
Mathematical Logic (XII)

Yijia Chen

1. The Undecidability of Arithmetic

For the alphabet A = {|} we consider the halting problem

Πhalt :=
{
wP

∣∣ P a program over A and P : 2→ halt
}

.

Let P be a program over A. Assume that P consists of instructions α0, . . . ,αk. Let n be the
maximum index i such that Ri is used by P. Then a configuration of P is an (n+ 2)-tuple

(L,m0, . . . ,mn),

where L 6 k and m0, . . . ,mn ∈ N, meaning that αL is the instruction to be executed next and
every register Ri contains mi, i.e., the word | | · · · |︸ ︷︷ ︸

mi times

.

We have shown:

Lemma 1.1. From the above program P we can compute an Sar-formula

χP(x0, . . . , xn, z,y0, . . . ,yn)

such that for all `0, . . . , `n,L,m0, . . . ,mn ∈ N

N |= χP[`0, . . . , `n,L,m0, . . . ,mn]

if and only if P, beginning with the configuration (0, `0, . . . , `n), after finitely many steps, reaches the
configuration (L,m0, . . . ,mn). a

Theorem 1.2. Th(N) is not R-decidable.

Proof: Let P be a program over A = {|}. Using the formula χP in Lemma 1.1, we define

ϕP := ∃y0 · · · ∃yn∃χP(0, . . . , 0, k̄,y0, . . . ,yn),

where k̄ := 1 + · · ·+ 1︸ ︷︷ ︸
k times

. Then By Lemma 1.1, we conclude that N |= ϕP if and only if P, beginning

with the initial configuration (0, 0, . . . , 0), after finitely many steps, reaches the configuration
(k,m0, . . . ,mn), i.e., P : 2→ halt. Thus, if Th(N) is R-decidable, so is Πhalt. 2

Proof of Lemma 1.1. Recall that χP expresses in N that there is an s ∈ N and a sequence of
configurations C0, . . . ,Cs such that

– C0 = (0, x0, . . . , xn),

– Cs = (z,y0, . . . ,yn),

– for all i < s we have Ci
P→ Ci+1, i.e., from the configuration Ci the program P will reach

Ci+1 in one step.

1

We slightly rewrite the above formulation as that there is an s ∈ N and a sequence of natural
numbers

a0, . . . ,an+1︸ ︷︷ ︸
C0

an+2, . . . ,a(n+2)+(n+1)︸ ︷︷ ︸
C1

. . .as·(n+2), . . . ,as·(n+2)+(n+1)︸ ︷︷ ︸
Cs

(1)

such that

– a0 = 0, a1 = x0, . . . , an+1 = xn,

– as·(n+2) = z, as·(n+2)+1 = y0, . . . , as·(n+2)+(n+1) = yn,

– for all i < s we have(
ai·(n+2), . . . ,ai·(n+2)+(n+1)

)
P−→

(
a(i+1)·(n+2), . . . ,a(i+1)·(n+2)+(n+1)

)
.

Observe that the length of the sequence (1) is unbounded, so we cannot quantify it directly in N.
So we need the following beautiful (elementary) number-theoretic tool.

Lemma 1.3 (Gödel’s β-function). There is a function β : Ns → N with the following properties.

(i) For every r ∈ N and every sequence (a0, . . . ,ar) in N there exist t,p ∈ N such that for all i 6 r

β(t,p, i) = ai.

(ii) β is definable in LSar . That is, there is an Sar-formula ϕβ(x,y, z,w) such that for all t,q, i,a ∈
N

N |= ϕβ[t,q, i,a] ⇐⇒ β(t,q, i) = a.

a

Equipped with the above β function and the formula ϕβ, we define the desired χP as follows.

∃p∃t∃s
(
ϕβ(t,p, 0, 0)∧ϕβ(t,p, 1, x0)∧ · · ·∧ϕβ(t,p,n+ 1, xn)

∧ϕβ(t,p, s · n+ 2, z)∧ϕβ(t,p, s · n+ 2 + 1,y0)

∧ · · ·∧ϕβ(t,p, s · n+ 2 + n+ 1,yn)

∧ ∀i
(
i < s→ ∀u∀u0 · · · ∀un∀u ′∀u ′0 · · · ∀u ′n(

ϕβ(t,p, i · n+ 2,u)∧ϕβ(t,p, i · n+ 2 + 1,u0)

∧ · · ·∧ϕβ(t,p, i · n+ 2 + n+ 1,un)

∧ϕβ(t,p, (i+ 1) · n+ 2,u ′)∧ϕβ(t,p, (i+ 1) · n+ 2 + 1,u ′0)

∧ · · ·∧ϕβ(t,p, (i+ 1) · n+ 2 + n+ 1,u ′n)

→ “(u,u0, . . . ,un)
P−→ (u ′,u ′0, . . . ,u ′n)”

)
.

