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Abstract. Most deterministic algorithms for NP-hard problems are
splitting algorithms: They split a problem instance into several smaller
ones, which they solve recursively. Often, the algorithm has a choice be-
tween several splittings. For 3-SAT, we show that choosing wisely which
splitting to apply, one can avoid encountering too many worst-case in-
stances. This improves the currently best known deterministic worst case
running time for 3-SAT from O(1.473n) to O(1.465n), n being the num-
ber of variables in the input formula.

1 Introduction

Most deterministic algorithms for NP-hard problems like k-SAT, k-colorability
and Maximum Independent Set use the idea of splitting: A problem instance I
is replaced by several smaller instances I1, . . . , I�, which are solved recursively.
Of course, we want � to be small and the size of the instances Ii to be much
smaller than the size of I—whatever size means in this context. Most algorithms
use several branching rules, i.e. rules for replacing I by I1, . . . , I�. Inevitably, not
every rule will apply to every instance, and some rules will amount to higher
running time and some to lower. Often, a single rule is responsible for the worst-
case behavior of the algorithm. Imagine you have a “meta-rule” that tells you
what branching rule to apply in order to avoid encountering too many worst-case
instances. This will of course speed up your algorithm. For our 3-SAT-algorithm,
we find such a meta-rule. The general idea is to run a preliminary search on a
given instance I that simply aborts when a worst case instance is encountered.
We pick one such worst-case instance I ′ and again start the preliminary search on
I ′. Repeating, we will find an instance I∗ and a search tree for I∗ that contains no
worst-case instances. The trick is that one can show, for our particular algorithm,
that this very search tree is also a search tree for I. We use the instance I∗ as a
search guide for I, always applying the branching rules that would have applied
in the search tree for I∗. The algorithm to which we apply this idea is the
deterministic local search algorithm for 3-SAT by Dantsin et al. [3], of which
we improve the running time from the previously best known O(1.473n) [2] to
O(1.465n) (here, n is the number of variables). The idea is in fact not limited
to 3-SAT, it can be applied for general k-SAT, but the improvement over the
original algorithm by [3] becomes smaller and smaller.
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Previous Results

In recent years, a lot of research has been done in designing “modestly exponen-
tial” algorithms deciding 3-SAT, i.e. running in time O(an), for a considerably
smaller than 2. The currently fastest randomized algorithm, given by Daniel
Rolf [7], achieves a running time of O(1.32216n).

The running times of deterministic algorithms for 3-SAT are much higher:
Dantsin et al. [3] gave a deterministic algorithm based on local search, with a
running time of O(1.481n). Later, Brueggemann and Kern [2] further improved
this algorithm and obtained a running time of O(1.473n), which was the previ-
ously fastest known deterministic algorithm.

We apply the idea of guided search to the splitting algorithm in Dantsin
et al. [3] and Brueggemann and Kern [2], thus avoiding encountering too many
worst-case formulas and improving the running time of deterministic local search
algorithms for 3-SAT from O(1.473n) to O(1.465n).

Notation

A CNF formula, or simply a CNF, is a conjunction (and) of clauses, and a
clause is a disjunction (or) of literals. A literal is either a boolean variable x or
its negation x̄. We can assume that no clause contains both a variable and its
negation. A k-CNF is a CNF in which every clause contains at most k literals,
and k-SAT is the problem whether a given k-CNF is satisfiable. If γ is a partial
truth assignment, then we denote by F [γ] the k-CNF obtained by setting the
variables of F as described by γ. If γ does not set variable x, we may write
[γ, x �→ 1] (or [γ, x �→ 0]) to denote the partial assignment that behaves like γ,
and in addition sets x to 1 (or to 0).

