, we do the same for $L^{S_{ar}}$ -formulas. Let

$$\varphi_0, \varphi_1, \ldots,$$
 (2)

 \dashv

 \dashv

 \dashv

be an *effective* enumeration of all $L^{S_{ar}}$ -formulas without repetition. That is, there is a program that prints out the sequence (2). Then for every $\phi \in L^{S_{ar}}$ we let

$$[\phi] := n$$
 where $\phi = \phi_n$.

Observe that both

$$n \mapsto \phi_n$$
 and $\phi \mapsto [\phi]$

are R-computable.

Next time we will show:

Theorem 2.6 (Fixed Point Theorem). Assume that Φ allows representations. Then for every $\psi \in L_1^{S_{ar}}$, there is an S_{ar} -sentence ϕ such that

$$\Phi \vdash \varphi \leftrightarrow \psi(\overline{[\varphi]}).$$

View $\psi(x)$ is a property. Then Theorem 2.6 intuitively says

I, i.e., φ , satisfies the property ψ .

3. Exercises

Exercise 3.1. Prove Theorem 2.5.