
DISS. ETH NO.

Algorithms and Extremal Properties of SAT and
CSP

A dissertation submitted to the

SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH

for the degree of

DOCTOR OF SCIENCES

presented by

DOMINIK ALBAN SCHEDER

Master of Science, University of Colorado at Boulder

born 28. August 1980

citizen of Germany

accepted on the recommendation of

Prof. Dr. Emo Welzl, examiner

Prof. Dr. Ramamohan Paturi, co-examiner

2011

Contents

Abstract v

Zusammenfassung vii

Acknowledgments ix

1 Introduction 1
1.1 Why SAT? . 2
1.2 Algorithms for SAT . 3
1.3 Extremal Combinatorics . 7

2 Notation 13

I Algorithms for SAT and CSP 17

3 Local Search Algorithms for SAT 19
3.1 Schöning’s Algorithm . 20
3.2 The Algorithm by Dantsin et al. 23
3.3 A Complete Derandomization of Schöning’s Algorithm 26

4 Local Search Algorithms for CSP 33
4.1 Schöning and cover-search for (d,≤ k)-CSP formulas 33
4.2 A Better Deterministic Algorithm for (d, k)-CSP 35
4.3 A Deterministic Reduction from (d, k)-CSP to k-SAT 41

5 Construction of Covering Codes 43
5.1 Covering {0, 1}n With Hamming Balls . 43
5.2 A General Framework for Covering Codes . 45
5.3 Application to 2-Boxes . 48
5.4 Application to G-balls . 48

6 PPZ for (d, k)-CSP 51
6.1 Introduction . 51
6.2 The Algorithm . 54
6.3 Analyzing the Success Probability . 56
6.4 A Correlation Inequality . 62

iii

iv CONTENTS

II Extremal Combinatorics of CNF Formulas 65

7 The Conflict Structure of CNF Formulas 67
7.1 Introduction . 67
7.2 1-Conflicts . 74

7.2.1 Combinatorial Properties . 75
7.3 Conflicts Generated by an Individual Variable . 82
7.4 Total Number of Conflicts . 86

8 Linear Formulas 95
8.1 Introduction . 95
8.2 Existence and Size . 98
8.3 Resolution Complexity . 100
8.4 Linear MU(1)-Formulas . 102

Bibliography 107

Abstract

This thesis treats algorithmic and combinatorial aspects of Boolean satisfiability and constraint
satisfaction. Satisfiability is the problem of deciding whether a given propositional formulas
in conjunctive normal form, short CNF formula, is satisfiable. For designing and analyzing
algorithms one usually focuses on k-SAT, i.e., one requires that every clause of the formula
contain at most k literals for some constant number k, and measures the time complexity of the
algorithm in terms of n, the number of variables in the formula. The most thoroughly studied
case is 3-SAT, because this is the minimum k for which k-SAT is NP-complete.

In the first part of this thesis we investigate algorithms for satisfiability and constraint sat-
isfaction. In 1999, Uwe Schöning presented a simple randomized algorithm for these problems
based on random walks. The expected running time is exponential but much faster than older
algorithms. Its running time for 3-SAT is O((4/3)npoly(n)). A few years later, Dantsin, Goerdt,
Hirsch, Kannan, Kleinberg, Papadimitriou, Raghavan, and Schöning gave a deterministic al-
gorithm that was inspired by the randomized one, but the running time of which it exceeds by
an exponential factor. It solves 3-SAT in O(1.5npoly(n)) time. We show how to improve the
deterministic algorithm, ultimately closing the gap to Schöning’s random walk algorithm up
to a subexponential factor. This is joint work with Robin Moser.

A different randomized algorithm was discovered by Paturi, Pudlák, and Zane in 1997. We
show how the algorithm generalizes to (d, k)-CSP, i.e., constraint satisfaction problems where
each variable can take on d different values and every constraint consists of at most k literals.

In the second part we study extremal combinatorial properties of satisfiability. A typical
question involves some function µ that measures the structural complexity of CNF formulas.
For example, µ could be the number of clauses in a formula or the number of conflicting clause
pairs. Furthermore, we consider a subclass P of CNF formulas, usually the class of k-CNF
formulas, in which every clause consists of exactly k literals. We then ask “What is the maximal
d ∈ N0 such that every CNF formula F in P with µ(F) ≤ d is satisfiable?”, or, equivalently,
“What is the minimum µ(F) for F being an unsatisfiable CNF formula in P?” The answer
to the second question equals the answer of the first one, plus 1. We are interested in the
asymptotic behavior of this number of large k. For example, what is the smallest number
of conflicting clause pairs in an unsatisfiable k-CNF formula? We show that this number is
asymptotically between 2.69k and 3.51k. This is joint work with Philipp Zumstein. For a second
type of problems, we let P be the set of linear k-CNF formulas, i.e., formulas in which any two
clauses have at most one variable in common. We prove close bounds on the number of clauses
of unsatisfiable linear k-CNF formulas, namely that this number is at least Ω(4k/k2) and at most
O(k24k) and prove lower bounds on the treelike resolution complexity of such formulas.

v

Zusammenfassung

In dieser Arbeit untersuche ich algorithmische und kombinatorische Gesichtspunkte der boo-
leschen Erfüllbarkeit und des Constraint-Satisfaction-Problems. Beim Problem der booleschen
Erfüllbarkeit, auch bekannt unter dem Namen SAT, ist eine aussagenlogische Formel in kon-
junktiver Normalform gegeben, kurz eine KNF-Formel, und die Aufgabe besteht darin, zu
entscheiden, ob diese Formel erfüllbar ist. Für die Entwicklung und Analyse beschränkt man
sich üblicherweise auf k-SAT, das heisst, jede Klausel der Formel besteht aus höchstens k Lit-
eralen. Hierbei ist k eine Konstante, und man betrachtet die Komplexität eines Algorithmus
in Abhängigkeit von n, der Anzahl der Variablen in der Formel. Besondere Aufmerksamkeit
geniesst das Problem 3-SAT, da k = 3 der kleinste Wert ist ,für den k-SAT noch NP-vollständig
ist.

Gegenstand des ersten Teils dieser Arbeit sind Algorithmen für k-SAT und Constraint-Satis-
faction-Probleme (CSPs). Für diese Probleme fand 1999 Uwe Schöning einen sehr einfachen
Algorithmus, der auf Irrfahrten basiert. Obwohl seine erwartete Laufzeit exponentiell ist, ist er
deutlich schneller als ältere Algorithmen. Für 3-SAT beträgt seine Laufzeit O((4/3)npoly(n)).
Wenige Jahre später entdeckten Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Papadimitriou,
Raghavan und Schöning einen Algorithmus vor, den man als deterministische Version von
Schönings Algorithmus betrachten kann. Leider beträgt seine Laufzeit O(1.5npoly(n)) und
übersteigt somit die von Schönings Algorithmus um einen exponentiellen Faktor. Wir zeigen,
wie man den deterministischen Algorithmus verbessern und schlussendlich Schönings Laufzeit
bis auf einen subexponentiellen Faktor erreichen kann. Dies basiert auf Zusammenarbeit mit
Robin Moser.

Auf einer ganz anderen Idee fusst ein randomisierter Algorithmus, den Paturi, Pudlák
und Zane 1997 entdeckten. Wir verallgemeinern diesen für (d, k)-CSP, also Constraint-Satis-
faction-Probleme, bei dene jede Variable einen von d Werten annehmen kann (im Gegensatz
zu lediglich zwei Werten im booleschen Fall) und jedes Constraint aus höchstens k Literalen
besteht.

Im zweiten Teil untersuchen wir extremalkombinatorische Eigenschaften boolescher Erfüll-
barkeit. Typischerweise betrachtet man eine Funktion µ, die die strukturelle Komplexität von
KNF-Formeln misst. Zum Beispiel könnte µ die Klauseln in einer Formel zählen oder die An-
zahl von Klauselpaaren, die einen Konflikt bilden. Zusätzlich betrachtet man eine Untermenge
P aller KNF-Formeln, beispielsweise die Menge aller k-KNF-Formeln, als KNF-Formeln, bei
denen jede Klausel aus genau k Literalen besteht. Wir stellen nun folgende Frage: ”Was ist
die grösste natürliche Zahl d für welche jede k-KNF-Formel F mit µ(F) ≤ d erfüllbar ist?“,
oder, äquivalent dazu, ”Was ist der kleinstmögliche Wert von µ(F), wenn F eine unerfüllbare

vii

viii ZUSAMMENFASSUNG

Formel aus P ist?“Die Antwort auf die zweite Frage ist gleich der Antwort auf die erste, plus 1.
Uns interessiert das asymptotische Wachstum dieser Zahl in Abhängigkeit von k. Was ist zum
Beispiel die kleinstmögliche Anzahl von Konfliktpaaren in einer unerfüllbaren k-KNF-Formel?
Wir zeigen, dass diese Zahl asymptotisch zwischen 2.69k und 3.51k liegt. Dies geschah in
Zusammenarbeit mit Philipp Zumstein.

Bei einem weiteren Problem sei P die Menge aller linearen k-KNF-Formeln. Dies sind For-
meln, in denen zwei verschiedene Klauseln ins höchstens einer Variable überlappen. Wir be-
weisen recht scharfe Schranken für die Anzahl von Klauseln in unerfüllbaren linearen k-KNF-
Formeln, nämlich dass diese Zahl mindestens Ω(4k/k2) und höchstens O(k244) ist. Weiterhin
zeigen wir untere Schranken für die Baumresolutionskomplexität solcher Formeln.

Acknowledgments

Let be start by expressing my gratitude to my advisor Emo Welzl. My years as his PhD student
were enriching both academically and personally. Through his course on satisfiability he intro-
duced me to the subject that finally became the topic of this thesis. He is definitely a researcher,
teacher, and person out of whose book one should take a leaf. Furthermore, I am sure the open
and collaborative atmosphere in our group owes a lot to him. I am grateful to Ramamohan
Paturi for agreeing to be the co-examiner of this thesis. I enjoyed working together with my
co-authors Timon Hertli, Claudia Käppeli, Robin Moser, and Philipp Zumstein, and hope there
will be more joint work.

I want to thank all current members of the Gremo team: Andrea Francke, Andrea Salow,
Anna Gundert, Bernd Gärtner, Emo Welzl, Gabriel Nivasch, Heidi Gebauer, Marek Sulovský,
Martin Jaggi, Michael Stich, Robin Moser, Timon Hertli, Tobias Christ, Uli Wagner, and Yves
Brise. Also the former members whom I had the pleasure to meet: Robert Berke, Joachim
Giesen, Shankar Ram Lakshminarayanan, Dieter Mitsche, Andreas Razen, Leo Rüst, Eva Schu-
berth, Tibor Szabó, Patrick Traxler, and Philipp Zumstein.

In particular I am grateful to Andrea Salow for her support and the discussions on music;
Andrea Fracke for various fan facts; Anna for being a great neighbor, for proof-reading, and
for her vegan cuisine; Bernd for promising to return to the Gremo Sola team; Emo for the Sola
afterparties; Gabriel for preventing us from becoming a purely German-speaking group; Heidi
for proof-reading and reliably running one of the female-only tracks at Sola; Marek for proof-
reading and the trip to Argentina; Martin for giving the Gremo team something to brag about in
front of people who do not care about math; Michael for being awesome at the Töggelichaschte;
Sebastian and Timon for proudly wearing beards in an otherwise thoroughly shaved group;
Robin for broadening my horizon both academically and concerning the Zürich nightlife; To-
bias for being my office mate and for explaining me the etymology of Chinese characters; Uli
for the coffee, his humor, and his wit; Yves and only Yves for the trip to Helsinki; Philipp for the
trips to Lisbon, China, and Obwalden; Andreas for telling me about a certain TV series; Hen-
ning for being a great roommate; Florian for occasionally asking “Wer?”; Chrisse for having
been the reason hiking up the Säntis; Reto for inviting me to Saarbrücken; Matuš for shaving
his upper lip when everybody else was growing a mustache; Yann for showing up at our party
at 8:50 pm and thinking he was late; Jan Foniok for the week in the Alps. Also I am deeply
grateful to all my friends not already listed above.

Above all I am grateful to my family, to my parents Franz and Charlotte, to my sisters Julia
and Dorothea, and to their children Samuel, Viktor, Henry, Theo, and Mathilda. Thank you for
being there.

ix

Chapter 1

Introduction

THEORETICAL computer scientists know all too well the moments in which a new ac-
quaintance asks them what their subject is about. There are many possible answers,
from serious to cheeky. When I want to give a serious answer, I usually say it is about

drawing a line between simple problems and complex problems. Arguably, the notion of P and
NP is probably the closest thing to such a line which theoretical computer science can offer.

The class of NP-complete problems is widely believed to lie beyond the boundaries of effi-
cient computation. Although all NP-complete problems are, by definition, polynomially equiv-
alent, some are ”more equivalent” than others. A central place among them is held by SAT, the
problem of deciding whether a given Boolean formula in conjunctive normal form is satisfiable.

In this thesis we study SAT from two viewpoints. The first one is algorithmic: Although
we do not aspire to find a polynomial algorithm for SAT, there is a lot of progress that can
be made within the realm of exponential algorithms. The second viewpoint is that of extremal
combinatorics: We study extremal instances of SAT, that is, we try to find unsatisfiable formulas
that minimize a certain parameter measuring their complexity. The goal is to gain a better
understanding of the line between satisfiability and unsatisfiability. One should keep in mind,
however, that NP-completeness means that this border will remain elusive.

The objects we study in this thesis are propositional formulas in conjunctive normal form
(short CNF formulas). For example,

(x ∨ y ∨ z) ∧ (x ∨ ȳ) ∧ (x̄ ∨ z̄)

is such a CNF formula. When we substitute Boolean constants (true and false, often rep-
resented by 1 and 0, respectively) for the variables in a CNF formula, it evaluates to 0 or 1.
For example, when substituting x 7→ 1, y 7→ 1, z 7→ 0, the above formula evaluates to 1, when
substituting x 7→ 1, y 7→ 1, z 7→ 1, it evaluates to 0. Such a substitution is called an assignment.
A CNF formula is satisfiable if there is an assignment that satisfies F , i.e., makes it evaluate to 1.
The problem of deciding whether a given CNF formula is satisfiable is called SAT and plays a
central role in theoretical computer science.

Of particular interest are formulas in which every clause consists of exactly k literals. These
are called k-CNF formulas. If every clause consists of at most k literals, we call it a (≤ k)-CNF
formula. Consequently, k-SAT is the problem of deciding whether a given (≤ k)-CNF formula
is satisfiable. The most intensively studied case is k = 3, because this is the smallest k for which

1

Chapter 1. Introduction 2

k-SAT is NP-complete.
A CNF formula is a formula in propositional logic, but it is also a combinatorial object. To

underline its combinatorial nature and to simplify notation, we will view a clause as a set of
literals and a CNF formula as a set of clauses. This removes duplicate literals and duplicate
clauses, but since ∨ and ∧ are idempotent operators, this makes no difference. For example, we
will write the above formula as

F = {{x, y, z}, {x, ȳ}, {x̄, z̄}} .

Assigning Boolean constants to variables in a CNF formula yields a new CNF formula: Remove
all clauses that evaluate to 1, and from the remaining clauses remove all literals that evaluate to
0. We we write assignments as lists of variable substitutions, for example β = [x 7→ 1, y 7→ 1].
For the above formula F we see that F [β] = {{z̄}}.

Constraint Satisfaction Problems

SAT is a member of a larger family of Constraint Satisfaction Problems. The constraint satisfaction
problems we consider in this thesis are similar to CNF formulas, just that each variable can take
on one of d different values. Consequently, a literal is an expression of the form x 6= c, where
c ∈ {1, . . . , d}. A constraint is a disjunction of literals, and a CSP formula is a conjunction of
constraints. If each variable ranges over d values and each constraint consists of at most k

literals, we call the formula a (d,≤ k)-CSP formula. For example

F = (x 6= 1 ∨ y 6= 3) ∧ (x 6= 2 ∨ z 6= 2) ∧ (x 6= 2 ∨ y 6= 3)

is a (3,≤ 2)-CSP formula. The variable assignment mechanism of CNF formulas works for
CSP formulas, as well: Substituting 2 for x makes the literal x 6= 1 evaluate to true and x 6= 2
evaluate to false, thus

F [x 7→2] = (z 6= 2) ∧ (y 6= 3) .