2 The Local Search Algorithm k-SAT

In [3], Dantsin et al. give a surprising approach to deciding k-SAT. Let F be
a k-CNF and n be the number of variables in F . Let {0, 1}n be the set of
all possible truth assignments to these variables. We search for a satisfying
assignment not in the whole cube {0, 1}n, but locally in some Hamming ball
Br(α) := {β ∈ {0, 1}n : d(α, β) ≤ r} of radius r centered at some α ∈ {0, 1}n.
We say F is Br(α)-satisfiable if Br(α) contains an assignment satisfying F . We
will see below how this can be decided for k-CNFs in time O(krpoly(n)). For
certain values of r, kr is much smaller than the volume of Br(α). By choos-
ing N(n, r) many Hamming balls that together cover {0, 1}n, we can decide
satisfiability of F in time O(N(n, r)krpoly(n)). There is of course a trade-off
between the radius r of the balls and the number of balls needed to cover
{0, 1}n. Dantsin et al. [3] show how to choose r optimally such that if Br(α)-
satisfiability can be decided in O(arpoly(n)), satisfiability of F can be decided

in O
((

2 − 2
1+a

)n

poly(n)
)
.
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Note that by the symmetry of {0, 1}n, Br(α)-satisfiability is basically the
same problem for each α ∈ {0, 1}n. Hence we will assume for the rest of the
paper that α = (1, . . . , 1) and write Br for Br

(
(1, . . . , 1)

)
. Algorithm 1, given in

Dantsin et al. [3], decides Br-satisfiability in O(krpoly(n)) steps.

Algorithm 1. searchball(Formula F , depth r)
1: if F contains no negative clause then
2: return true
3: else if � ∈ F or r ≤ 0 then
4: return false
5: else
6: pick some negative clause {x̄1, . . . , x̄�} ∈ F
7: return

��
i=1 searchball(F [xi �→0], r − 1)

8: end if

Here, a negative clause is a clause containing only negative literals (and thus
is not satisfied by α = (1, . . . , 1)). Let us see why this algorithm works. The first
four lines should be clear: If F contains no negative clause, α satisfies F , and
surely α ∈ Br. Otherwise, if � ∈ F , then F is clearly unsatisfiable. Also, if α
does not satisfy F , and r = 0, then F is clearly not Br-satisfiable.

So much for the base cases. The interesting step is of course the recursion.
Consider the negative clause {x̄1, . . . , x̄�}. If there is some satisfying assignment
α∗ ∈ Br, it must set some xi to 0. Let α∗

i be the assignment setting xi to 1, but
else agreeing with α∗. Since d(α∗, α) ≤ r, it holds that d(α∗

i , α) ≤ r − 1. Note
that α∗

i satisfies F [xi �→0]. Therefore, F ′ is Br−1-satisfiable, and the recursive
call searchball(F [xi �→0], r − 1) will return true. Conversely, if some F [xi �→0] is
Br−1-satisfiable, it is easy to see that F is Br-satisfiable.

3 Branching Rules

We say in lines 6 and 7 searchball performs a branching. To be more precise,
define branchings as follows:

Definition 3.1. For a partial assignment γ, let |γ| denote the number of vari-
ables γ sets to 0. A branching for F is a set Γ = {γ1, . . . , γ�} of partial assign-
ments with |γi| ≥ 1 for all 1 ≤ i ≤ �.

Note that we only count variables γ sets to 0. This has two reasons. First, almost
no assignment we encounter sets any variable to 1. We will see an exception at the
end of the paper, but this will not cause any trouble. Second, we want to measure
how far a partial assignment takes us from α = (1, . . . , 1), and setting variables
to 1 obviously does not increase the distance from α. The intuition behind the
definition of branchings is that searchball first computes some branching Γ for
F and then recurses on each of the formulas F [γ] for each γ ∈ Γ . The following
definition and observation ensure that this is legal, i.e. will give a correct result.
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Definition 3.2. We define valid branchings inductively. Let F be a CNF. For
every negative clause {x̄1, . . . , x̄�} ∈ F the branching

{[x1 �→ 0], . . . , [x� �→ 0]}

is valid for F . If some branching Γ is valid for F , and there is some γ ∈ Γ and
a branching Γ ′ = {β1, . . . , β�} that is valid for F [γ], then

Γ \ γ ∪ {γβ1, . . . , γβ�}

is valid for F .

