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1. The Undecidability of Arithmetic
For the alphabet A = {|} we consider the halting problem

TThate := {wp | P a program over A and P: O — halt}.

Let IP be a program over A. Assume that P consists of instructions «, ..., «xx. Let n be the
maximum index i such that R; is used by IP. Then a configuration of IP is an (n + 2)-tuple

(I—; mo,..., mn),
where L < k and my,...,m, € N, meaning that ¢« is the instruction to be executed next and
every register R; contains my, i.e., the word ||---|.

—

m; times

We have shown:

Lemma 1.1. From the above program P we can compute an Sy.-formula
XP(X05« > Xn5Z, Y05+ - > Yn)
such that for all L, ...,0,,L,mg,...,m €N
N E xello, ..., 0, L,mg, ..., Myl

if and only if P, beginning with the configuration (0, £, ..., {, ), after finitely many steps, reaches the
configuration (L, mo, ..., my). -

Theorem 1.2. Th(N) is not R-decidable.
Proof: Let P be a program over A = {|}. Using the formula xp in Lemma 1.1, we define

Qp = 31;]0 e HUnHXIP(O, e ’OJ E,UO; e ;Un),

here k:=1+---+ 1. Then By L 1.1, lude that 0 if and only if P, beginni
where + -+ en By Lemma we conclude tha E op if and only i eginning

k times
with the initial configuration (0,0,...,0), after finitely many steps, reaches the configuration

(k, mg, ..., my), i.e., P: O — halt. Thus, if Th(N) is R-decidable, so is TTy;. a
Proof of Lemma 1.1. Recall that xp expresses in 91 that there is an s € N and a sequence of
configurations Co, ..., Cs such that

- CO = (O:XO;~-~;Xn);

- Cs = (Z,HO,---,yn):

— for all i < s we have C; 5 Ciy1, i.e., from the configuration C; the program P will reach
Ci41 in one step.



We slightly rewrite the above formulation as that there is an s € N and a sequence of natural
numbers

A0, -5 Ont1 Ant2s -+ o5 Q(n42)+(n+1) -« - Bs.(n+2)5 + + +» Ao (n+2)+(n+1) (D
—_—————
Co C Cs

such that
— Qo :O; ai; =Xg, -++5 An41 = Xn,
- Qs.(n+2) =% As.(n+2)+1 = Y05 - -+ > As.(n+2)+(n+1) = Yn,

— forall i < s we have

P
(ai-(n+2)> cees ai-(n+2)+(n+1)) — (a(i+1)»(n+2), ) a(i+1)-(n+2)+(n+1)>-
Observe that the length of the sequence (1) is unbounded, so we cannot quantify it directly in 91.
So we need the following beautiful (elementary) number-theoretic tool.
Lemma 1.3 (Godel’s B-function). There is a function 3 : N5 — N with the following properties.

(i) For every r € N and every sequence (qo, ..., a,) in N there exist t,p € N such that for alli <
B(t,p,1) = ai.

(ii) B is definable in LS=. That is, there is an Sa-formula ¢@p(x,y,z, W) such that for all t, q,1,a €
N

NE= eplt,q,i,a] <= Bt q,1) =a.
4|

Equipped with the above {3 function and the formula ¢g, we define the desired xp as follows.

3p3t35<‘96(t;p; O:O) A (Pﬁ(t:]:’: ].,X()) ZARERVAN (Pﬁ(t,p,n+ 1;Xn)

Nep(t,p,s-n+2,2) A ep(t,p,s-n+2+1,yo)
AN Nept,p,s - n+2+n+1,yn)
/\Vi(i <s = YuVug - - - Vup Vu'vug - - - Vuy|
(Pp(t,p,i-n+2,u) A ep(t,p,i-n+2+1,up)
AN Negt,p,i-n+24+n+1,uy)
Negt,p,(i+1) - n+2,u)ANeplt,p, i+1) n+2+1,1)
A ANepltp, (i+1) - n+2+n+1,up)

P
= “(W,ugy .oy Upn) — (U, ug,. ..,uﬁ)”).