A CSP formula is satisfiable if there is an assignment that makes the formula evaluate to true.
Note that a (2,≤ k)-CSP formula is essentially the same as a (≤ k)-CNF formula, although they
look slightly different. To ease notation, we regard a CSP formula as a set of constraints and a
constraint as a set of literals of the form (x 6= c).

1.1 Why SAT?

Why does SAT play a central role in theoretical computer science and take such a prominent
place among NP-complete problems? I think it is because SAT is both simple enough and gen-
eral enough. Simple enough to allow combinatorial reasoning, and general enough to model
all sorts of other problems in a quite natural fashion.

SAT is simple. If SAT is called the mother of all NP-complete problems, then the great-great-
grandmother would be NDTM-ACCEPTANCE: Given the description of a nondeterministic Tur-
ing machine M , a “yardstick” 1t and an input string x, does M accept x within t steps? This
problem is even more general then SAT, but it is definitely not simple. It is so general that the

2

Chapter 1. Introduction 3

theorem “NDTM-ACCEPTANCE is NP-complete” becomes a triviality, whereas the Cook-Levin
Theorem, “3-SAT is NP-complete”, is one of the most fundamental results in complexity theory.

Also, SAT is much more amenable to combinatorial reasoning than Turing machines are.
Take for example the rich and deep topic of random k-SAT: It is natural to define a probability
distribution on k-CNF formulas, and, as it happens, these distributions exhibit many interest-
ing phenomena. In contrast to this, defining a probability distribution on triples (M, 1t, x), the
instances of NDTM-ACCEPTANCE, feels much less natural and will probably not give very
interesting results.

SAT is general. While SAT has a simple combinatorial structure, it is still general enough
to serve as a “modeling language” for many problems. If you think that any NP-complete
language L can model any other NP-language L′, via many-one-reductions, you are of course
right. However, some reductions are very natural, while some are less so. For example, formu-
lating HAMILTONIAN PATH as a SAT problem is more or less straightforward, whereas reduc-
ing SAT to HAMILTONIAN PATH requires the design of several clever gadgets.

Another advantage of SAT is the variable substitution mechanism. Let F be a CNF formula,
and suppose we have already decided that we want to set x and y to 1 and z to 0. We want to
know whether we can complete this partial assignment to a satisfying assignment. We could
call this the Assignment Completion Problem. Note that this is the same as asking whether the
CNF formula F [x 7→1,y 7→1,z 7→0] is satisfiable. We conclude that an instance of the Assignment
Completion Problem is again an instance of SAT.

Consider the same scenario for HAMILTONIAN PATH. We are given a graph, and suppose
we have already decided that the edges e1, e2, and e3 should be part of our Hamiltonian path.
Can we complete this to a Hamiltonian path? This Hamiltonian Path Completion Problem is in
itself not an instance of HAMILTONIAN PATH, and I do not see any direct way to make it one.
Maybe there exists a way, but it is definitely not as simple and immediate as for SAT.

1.2 Algorithms for SAT

Since SAT is NP-complete, there is little hope for finding an efficient algorithm, and researchers
have settled for the more modest goal of finding moderately exponential algorithms. Typically
one expresses the running time in terms of n, the number of variables in a formula. In the
Boolean case, there are 2n assignments to these variables, thus a brute-force search yields an
O(2npoly(n)) algorithm. A moderately exponential algorithm is one running in time O(anpoly(n)),
where a is smaller than 2. Interestingly, for SAT in its full generality no such algorithm is
known. However, if we restrict the size of clauses, i.e., when focusing on k-SAT for some con-
stant k, quite sophisticated algorithms have been discovered.

The earliest papers investigating algorithms for SAT are A computing procedure for quantifica-
tion theory by Davis and Putnam [DP60] from 1960 and A machine program for theorem-proving by
Davis, Logemann, and Loveland [DLL62] from 1962. The titles nicely illustrate that SAT has its
roots in mathematical logic and artificial intelligence, and not in combinatorics. Also note that
the papers appeared roughly ten years before the notion of NP-completeness was discovered
by Cook and Levin [Coo71, Lev73].

3

Chapter 1. Introduction 4

Splitting Algorithms

The algorithms presented in [DP60, DLL62] already contain a key feature of many subsequent
SAT algorithms: Splittings. Let F be a CNF formula and x a variable. Then F is satisfiable if and
only if F [x 7→0] is satisfiable or F [x 7→1] is. Thus one can decide satisfiability of F by recursively
solving F [x 7→0] and F [x 7→1]. If F contains n variables, then both subsequent formulas contain
at most n − 1 variables. Naively implemented, this gives an O(2npoly(n)) algorithm solving
SAT. This feature is sometimes called self-reducibility, a feature exhibited by many NP-complete
problems, although, as discussed above, it is not always as obvious as for SAT.

For small k, one can solve k-SAT in significantly less than O(2n) steps: Consider 3-SAT. Take
any clause C ∈ F . Suppose C has three literals, i.e., C = {u, v, w}. Note that F is satisfiable
if and only if at least one of the three formulas F [u 7→1], F [u 7→0,v 7→1], and F [u 7→0,v 7→0,w 7→1] is sat-
isfiable. Recursing on these formulas, we obtain an algorithm running in time O(tnpoly(n)),
where t0 = t1 = t2 = 1 and tn = tn−1 + tn−2 + tn−3, for n ≥ 3. Using standard methods, one can
show that tn ∈ Θ(an) for a ≈ 1.84 being the unique positive root of a3−a2−a−1. Note that this
algorithm can be improved if F contains a clause of size 2 (or 1, or 0). In [MS85], Monien and
Speckenmeyer made the crucial observation that ”in most cases”, F contains a 2-clause. Thus,
they improved the running time to O(bnpoly(n)), where b ≈ 1.619 is the unique positive root
of x2 − x− 1 (this is the inverse of the golden ratio). Their algorithm is a good illustration how
in the field of exponential algorithms, simple but non-obvious insights can lead to significantly
faster algorithms.

Over time, researchers have improved the worst-case running time for 3-SAT to O(1.505n)
(Kullmann [Kul99]) and O(1.476n) (Rodošek [Rod96]). Unfortunately, these algorithms became
more and more complicated.

Non-Splitting Algorithms

Since the mid-90s, a new generation of SAT-algorithms has emerged. They differ from pre-
vious ones in two crucial points: They do not use splittings and they are randomized. In
1997, Paturi, Pudlák, and Zane presented a simple randomized algorithm that can be seen as
inspired by splitting algorithms, but the analysis of its running time is completely different.
Their algorithm, henceforth abbreviated ppz, works as follows: Pick a variable x randomly
from all variables in F , and set it randomly to 0 or 1, unless the correct value of x is “clear”.
Here, “clear” means that F contains a unit clause {x} (in which case 1 is clearly the correct
value), or {x̄} (in which case it is 0). Paturi, Pudlák, and Zane show that if F is a satisfiable
(≤ k)-CNF formula, than this procedure finds a satisfying assignment with probability at least
2−(1−1/k)n. Repeated 2(1−1/k)n times, this gives a Monte Carlo algorithm for k-SAT. For k = 3,
the running time is O(22n/3poly(n)) ⊆ O(1.588n). This is much slower than the best splitting
algorithms mentioned above, but notice the fantastic simplicity of this algorithm! Now let us
change the meaning of “clear” in this algorithm: Set x randomly unless there is a constant-size
subformula of F that implies1 x (in which case we set it to 1) or implies x̄ (set it to 0). This
gives a much more powerful algorithm, called ppsz after its authors Paturi, Pudlák, Saks, and

1Here, ”imply” is meant in its literal sense from logic: A formula G implies x if any assignment that satisfies G

sets x to 1.

4

Chapter 1. Introduction 5

Zane [PPSZ05]. Simple though this algorithm appears, analyzing its success probability turns
out to be challenging. For 3-SAT, the authors prove a lower bound of 1.362−n, but the true
value is still not known.

A completely different approach was discovered by Schöning [Sch99], based on random
walks. Given a CNF formula F , choose some assignment α uniformly at random. Then locally
correct it up to 3n times. That means, pick an unsatisfied clause (if there is any), pick a variable
therein at random, and change the value α assigns to it. Thus that clause is satisfied, but other
clauses might become unsatisfied. In this thesis, we call this algorithm Schöning. The idea
of using random walks for SAT dates back to Papadimitriou [Pap91], who used it to obtain
a quadratic algorithm for 2-SAT. For k ≥ 3, Schöning proved that if F is a satisfiable (≤ 3)-
CNF formula, the algorithm Schöning finds a satisfying assignment with probability at least(

k
2(k−1)

)n
. For k = 3, this gives a Monte Carlo algorithm for 3-SAT running in time O(1.334n).

This is much faster than everything we have seen so far.

This is not the end of the story. First, Schöning’s algorithm can be improved if the ini-
tial assignment α is not chosen uniformly at random, but taking the structure of F into ac-
count [HSSW02, Rol03]. Second, Iwama and Tamaki [IT04] showed that ppsz performs better
on formulas with few satisfying assignments, while Schöning is better on formulas with many
satisfying assignments. Thus, running both ppsz and Schöning simultaneously should im-
prove the success probability in general. The following table gives an overview of the stepwise
improvements for 3-SAT.

Time Authors Algorithm
1.3633n Pudlák, Paturi, Saks, and Zane [PPSZ05] ppsz

1.334n Schöning [Sch99] Schöning

1.3302n Hofmeister et al. [HSSW02] Schöning improved
1.32793n Rolf [Rol03] Schöning improved
1.32373n Iwama and Tamaki [IT04] ppsz+ Schöning

1.32216n Rolf [Rol05] ppsz+ Schöning

1.32153n Hertli, Moser, and Scheder [HMS] ppsz+ Schöning

1.32113n Iwama, Seto, Takai, and Tamaki [ISTT] ppsz+ Schöning improved
1.321n Hertli, Moser, and Scheder [HMS] ppsz+ Schöning improved

Deterministic Algorithms

The algorithms Schöning and ppsz, as well as their improvements and combinations, are all
randomized. This immediately raises the question of what we can achieve with deterministic
algorithms. Shortly after Schöning published his algorithm, Dantsin, Goerdt, Hirsch, Kannan,
Kleinberg, Papadimitriou, Raghavan and Schöning [DGH+02] presented a deterministic ver-
sion of it, albeit with a worse running time, namely O

((
2k

k+1

)n
poly(n)

)
for k-SAT. For k = 3,

this is O(1.5npoly(n)). Since then, several researchers have improved upon this running time.
We give a summary over this development for k = 3, ignoring polynomial factors in n.

5

Chapter 1. Introduction 6

time Authors
O(1.334n) Schöning [Sch99], randomized
O(1.5n) Dantsin et al. [DGH+02]
O(1.481n) Dantsin et al. [DGH+02]
O(1.473n) Brueggemann and Kern [BK04]
O(1.465n) Scheder [Sch08]
O(1.439n) Kutzkov and Scheder [KS10]
O(1.334n) Moser and Scheder [MS10]

Results

In Chapter 3, we present a simple deterministic version of Schöning’s algorithm solving k-SAT

in time O

((
2k

k+1

)n+o(n)
)

, exceeding the randomized running time by only a subexponential

factor. This is joint work with Robin Moser [MS10]. In Chapters 4, we generalize the algorithm
by Dantsin et al. [DGH+02] to (d, k)-CSP problems and study a surprising way to improve it for
d ≥ 3. Finally we show how our deterministic version of Schöning’s algorithm for k-SAT can
be turned into an algorithm for (d, k)-CSP. This too is joint work with Robin Moser. Finally, in
Chapter 6, we generalize the algorithm ppz to (d, k)-CSP and provide an analysis of its success
probability.

Methods

Dantsin et al. make Schöning algorithm deterministic in two steps: First, instead of choosing
the initial assignment randomly, they construct a covering code. Roughly speaking, they cover
the solution space {0, 1}n with Hamming balls of a certain radius, one of which is guaranteed to
contain a satisfying assignment – provided the input formula is satisfiable. This derandomizes
Schöning’s random choice of the initial assignment. The subsequent random walk is replaced
by a recursive procedure. This procedure decides deterministically whether a given Hamming
ball contains a satisfying assignment. Unfortunately, the running time of this procedure is
suboptimal and makes the whole algorithm considerably slower than Schöning.

Our main achievement is to replace the recursive procedure of Dantsin et al. by a second
application of covering codes, but now the code is not binary, but over an alphabet of size k.
Simple though this seems, it took almost decade to be discovered.

In Chapter 6, we generalize ppz to (d, k)-CSP. This itself is straightforward. Analyzing
its success probability is more difficult. For the analysis of ppz for k-SAT, one basically has
to consider one clause per variable, but for (d, k)-CSP, one considers up to d − 1 clauses per
variable, which may intersect in complex patterns. We have to study the correlation between
certain random variables to prove that a certain simple case which we can analyze is indeed
the worst case.

Why Care?

Why do we try to find faster and faster algorithms for SAT? After all, we are pretty much
convinced that no algorithm will truly be fast—given that SAT is NP-complete and most likely

6

Chapter 1. Introduction 7

P 6= NP. Furthermore, the improvements seem to become smaller and smaller. Does this go
on forever, or is there some insurmountable barrier? To formalize this question, Impagliazzo,
Paturi, and Zane [IPZ01] define

c3 := inf{c ≥ 1
∣∣ 3-SAT can be solved in time O(cn)}

and formulate the exponential time hypothesis, short ETH:

Exponential Time Hypothesis [IPZ01]: c3 > 1. In other words, there is some
c > 1 such that 3-SAT cannot be solved in time O(cn).

If this hypothesis is true, then the exact value of c is probably less interesting than the
question which algorithm achieves it. Is there a fairly simple algorithm running in time cn+o(n)?
Or, can we approach cn only by more and more complicated algorithms? Are these algorithms
based on random walks? Is it similar to ppz and ppsz? Does it follow a completely different
approach? Can it be made deterministic?

Although most experts believe that c3 > 1, there is no good candidate for it at the moment.
Let us do the following thought experiment: Tomorrow some smart person comes up with
an algorithm solving 3-SAT in time O(2n/3poly(n)), which is faster than current algorithms.
Suppose further that for the next ten to twenty years nobody could improve upon this running
time. I bet that many people will conjecture that c3 = 3

√
2, based solely on the lack of progress.

My hope is that by consistently trying to improve current algorithms and to discover new ones,
we will at some point hit such a border.

Finally, why do we care whether a certain algorithm can be made deterministic? First, I
think that it is a fundamental question in complexity theory whether randomness can really
speed up computation, or whether it is just a convenient tool for us to deal with our lack of
knowledge. Second, if a deterministic algorithm finds out that a given formula is unsatisfiable,
then this serves as a proof of unsatisfiability. For example, most splitting algorithms implic-
itly build up a resolution proof when running on an unsatisfiable formula. Thus, there is a
connection between resolution complexity and splitting algorithms. Can we define a different
proof system for unsatisfiability that relates to deterministic local search algorithms in a way
in which resolution relates to splitting algorithms?

1.3 Extremal Combinatorics

We introduce the subject of extremal combinatorics of CNF formulas by discussing a toy prob-
lem. Consider the CNF formula

{{x, y, z}, {x̄, y, u}, {x̄, ȳ, z}, {x̄, y, z̄}, {ū, y, z}, {x̄, ȳ, ū} .

It is not difficult to see that this formula is satisfiable. For example, the assignment x 7→ 1, y 7→
1, z 7→ 1, u 7→ 0 satisfies it. But now imagine that in two thousand years some archaeologist
discovers, in the charred remnants of some ETH library, a copy of this thesis. The above formula
is barely readable anymore, and all our geologist can make out is

{{x, ∗, ∗}, {∗, ∗, u}, {∗, ȳ, ∗}, {∗, ∗, ∗}, {∗, ∗, z}, {x̄, ∗, ū} ,

7

Chapter 1. Introduction 8

where ”*” stands for a character that cannot be read anymore. Can she determine whether
this formula is satisfiable? Yes, she can! Her computer science friend tells her that any 3-CNF
formula with fewer than eight clauses is satisfiable. Why is this so? Set every variable to 0
or 1 uniformly at random, independently. A 3-clause is unsatisfied with probability 1/8. By
linearity of expectation, the expected number of unsatisfied clauses in the above formula is
6 · 1/8, which is less than 1. Therefore, there must be some assignment for which the number
of unsatisfied clauses is less than 1, hence 0, i.e., an assignment that satisfies the formula. We
can easily generalize this statement:

Any k-CNF formula with fewer than 2k clauses is satisfiable.