Here, γβi denotes the combination of both partial assignments. Note that this is
well defined, as these two partial assignments refer to disjoint sets of variables.
The following observation gives meaning to the previous definition.

Observation. If Γ is a branching valid for F , then F is Br-satisfiable if and
only if there exists some γ ∈ Γ such that F [γ] is Br−|γ|-satisfiable.

One might think that these definitions are overly formal, since the notion of
branchings in the context of recursive algorithms is a familiar one. However, as
our algorithm becomes more involved, it will become clear that it pays to have
things defined formally. Using the definition of branchings, we can replace lines
6 and 7 by

6: apply some rule to obtain a valid branching {γ1, . . . , γ�} for F

7: return
∨�

i=1 searchball(F [γi], r − |γi|)

It is clear that for 3-CNFs, we always find a valid branching containing at most
3 partial assignments, thus searchball has a running time of O (3rpoly(n)). Our
goal is to decrease the basis of the exponential to some a < 3. To achieve this,
we first give four relatively simple branching rules for 3-CNFs.

3.1 Simple Branching Rules

Let Neg(F ) denote the set of all negative clauses in F , i.e. clauses without posi-
tive literals. Accordingly, the empty clause � is a negative clause, too. If Neg(F )
consists of pairwise disjoint clauses, we say F is Neg-disjoint. From now on, we
assume that all negative 3-clauses in F are pairwise disjoint, i.e. that F is Neg-
disjoint or contains some negative clause of size at most two. We will show at the
end of the paper how to deal with intersecting negative 3-clauses. Let us state
four simple rules the algorithm tries to apply. See Figure 1 for an illustration.

Rule 1. If there is some {x̄1, . . . , x̄�} ∈ Neg(F ) with � ≤ 2, then use the branch-
ing {[x1 �→ 0], . . . , [x� �→ 0]}. This includes the case � ∈ F .
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Note that if Rule 1 does not apply, then by assumption F is Neg-disjoint.
Clearly, any satisfying assignment needs to set at least |Neg(F )| variables to 0.
Hence if |Neg(F )| > r at this point, the algorithm immediately returns “not
Br-satisfiable”. We assume from now on that |Neg(F )| ≤ r.

Rule 2. Suppose F contains two clauses of the form {u} and {ū, v̄, w̄}. Use the
branching {[v �→ 0], [w �→ 0]}. Note that the partial assignment [u �→ 0] need not
be part of the branching, because F [u�→0] contains the empty clause.

Rule 3. Suppose F contains clauses of the form {u, ā} and {ū, v̄, w̄}. Use the
branching {[u �→ 0, a �→ 0], [v �→ 0], [w �→ 0]}.

Rule 4. Suppose F contains clauses of the form {u, x}, {x̄, ȳ, z̄} and {ū, v̄, w̄},
the latter two being distinct. Use the branching {[u �→ 0, y �→ 0], [u �→ 0, z �→
0], [v �→ 0], [w �→ 0]}. Similarly to the case for Rule 2, the partial assignment
[u �→ 0, x �→ 0] is not part of the branching, since � ∈ F [u�→0,x �→0].

{ū, v̄, w̄}{ū, v̄, w̄} {ū, v̄, w̄}

{x̄, ȳ, z̄}

�

�

v = 0v = 0 v = 0u = 0 u = 0u = 0 w = 0w = 0 w = 0

x = 0 y = 0 z = 0a = 0

{ā}

Fig. 1. Visualization of Rules 2, 3 and 4, respectively

It should be noted that there is nothing new about these branching rules. They
all appear in [2], and some appear already in [3]. Each formula occurring in the
computation of searchball(F ,r) is of the form F [γ] for some partial assignment
γ. In this sense, branching rules extend γ: For example, Rule 3 extends it to
[γ, u �→ 0, a �→ 0], [γ, v �→ 0] and [γ, w �→ 0] in the recursive calls.