Here,
“(u,u0, . . . ,un)

P−→ (u ′,u ′0, . . . ,u ′n)”

stands for a formula describing one-step computation of P from configuration (u,u0, . . . ,un) to
configuration (u ′,u ′0, . . . ,u ′n). Such a formula can be defined as a conjunction

ψ0 ∧ · · ·∧ψk−1.

2

Recall that the program P consists of instructions α0, . . . ,αk where the last αk is the halt instruc-
tion. Thus, say αj is

j LET R1 = R1+ |,

then we let

ψj := u ≡ j→
(
u ′ ≡ u+ 1 ∧ u ′0 ≡ u0 ∧ u

′
1 ≡ u1 + 1 ∧ u ′2 ≡ u2 ∧ · · ·∧ u ′n ≡ un

)
.

The remaining details are left to the reader. 2

Using Lemma 1.1 we can prove similarly:

Theorem 1.4. Let r > 1.

(i) Let R ⊆ Nr be an R-decidable relation. Then there is an LSar -formula ϕ(v0, . . . , vr−1) ∈ N such
that for all `0, . . . , `r−1 ∈ N(

`0, . . . , `r−1
)
∈ R ⇐⇒ N |= ϕ(¯̀0, . . . , ¯̀r−1).

(ii) Let f : Nr → N be an R-computable function. Then there is an LSar -formula ϕ(v0, . . . , vr−1, vr)
such that for all `0, . . . , `r−1, `r ∈ N

f(`0, . . . , `r−1
)
= `r ⇐⇒ N |= ϕ(¯̀0, . . . , ¯̀r−1, ¯̀r).

Therefore,
N |= ∃=1vr ϕ(¯̀0, . . . , ¯̀r−1, vr),

where ∃=1x θ(x) denotes the formula

∃x
(
θ(x)∧ ∀y

(
ϕ(y)→ y ≡ x

))
. a

2. Gödel’s Incompleteness Theorems

Let Φ ⊆ LSar
0 .

Definition 2.1. Let r > 1.

(i) A relation R ⊆ Nr is representable in Φ if there is an LSar -formula ϕ(v0, . . . , vr−1) such that
for all n0, . . . ,nr−1 ∈ N(

n0, . . . ,nr−1
)
∈ R =⇒ Φ ` ϕ(n̄0, . . . , n̄r−1),(

n0, . . . ,nr−1
)
/∈ R =⇒ Φ ` ¬ϕ(n̄0, . . . , n̄r−1).

(ii) A function F : Nr → N is representable in Φ if there is an LSar -formula ϕ(v0, . . . , vr−1, vr)
such that for all n0, . . . ,nr−1,nr ∈ N

f(n0, . . . ,nr−1) = nr =⇒ Φ ` ϕ(n̄0, . . . , n̄r−1, n̄r),

f(n0, . . . ,nr−1) 6= nr =⇒ Φ ` ¬ϕ(n̄0, . . . , n̄r−1, n̄r).

Moreover,
Φ ` ∃=1vr ϕ(n̄0, . . . , n̄r−1, vr). a

Lemma 2.2. (i) If Φ is inconsistent, then every relation over N and every function over N is repre-
sentable in Φ.

(ii) LetΦ ⊆ Φ ′ ⊆ LSar
0 . Then every relation representable inΦ is also representable inΦ ′. Similarly,

every function representable in Φ is representable in Φ ′ as well.

3

(iii) Let Φ be consistent. If Φ is R-decidable, then every relation representable in Φ is R-decidable,
and every function representable in Φ is R-computable.

Proof: Routine. 2

Definition 2.3. Φ allows representations if all R-decidable relations and all R-computable functions
over N are representable in Φ.

By Theorem 1.4:

Theorem 2.4. Th(N) allows representations. a

A standard but tedious analysis shows that the proof of Theorem 1.4 can be “carried” out in
ΦPA.

Theorem 2.5. ΦPA allows representations. a

Recall that we have exhibited the so-called Gödel numbering of register programs. For later
purposes, we do the same for LSar -formulas. Let

ϕ0,ϕ1, . . . , (2)

be an effective enumeration of all LSar -formulas without repetition. That is, there is a program that
prints out the sequence (2). Then for every ϕ ∈ LSar we let

[ϕ] := n where ϕ = ϕn.

Observe that both
n 7→ ϕn and ϕ 7→ [ϕ]

are R-computable.

Next time we will show:

Theorem 2.6 (Fixed Point Theorem). Assume that Φ allows representations. Then for every ψ ∈
LSar

1 , there is an Sar-sentence ϕ such that

Φ ` ϕ↔ ψ([ϕ]).

View ψ(x) is a property. Then Theorem 2.6 intuitively says

I, i.e., ϕ, satisfies the property ψ.

3. Exercises

Exercise 3.1. Prove Theorem 2.5. a

4