It is not difficult to see that this is tight, i.e., that there are unsatisfiable k-CNF formulas with
2k clauses, for every k. Note that it is important to distinguish between (≤ k)-CNF formulas,
in which each clause has at most k literals, and k-CNF formulas, in which each clause has
exactly k literals. The above observation opens the door to extremal combinatorics of CNF
formulas, a subject which we investigate in the second part of this thesis. The generic extremal
combinatorial question reads like this: We have some integer-valued complexity measure µ

and some property P of CNF formulas and want to answer the question

What is the largest d ∈ N0 such that every CNF formula F with property P and
µ(F) ≤ d is satisfiable?

Let us denote this number d by ex(µ,P). If we define µ(F) := |F |, the number of clauses,
and let P be the property of being a k-CNF formula, then the observation by our archeologist’s
computer science friend can be succinctly stated as

ex(| · |, k-CNF) = 2k − 1 .

Related Work

We will give some examples of extremal combinatorial questions concerning CNF formulas
that have been investigated in the past.

Clause Neighborhoods For a clause C and a CNF formula F , define the neighborhood of C in
F to be

ΓF (C) := {D ∈ F
∣∣ C 6= D, vbl(C) ∪ vbl(D) 6= ∅

and l(F) := max{|ΓF (C)|
∣∣ C ∈ F}. What is ex(l, k-CNF)? In words, what is the largest d such

that every k-CNF formula F with l(F) ≤ d is satisfiable? One obtains a lower bound from the
famous Lovász Local Lemma [EL75]:

Let F be a k-CNF formula with l(F) ≤ 2k/e− 1. Then F is satisfiable.

Consider the k-CNF formula F consisting of all 2k clauses over the variables x1, . . . , xk. This
formula is unsatisfiable, and l(F) = 2k − 1. Thus,

2k/e− 1 ≤ ex(l, k-CNF) ≤ 2k − 1 .

Recently, Gebauer, Szabó, and Tardos [GST10] managed to determine this parameter up to
lower order terms: ex(l, k-CNF) = (1 + o(1))2k/e. Here, o(1) is some function that tends to 0
as k grows.

8

Chapter 1. Introduction 9

Variable Degree The degree of a variable x in a CNF formula F is

degF (x) := |{C ∈ F
∣∣ x ∈ vbl(C)}| ,

and deg(F) := max{degF (x)
∣∣ x ∈ vbl(F)} is the maximum degree of F . Note that if F is a k-CNF

formula, then
l(F) ≤ k(deg(F)− 1) .

Again, our extremal combinatorial question is

What is the largest d ∈ N0 such that every k-CNF formula F with deg(F) ≤ d is
satisfiable?

More succinctly, what is ex(deg, k-CNF)? From the above discussion, it follows that

ex(deg, k-CNF) ≥ (ex(l, k-CNF) + 1)/k ≥ 2k

ek
.

This result is due to Kratochvı́l, Savický, and Tuza [KST93]. For almost two decades, the true
asymptotics of ex(deg,k-CNF) have been unknown. In 2009, Gebauer [Geb09] constructed
unsatisfiable k-CNF formulas Fk with deg(Fk) ≤ 2k+2/k, thus determining this parameter up
to a constant factor. Shortly afterwards, Gebauer, Szabó, and Tardos [GST10] also determined
the correct constant factor:

ex(deg, k-CNF) = (1 + o(1))
2k+1

ek

Results

We briefly outline the extremal combinatorial problems that we investigate in this thesis. The
first concerns conflicts, whereas the latter deals with linear formulas.

Conflicts We say two clauses C,D have a conflict if C ∩ D̄ 6= ∅. For example, {x, y, z} and
{x̄, ȳ, u} have a conflict. For a CNF formula, we can count the total number of pairs of clauses
that have a conflict. We denote this number by gc(F). The g stands for global and the c for con-
flicts. Intuitively, a k-CNF formula with very few conflicts should be satisfiable. Consequently,
in Chapter 7, we try to determine the asymptotics of ex(gc, k-CNF). It is not difficult to show
that

2k − 1 ≤ ex(gc, k-CNF) ≤
(

2k

2

)
= Θ(4k) .

Our main result from Chapter 7 is to provide non-trivial upper and lower bounds:

Ω(2.69k) ≤ ex(gc, k-CNF) ≤ O(3.51k) .

We suspect that the correct asymptotics is of the form ak+o(k). However, our above result rules
out the two ”obvious” candidates for a, namely a = 2 and a = 4. We have no idea which
number in [2.69, 3.51] would be a reasonable candidate.

In addition to gc, we investigate other notions of conflicts. For example, two clauses C,D

have a 1-conflict if |C ∩ D̄| = 1. Again, we can ask similar questions as above. Of all extremal
parameters, this seems to be the only one we completely understand. In particular, all results

9

Chapter 1. Introduction 10

concerning 1-conflicts are proven using elementary combinatorial reasoning, whereas for most
other results we need the Lovász Local Lemma (for proving lower bounds) and probabilistic
constructions (for proving upper bounds). The results of Section 7.3 and 7.4 are joint work with
Philipp Zumstein [SZ08a, SZ08b]. The results of Section 7.2 have not yet been published.

Linear Formulas In the extremal combinatorial questions above we study what happens if
we restrict the number of ”interactions” between clauses in a formula. Let us now restrict not
the number, but the quality of such interactions. Call a CNF formula F linear if any two clauses
have at most one variable in common, i.e., |vbl(C)∩ vbl(D)| ≤ 1. Clearly, if we require that this
intersection be empty for any two clauses, then F is satisfiable, unless it contains the empty
clause. We see that linearity is quite severe a restriction. It is not obvious whether unsatisfiable
k-CNF formulas exist at all. In Chapter 8 we investigate the size and structure of such formulas.
We try to determine ex(| · |, linear k-CNF) and prove that

4k

8e2k2
− 2k

4e(k − 1)
≤ ex(| · |, linear k-CNF) ≤ 4k24k

In words, there are unsatisfiable linear k-CNF formulas with at most 4k24k clauses, and ev-
ery linear k-CNF formula with at most 4k/(e2k2) clauses is satisfiable. Furthermore, we show
that unsatisfiable linear k-CNF formulas need to exhibit a complex structure, for example their
treelike resolution complexity is rather large. The results of this chapter have been published
in [Sch10].

Methods

Most results in Chapter 7 and 8 use probabilistic methods. To prove upper bounds on extremal
parameters, i.e., to prove that certain unsatisfiable formulas exists, we usually sample a for-
mula from a suitable distribution and prove that with positive probability it is unsatisfiable.
Building a random CNF formula over the variable set V can be thought of as a two-step pro-
cess: First, we build some random hypergraph with vertex set V . Second, we assign positive
and negative signs, i.e., we replace each hyperedge e = {x1, . . . , xk} by a clause {u1, . . . , uk},
choosing ui ∈ {xi, x̄i} according to some distribution. Interestingly, in our applications only
one of these two steps is random, while the other is deterministic. For example, in Chapter 7,
we construct unsatisfiable formulas with a ”sparse” conflict structure. For this, we build a
random hypergraph, but assign positive and negative signs in a simple deterministic manner.
This is in contrast to Chapter 8. Here, we use an algebraic technique to construct the underlying
hypergraph, but then randomly choose positive and negative signs.

Proving a lower bounds for an extremal parameter means showing that a certain CNF for-
mula is satisfiable. We do this mostly using some version of the Lovász Local Lemma. Typically,
a naive application of this fails. We have to subject our formula to some ”truncation process”
that shaves literals off its clauses, thus making the formula less satisfiable, but in some way
making satisfiability easier to detect for the Lovász Local Lemma. Especially when proving a
lower bound on ex(gc, k-CNF), this becomes quite technical.

For proving lower bounds on the treelike resolution complexity of unsatisfiable linear k-
CNF formulas we use the idea of taking a random walk in a given resolution tree. To our

10

Chapter 1. Introduction 11

knowledge, this is quite different from the methods usually used for proving lower bounds on
resolution complexity.

11

Chapter 2

Notation

THE notation of this thesis follows the notation of Emo Welzl’s lecture notes [Wel05].
Should the reader come across some notation he or she does not understand, we rec-
ommend he or she first search for a definition on the current and previous page; sec-

ond, search in this notation chapter; third, look at Emo Welzl’s lecture notes. If all this does not
help, the reader is welcome to ask me for clarification, preferably before this thesis has been
submitted to ETH Zürich.

Variables, Clauses, Formulas.

We denote Boolean variables by x, y, . . . and literals by u, v, . . . A literal is either a Boolean
variable x or its negation x̄. We can also negate literals: Since duplex negatio affirmat, we set ū :=
x if u = x̄. A pair of literals u, v is contradicting if v = ū. A clause is a set of non-contradicting
literals, interpreted as the disjunction (∨). A CNF formula is a set of clauses, interpreted as their
conjunction (∧). By convention, an empty disjunction always evaluates to 0. We denote this
empty clause by �, which is always unsatisfied. An empty conjunction evaluates to 1. This is
the empty formula, denoted by {}, which is always satisfied. We use letters F,G,H for formulas
and C and D for clauses. We define vbl(x) = vbl(x̄) := x, vbl(C) = {vbl(u)

∣∣ u ∈ C} and
vbl(F) =

⋃
C∈F vbl(C). Thus, vbl(F) is the set of variables occurring in F . Finally, for a clause

C we define C̄ := {ū
∣∣ u ∈ C}. Please note that in general C̄ is not ¬C.

A clause C of size k is called a k-clause. If all clauses in F have size k (at most k), then
F is a k-CNF formula, (a (≤ k)-CNF formula, respectively). SAT is the problem of deciding
whether a given CNF formula is satisfiable, and k-SAT is the problem of deciding whether a
given (≤ k)-CNF formula is satisfiable.

Assignments

For a variable set V , assignments are functions V → {0, 1}. We use Greek letters α, β, γ for
assignments. An assignment extends to negated variables via α(x̄) := ¬α(x). An assignment
α satisfies a literal u if α(u) = 1. It satisfies a clause if it satisfies a literal therein, and finally
satisfies a formula if it satisfies all of its clauses. Note that an assignment need not be defined
on all variables of a formula or a clause. For example, α = [x 7→ 1] satisfies the formula

13

Chapter 2. Notation 14

{{x, y}, {x, z̄}}. For a clause C and an assignment α we write α |= C as an abbreviation for “α

satisfies C”, similarly α 6|= C if α does not satisfy C, and α |= F for a formula F . If α is an
assignment and u a literal, then α[u 7→ 1] is the assignment that agrees with α on all variables
besides vbl(u) and maps u to 1.

Formulas can be manipulated by substituting Boolean constants for variables. If α is an
assignment and F is a CNF formula, then F [α] denotes the CNF formula we obtain by doing
just this: We remove every clause that evaluates to 1 under α and in the remaining clauses
remove all literals that evaluate to 0.

For a set of variables V and a CNF formula F , we denote by satV (F) the set of all assign-
ments α : V → {0, 1} that satisfy F . Although we treat CNF formulas like combinatorial
objects, one should not forget that they represent Boolean functions. If V is a variable set and F

and G are CNF formulas with vbl(F) ⊆ V and vbl(G) ⊆ V , we call F and G equivalent, if they
describe the same Boolean function {0, 1}V → {0, 1}. More precisely,

F ≡ G :⇐⇒ satV (F) = satV (G) .

By that definition, all unsatisfiable formulas are equivalent to {�} and equivalent to each other.
We write F ≡SAT G if either both F and G are satisfiable, or both are unsatisfiable. This notation
is convenient but must not be confused with F ≡ G.

Degrees and Neighborhoods

For a literal u and a formula F , we can count the number of occurrences of u in F . This is

occF (u) := |{C ∈ F | u ∈ C}| .

Note that a clause cannot contain both a variable x and its negation x̄. Therefore, degF (x) :=
occF (x) + occF (x̄) is the number of clauses in F containing x or x̄, and we call it the degree x in
F . We define deg(F) := maxx∈vbl(F) degF (x), the maximum degree of F . The neighborhood of
C in F is the set ΓF (C) := {D ∈ F

∣∣ C 6= D, vbl(C)∩ vbl(D) 6= ∅} and l(F) := maxC∈F |ΓF (C)|.
Two clauses C and D have a conflict if C ∩ D̄ 6= ∅. We define Γ′F (C) := {D ∈ F

∣∣ C ∩ D̄ 6= ∅}
and lc(F) := maxC∈F |Γ′F (C)|.

The complete formula over a variable set V is the formula consisting of all 2|V | |V |-clauses
over V . One checks that this formula is unsatisfiable, and every pair of clauses in F has a
conflict. We denote the complete formula by CF (V).

Cubes and Balls

If F is a formula over the variables V with |V | = n, then there are 2n assignments α : V →
{0, 1}. Assuming an order on the variables in V , every assignment is a bit string of length n,
i.e., an element of {0, 1}n. We call {0, 1}n the Hamming cube of dimension n. This is endowed
with a metric, the Hamming distance

dH(α, β) := |{i ∈ {1, . . . , n}
∣∣αi 6= βi}| .

14

Chapter 2. Notation 15

Every metric induces balls: For r ∈ N0 and α ∈ {0, 1},

Br(α) := {β ∈ {0, 1}n
∣∣ dH(α, β)} .

The cardinality of such a ball – we call it the volume – depends only on its radius r and the
dimension, not on its center α, and equals

vol(n, r) =
r∑

j=0

(
n

j

)
.

Constraint Satisfaction Problems

Most of the above terminology generalizes the constraint satisfaction problems (CSP). Variables
are not Boolean anymore, but can take on values from 1 to d. In analogy to graph coloring prob-
lems, these values are often called colors. We speak of d-ary variables. Literals are expressions
of the form (x 6= c). A constraint is a set of literals, interpreted as their disjunction (∨), and a
CSP formula is a set of constraints, interpreted as their conjunction (∧). We always assume that
when a CSP formula is given, the value d is given.

A constraint with k literals is a k-constraint. A (d, k)-CSP formula is a CSP formula in which
every variable can take on values from 1 to d and all constraints have size k. A (d,≤ k)-CSP
formula is defined analogously.

Let be a set V of d-ary variables. An assignment α is a function V → {1, . . . , d}. We say
α satisfies a literal (x 6= c) if α(x) 6= c. For a CSP formula F and an assignment α, the CSP
formula F [α] is defined analogously to the Boolean case.

(d, k)-CSP is the problem of deciding whether a given (≤ d, k)-CSP formula is satisfiable.
Note that (2, k)-CSP is the same as k-SAT, just with a different syntax.

15

Part I

Algorithms for SAT and CSP

17

Chapter 3

Local Search Algorithms for SAT

IN this chapter we present a deterministic algorithm for k-SAT running in time (2(k −
1)/k)n+o(n) based on deterministic local search. This is joint work with Robin Moser [MS10].
The starting point of this chapter is Schöning’s random walk algorithm for k-SAT [Sch99],

for which we will give a self-contained analysis. This algorithm, published in 1999, came as
a surprise, since it is much faster and simpler than previous algorithms. Its running time is
O ((2(k − 1)/k)npoly(n)). For 3-SAT, this gives O(1.334n). Not much afterwards, Dantsin, Go-
erdt, Hirsch, Kannan, Kleinberg, Papadimitriou, Raghavan and Schöning [DGH+02], hence-
forth abbreviated as Dantsin et al., gave a deterministic algorithm running in time O ((2k/(k + 1))npoly(n)),
which is O(1.5npoly(n)) for 3-SAT. Their result can be seen as an attempt to derandomize
Schöning’s random walk. Although theirs is faster and conceptually simpler than previous
deterministic algorithms, it falls short of achieving Schöning’s randomized running time. Over
the years, several researchers have improved the deterministic running time for 3-SAT, but only
recently has the gap between randomized and deterministic algorithms been closed. We sum-
marize the development of deterministic algorithms in the following table. The four middle
rows do not have an entry for general k as those papers deal mainly with the case k = 3.