4 Partial Exact Assignments and Guided Search

If some of Rules 1–4 applies to F , then searchball applies a branching Γ and
calls itself recursively on F [γ] for each γ ∈ Γ . If none of these rules applies to
F , we call F reduced. This is where the difficult part begins. The approach of
[3] and [2] is (briefly) to define additional rules and then prove a non-trivial
theorem that if these rules do not apply, there is some other way to decide
quickly whether F is Br-satisfiable. Unfortunately, the additional rule causes a
higher running time. Our approach is not completely different, however, we do
not introduce any additional rules. Observe that Rules 1–4 might give several
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valid branchings for the same formula. It turns out that, depending on which
branching we decide to apply, we may encounter reduced formulas very often
or very rarely. We show that we can find a “guide” formula that tells us which
branchings to apply in order to avoid encountering too many reduced formulas.
Central to our algorithm will be the following special type of partial assignments:

Definition 4.1. Let F be a Neg-disjoint CNF. A partial assignment γ to the
variables of F is called a partial exact assignment w.r.t. F , short pea, if

– it sets no variable to 1, and
– in each clause C ∈ Neg(F ), it satisfies at most one literal (i.e. it sets the

corresponding variable to 0), and
– it does not set further variables.

For example, if F = {{ū, v̄}, {x̄, ȳ}, {x, ā}}, then γ = [u �→ 0, y �→ 0] is a pea
for F , but [u �→ 0, v �→ 0] and [u �→ 0, a �→ 0] are not. Please note that though
defined in more general terms, we will use the term pea w.r.t. F only if F is
a reduced 3-CNFs. A crucial fact in our algorithm will be that Rules 2 and 4
behave “nicely” with respect to peas. This means, if γ is a pea w.r.t. some F ,
and Rule 2 or Rule 4 applies to F [γ], then the extensions of γ produced by the
branching will be peas w.r.t. F , as well. This is because all variables set to 0
in Rule 2 and 4 occur in a 3-clause of F [γ]. Since applying γ does not create
new 3-clauses, these must already have been in F . However, Rules 1 and 3 can
produce non-peas, as they set variables to 0 which do not necessarily occur in a
3-clause.

If we encounter a reduced formula F , we cannot apply any of Rules 1–4 and
thus have to pick some {x̄1, x̄2, x̄3} ∈ Neg(F ) and recurse on the three formulas
F [xi �→0], i = 1, 2, 3. This branching rule, if applied over and over again, would
amount to a running time of O (3rpoly(n)). Having applied it once, we would
like to make sure that we will not encounter any further reduced formulas in the
subsequent recursive calls. This is too much to ask for, but what we definitely do
not want is to encounter a reduced formula F [γ] where γ is a pea for F . Think of
peas as being especially benign and well-behaved partial assignments. We surely
do not want these nice peas to bring us into trouble.

Definition 4.2. We call a computation of searchball(F , r) good if for any
F [γ] occurring in the computation with γ being a pea w.r.t. F and |γ| ≥ 1, the
formula F [γ] is non-reduced.

We will give a procedure that runs in reasonable time, and for every reduced F ,
finds either a satisfying assignment in Br or a good computation. The benefit of
a good computation is clear: As long as our branchings produce peas w.r.t. F ,
we will not encounter reduced formulas. Recall that Rules 2 and 4 never extend a
pea γ to a non-pea. Rules 1 and 3 might, but these rules are so efficient that this
compensates for the possibility of encountering a reduced formula afterwards.

We will compute a “guide” formula G for which we find a good computation,
and then show that the same computation can be performed on F . Let us be
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more precise: We pick a negative clause {x̄1, x̄2, x̄3} in Neg(F ), called the starting
clause of F . For each i = 1, 2, 3, we try to extend the partial assignment [xi �→ 0]
to a pea γ w.r.t. F such that F [γ] is reduced. We do this by recursively applying
Rules 1–4, but aborting the recursion on formulas F [γ] if γ is not a pea w.r.t. F ,
or if γ is a pea and F [γ] is reduced. This procedure searchball-prelim is given
in detail in Algorithm 2. The number of leaves visited by searchball-prelim
is ≤ fr−1, where

fi :=
{

2fi−1 + 2fi−2 if i ≥ 1,
1 if i ≤ 0 .