Here,

P
“(UyUgy v v ey Un) — (W0, ..., ul)”

stands for a formula describing one-step computation of P from configuration (u, ug,...,u,) to
configuration (u’,u{,...,u;). Such a formula can be defined as a conjunction

Yo A A_s.



Recall that the program P consists of instructions «g, . .., xx Where the last o is the halt instruc-
tion. Thus, say o is
j LET Ry = R1+ |,

then we let
Pji=u=j— (u’zu+1Au(’)Eu0/\u{ =u; +1Au Eug/\---/\uT’lEun).
The remaining details are left to the reader. g

Using Lemma 1.1 we can prove similarly:
Theorem 1.4. Letr > 1.

(i) Let # C N™ be an R-decidable relation. Then there is an LS=-formula ¢(vo,...,v,_1) € N such
that for all £, ..., 4,1 €N

(80,...,&,1) ERXR +— m%(p(zo,...,ﬂr,l).

(ii) Let f: N — N be an R-computable function. Then there is an LS=-formula ¢ (vo, ..., V,_1,V;)
such that for all Lo, ..., 01,4 € N

f(EO)"'7€T‘71) :er <~ m':(p(z();"'JeT‘fl;ET‘)'

Therefore,

N ': El:lvr (p(E07 s ;e‘r‘flavT‘)’

where 3=1x 0(x) denotes the formula
EIX(G(X)/\Vy((p(y) —>y5x)>. 4

2. Godel’s Incompleteness Theorems
Let ® C L.
Definition 2.1. Letr > 1.

(i) A relation # C NT is representable in @ if there is an LS=-formula ¢(vo, ..., v,_1) such that
forallng,...,n.—1 €N

(no,...,nr_l)eﬂ’ — @"(p(ﬁo,...,ﬁr_l),
(no,...,nr,1)¢<%’ — (Dl—_‘(p(ﬁo,...,ﬁrfl).

(ii) A function F : N* — N is representable in ® if there is an LS=-formula ¢(vo,...,Vvr_1,V;)
such that for all ng,...,n,_1,n. € N

f(nO) .. ':n‘r—l) =Ny — q) I_ (p(ﬁO’ . ')ﬁr—lr ﬁr):
f(nO)"'Jn‘l‘fl)#n‘r‘ - (Dl__\(p(ﬂ():"'aﬁT‘fl)ﬁT)'

Moreover,
O F 37, @(fg, ..., r1,Vr). -

Lemma 2.2. (i) If @ is inconsistent, then every relation over N and every function over N is repre-
sentable in O©.

(ii) Let ® C @' C L(S)a‘. Then every relation representable in @ is also representable in ®’. Similarly,
every function representable in @ is representable in ®' as well.



(iii)) Let @ be consistent. If @ is R-decidable, then every relation representable in @ is R-decidable,
and every function representable in @ is R-computable.

Proof: Routine. ]

Definition 2.3. @ allows representations if all R-decidable relations and all R-computable functions
over N are representable in @.

By Theorem 1.4:
Theorem 2.4. Th(91) allows representations. -

A standard but tedious analysis shows that the proof of Theorem 1.4 can be “carried” out in
Dpy.

Theorem 2.5. ®p, allows representations. -

Recall that we have exhibited the so-called Godel numbering of register programs. For later
purposes, we do the same for L= -formulas. Let

0, P15+ -+, (2

be an effective enumeration of all L5=-formulas without repetition. That is, there is a program that
prints out the sequence (2). Then for every ¢ € L5 we let

[] :=n where ¢ = @n.

Observe that both
n— @n and @ — [¢]

are R-computable.

Next time we will show:

Theorem 2.6 (Fixed Point Theorem). Assume that ® allows representations. Then for every 1\ €
Lf“, there is an S-sentence @ such that

O F < UP(le]).

View P (x) is a property. Then Theorem 2.6 intuitively says

L, i.e., @, satisfies the property 1.

3. Exercises

Exercise 3.1. Prove Theorem 2.5. =