3-SAT for k-SAT Authors

1.334n
(

2(k−1)
k

)n
Schöning [Sch99], randomized

1.5n
(

2k
k+1

)n
Dantsin et al. [DGH+02]

1.481n - Dantsin et al. [DGH+02]
1.473n - Brueggemann and Kern [BK04]
1.465n - Scheder [Sch08]
1.439n - Kutzkov and Scheder [KS10]

1.334n
(

2(k−1)
k

)n+o(n)
Moser and Scheder [MS10]

We explain Schöning’s random walk algorithm in Section 3.1 and the deterministic algo-
rithm of Dantsin et al. in Section 3.2. Finally, in Section 3.3 we present the derandomization of
Schöning’s algorithm by Moser and myself.

19

Chapter 3. Local Search Algorithms for SAT 20

3.1 Schöning’s Algorithm

Schöning’s algorithm [Sch99] for k-SAT is extremely simple: It chooses a random initial assign-
ment α by setting every variables of F independently to 0 of 1, each with probability 1/2. Then
it performs up to 3n local correction steps. In a local correction step, it chooses an arbitrary
unsatisfied clause from F (if one exists), chooses a literal therein uniformly at random and lo-
cally modifies α as to satisfy that literal, and thus C. If within these 3n steps, it encounters a
satisfying assignment, it returns it. Otherwise, it reports failure. The pseudocode listings
below give a detailed description of the algorithm. The benefits of stating it as two separate
algorithms will become clear soon.

Algorithm 1 Schöning(F : an (≤ k)-CNF formula)

1: α←u.a.r. {0, 1}|vbl(F)| // sample α uniformly at random
2: return Schöning-Walk(F, α)

Algorithm 2 Schöning-Walk(F : an (≤ k)-CNF formula, α: an assignment)
1: for i = 0, . . . , 3|vbl(F)| do
2: if α satisfies F then
3: return α

4: else
5: C ← any clause of F unsatisfied by α

6: u←u.a.r. C // a random literal from C

7: α← α[u 7→ 1]
8: end if
9: end for

10: return failure

Theorem 3.1 (Schöning [Sch99]). If F is a satisfiable k-CNF formula on n variables and k ≥ 3, then

Schöning(F) returns a satisfying assignment with probability at least
(

2(k−1)
k

)−n
1

poly(n) .

The algorithm Schöning uses randomness in two ways: Once for choosing the initial as-
signment α in line 1 of Schöning, and then for steering the random walk, i.e., the at most 3n

choices in line 6 of the algorithm Schöning-Walk. These two procedures are derandomized
separately.

Lemma 3.2 (Schöning [Sch99]). Let F be a satisfiable (≤ k)-CNF formula, α∗ some fixed satisfying
assignment of F , and α an arbitrary assignment. Let r := dH(α, α∗). Then Schöning-Walk(F, α)
returns some satisfying assignment with probability at least (k − 1)−r/poly(r).

Note that the satisfying assignment which the algorithm returns can be different from α∗.
Theorem 3.1 follows easily from the lemma.

Proof of Theorem 3.1. Suppose F is a satisfiable formula and let α∗ be any satisfying assignment.
We say that Schöning is successful if it returns some satisfying assignment, possibly different

20

Chapter 3. Local Search Algorithms for SAT 21

from α∗. We want to show that

Pr[Schöning(F) successful] ≥
(

2(k − 1)
k

)−n 1
poly(n)

.

Consider the initial assignment α that Schöning chooses uniformly at random from {0, 1}n.

Pr[Schöning(F) successful]

= 2−n
∑

α∈{0,1}n

Pr[Schöning-Walk(F, α) successful]

≥ 2−n
∑

α∈{0,1}n

(k − 1)−dH(α,α∗)/poly(n)

=
1

2npoly(n)

n∑
r=0

(
n

r

)
(k − 1)r

=
(

2(k − 1)
k

)n 1
poly(n)

.

This completes the proof of Theorem 3.1.

It remains to prove Lemma 3.2, which we will do in the remainder of this section. Let us
outline the proof. We analyze the evolution of dH(α, α∗), the distance between the current as-
signment and some fixed satisfying assignment α∗. We show that this can be modeled as a
random walk on the integers that starts at r and in every step moves left with probability 1/k

and right with probability 1−1/k. The goal then is to compute the probability that this random
walk reaches 0 within 3n steps. We bound this by computing the probability that the random
walk is in state 0 after dkr/(k − 2)e steps. This probability can easily be computed using bounds
on the binomial coefficient.

Proof of Lemma 3.2. Let F , α, and α∗ be as in the statement of the lemma, let r := dH(α, α∗),
and let n denote the number of variables in F . We first give a proof sketch. We examine how
the Hamming distance dH(α, α∗) evolves. In every iteration of Schöning-Walk, this distance
increases or decreases by exactly 1. There is a probability of least 1/k that it decreases by 1.
We model this by a random walk on the integers that starts at r and in every step decreases
with probability exactly 1/k. We then estimate the probability that this random walk reaches 0
within 3n steps.

Now let us start with the formal proof. Let T denote the number of iterations performed
by Schöning-Walk. This is a random variable, but certainly it holds that 0 ≤ T ≤ 3n. Let
α0 := α and for 1 ≤ i ≤ T let αi denote the assignment α right after the ith iteration of
Schöning-Walk. For all integers i ≥ 1 we define random numbers Di, D

′
i ∈ {−1,+1} as

follows: If i > T , we set Di = D′
i = −1 with probability 1/k and Di = D′

i = +1 with probability
1 − 1/k, independently. For 1 ≤ i ≤ T , let C be the clause Schöning-Walk picks in the ith

iteration and let u ∈ C be the literal it picks from C. We set Di to −1 if α∗(u) = 1, and to +1
otherwise. Note that Pr[Di = −1] ≥ 1/k, since α∗ satisfies C, therefore C contains at least one
literal u such that α∗(u) = 1. The definition of D′

i is more subtle: We want to define D′
i in such

a way that (i) D′
i ≥ Di and (ii) D′

i is −1 with probability exactly 1/k. This is done by setting

21

Chapter 3. Local Search Algorithms for SAT 22

D′
i := max(Di, Zi), where Zi is chosen independently and randomly from {−1,+1} such that

Pr[Zi = −1] = 1/(k Pr[Di = −1]). Clearly, D′
i ≥ Di holds, thus (i) is satisfied. We calculate

Pr[D′
i = −1] = Pr[Di = Zi = −1] = Pr[Di = −1]/(k Pr[Di = −1]) = 1/k. Therefore (ii) holds.

We observe that for 0 ≤ i ≤ T it holds that dH(αi, α
∗) = r + D1 + D2 + · · · + Di. We

define Y0 := r and Yi := r + D′
1 + D′

2 + · · · + D′
i for i ≥ 1. By the properties of the D′

i,
the variables Yi form a random walk on the integers. Note that for 0 ≤ i ≤ T it holds that
dH(αi, α

∗) ≤ Yi. Suppose that Yi = 0 for some 0 ≤ i ≤ 3n. There are two cases: Either
i ≤ T , in which case dH(αi, α

∗) ≤ Yi ≤ 0. This implies that dH(αi, α
∗) = 0, thus αi = α∗,

and Schöning-Walk returns a satisfying assignment. Or, T < i ≤ 3n, which means that
Schöning-Walk stops before completing 3n iterations. This means that it returns a satisfying
assignment. We conclude that

Pr[Schöning-Walk(F, α) successful] ≥ Pr[∃0 ≤ i ≤ 3n : Yi = 0] .

There are two reasons why this is an inequality rather than an equality: First, if F has multiple
satisfying assignments, it could be that for some 0 ≤ i ≤ 3n, the assignment αi satisfies F ,
although αi 6= α∗. In this case, the algorithm returns a satisfying assignment after i iterations,
but Yi can still be large. Second, it could happen that the clause C picked by Schöning-Walk
contains several literals u for which α∗(u) = 1 or |C| < k. In this case, Di is−1 with probability
greater than 1/k.

What is the probability that Yi = 0 for some 0 ≤ i ≤ 3n? If we have an answer to this
question, we have a lower bound for the success probability of Schöning-Walk. Let t :=
dkr/(k − 2)e. The probability that Yi = 0 for some 0 ≤ i ≤ 3n is at least Pr[Yt = 0].

Lemma 3.3. Suppose Y0 = r and set t = dkr/(k − 2)e. Then Pr[Yt = 0] ≥ (k − 1)−r/poly(r).

Proof. For the sake of readability we will drop the ceiling notation. Since we are ready to give
away polynomial factors in r anyway, this will cause no problems. If during the t steps Yi

decreases a := k−1
k−2r times and increases b := 1

k−2r times, then and only then Yt = 0. One
checks that a+ b = t and r + b− a = 0. The incrementing and decrementing steps can of course
be mixed, in a total of

(
t
a

)
ways. Thus, we conclude that

Pr[Yt = 0] =
(

1
k

)a(k − 1
k

)b(t

a

)
.

We will use the following approximation of the binomial coefficient.

Lemma 3.4 (MacWilliams, Sloane [MS77], Chapter 10, Corollary 9). For 0 ≤ ρ ≤ 1/2 and t ∈ N,
it holds that (

t

ρt

)
≥ 1√

8tρ(1− ρ)

(
1
ρ

)ρt(1
1− ρ

)(1−ρ)t

.

Often, one abbreviates this expression by writing
(

1
ρ

)ρt (
1

1−ρ

)(1−ρ)t
= 2H(ρ)t, where H(ρ) =

−ρ log2 ρ− (1− ρ) log2(1− ρ) is the binary entropy function. The rest of the proof of Lemma 3.3

22

Chapter 3. Local Search Algorithms for SAT 23

is just a calculation:

Pr[Yt = 0] =
(

1
k

)a(k − 1
k

)b(t

a

)
≥

(
1
k

)a(k − 1
k

)b(t

a

)a(t

b

)b 1
poly(t)

≥
(

1
k

)a(k − 1
k

)b(k

k − 1

)a

kb 1
poly(t)

=
(k − 1)b−a

poly(t)
=

(k − 1)−r

poly(t)
.

We conclude that Pr[Yt = 0] ≥ (k − 1)−r/poly(r).

We have shown that Pr[Yt = 0] ≥ (k−1)r/poly(r), where (Yi)i∈N0 is the random walk on the
integers described above, r = Y0, and t = dkr/(k − 2)e. Let us finish the proof of Lemma 3.2.
Above, we have seen that Xi ≤ Yi if Schöning-Walk runs for at least i steps. Since Xi = 0
implies that Schöning-Walk returns a satisfying assignment, we conclude that this happens
with probability at least (k − 1)r/poly(r).

Let us reflect on the term (k − 1)−r for some seconds. Note that with probability k−r, the
random walk Yi makes r steps to the left and reaches 0 within r steps. Now k−r is much smaller
than (k − 1)−r. This means that while it is unrealistic to hope that Yi will reach 0 in within 3n

steps in the first place (after all, (k− 1)−r is exponentially small), it is even less realistic to hope
that it goes there directly, without making any mistakes. The best we can hope for is to reach
0 by making some b = r/(k − 2) mistakes and making a = k−1

k−2r correct steps. Also let us
point out, without proof, that (k − 1)−r/poly(r) is more or less optimal: One can show that the
probability that Yi reaches 0 after finitely many steps is (k − 1)−r, i.e., most of the times Yi never
reaches 0.

3.2 The Algorithm by Dantsin et al.

As mentioned above, Schöning’s algorithm uses randomness in two ways: First to choose an
initial assignment, then to steer a random walk. In 2002, Dantsin et al. used a deterministic
construction of covering codes to derandomize the first step, losing only a polynomial factor
in n in the running time. For the second step, the random walk, they gave a simple recursive
procedure that unfortunately falls short of achieving Schöning’s randomized running time. In
this section we explain their approach in detail.

Theorem 3.5 (Dantsin et al. [DGH+02]). There is a deterministic algorithm, called cover-search,
solving k-SAT in time (2k/(k + 1))npoly(n).

Note that k/(k+1) > (k−1)/k, therefore the running time of cover-search is larger than
the expected running time of Schöning. For example, for 3-SAT Schöning has an expected
running time of O(1.334n), whereas cover-search achieves O(1.5npoly(n)). For large values
of k, the difference diminishes, but this is not surprising, as both running times converge to the

23

Chapter 3. Local Search Algorithms for SAT 24

trivial upper bound of O(2n). To understand the approach of Dantsin et al., we introduce an
auxiliary problem which we call BALL-k-SAT.

BALL-k-SAT: Given a (d,≤ k)-CNF formula F over n variables, a assignment
α to these variables, and a natural number r. Decide whether Br(α) contains a
satisfying assignment.

Algorithm 3 sat-searchball(k-CNF formula F , assignment α, radius r)
1: if α satisfies F then
2: return true

3: else if r = 0 then
4: return false

5: else
6: C ← any clause of F unsatisfied by α

7: return
∨

u∈C sat-searchball(F [u=1], α, r − 1)
8: end if

Proposition 3.6 (Dantsin et al. [DGH+02]). The algorithm sat-searchball solves BALL-k-SAT
in time O(krpoly(n))

Proof. The running time is easy to analyze: If F is a (≤ k)-CNF formula, then each call to
sat-searchball causes at most k recursive calls. To see correctness of the algorithm, we
proceed by induction on r. If r = 0, then B0(α) = {α}, and the algorithm returns true if and
only α satisfies F . For the induction step, first consider the case that there is some α∗ that satis-
fies F and dH(α, α∗) ≤ r. Let C be the clause selected in line 6. Since α∗ satisfies C but α does
not, there is at least one literal u ∈ C such that α∗(u) = 1 and α(u) = 0. Let α′ := α∗[u := 0].
We observe that d(α, α′) ≤ r− 1 and α′ satisfies F [u:=1] (although not necessarily F). Therefore
the induction hypothesis ensures that the recursive call to sat-searchball(F [u:=1], α, r − 1)
returns true. On the other hand, if Br(α) contains no satisfying assignment of F , then Br−1(α)
does not contain any satisfying assignment for F [u 7→1]. Therefore, sat-searchball returns
false in this case.

One can view sat-searchball as a deterministic version of the randomized algorithm
Schöning-Walk, albeit having a worse running time. How do Dantsin et al. derandomize
Schöning, i.e., the choice of the initial assignment?

Covering Codes

Definition 3.7. Let C ⊆ {0, 1}n and r ∈ N0. If⋃
α∈C

Bα(r) = {0, 1}n , (3.1)

then we call C a covering code of radius r and length n.

24

Chapter 3. Local Search Algorithms for SAT 25

If C is a covering code of radius r and length n, then we can decide satisfiability of a k-CNF
formula F over n variables by calling sat-searchball(F, α, r) for each α ∈ C. This takes
time

O(|C|krpoly(n)) . (3.2)

Note that the volume vol(n, r) := |Bα(r)| =
∑r

i=0

(
n
i

)
is independent of α. By a volume argu-

ment, it is immediately clear that |C| ≥ 2n/vol(n, r) for any code C of length n and covering
radius r.

Lemma 3.8 ([DGH+02]). For all n ∈ N 0 ≤ r ≤ n, every code C of covering radius r and length n

has at least 2n

vol(n,r) elements. Furthermore, there is such a C with

|C| ≤ 2npoly(n)
vol(n, r)

,

and furthermore, C can be constructed deterministically in time |C|poly(n).

We will encounter several covering code constructions in this chapter. We will therefore
give a detailed proof of Lemma 3.8 in Chapter 5. Continuing with the proof of Theorem 3.5,
observe that the lemma implies that we can solve k-SAT in

O

(
2nkrpoly(n)

vol(n, r)

)
(3.3)

steps, by calling sat-searchball(F, α, r) for each α ∈ C. All that remains now is to estimate(
n
r

)
and find the optimal radius r.

Theorem 3.9 (Dantsin et al. [DGH+02]). Suppose some algorithm A solves BALL-k-SAT in O(arpoly(n))
steps. Then there is an algorithm B solving k-SAT in time O((2a/(a + 1))npoly(n)), and B is deter-
ministic if A is.

Proof. Set r := n/(a + 1) and construct a covering code C of radius r and length n and call
A(F, α, r) for each α ∈ C. To estimate the running time, we use the lower bound on vol(n, r)
given in Lemma 3.4. The total running time is at most

|C|arpoly(n) ≤ 2narpoly(n)
vol(n, r)

≤ 2nan/(a+1)poly(n)

(a + 1)n/(a+1)
(

a+1
a

)na/(a+1)

=
(

2a

a + 1

)n

poly(n) .

A more detailed calculation (using elementary calculus for example) also shows that the choice
r = n/(a + 1) is indeed optimal. This completes the proof.