(1)

Algorithm 2. searchball-prelim(Formula F , partial assignment γ, radius r)
1: if γ is not a pea w.r.t. F then
2: return undefined
3: else if F [γ] is reduced then
4: return γ
5: else if r ≤ 0 then
6: return undefined
7: else
8: Apply one of Rules 1–4 and obtain a branching {γ1, . . . , γ�}
9: for 1 ≤ i ≤ � do

10: γ′ := searchball-prelim(F , γγi, r − |γi|)
11: if γ′ �= undefined then
12: return γ′

13: end if
14: end for
15: return undefined
16: end if

This can easily be seen by induction on r: If Rule 4 is applied, it causes two
calls with r − 1 and two with r − 2. Rules 1, 2 and 3 are clearly even better.
So we call searchball-prelim(F , [xi �→ 0], r − 1) for each i = 1, 2, 3. Suppose
each of these three calls returns undefined. Then searchball-prelim did not
encounter any reduced F [γ] for γ being a pea, i.e. this was a good computation.
Otherwise, let γ1 be the returned pea and consider F2 := F [γ1]. As for F , pick a
negative clause {ȳ1, ȳ2, ȳ3} ∈ Neg(F2) as starting clause of F2 (if there is one).
Call searchball-prelim(F2, [yi �→ 0], r−1) for each i = 1, 2, 3. Either every call
returns undefined, or some γ2 is returned. In the latter case, define F3 := F

[γ2]
2

and we do for F3 what we did for F2. This creates a sequence F = F1, F2, . . .

where Fi+1 = F
[γi]
i , γi is a pea w.r.t. Fi returned by searchball-prelim, and

every Fi is reduced. Since each Fi+1 contains strictly fewer variables than Fi,
this process terminates in some Fm =: G. Furthermore, it is not difficult to see
that γ1γ2 . . . γm−1 is a pea w.r.t. F , and thus |γ1γ2 . . . γm−1| ≤ r: Recall that F
is Neg-disjoint, and we assume |Neg(F )| ≤ r, hence every pea has size ≤ r. See
Figure 2.
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F

F2

Fm

γ1

γ2

Fig. 2. Constructing a sequence F1, F2, . . . , Fm of reduced formulas. The process
terminates in Fm. Either Neg(Fm) = ∅, or for every γ in the tree of Fm that is a pea
w.r.t. Fm, F

[γ]
m is non-reduced.

There are two cases: First, the process above could terminate with Neg(G) =
∅. Then setting all variables in G to 1 satisfies it. Since G = F [γ1γ2...γm−1] and
|γ1γ2 . . . γm−1| ≤ r, F is Br-satisfiable.

Second, the process could terminate with G for which searchball-prelim
returned undefined. Let us contemplate for a moment what this means. When
reaching G in the process described above, we pick a starting clause {z̄1, z̄2, z̄3} ∈
Neg(G) and call searchball-prelim(G, [zi �→ 0], r − 1) for i = 1, 2, 3, and
each call returns undefined. This means that for any pea γ that occurs in
the computation of searchball-prelim, G[γ] is non-reduced. Therefore, one
of Rules 1–4 applies to it, giving a branching Γ . We will show that Γ is valid
for F [γ], as well, i.e. we can perform the same computation on F instead of G,
which will be a good computation of searchball on F . We say we use G as a
search guide for searchball(F , r) telling us which branching to apply. Here it is
important that the branching in Line 8 of searchball-prelim is chosen among
all possible branchings by some deterministic rule, such that when performing
the same computation for F , we will get exactly the same branching again. This
will be a good computation, and we will not encounter reduced formulas F [γ] as
long as γ is a pea w.r.t. G. We need the following technical lemma to show that
any branching which is valid for G[γ] is also valid for F [γ], if γ is a pea w.r.t. G.

Lemma 4.3. Let F and G be reduced 3-CNFs. Let F3, G3 denote the set of all
3-clauses of F and G, respectively. If G3 ⊆ F3, and γ is a pea w.r.t. G, then
Neg(G[γ]) ⊆ Neg(F [γ]).