Since sat-searchball solves BALL-k-SAT in time O(krpoly(n)), it also solves PROMISE-BALL-k-SAT
in time O(krpoly(n)), and therefore we can solve k-SAT in time O((2k/(k + 1))npoly(n)). This
proves Theorem 3.5. We summarize this in the algorithm cover-search.

Note that the running time of cover-search is much larger than that of Schöning, which
is O((2(k−1)/k)npoly(n)). In this sense, cover-search is not a complete derandomization of
Schöning. In the next section we will close this gap by presenting an improved deterministic
algorithm.

25

Chapter 3. Local Search Algorithms for SAT 26

Algorithm 4 cover-search((≤ k)-CNF formula F over n variables)
1: r := n/(k + 1).
2: construct a covering code C of radius r and |C| ≤ 2n

(n)poly(n)

3: return
∨

α∈C sat-searchball(F, α, r)

3.3 A Complete Derandomization of Schöning’s Algorithm

In this section we will present a complete derandomization of Schöning’s algorithm. This
is joint work with Robin Moser [MS10]. One part of the derandomization of Schöning’s al-
gorithm has already been solved by Dantsin et al. [DGH+02] via covering code construc-
tions. In our terminology, they have completely (i.e., with only subexponential loss in the
running time) derandomized the algorithm Schöning we defined above. However, their algo-
rithm sat-searchball, which is the deterministic analog to Schöning-Walk, runs in time
O(krpoly(n)), thus falling short of achieving the running time of the Monte Carlo version of
Schöning-Walk, which is O((k − 1)rpoly(n)). We present an algorithm searchball-fast

that does not solve BALL-k-SAT but a promise version of it, which we call PROMISE-BALL-k-
SAT:

PROMISE-BALL-k-SAT. Given a (≤ k)-CNF formula F , an assignment α and a
radius r, PROMISE-BALL-k-SAT is the following promise problem: If Br(α) con-
tains a satisfying assignment for F , answer true; if F is unsatisfiable, answer
false; otherwise, i.e., if F is satisfiable but Br(α) contains no satisfying assign-
ment, answer true or false, arbitrarily.

Note that every algorithm solving BALL-k-SAT solves PROMISE-BALL-k-SAT, but the con-
verse does not necessarily hold. In particular, it is easy to see that PROMISE-BALL-2-SAT can
be solved in polynomial time, simply by deciding whether the given (≤ 2)-CNF formula is
satisfiable, whereas BALL-2-SAT is NP-complete, as a simple reduction from VERTEX COVER

shows. The main result of this chapter is the following theorem:

Theorem 3.10. There is a deterministic algorithm solving PROMISE-BALL-k-SAT in time O((k −
1)r+o(r)poly(n)).

In Theorem 3.9 we showed how an algorithm for BALL-k-SAT translates to an algorithm
for k-SAT. In fact, exactly the same proof shows that this works also if the given algorithm does
not solve BALL-k-SAT but only PROMISE-BALL-k-SAT. Thus, Theorem 3.9 and Theorem 3.10
together yield the following result.

Theorem 3.11. There is a deterministic algorithm solving PROMISE-BALL-k-SAT in time (2(k −
1)/k)n+o(n).

Proof Sketch of Theorem 3.10. Given F , α, and r, our new algorithm tries to collect a maximal
set of pairwise independent unsatisfied clauses. This yields a subformula G with m clauses and
km variables. If m is small, we can iterate over all 2km assignments β to those variables and
consider F [β]. By maximality of G, all unsatisfied clauses of F [β] are of size at most k − 1.

26

Chapter 3. Local Search Algorithms for SAT 27

For such a formula, PROMISE-BALL-k-SAT and even BALL-k-SAT can easily be solved in time
O((k − 1)rpoly(n)).

The interesting case is when m is very large. In this case, we consider the set S of assign-
ments β ∈ {0, 1}vbl(G) that satisfy exactly one literal in each clause in G. We construct a covering
code for S of some specific radius and recurse for each element of this code.

Proof of Theorem 3.10. Let us reconsider sat-searchball on page 24. We have seen above
that sat-searchball solves BALL-k-SAT (and thus also solves PROMISE-BALL-k-SAT) and
runs in time O(krpoly(n)) . Suppose now in line 6, the algorithm selects an unsatisfied clause
C ∈ F of size k − 1. In this case, the algorithm will call itself k − 1 times recursively. Suppose
further that F is such that all clauses currently unsatisfied by α have size at most k − 1. The
algorithm recurses on formulas of the form F [u 7→1]. Clearly, this formula can contain new un-
satisfied clauses: Setting u 7→ 1 can make a clause unsatisfied if ū was the only satisfied literal
in that clause. However, once a clause has lost one literal, its size is at most k − 1. Hence every
formula F [u 7→1] also has the property that all unsatisfied clauses have at most k − 1 literals. We
see that this property propagates throughout the whole recursion tree, and obtain the following
result:

Proposition 3.12. Suppose F is an (≤ k)-CNF formula, α an assignment to its variables, and r ∈ N.
If every clause in F that is not satisfied by α has size at most k − 1, then sat-searchball(F, α, r)
runs in time O((k − 1)rpoly(n)).

k-ary Covering Codes

We generalize the concept of covering codes introduced in Chapter 3 to alphabets of size greater
than 2. In this section, we consider the k-ary Hamming cube {1, . . . , k}t. It is endowed with a
metric, namely the Hamming distance dH : For two elements w,w′ ∈ {1, . . . , k}t, the distance
dH(w,w′) is the number of coordinates in which w and w′ do not agree. We define balls:

B(k)
s (w) := {w′ ∈ {1, . . . , k}t | dH(w,w′) ≤ s} .

Let us calculate the volume of such a ball. There are
(

t
s

)
possibilities to choose the set of coor-

dinates in which w and w′ are supposed to differ, and for each such coordinate, there are k − 1
ways in which they can differ. Therefore,

vol(k)(t, s) := |B(k)
s (w)| =

∑
i=0s

(
t

i

)
(k − 1)i .

We are interested in the question of how many balls B
(k)
s (w) we need to cover all of {1, . . . , k}t.

Note that by symmetry, w ∈ B
(k)
s (v) iff v ∈ B

(k)
s (w), for all v, w ∈ {1, . . . , k}t.

Definition 3.13. Let t ∈ N. A set C ⊆ {1, . . . , k}t is called a code of covering radius s and length t

if ⋃
w∈C

B(k)
s (w) = {1, . . . , k}t .

In other words, for each w′ ∈ {1, . . . , k}t, there is some w ∈ C such that dH(w,w′) ≤ s.

The following lemma is an adaptation of Lemma 3.8.

27

Chapter 3. Local Search Algorithms for SAT 28

Lemma 3.14. For all t, k ∈ N and 0 ≤ s ≤ t/2, there exists a code C ⊆ {1, . . . , k}t of covering radius
s such that

|C| ≤

⌈
t ln(k)kt(
t
s

)
(k − 1)s

⌉
and such a code C can be constructed deterministically in time O(|C|poly(t)).

Note that this bound is optimal up to a polynomial factor in t ln(k), since every Hamming
ball of radius r ≤ t/2 has at most t

(
t
s

)
(k − 1)s elements. We prove the lemma in Chapter 5.

A Deterministic Algorithm for PROMISE-BALL-k-SAT

We will now describe our deterministic algorithm. If the input formula F is unsatisfiable, it
will never return true. So let us assume that Br(α) contains some satisfying assignment and
let α∗ be one of them. We fix α∗ for the rest of the proof. Define t := blnnc. Compute a
code C ⊆ {1, . . . , k}t of covering radius s := t/k according to Lemma 3.14. The resulting code

has size at most
⌈

t ln(k)kt

(t
s)(k−1)s

⌉
and can be constructed deterministically in time O(|C|poly(t)) ≤

O(ktpoly(t)) = O(nln kpoly(ln n)) = poly(n), since k is a constant. We estimate its size using
Lemma 3.14 and the lower bound for the binomial coefficient in Lemma 3.4, which reads like(

t

ρt

)
≥ 1√

8tρ(1− ρ)

(
1
ρ

)ρt(1
1− ρ

)(1−ρ)t

.

We apply this bound with ρ = 1/k:(
t

t/k

)
≥ 1√

8t
kt/k

(
k

k − 1

)(k−1)t/k

=
kt

√
8t(k − 1)(k−1)t/k

.

Together with Lemma 3.14, we obtain, for sufficiently large t:

|C| ≤

⌈
t ln(k)kt(

t
t/k

)
(k − 1)t/k

⌉
≤ t2kt(k − 1)(k−1)t/k

kt(k − 1)t/k
≤ t2(k − 1)t−2t/k .

The algorithm computes this code and stores it for further use. Given F , α and r, it first
greedily constructs a maximal set G of pairwise disjoint unsatisfied k-clauses of F . That is,
G = {C1, C2, . . . , Cm}, the Ci’s are pairwise disjoint, no Ci in G is satisfied by α, and each
unsatisfied k-clause D in F shares at least one literal with some Ci. Note that since each Ci is
unsatisfied by α, it not only holds that Ci∩Cj = ∅ for 1 ≤ i, j ≤ m, but also vbl(Ci)∩vbl(Cj) = ∅.

At this point, the algorithm considers two cases. First, if m < t, it enumerates all 2km assign-
ments to the variables in G. For each such assignment β, it calls sat-searchball(F [β], α, r)
and returns true if at least one such call returns true. Correctness is easy to see: At least
one β agrees with the satisfying assignment α∗, and therefore α∗ still satisfies F [β]. To ana-
lyze the running time, observe that for any such β, the formula F [β] contains no unsatisfied
clause of size k. This follows from the maximality of G. Therefore, Proposition 3.12 tells us that
sat-searchball(F [β], α, r) runs in time O((k−1)rpoly(n)), and therefore this case takes time
2kmO((k−1)rpoly(n)) ≤ O(2kt(k−1)rpoly(n)) ≤ O(2k ln n(k−1)rpoly(n)) ≤ O((k−1)rpoly(n)),
since k is a constant and m ≤ t = blnnc.

28

Chapter 3. Local Search Algorithms for SAT 29

The second case is more interesting: If m ≥ t, the algorithm chooses t clauses from G to form
H = {C1, . . . , Ct}, a set of pairwise disjoint k-clauses, all unsatisfied by α. For w ∈ {1, . . . , k}t,
let α[H,w] be the assignment obtained from α by flipping the value of the wi

th literal in Ci, for
1 ≤ i ≤ t. We assume there is some ordering on H as well as on the literals in each Ci. Note
that α[H,w] satisfies exactly one literal in each Ci, for 1 ≤ i ≤ t. For convenience, we will write
α[w] instead of α[H,w] if H is understood.

Example. Let α = (0, . . . , 0), t = 3 and H = {{x1, y1, z1}, {x2, y2, z2}, {x3, y3, z3}}. Let
w = (2, 3, 3). Then α[w] is the assignment that sets y1, z2, and z3 to 1 and all other variables to
0.

Consider the satisfying assignment α∗ with dH(α, α∗) ≤ r. We define w∗ ∈ {1, . . . , k}t as
follows: For each 1 ≤ i ≤ t, we set w∗

i to j such that α∗ satisfies the jth literal in Ci. Since α∗

satisfies at least one literal in each Ci, we can do this, but since α∗ possibly satisfies multiple
literals in Ci, the choice of w∗ is not unique.

Observation 3.15. The following facts about α[w] hold:

• dH(α, α[w]) = t for every w ∈ {1, . . . , k}t.

• There is some w∗ ∈ {1, . . . , k}t such that dH(α[w∗], α∗) = dH(α, α∗)− t.

• Let w,w′ ∈ {1, . . . , k}t. Then dH(α[w], α[w′]) = 2dH(w,w′).

We could now call sat-searchball(F, α[w], r − t) for each w ∈ {1, . . . , k}t. This would
yield a running time of O(krpoly(n)), i.e., no improvement over Dantsin et al. Instead, we
iterate over all w ∈ C.

Lemma 3.16. Let t and H be defined as above, and let C ⊆ {1, . . . , k}t be a k-ary code of length
t and covering radius s. If α∗ is a satisfying assignment of F , then there is some w ∈ C such that
dH(α[w], α∗) ≤ dH(α, α∗)− t + 2s.

In particular, if Br(α) contains a satisfying assignment, then there is some w ∈ C such that
Br−t+2s(α[w]) contains it, too.

Proof. Proof of Lemma 3.16 By Observation 3.15, there is some w∗ ∈ {1, . . . , k}t such that
dH(α[w∗], α∗) = dH(α, α∗) − t ≤ r − t. Since C has covering radius s, there is some w ∈ C
such that dH(w,w∗) ≤ s, and by Observation 3.15, dH(α[w], α[w∗]) ≤ 2s. The lemma now
follows from the triangle inequality. The proof is illustrated in Figure 3.1.

Recall that s = t/k, there fore r − t + 2s = r − (t − 2t/k). We write ∆ := (t − 2t/k).
Our algorithm calls itself recursively with α[w] and r − ∆ for each w ∈ C. By Lemma 3.16,
there is some w ∈ C such that Br−t+2s(α[w]) contains α∗, and therefore at least one call will
be successful. Let us analyze the running time: We cause |C| recursive calls and decrease the
complexity parameter r by ∆ in each step. This is good, since |C| is only slightly bigger than
(k − 1)∆. We conclude that the number of leaves in this recursion tree is at most

|C|r/∆ ≤ (t2(k − 1)∆)r/∆ =
(
(k − 1)t2/∆

)r
.

29

Chapter 3. Local Search Algorithms for SAT 30

α α∗α[w∗]

t

2sa[w]

Figure 3.1: Illustration of Lemma 3.16. The distance from α[w] to α∗ is at most the distance from
α[w∗] to α∗ plus 2s.

Since t2/∆ goes to 1 as t grows, the above term is at most (k − 1)r+o(n). Finally, if F is unsatis-
fiable, the algorithm clearly returns false. If F is satisfiable, but Br(α) contains no satisfying
assignment, our algorithm may return true or false. In any case, its running time is at most
(k − 1)r+o(n). This proves Theorem 3.10.

We summarize the whole algorithm in searchball-fast.

Algorithm 5 searchball-fast(k ∈ N, (≤ k)-CNF formula F , assignment α, radius r, code
C ⊆ {1, . . . , k}t)

1: if α satisfies F then
2: return true

3: else if r = 0 then
4: return false

5: else
6: G← a maximal set of pairwise disjoint k-clauses of F unsatisfied by α

7: if |G| < t then
8: return

∨
β∈{0,1}vbl(G) sat-searchball(F [β], α, r)

9: else
10: H ← {C1, . . . , Ct} ⊆ G

11: return
∨

w∈C searchball-fast(k, F, α[H,w], r − (t− 2t/k), C)
12: end if
13: end if

Hindsight: Why and How?

At this point, I want to give some intuition on why searchball-fast is faster than sat-searchball
and what the underlying differences between them are.

An Easier Problem? The first reason is that searchball-fast solves the problem PROMISE-
BALL-k-SAT, which is simpler than BALL-k-SAT, the problem which sat-searchball solves.
It could well happen that F is satisfiable, Br(α) contains no satisfying assignment, yet never-
theless the call to searchball-fast(F, α, r) returns some satisfying assignment outside the
ball. The same can happen to Schöning-Walk.

30

Chapter 3. Local Search Algorithms for SAT 31

We suspect that BALL-k-SAT is really more difficult than PROMISE-BALL-k-SAT. This is
supported by the case k = 2, for which PROMISE-BALL-2-SAT can be solved in polynomial
time by simply solving the given (≤ 2)-CNF formula, whereas BALL-2-SAT is an NP-complete
problem, as can easily be seen by a reduction from VERTEX COVER.

Allowing Mistakes

In Section 3.1 we analyzed Schöning-Walk by fixing some satisfying assignment α∗ and mod-
eling the evolution of dH(α, α∗) as a Markov chain. At any given step of Schöning-Walk let
us say that it makes a mistake if this distance increases by 1.

The probability that Schöning-Walk returns a satisfying assignment is at least (k−1)−r/poly(r),
where r is the initial distance dH(α, α∗). However, if we insist on Schöning-Walk being suc-
cessful without making any mistakes, this probability drops to k−r: In the worst case, there is
exactly one correct choice in each step! It is much more realistic to reach the goal after having
made (and corrected) some mistakes on the way than to reach the goal without any mistakes
(that’s a lesson for life). Note that searchball-fast allows mistakes: It performs t correction
steps at once, and within this window, it tolerates up to t/k mistakes.

Correction Strings

Imagine Schöning-Walk is called with two additional parameter t and w: Schöning-Walk(F, t, α, w),
where t is the number of corrections steps to be made, and w ∈ {1, . . . , k}t is a correction
string telling the algorithm which corrections to make. That is, if wi = j, then in the ith

step the algorithm flips the assignment of the jth literal in C. Clearly, if t = 3n and w ∈
{1, . . . , }t is sampled uniformly at random, this is equivalent to calling the original procedure
Schöning-Walk(F, α). The function Schöning-Walk(F, t, α) is called with t = 3n, thus
{1, . . . , k}3n is the space of all possible correction strings. Why can we not simply compute a
covering code for this space?

Imagine two iterations j1 < j2 of the loop in Schöning-Walk. In step j1 the algorithm
selects an unsatisfied clause Ci, and in step j2 it selects Cj . Which clause Cj it picks may
depend on the random choice it made at step j1. Therefore, what it means for a correction
string to be correct at its j2

th position depends on its j1
th position. Therefore, two correction

strings might have Hamming distance 1, but still it is possible that the first string is correct in
every position and the second is wrong everywhere. This renders useless the whole machinery
of covering codes.

Note that the picture becomes less bleak if there are disjoint unsatisfied clauses C1, . . . , Ct

and our correction string tells us only what to do on those clauses: Which literal of Cj is the
“correct one” does in fact not depend on which literal the algorithm flipped in clause Ci. There-
fore, in this scenario the covering code machinery works, and this is exactly what we exploit in
searchball-fast.

31

Chapter 4

Local Search Algorithms for CSP

In this chapter we investigate generalizations of Schöning’s random walk algorithm and de-
terministic versions thereof to (d, k)-CSP. In Section 4.1 contains a brief description of the algo-
rithm of Dantsin et al. and its analysis for CSP. In Section 4.2 we present a simple method that
significantly speeds up the algorithm of Dantsin et al. for (d, k)-CSP when d ≥ 3. Note that
any algorithm for SAT can be used to solve CSP: Given a (d,≤ k)-CSP formula, one randomly
restricts every variable to two truth values and formulates the resulting problem as a k-CNF
formula. If the CSP formula is satisfiable, the CNF formula is satisfiable with probability at
least (2/d)n. The result we present in Section 4.3 is a deterministic version of this reduction.
It can be used to obtain a deterministic algorithm for (d, k)-CSP the running time of which
matches that of Schöning’s random walk algorithm, up to a subexponential factor. The result
of Section 4.3 is joint work with Robin Moser [MS10]. Note that when we speak about (d, k)-
CSP as a decision problem, we consider d and k as parameters of that language and not as part
of the problem instance. This means that we consider d and k to be constants that might be
hidden by the O-notation.

4.1 Schöning and cover-search for (d,≤ k)-CSP formulas

It is obvious how to generalize Schöning’s algorithm to CSP problems with more than two truth
values, and Schöning [Sch99] in fact deals with boolean SAT as well as with CSP problems.
Below we state the algorithm CSP-Schöning, the version of Schöning for general values of
d.

Theorem 4.1 (Schöning [Sch99]). If F is a satisfiable (d,≤ k)-CSP formula on n variables, then

Schöning-CSP returns a satisfying assignment with probability at least
(

d(k−1)
k

)−n
1

poly(n) .

Although Dantsin et al. [DGH+02] only consider the boolean case, their algorithm seam-
lessly generalizes to CSP problems with more values. The running time is again worse than
Schöning’s:

Theorem 4.2. There is a deterministic algorithm solving (d, k)-CSP and running in time O
((

dk
k+1

)n
poly(n)

)
.

The proof of the theorem is very similar to the one of Theorem 3.5 on page 23 for the boolean
case. It still makes sense to have a look at it, since it lays the ground for our improvement

33

Chapter 4. Local Search Algorithms for CSP 34

Algorithm 6 Schöning-CSP((d,≤ k)-CSP formula F)
1: α←u.a.r. [d]n // n := |vbl(F)|
2: for i = 0, . . . , cn do
3: // c is a constant depending on d and k, but not on n

4: if α satisfies F then
5: return α

6: else
7: C ← any constraint of F unsatisfied by α

8: (x 6= c)←u.a.r. C // a random literal from C

9: c′ ←u.a.r. [d] \ {c} // choose a new color for x

10: α← α[x 7→ c′] // change the coloring α

11: end if
12: end for
13: return failure

in Section 4.2. Since we are working over d values, we consider the d-ary cube {1, . . . , d}n.
We already encountered this object in Section 3.3. For two assignments α, α′ ∈ {1, . . . , d}n,
the Hamming distance dH(α, α′) is the number of variables on which α and α′ disagree, and
B

(d)
r (α) is the d-ary Hamming ball of radius r around α, i.e., the set

B(d)
r (α) := {α′ ∈ {1, . . . , d}n | dH(α, α′) ≤ r} .

Note that here we consider the d-ary cube, where d is the number of truth values, whereas
in Section 3.3 we considered the k-ary cube, where k is the size of the clauses. As we have
seen in Section 3.3, the cardinality of this set, denoted by vol(d)(n, r), is

∑r
i=0

(
n
i

)
(d − 1)i. In

analogy to the decision problem BALL-k-SAT, we define BALL-(d, k)-CSP: Given a (d,≤ k)-
CSP formula, an assignment α and a radius r, does there exist a satisfying assignment α∗ such
that dH(α, α∗) ≤ r? We give an algorithm for this problem:

Algorithm 7 csp-searchball((d,≤ k)-CSP formula F , assignment α, radius r)
1: if α satisfies F then
2: return true

3: else if r = 0 then
4: return false

5: else
6: C ← any constraint of F unsatisfied by α

7: return
∨

(x 6=c)∈C

∨
c′ 6=c csp-searchball(F, α[x := c′], r − 1)

8: end if

Lemma 4.3. The algorithm csp-searchball solves BALL-(d, k)-CSP in time O((k(d−1))rpoly(n)).

Proof sketch. How many recursive calls does a call to csp-searchball cause? If it executes
line 7, the operator

∨
(x 6=c)∈C iterates over the at most k literals of C, and the operator

∨
c′ 6=c

over the d− 1 colors besides c. Thus, it causes at most k(d− 1) recursive calls.

34

Chapter 4. Local Search Algorithms for CSP 35

According to Lemma 3.14 on page 28, there is a d-ary covering code C for {1, . . . , d}n of
radius r and length n such that

C ≤

⌈
n ln(d)dn(
n
r

)
(d− 1)r

⌉
,

and C can be constructed deterministically in time O(|C|poly(n)). We solve (d, k)-CSP by calling
csp-searchball(F, α, r) for every α ∈ C. The total running time is

dn(k(d− 1))r(
n
r

)
(d− 1)r

poly(n) =
dnkr(

n
r

) poly(n) .

We re-write this expression as

dnkr(
n
r

) poly(n) =
2nkr(

n
r

) dn

2n
poly(n)

and see that 2nkr/
(
n
r

)
is exactly the expression we encountered in the boolean case. Therefore

we conclude that also here a radius r = n/(k + 1) is optimal, and the running time is(
2k

k + 1

)n dn

2n
poly(n) =

(
dk

k + 1

)n

poly(n) ,

which proves Theorem 4.2. Here is the pseudocode of csp-cover-search:

Algorithm 8 csp-cover-search((d,≤ k)-CSP formula F over n variables)
1: r := n/(k + 1)
2: construct a d-ary covering code C of radius r and |C| ≤ [d]n

vol(d)(n,r)
poly(n)

3: return
∨

α∈C csp-searchball(F, α, r)

4.2 A Better Deterministic Algorithm for (d, k)-CSP

We will describe a surprisingly simple improvement of cover-search. This improvement
does not yet reach the running time of Schöning and in particular does not improve the
boolean case d = 2. In the light of the recent algorithm by Moser and myself [MS10], the algo-
rithm we present in this section may seem obsolete. However, we include it for several reasons:
First, the idea seems interesting and should be kept in mind. Second, thinking about how to
improve deterministic algorithms for (d, k)-CSP for d ≥ 3 made us (Robin Moser and me) start
thinking about d-ary covering codes, ultimately leading to the complete derandomization of
k-SAT [MS10], which we described in Section 3.3.

A Cheap Trick

We begin by presenting a simple idea that appears to be completely stupid, but surprisingly
improves the running time of cover-search. Any (4, k)-CSP formula with n variables can be
encoded as a (2, 2k)-CSP formula with 2n variables: Just replace each 4-ary variable x by two
binary variables x1, x2, encoding the colors 1, 2, 3, 4 by two bits in some way. For example, we
could encode 1 by 01, 2 by 10, 3 by 11, and 4 by 00. With this encoding, a constraint

(x 6= 2 ∨ y 6= 3)

35

Chapter 4. Local Search Algorithms for CSP 36

(x 6= 1) ∨ (y 6= 2) ∨ (z 6= 4)

2
3 4 1 3 4

1 2
3

Figure 4.1: A typical branching of csp-searchball on a (4, 3)-CSP formula.

translates into
(x1 6= 1 ∨ x2 6= 0 ∨ y1 6= 1 ∨ y2 6= 1) .

A k-constraint involving 4-ary variables becomes a 2k-constraint involving binary variables. In
other words, we obtain a 2k-CNF formula. By Theorem 4.2 on page 33, we can solve (2, 2k)-CSP
in time

O

((
4k

2k + 1

)2n

poly(n)

)
. (4.1)

For example, for k = 3 this is O
((

144
49

)n poly(n)
)
≤ O(2.939n), better than the running time

of 3npoly(n) we obtain we directly applying Theorem 4.2 to a (4, 3)-CSP formula. Not a great
improvement, but one that has been obtained in a surprisingly simple way. Clearly, the same
trick works whenever d is a power of 2:

Theorem 4.4. Suppose d = 2` for some ` ∈ N. Then (d, k)-CSP can be solved in time O

((
2`k

`k+1

)`n
poly(n)

)
.

It is not difficult to check that
(

2`k
`k+1

)`
< dk

k+1 for any ` ≥ 2, and thus Theorem 4.4 is an
improvement over Theorem 4.2 whenever d is a power of 2 and d ≥ 4. This is surprising, since
by replacing a 2`-ary variable x by ` binary variables x1, . . . , x`, we are throwing away a lot of
information: A clause contains xi if and only if it also contains all x1, . . . , x`, but our (2, `k)-CSP
algorithm does not use this fact at all. Two question arise: First, can we improve Schöning’s al-
gorithm in a similar fashion? Second, what do we do if d is not a power of 2? The first question
is answered quickly: Schöning’s running time on a (2`, k)-CSP formula with n variables is at

most O
((

2`(k−1)
k

)n
poly(n)

)
. Using binary encoding, this becomes O

((
2(`k−1)

`k

)`n
poly(n)

)
.

Again, a simple calculation shows that
(

2(`k−1)
`k

)`
> d(k−1)

k , and thus binary encoding seems to
make Schöning’s algorithm worse. The second question is more difficult: If d is not a power
of 2, say d = 3, how can we encode our variables? Using two binary variables to encode one
ternary variable is wasteful and does not lead to an improvement. It turns out that it makes
sense to again study (4, k)-CSP, but this time not applying any explicit encoding in binary.

Suppose csp-searchball runs on a (4, 3)-CSP formula and encounters the unsatisfied
constraint (x 6= 1) ∨ (y 6= 2) ∨ (z 6= 4). It causes k(d − 1) = 9 recursive calls, exhausting all
possibilities to change the assignment at exactly one variable occurring in the constraint. See
Figure 4.1 for an illustration. How does the branching look after applying binary encoding?
Suppose we encode the values 1,2,3, and 4 by 01, 10, 11, and 00, respectively. The first literal
(x 6= 1) translates into (x1 6= 0) ∨ (x2 6= 1), and the algorithm in one branch changes x1 to 1,

36

Chapter 4. Local Search Algorithms for CSP 37

(x 6= 1) ∨ (y 6= 2) ∨ (z 6= 4)

3 4 3 4
1 2

Figure 4.2: Branching on a (4, 3)-CSP formula using binary encoding.

1 3

24

Figure 4.3: The neighborhood relation between the colors 1, 2, 3, 4 when using binary encoding.

and in the other one changes x2 to 0. In other words, it changes x to 3 and x to 4, but does not
change x to 2 in any branch. The branching now looks like in Figure 4.2 and we have eliminated
three recursive calls. Rather than viewing this from the point of binary encoding, the think of
defining a graph on the colors as in Figure 4.3: The colors 3 and 4 are neighbors of color 1, but 2
is not a neighbor of 1. Therefore, the first literal (x 6= 1) causes no call with x being set to 2. We
only change colors to neighboring colors. Reducing the number of neighbors clearly speeds up
csp-searchball. However, as there is no free lunch, it reduces the number of elements at
distance r, i.e., the volume of the Hamming balls. Apparently, the favorable effect is stronger,
and we can improve upon the running time. Since we are altering the notion of neighbors and
thus of distance, we should define everything formally.

G-Distance, G-Balls, and G-searchball

We will systematically explore the possibilities offered by defining a graph on the d colors. Let
[d] be the set of colors, and let G = ([d], E) be a (possibly directed) graph. For two colors c, c′,
we denote by dG(c, c′) the length of a shortest path from c to c′ in G. If G is directed, this is not
necessarily a metric, and therefore we rather call it a distance function. It gives rise to a distance
function on [d]n: For two assignments α, β ∈ [d]n, we define

dG(α, β) =
n∑

i=1

dG(αi, βi) . (4.2)

This distance induces the notion of balls B
(G)
r (α) := {β ∈ [d]n | dG(α, β) ≤ r}, and of dual

balls {β ∈ [d]n | dG(β, α) ≤ r}. If G is undirected, balls and dual balls coincide, and for G

being Kd, the complete undirected graph, dG is simply the Hamming distance. If G is vertex-
transitive (and possibly directed), the cardinality |B(G)

r (α)| does not depend on α, and we de-
fine vol(G)(n, r) := |B(G)

r (α)|. By double-counting, this is also the cardinality of dual balls. In
particular, a vertex-transitive graph is regular. Let δ denote the number of edges leaving each

37

Chapter 4. Local Search Algorithms for CSP 38

vertex in G. As before, we define a parametrized problem: Given F , α and r, does B
(G)
r (α)

contain a satisfying assignment? The algorithm G-searchball, which is almost identical to
csp-searchball on page 34, solves this problem in time O ((δk)rpoly(n)).

Algorithm 9 G-searchball(CSP formula F , assignment α, radius r)
1: if α satisfies F then
2: return true

3: else if r = 0 then
4: return false

5: else
6: C ← any constraint of F unsatisfied by α

7: return
∨

(x 6=c)∈C

∨
c′:(c,c′)∈E(G) G-searchball(F, α[x := c′], r − 1)

8: end if

Covering Codes and the Volume of G-Balls

Wherever there is a distance function, there are balls. Wherever there are balls, there are cover-
ing codes: Set C ⊆ [d]n is a code of length n and covering G-radius r if⋃

α∈C
B(G)

r (α) = [d]n .

A volume argument shows that any such code has at least dn/vol(G)(n, r) elements. This lower
bound can be achieved up to a polynomial factor in n, as we will show below in Lemma 4.6
on the facing page. To employ covering codes in this context, we have to estimate the volume
of G-balls. Fix some vertex u ∈ V (G) and let α be the assignment that sets every variable to u.
We will estimate the volume of B

(G)
r (α). Let TG(n, r) := vol(G)(n, r) − vol(G)(n, r − 1), i.e., the

number of assignments having distance exactly r from α. We claim that for any x ∈ R, ∑
v∈V (G)

xdG(u,v)

n

=
(d−1)n∑

i=0

TG(n, i)xi . (4.3)

Let us try to understand why this holds: In how many ways do we get the term xi when
expanding the product on the left-hand side? For every of the n factors, we choose a summand,
i.e., a vertex vj . This yields xi if and only if

∑
j dG(u, vj) = i. But this exactly means that

(v1, v2, . . . , vn) is an assignment β with dG(α, β) = i. Therefore, TG(n, i), the coefficient of xi

on the right-hand side, is the number of such assignments. Note that dG(u, v) ≤ d − 1 for any
vertex v ∈ V (G), therefore dG(α, β) ≤ (d− 1)n for any two assignments, and thus it suffices to
let the sum run up to (d − 1)n. The expression in (4.3) is a function in x, called the generating
function of TG(n, i), and we denote it by fG(x). Generating functions are a well-established tool
in combinatorics, see for example the book generatingfunctionology [Wil06]). Here we use the
generating function to bound the volume of G-balls:

Lemma 4.5. Let G be a vertex-transitive graph. The following upper and lower bounds on vol(G)(n, r)
hold:

38

Chapter 4. Local Search Algorithms for CSP 39

(i) For every 0 < x ≤ 1, n ∈ N and 0 ≤ r ≤ (d− 1)n, it holds that vol(G)(n, r) ≤ fG(x)n/xr.
(ii) For every 0 < x ≤ 1 and n ∈ N, there is a 0 ≤ r ≤ (d − 1)n such that vol(G)(n, r) ≥

fG(x)ndn/xr).