Proof. Consider any C ∈ Neg(G[γ]). We will show that C ∈ Neg(F [γ]). There
is some clause D ∈ G with D[γ] = C. If |D| = 3, then by assumption D ∈ F
and C = D[γ] ∈ F [γ], and we are done. Otherwise, |D| ≤ 2, and thus D is not a
negative clause, because G is reduced. Thus, D is either of the form {u}, {u, ā}
or {u, x}. If D = {u} or {u, ā}, then γ(u) = 0, since D[γ] is a negative clause.
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Since γ is a pea w.r.t. G, there is a clause {ū, v̄, w̄} in G. Hence Rule 2 or 3 ap-
plies to G, contradicting the assumption that G is reduced. If D = {u, x}, then
C = ∅, and γ(u) = γ(x) = 0. Therefore G contains distinct clauses {ū, v̄, w̄}
and {x̄, ȳ, z̄}, and Rule 4 applies. This is again a contradiction. It follows that
|D| = 3 and C ∈ F [γ], thus Neg(G[γ]) ⊆ Neg(F [γ]). �

Lemma 4.4. Let F and G be reduced 3-CNFs and suppose that G3 ⊆ F3. If γ
is a pea w.r.t. G and one of Rules 1–4 applies to G[γ] yielding a branching Γ ,
then Γ is valid for F [γ], as well.

Proof. Let γ be a pea w.r.t. G. The idea of the proof is the same for each of
the four rules, but for the sake of completeness, we will show all four cases.

Case 1. If Rule 1 applies to G[γ], then G[γ] contains a clause C = {x̄1, . . . , x̄�}
with � ≤ 2. Let {[x1 �→ 0], . . . , [x� �→ 0]}, � ≤ 2 be the branching. By Lemma 4.3,
C ∈ F [γ], thus the branching is valid for F [γ].

Case 2. If Rule 2 applies, G[γ] contains clauses C = {ū, v̄, w̄} and D = {u}. By
Lemma 4.3, C ∈ F [γ]. Note that � = D[u�→0] ∈ G[γ,u�→0]. Since [γ, u �→ 0] is
a pea w.r.t. G, too, and we consider the empty clause to be a negative clause,
Lemma 4.3 applies again, thus � ∈ F [γ,u�→0], and the branching {[v �→ 0, w �→ 0]}
is valid for F [γ].

Case 3. If Rule 3 applies, there are clauses {u, ā} and {ū, v̄, w̄} in G[γ]. By
Lemma 4.3, {ū, v̄, w̄} ∈ F [γ], as well. Hence the branching {[u �→ 0], [v �→
0], [w �→ 0]} is valid for both G[γ] and F [γ]. Since [γ, u = 0] is a pea w.r.t.
G, Lemma 4.3 applies and {ā} ∈ Neg(F [γ,u�→0]). Therefore, the branching {[u �→
0, a �→ 0], [v �→ 0], [w �→ 0]} is valid for F [γ].

Case 4. If Rule 4 applies, G[γ] contains clauses of the form {u, x}, {x̄, ȳ, z̄} and
{ū, v̄, w̄}. By Lemma 4.3, the latter two are in F [γ], as well. When applying Rule
4, we do not recurse on G[γ,u�→0,x �→0], because in this formula, {u, x} has become
an empty clause. Note that according to our definition, the empty clause is a
negative clause, and since [γ, u �→ 0, x �→ 0] is a pea w.r.t. G, Lemma 4.3 im-
plies that F [γ,u�→0,x �→0] contains the empty clause, too. Therefore the branching
{[u �→ 0, y �→ 0], [u �→ 0, z �→ 0], [v �→ 0], [w �→ 0]} is valid for F [γ]. �

Let us summarize our algorithm. If F is not reduced, the algorithm applies one
of Rules 1–4. Otherwise, it computes the search guide G = F [γ1γ2...γm−1]. Let
{z̄1, z̄2, z̄3} be the starting clause of G. We call searchball(F [zi�→0],
r − 1) for i = 1, 2, 3. As each partial assignment [zi �→ 0] is a pea w.r.t. G,
and searchball-prelim(G, [zi �→ 0], r − 1) returned undefined, G[zi �→0] is not
reduced, and hence one of Rules 1–4 applies to it, yielding a branching Γ . By
Lemma 4.4, this branching is valid for F [zi �→0], as well, hence searchball applies
this very branching in the recursive call searchball(F [zi�→0], r − 1). The same
argument holds for every subsequent recursive call searchball(F [γ], r′), as long



Guided Search and a Faster Deterministic Algorithm for 3-SAT 69

as γ is a pea w.r.t. G. If searchball is called with some F [γ] and γ is not a pea
w.r.t. G, we have to discard our search guide. In this case, it may happen that
F [γ] is reduced again, and we would have to run searchball-prelim on F [γ],
to find a new search guide.

We will now analyze the running time. It turns out that Rule 4 is the “worst
case rule” that dominates the running time of the algorithm. However, we have
to be careful in our calculations because we do a lot of additional work in
searchball-prelim. We have to make sure that the running time is still domi-
nated by fr, defined in (1).

Theorem 4.5. If F contains no intersecting negative 3-clauses, the number of
leaves visited by searchball(F , r) is ≤ 3(r + 1)2fr−1.

Proof. We prove a stronger statement. We claim in addition that if F is reduced
and G is used as a search guide for searchball, and γ is a pea w.r.t. G, then
searchball(F [γ], r) visits ≤ (r + 1)2fr leaves.

We use induction on r. For r = 0, the statement is trivial. If F is reduced,
we compute a search guide formula G. Doing this, we call searchball-prelim
≤ 3r times, each time creating ≤ fr−1 leaves. Then we pick a clause {ȳ1, ȳ2, ȳ3} ∈
Neg(G) and call searchball(F [yi�→0], r − 1) for i = 1, 2, 3. Since each [yi �→ G]
is a pea w.r.t. G, by induction each call causes ≤ r2fr−1 leaves. Together, this
amounts to ≤ 3(r + 1)2fr−1 calls.

If F is not reduced and we are not using a search guide, then one of Rules
1–4 applies, and it is straightforward to show that the number of leaves is ≤
3(r + 1)2fr−1.

The most interesting case is when searchball is called for F [γ], using G as
a search guide, and γ is a pea w.r.t. G. If Rule 4 applies, we pick clauses {u, x},
{x̄, ȳ, z̄} and {ū, v̄, w̄} ∈ G[γ] and use the branching {[u �→ 0, y �→ 0], [u �→ 0, z �→
0], [v �→ 0], [w �→ 0]}. Recall that all four extended assignments are peas w.r.t.
G, hence the recursive calls cause ≤ 2r2fr−1 +2(r− 1)2fr−2 ≤ (r +1)2fr leaves.
For Rule 2, the argument is exactly the same. This is really the crucial point in
this algorithm: Of all four rules, Rule 4 yields the worst running time. However,
using our search guide, we can be sure not to encounter a reduced formula after
applying Rule 4.

If Rule 3 applies, we pick {u, ā}, {ū, v̄, w̄} ∈ G[γ] and use the branching {[u �→
0, a �→ 0], [v �→ 0], [w �→ 0]}. Note that γ[v �→ 0] and γ[w �→ 0] are peas w.r.t.
G, hence these calls cause ≤ 2r2fr−1 leaves. However, γ[u �→ 0, a �→ 0] is per-
haps not a pea w.r.t. G, hence F [u�→0,a�→0] might be reduced, and this call causes
≤ 3(r−1)2fr−3 leaves. Altogether, this is surely ≤ 2(r+1)2fr−1 +3(r+1)2ff−3,
which is ≤ (r + 1)2fr. If Rule 1 applies, we cause ≤ 2 × 3r2fr−2 ≤ 3(r + 1)2fr−1
leaves. This completes the proof. �

To summarize, computing and using a search guide guarantees that reduced
formulas might be encountered once, but in subsequent calls, they will be en-
countered only after Rule 1 or Rule 3 has been applied. These rules are so effi-
cient that they compensate for the possibility of encountering a reduced formula
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afterwards. To complete our algorithm, we have to show finally what to do when
F is not Neg-disjoint. We basically do the same as Brueggemann and Kern [2].