Proof. For (i), we use (4.3) and compute

fG(x)n =
(d−1)n∑

i=0

TG(n, i)xi ≥
r∑

i=0

TG(n, i)xi ≥
r∑

i=0

TG(n, i)xr

= vol(G)(n, r)xr

and solve for vol(G)(n, r). For (ii), we again use (4.3), but now we want to bound its right-hand
side from above. Clearly, there is some 0 ≤ r ≤ (d− 1)n that maximizes TG(n, r)xr. For this r,
it holds that

fG(x)n =
(d−1)n∑

i=0

TG(n, i)xi

≤ ((d− 1)n + 1)TG(n, r)xr

≤ dnTG(n, r)xr

≤ dnxrvol(G)(n, r) ,

and we solve for vol(G)(n, r). This completes the proof.

Let us generalize Lemma 3.14 to arbitrary vertex-transitive graphs G on d vertices.

Lemma 4.6. Let G be a vertex-transitive graph on d vertices. For all 0 < x ≤ 1 and n ∈ N, there is a
radius r ∈ {0, 1, . . . , (d− 1)n} and a code C ⊆ {1, . . . , d}n such that⋃

α∈C
B(G)

r (α) = {1, . . . , d}n

and

|C| ≤ dnxr

fG(x)n
poly(n) .

Furthermore, r can be computed in polynomial time in n and C can be constructed using O(|C|poly(n))
space and time.

We will prove this lemma in Chapter 5. By calling G-searchball(F, α, r) for each α ∈ C,
we can solve (d, k)-CSP deterministically in time

dnxr(kδ)r

fG(x)n
poly(n) , (4.4)

where we are free to choose any vertex-transitive graph G and any x ∈ (0, 1]. By setting x =
1/kd, the terms xr and (kδ)r in (4.4) cancel, and nothing will depend on r anymore. As it turns
out, when we choose x = 1/kd, Lemma 4.6 automatically gives us the optimal radius r. It
remains to find the optimal graph G.

39

Chapter 4. Local Search Algorithms for CSP 40

Directed Cycles

We analyze the algorithm for G = Cd, the directed cycle on d vertices. Clearly, δ = 1, and
therefore G-searchball runs in time kr. This is as fast as we can expect for any vertex-
transitive graph that is not the empty graph. What is vol(Cd)(n, r)? Fix a vertex u ∈ V (G). For
each 0 ≤ i ≤ d− 1, there is exactly one vertex v ∈ V (G) with dG(u, v) = i. Therefore

fCd
(x) = 1 + x + x2 + · · ·+ xd−1 .

We evaluate (4.4) with x = 1/k and see that the running time is at most

dnxrkr

fG(x)n
poly(n) =

dn

(1 + k−1 + k−2 + · · ·+ k−d+1)n
poly(n)

=
(

d(k − 1)
k

· kd

kd − 1

)n

poly(n) ,

and we have proven the main theorem of this section.

Theorem 4.7. For all d and k, there is a deterministic algorithm solving (d, k)-CSP in time

O

((
d(k − 1)

k
· kd

kd − 1

)n

poly(n)
)

.

Optimality of the Directed Cycle

We will show that our analysis cannot be improved by choosing a different vertex-transitive
graph G or a different radius r. Actually we could work with a weaker notion than vertex-
transitivity. What we need is that there are numbers d0, d1, . . . such that for every vertex u ∈
V (G) and i ≤ 0 there are exactly di vertices v with dG(u, v) = i. Such a graph is d1-regular and
satisfies our needs. Certainly every vertex-transitive graph G has these properties. Since G is
finite, the sequence d0, d1, . . . , eventually becomes 0. Denoting the diameter of G by s, it holds
that di = 0 for all i > s. If G is connected (which we do not assume), the di add up to d. Since
G is vertex-transitive, the di do not depend on the vertex u, and G is d1-regular. Therefore,
G-searchball runs in time (d1k)rpoly(n) on a (d,≤ k)-CSP formula. By the upper bounds
on vol(G)(n, r) in Lemma 4.5 on the previous page, any code C ⊆ [d]n with

⋃
α∈C B

(G)
r (α) = [d]n

satisfies
|C| ≥ dn

vol(G)(n, r)
≥ dnxr

fG(x)n
=

dnxr

(
∑s

i=0 dixi)n

for all x ∈ (0, 1]. Since G-searchball takes time (kd1)r, the total running time is at least

|C|(kd1)r ≥ dnxr(kd1)r

(
∑s

i=0 dixi)n ,

where this inequality holds for all x ∈ (0, 1]. Setting x = 1
kd1

, we see that the running time is at
least

dn(∑s
i=0 dik−id−i

1

)n .

In a d1-regular graph, the number of vertices at distance i from u can be at most di
1. In other

words, di ≤ di
1, and the above expression is at least

dn

(
∑s

i=0 k−i)n ,

40

Chapter 4. Local Search Algorithms for CSP 41

which, up to a polynomial factor, is the same as what we get for the directed cycle on d vertices.
This is not a lower bound on the running time when using the graph G. For this, we would also
have to provide a lower bound on the running time of G-searchball. However, it shows that
the analysis cannot be improved alone by using a graph G different from the directed cycle.

Applying G-Distance to Schöning

We can apply the same idea to Schöning’s algorithm: When picking a literal (x 6= c) uniformly
at random from an unsatisfied constraint of F (see line 8 of Schöning-CSP), we choose a new
truth value c′ uniformly at random from the set {c′ ∈ [d] | (c, c′) ∈ E(G)}. With G = Kd, this is
the original algorithm Schöning. Is there a graph on d vertices for which modified Schöning

achieve a success probability that is significantly better than for Kd? Stefan Schneider answered
this question in his Master’s Thesis [Sch09]:

Theorem 4.8 (Stefan Schneider [Sch09]). Let G be a vertex-transitive graph on d vertices. Then the
modified Schöning using G has a success probability of at least(

d(k − 1)
k

)n 1
poly(n)

,

and this is tight up to polynomial factors in n.

Actually Schneider proved this theorem for a more general graph class, so-called distance-
regular graphs. Note that his result seemingly contradicts our back-of-the-envelope calculation
that Schöning deteriorates when using binary encoding, i.e., when G is the log2(d)-dimensional
Hamming cube. There is no contradiction, however: Our calculation above was correct, but
simply suboptimal, not capturing the full power of Schöning’s algorithm when operating with
a graph on the colors.

4.3 A Deterministic Reduction from (d, k)-CSP to k-SAT

In this section we describe a simple way how to turn any given algorithm for k-SAT into an
algorithm solving (d, k)-CSP. This is joint work with Robin Moser [MS10]

Theorem 4.9. There is a randomized algorithm that takes a (d,≤ k)-CSP formula F over n variables
as input, runs in polynomial time in n, and outputs a k-CNF formula F ′ over n variables such that

• if F is unsatisfiable, then F ′ is unsatisfiable, too,

• if F is satisfiable, then F ′ is satisfiable with probability at least (2/d)n.

Proof. For each variable x in F , choose two distinct truth values from {1, . . . , d} uniformly
at random and independently and restrict x to these two values. The resulting problem is a
boolean problem, since we have only two choices for every variable. Clearly, if F is unsatis-
fiable, it cannot become satisfiable by this restriction. On the other hand, if α is a satisfying
assignment of F , then with probability exactly (2/d)n, α has survives the restriction process.
Therefore, if F is satisfiable, then with probability at least (2/d)n, at least one satisfying as-
signment survives the restriction process, in which case the resulting boolean formula F ′ is
satisfiable.

41

Chapter 4. Local Search Algorithms for CSP 42

Corollary 4.10. If there is a Monte Carlo algorithm solving k-SAT in time t(n) with probability at least
1/2, then there is a Monte Carlo algorithm solving (d, k)-CSP in time (d/2)nt(n)poly(n) with success
probability at least 1/2.

We state and prove a deterministic version of this reduction.

Theorem 4.11. There is a deterministic algorithm that takes a (d,≤ k)-CSP formula F over n variables
as its input and outputs a sequence F1, F2, . . . , Fm of m ≤ (d/2)npoly(n) many k-CNF formulas such
that

• if F is unsatisfiable, then all Fi are unsatisfiable, too,

• if F is satisfiable, then at least one Fi is satisfiable.

Furthermore, this algorithm runs in O((d/2)npoly(n)) time.

If A is a deterministic algorithm for k-SAT, we can use it to solve (d, k)-CSP by calling it for
F1, . . . , Fm.

Corollary 4.12. If there is a deterministic algorithm solving k-SAT in time t(n), then there is a deter-
ministic algorithm that solves (d, k)-CSP and has a running time of t(n)(d/2)npoly(n).

For example, if we take A to be the deterministic algorithm solving k-SAT in time (2(k −
1)/k)n+o(n), this gives a deterministic algorithm for (d, k)-CSP:

Corollary 4.13. For any d, k ≥ 2, there is a deterministic algorithm solving (d, k)-CSP and running
in time (

d(k − 1)
k

)n+o(n)

.

Proof of Theorem 4.11. A 2-box B ⊆ {1, . . . , d}n is a set of the form B = B1 × · · · × Bn where
Bi ⊆ {1, . . . , d} and |Bi| = 2 for all 1 ≤ i ≤ n. In words, B is a subcube of {1, . . . , d}n of
dimension n and side length 2. One can encode a 2-box by writing down each Bi, i.e., writing
down 2n numbers between 1 and d. Since d is a constant, this requires O(n) space.

Given a (d,≤ k)-CSP formula F and the O(n)-sized encoding of a 2-box B ⊆ {1, . . . , d}n,
the problem of deciding whether B contains a satisfying assignment translates directly into a
k-CNF formula over n variables. Hence our strategy is the following: Cover {1, . . . , d}n with 2-
boxes, and then for each 2-box decide whether it contains a satisfying assignment. How many
2-boxes do we need to cover {1, . . . , d}n? Let C be a set of 2-boxes such that⋃

B∈C
B = {1, . . . , d}n .

Since every 2-box has 2n elements, a volume argument shows that |C| ≥ (d/2)n. Since we are
consistently lucky when it comes to covering something, we can almost achieve this bound:

Lemma 4.14. For all d, n ∈ N there is a set C of 2-boxes in {1, . . . , d}n with

|C| ≤ dn

2n
poly(n) ,

and C can be constructed using O(|C|) time and space.

We will prove this lemma in Chapter 5. We iterate through all 2-boxes B ∈ C and output the
corresponding k-CNF formula. If F is satisfiable, then at least one 2-box contains the satisfying
assignment, and the corresponding k-CNF formula is satisfiable. This completes the proof.

42

Chapter 5

Construction of Covering Codes

WE will now discuss the deterministic construction of covering codes. In the previ-
ous chapters we have seen four instances where we needed covering codes: (i)
the algorithm cover-search, which solves k-SAT, needs to cover {0, 1}n with

Hamming balls (cf. Lemma 3.8 on page 25); (ii) the complete derandomization as well as
csp-cover-search cover {1, . . . , d}n with d-ary Hamming balls (Lemma 3.14 on page 28);
(iii) our improved algorithm for (d, k)-CSP covers {1, . . . , d}n with G-balls (Lemma 4.6 on
page 39); finally, the deterministic reduction from (d, k)-CSP to k-SAT needs to cover {1, . . . , d}n

with 2-boxes (Lemma 4.14 on the preceding page). In all cases, we can deterministically con-
struct almost optimal coverings. We will demonstrate this for Hamming balls, proving Lemma 3.8
on page 25, and later introduce a framework that formalizes the conditions under which such
constructions are possible. The results of this chapter are generalizations of the technique of
Dantsin et al. [DGH+02].

5.1 Covering {0, 1}n With Hamming Balls

Lemma 5.1 (Existence of Good Covering Codes). For all n ∈ N and 0 ≤ r ≤ n, every code
C ⊆ {0, 1}n of covering radius r and length n has at least 2n

vol(n,r) elements. Furthermore, there is such

a C with |C| ≤ 2npoly(n)
vol(n,r) .

Proof. The lower bound, i.e., that every code C of covering radius r and length n has at least
2n

vol(n,r) elements, follows from a volume argument.

We prove the upper bound with a probabilistic construction. Form C by sampling dn ln(2)2n/vol(n, r)e
elements from {0, 1}n independently and uniformly at random with replacement. We claim
that with positive probability this set C is a covering code of radius r. To justify this claim, let
us estimate the probability that it is not a covering code of radius r, i.e.,

Pr[
⋃
α∈C

Br(α) 6= {0, 1}n] .

Fix some α∗ ∈ {0, 1}n. If α ∈ {0, 1}n is sampled uniformly at random, then

Pr[α∗ 6∈ Br(α)] = 1− vol(n, r)
2n

.

43

Chapter 5. Construction of Covering Codes 44

Since every element in C is sampled independently, we obtain

Pr[α∗ 6∈
⋃
α∈C

Br(α)] =
(

1− vol(n, r)
2n

)|C|
< e−

vol(n,r)
2n |C| ≤ e−n ln(2) = 2−n .

This probability is the same for every α∗, since by the symmetry of {0, 1}n, every assignment
“looks the same”. By the union bound, we observe that

Pr[∃α∗ ∈ {0, 1}n : α∗ 6∈
⋃
α∈C

Br(α)]

≤
∑

α∗∈{0,1}n

Pr[α∗ 6∈
⋃
α∈C

Br(α)]

< 2n2−n = 1 .

With positive probability, the set C is a covering code of radius r. This shows existence and
completes the proof.

By investing an additional factor of n, say by sampling 2n

vol(n,r)n
2 elements, this probability

is not only positive, but very large: The probability that C is not a covering code of radius r is
exponentially small in n. This does not help us, however, since we want to explicitly construct
such a code.

Definition 5.2. Let C be some finite set. We say C can be constructed using t time and s space if
there exists an algorithm running in time at most t and using at most s space that outputs the elements
of C one after the other.

As usual in complexity theory, the space used by the algorithm does not take into account
the size of the output. In particular, the space requirement can be polynomial in n even though
the output size is exponential. If we can construct a covering code C of radius r and length n in
time O(|C|) and space polynomial in n, then the algorithm cover-search runs in polynomial
space, too: For each element α ∈ C we call sat-searchball(F, α, r). After that call we
discard α, i.e., we do not have to store the whole set C.

Lemma 5.3. For every n ∈ N and 0 ≤ ρ ≤ 1/2, there is a covering code C ⊆ {0, 1}n of length n

and radius r := bρnc with |C| ≤ 2n+o(n)/vol(n, r). Furthermore, C can be constructed using O(|C| ·
poly(n)) time and poly(n) space.

Proof. Let t := blog2 log2 nc and set r′ := rt/n. By Lemma 5.1, there exists a code C′ ⊆ {0, 1}t of
length t and radius r′ such that

|C′| ≤ 2tpoly(t)
vol(t, r′)

.

We can find this code by iterating over all 22t ≤ n subsets of {0, 1}t. Once we have found such
a code C′, we define

C = C′ × C′ × · · · × C′ ,

the n/t-fold Cartesian product of C′. Here, for α1, . . . , αn/t ∈ C′, we identify (α1, . . . , αn/t) with
the concatenated n-bit string α. Therefore, C is a code of length n. We claim that is a code of

44

Chapter 5. Construction of Covering Codes 45

radius r: Let α∗ ∈ {0, 1}n. We partition this n-bit vector into t-bit vectors α∗1, . . . , α
∗
n/t. For each

α∗i , there exists αi ∈ C′ such that dH(αi, α
∗
i) ≤ r′ = rt/n. Therefore

dH(α, α∗) =
n/t∑
i=1

dH(αi, α
∗
i) ≤ n/t · rt/n = r .