Theorem 4.6. Let F be a 3-CNF. The number of leaves visited by searchball(F ,
r) is ≤ 3(r + 1)2fr−1.

Proof. If F contains a negative clause of size ≤ 2, we obtain by induction that
searchball(F , r) causes ≤ 2 × 3r2fr−2 ≤ 3(r + 1)2fr−1 leaves. Otherwise, all
negative clauses are of size three. There are three cases:

First, there could be clauses {ū, v̄, w̄}, {ū, v̄, z̄} intersecting in exactly two
literals. We use the branching {[u �→ 0], [u �→ 1, v �→ 0], [u �→ 1, v �→ 1, w �→
0, z �→ 0]}. Though not valid according to our definition, it still holds that F is
Br-satisfiable if and only if F [γ] is Br−|γ|-satisfiable, for some γ in the branching.
The claimed time bound follows after a short computation.

Second, if F contains two 3-clauses {ū, v̄, w̄}, {ū, ȳ, z̄} intersecting in exactly
one literal, use the branching {[u �→ 0], [u �→ 1, v �→ 0, y �→ 0], [u �→ 1, v �→ 0, z �→
0], [u �→ 1, w �→ 0, y �→ 0], [u �→ 1, w �→ 0, z �→ 0]}. Again, a short calculation
shows that this causes ≤ 3(r + 1)2fr−1 leaves.

Third, it could be that F does not contain intersecting negative clauses. Then
Theorem 4.5 applies. This completes the proof. �

It is standard to show that fr ∈ O(ar), where a ≈ 2.74 is the largest root of x2 −
2x−2. Therefore, Br-satisfiability can be decided in time O(arpoly(n)), and thus,
by the results of Danstin et al., we can decide 3-SAT in time O (1.465npoly(n)).

5 Conclusions

Observe that Lemma 4.3, though looking innocent, is really the core reason why
our algorithm works. It is also what causes trouble when ones tries to directly
apply guided search to other backtracking algorithms. Take for example Beigel
and Eppstein’s Algorithm [1] for solving (3,2)-CSP. For this algorithm we cannot
find and apply an equivalent of Lemma 4.3, because the algorithm uses some
kind of resolution which introduces new constraints, whereas our application of
Lemma 4.3 relies crucially on the fact that if G was created from F by steps of
the algorithm, then G does not contain any 3-clauses that F does not contain.

For traditional backtracking algorithms for k-SAT, often called DPLL algo-
rithms, after Davis, Putnam, Logemann and Loveland [4,5], there is an even
simpler technique than guided search. Consider a backtracking algorithm that
chooses a shortest clause C = {u1, . . . , ui} ∈ F and recurses on F1 := F [u1 �→1]

and F0 := F [u1 �→0], where F0 contains an (i − 1)-clause. In this context, call a
formula reduced if every clause in F has size exaclty k. It is clear that if F is a k-
CNF and in the recursive computation of F , a reduced formula F [γ] occurs, then
F [γ] ⊂ F , and the two formulas are SAT-equivalent in the sense that one is satis-
fiable if and only if the other is. Hence all other open branches of the search tree
can be pruned, and the algorithm only needs to recurse on F [γ]. This is known
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as the autark assignment rule and was used by Monien and Speckenmeyer [6] to
speed up their k-SAT algorithm.

It should be mentioned that we first tried to prove some kind of autarky re-
sult, i.e. that if F is reduced and F [γ] is reduced as well, then one formula is
Br-satisfiable if and only if the other is. Unfortunately, this is not true. One
can, however, obtain a SAT-equivalence under certain conditions stronger than
reducedness, which leads to a simpler proof of the O(1.473n)-bound of Bruegge-
mann and Kern [2].
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