The cardinality of C is

|C| = |C′|n/t ≤
(

2tpoly(t)
vol(t, r′)

)n/t

. (5.1)

It remains to compare vol(t, r′)n/t to vol(n, r). Using the bounds of Lemma 3.4 for the size of
the binomial coefficients, we calculate

vol(t, r′)n/t ≥

(
2H(r′/t)t

√
8t

)n/t

=
2H(r/n)n

(8t)n/2t
≥ vol(n, r)

(8t)n/2t
.

Plugging this into (5.1) we obtain

|C| ≤ 2n(8t)n/tpoly(n)
vol(n, r)

≤ 2n+o(n)

vol(n, r)
.

The last inequality follows from the fact that (8t)n/t ≤ 2o(n) provided that t = t(n) → ∞ as
n → ∞. Finally, we can construct C using polynomial space in n: We only store C′ and output
the elements of C′n/t one by one.

The construction here is slightly different from Dantsin et al. [DGH+02]. Our construction
leaves a subexponential gap between the constructed code and an optimal one, whereas Dantsin
et al. achieve a polynomial gap. On the other hand, our construction works in polynomial
space, whereas theirs needs exponential space. The difference between our approach and that
of Dantsin et al. [DGH+02] is that they employ a polynomial-time approximation algorithm for
SET COVER for computing C′. This is what we will do in the next section.

5.2 A General Framework for Covering Codes

In this section we formalize the conditions under which a covering code construction as above
works. We mainly generalize and abstract the techniques of Dantsin et al. [DGH+02].

Let H = (V,E) be a hypergraph. A cover of H is a subset F ⊆ E such that
⋃

e∈F e = V . In
our applications, V can be {0, 1}n or {1, . . . , d}n, and E can be the set of all binary Hamming
balls, d-ary Hamming balls, G-Hamming balls, or 2-boxes. We say H is k-uniform if all edges
have the same cardinality k. H is regular if every v ∈ V is contained in the same number of
edges. In all our applications, H is uniform and regular. This is already enough to guarantee
the existence of almost optimal covers.

Lemma 5.4. Let H = (V,E) be a k-uniform and regular hypergraph. Then

(i) every cover of H has at least |V |/k elements,
(ii) there is a cover of H with at most d|V | ln |V |/ke elements.

45

Chapter 5. Construction of Covering Codes 46

Proof. The lower bound is clear since every cover F of H has to satisfy |F | · k ≥ |V |. For the
upper bound we use a probabilistic construction. Form F by sampling d|V | ln |V |/ke elements
uniformly at random and independently with replacement from V . We claim that

Pr[
⋃
e∈F

e = V] > 0 , (5.2)

which proves that a cover of the claimed size exists. To see that (5.2) holds, fix an arbitrary
vertex u. What is the probability that u 6∈

⋃
e∈F e? We know that H is d-regular, therefore

u is contained in exactly d hyperedges, so for a fixed vertex u and one randomly sampled
hyperedge e, it holds that

Pr[u ∈ e] =
d

|H|
=

k

|V |
,

where the last equality follows from double counting. Since we sample the edges of F inde-
pendently, it holds that

Pr

[
u 6∈

⋃
e∈F

]
= Pr[∀e ∈ F : u 6∈ e] =

(
1− k

|V |

)|F |
< e−k|F |/|V | ≤ e− ln |V | =

1
|V |

.

This is the probability that a fixed vertex u is not covered. By the union bound, we obtain

Pr

[⋃
e∈F

e 6= V

]
= Pr

[
∃u ∈ V : u 6∈

⋃
e∈F

e

]

≤
∑
u∈V

Pr

[
u 6∈

⋃
e∈F

]
<
|V |
|V |

= 1 .

This lemma shows the existence of covering codes of the desired size in Lemma 3.8 on
page 25 (Hamming balls), Lemma 3.14 on page 28 (k-ary Hamming balls), Lemma 4.14 on
page 42 (2-boxes), and Lemma 4.6 on page 39 (G-balls). For deterministically constructing these
codes, we will apply a block code construction. For this, we need that H has certain additional
properties.

For the rest of the section, we assume that H = (V,E) with V = {1, . . . , d}n for some
constant d. We require H to have an efficient representation. That is, given 0 ≤ i < |V | and
0 ≤ j < |E|, we can decide in polynomial time in n whether the jth edge contains the ith vertex.
We assume there is some underlying ordering of the vertices and edges. In our applications
of course we do not represent vertices and hyperedges by their indices: We represent a vertex
u ∈ {1, . . . , d}n simply as a string of length n. To represent a hyperedge, for example a ball, we
write down its center and radius. This surely is an efficient representation, i.e., we can check
efficiently whether u ∈ e for a given vertex u and hyperedge e. The idea is to construct an
almost optimal cover for a much smaller hypergraph H ′ by using an approximation algorithm,
and then to show how to blow up this cover of H ′ to a cover for H .

Definition 5.5. Let d, n′, b ∈ N, n = n′b, and let H = (V,E) and H ′ = (V ′, E′) be uniform and
regular hypergraphs with V = {1, . . . , d}n and V ′ = {1, . . . , d}n′ . For g ∈ R we say that H and H ′

allow a block code construction with gap g if

46

Chapter 5. Construction of Covering Codes 47

(i) both H and H ′ have an efficient representation,
(ii) for all e1, . . . , eb ∈ E′ there is an e ∈ E such that e1× · · · × eb ⊆ e, and the index of e in E can

be computed given the indices of e1, . . . , eb in E′ in time poly(n),
(iii) H is k-uniform and H ′ is k′-uniform and k/g ≤ k′b ≤ k.

The inequality k′b ≤ k in point (iii) already follows from (ii). The power of block code
constructions is that we can choose n′ so small to be comfortable to construct an optimal or ap-
proximately optimal cover C′ of H ′, and then from there compute a cover of H . In the following
theorem, d is a constant. This means that the O(·)-notation may hide constants that depend on
d, but neither on n, n′, nor b.

Theorem 5.6. Let n′, b ∈ N, n = n′b, and let H = ({1, . . . , d}n, E) and H ′ = ({1, . . . , d}n′ , E′) be
uniform and regular hypergraphs. Suppose H is k-uniform and H ′ is k′-uniform. If H and H ′ allow a
block code construction with gap g, then there is a cover C of H of size

dn

k
n′O(b)g

and C can be constructed using at most O(|C|poly(n)+poly(dn′)) time and at most poly(dn′ , n) space,
where poly is some fixed polynomial, possibly depending on d, but neither on n′ nor b.

This theorem has two typical applications. First, if n′ is very small compared to n, for
example n′ ∈ O(log n), then the space requirement is polynomial in n. The disadvantage is that
b becomes large, and the overhead n′O(b) is superpolynomial. Second, if b is a (large) constant
and the gap g is polynomial in n, then the size of the constructed code exceeds the size of an
optimal code only by a polynomial in n, but the space requirement becomes exponential.

Proof of Theorem 5.6. We have to give an algorithm that outputs the elements of a suitable cover
C ⊆ {1, . . . , d}n using O(|C|poly(n)+p(dn′) time and p(dn′)poly(n) space, where p is some fixed
polynomial, depending neither on n′ nor b.

The set V ′ has cardinality dn′ . We write down the covering problem explicitly as an instance
of the SET COVER problem. That is, we list all vertices |V ′| and |E′| edges. There is an approxi-
mation algorithms for SET COVER achieving an approximation ratio of O(log |V ′|) and running
in polynomial time (see Hochbaum [Hoc97], for example). We know that the optimal code has
at most size d|V ′| ln |V ′|/k′e =

⌈
dn′n′ ln(d)/k′

⌉
, thus the O(log |V ′|)-approximation has size

|C′| ≤ dn′

k′
O(n′2) .

Computing this set takes time p(dn′) where p is the polynomial coming from the running time
of the approximation algorithm. Once this set is computed, our algorithm stores it, which takes
O(|C|n) space (note that each element of C requires O(n) space).

Next we consider the set C′b. By point (ii), there is some function

Φ : E′b → E

such that e1 × · · · × eb ⊆ Φ(e1, . . . , eb) and Φ can be computed in polynomial time. We define

C := {Φ(e1, . . . , eb) | (e1, . . . , eb) ∈ C′b} .

47

Chapter 5. Construction of Covering Codes 48

This is a cover of H : Let u ∈ V . We chop up u into b pieces u1, . . . , ub, each in {1, . . . , d}n′ = V .
Since C′ is a cover of H ′, there are edges e1, . . . , eb ∈ C′ such that ui ∈ ei for 1 ≤ i ≤ b. Clearly
u ∈ e1 × · · · × eb, hence by construction there is some e ∈ C such that u ∈ e. The size of C is

|C| ≤ |C′|b ≤

(
dn′

k′
O(n′2)

)b

≤ dn

k
n′O(b)g ,

where in the last inequality we used that k′b ≥ k/g. This simply states that e1×· · ·×eb comprises
at least a g-fraction of e ∈ E.

Our algorithm can now output C by iterating through C′. In addition to the p(|dn′ |)poly(n))
space needed for computing and storing C′, the algorithm needs O(n′b) additional space to
store b counters, each iterating from 1 to |C′|. Thus, to output C the algorithm requires p(|dn′ |)poly(n)+
O(n′b) = p(|dn′ |)poly(n) space and p(dn′) + O(|C|poly(n)) time.

5.3 Application to 2-Boxes

Recall that a 2-box B ⊆ {1, . . . , d}n is a set of the form B1 × · · · ×Bn where Bi ⊆ {1, . . . , d} and
|Bi| = 2 for 1 ≤ i ≤ d. In other words, a 2-box is a subcube of {1, . . . , d}n of dimension n and
side length 2. Let Hn be the hypergraph (Vn, En) where Vn = {1, . . . , d}n and En is the set of all
2-boxes. Note that |En| =

(
d
2

)n ≤ d2n.

Lemma 5.7. Let n′, b ∈ N and n = n′b. Then Hn and Hn′ allow block code constructions with gap 1.

Proof. We have to show three things. (i) Hn has an efficient representation. This is not difficult
to see: Each 2-box B = B1×· · ·×Bn can be encoded by just writing down the n sets B1, . . . , Bn.
Obviously this allows us to test efficiently whether u ∈ B for a given vertex u and a given
2-box B. (ii) Given b many 2-boxes B(1), . . . , B(b) in {1, . . . , d}n′ , their Cartesian product B :=
B(1)×· · ·×B(b) ⊆ {1, . . . , d}n is a 2-box in {1, . . . , d}n and can be computed in time poly(n) given
B(1), . . . , B(b). (iii) Hn is 2n-uniform and n′ is 2n′ uniform. Therefore the required inequality
k′b ≤ k/g holds with equality, for g = 1.

Having established that Hn and Hn′ allow block code constructions with gap 1, we apply
Theorem 5.6 on the previous page. Let b be some constant. We conclude that H has a cover C
of size

dn

k
n′O(b)g =

dn

2n

(n

b

)O(b)
· 1 =

dn

2n
poly(n)

which can be constructed in time O(|C|poly(n) + p(|V ′| + |E′|)). If we choose b to be large
enough yet still constant,0 then p(|V ′| + |E′|) ≤ p(dn′ + d2n′) ≤ (d/2)n ≤ |C|. This proves
Lemma 4.14 on page 42.

5.4 Application to G-balls

Here we explain how to cover {1, . . . , d}n with G-balls, which we introduced in Section 4.2. Let
Hr

n be the hypergraph with vertex set {1, . . . , d}n and the balls B
(G)
α (r) as hyperedges. Recall

48

Chapter 5. Construction of Covering Codes 49

that we have introduced the generating function fG(x) and proved the identity

fG(x) :=

 ∑
v∈V (G)

xdG(u,v)

n

=
(d−1)n∑

i=0

T (n, i)xi

in (4.3) on page on page 38. Here T (n, i) = vol(G)(n, i)− vol(G)(n, i− 1) is the number of points
at distance exactly i from a given point. In Lemma 4.5 on page 39 we have proved upper
and lower bounds on vol(G)(n, r) using fG(x). In the following lemma, d is again a constant,
meaning that the O(·)-notation may hide constants that depend on d.

Lemma 5.8. For each 0 < x ≤ 1 and n′ ∈ N there exists an r′ ∈ {0, 1, . . . , dn′} such that for all
b ∈ N, the following holds: For n := bn′ and r := br′, the hypergraphs Hr

n and Hr′
n′ allow block code

constructions with gap (dn′)b. Furthermore, Hr
n is k-uniform with fG(x)n

xrn′O(b) ≤ k ≤ fG(x)n

xr , and r′ can
be computed in polynomial time in n′.

Proof. We have to show that the three points of Definition 5.5 on page 47 are satisfied and that
the uniformities k and k′ fulfill the claimed bounds. We start by computing a suitable radius r′.
The lower bound in Lemma 4.5 on page 39 states that we can compute some r′ with 0 ≤ r′ ≤ dn′

such that vol(G)(n′, r′) ≥ fG(x)n′/(dn′xr′). This means that Hr′
n′ is k′-uniform with

k′ ≥ fG(x)n′

dn′xr′
.

We apply the upper bound in Lemma 4.5 on page 39 to conclude that

k ≤ fG(x)n

xr
.

Therefore we can bound the gap

k′b ≥ fG(x)bn′

(dn′)bxbr′
=

fG(x)n

(dn′)bxr
≥ k

(dn′)b
.

This shows that point (iii) of Definition 5.5 is satisfied. To show point (ii), note that for any
u1, . . . , ub ∈ Vn′ , it holds that

B
(G)
r′ (u1)× · · · ×B

(G)
r′ (ub) ⊆ B(G)

r (u) ,

where u := u1 ◦ · · · ◦ ub ⊆ {1, . . . , d}n is the concatenation of u1, . . . , ub. Therefore k′b ≤ k.
Given u1, . . . , ub one can compute u in time polynomial in n, which shows that point (ii) of
Definition 5.5 is satisfied. Furthermore, combined with the bounds above, this shows that

k ≥ k′b ≥ fG(x)n

(dn′)bxr
,

thus k and k′ satisfy the claim in the lemma. Point (i) of Definition 5.5 is clearly satisfied: We can
efficiently compute the G-distance between two points x, y ∈ Vn. This finishes the proof.

For clarity we copy Lemma 4.6 from page 39:

49

Chapter 5. Construction of Covering Codes 50

Lemma 5.9. Let G be a vertex-transitive graph on d vertices. For all 0 < x ≤ 1 and n ∈ N, there is a
radius r ∈ {0, 1, . . . , (d− 1)n} and a code C ⊆ {1, . . . , d}n such that⋃

α∈C
B(G)

r (α) = {1, . . . , d}n

and
|C| ≤ dnxr

fG(x)n
poly(n) .

Furthermore, r can be computed in polynomial time in n and C can be constructed using time O(|C|poly(n))
space and time.

Proof. Let b be some constant, to be determined later. If n is not divisible by b, replace n by
ñ = dn/be b. We construct a code for {1, . . . , d}ñ. This yields a cover for {1, . . . , d}n by restricting
every α in this code to its first n coordinates. Since ñ− n ≤ b, this will not much affect the size
of C, nor the running time. For readability, we will simply assume that n is divisible by b.

Set n′ = n/b. Applying Lemma 5.8, we can efficiently compute numbers r′ and r such
that Hr

n and Hr′
n′ allow block code constructions with gap (dn′)b = poly(n). Further, Hr

n is k-
uniform with k ≥ fG(x)n

xr poly(n). By Theorem 5.6 on page 47, we can construct a covering code
C of G-radius r such that

|C| ≤ dn

k
poly(n) ≤ dn

xr
fG(x)npoly(n)

using O(|C|poly(n) + p(dn′)) time and space. Here p is a polynomial that depends on the run-
ning time and approximation ratio of the approximation algorithm for Set Cover, but not on b.
Choosing b large enough, we can ensure that p(dn′) ≤ |C|.

50

Chapter 6

PPZ for (d, k)-CSP

SO far, the contribution we presented in this thesis has been to obtain deterministic ver-
sions of existing randomized algorithms. In this chapter, we will investigate a random-
ized algorithm. Paturi, Pudlák, and Zane [PPZ99] give an elegant randomized algo-

rithm for k-SAT, henceforth called ppz, based on encodings of satisfying assignments. Al-
though the success probability of ppz is exponentially smaller than that of Schöning’s random
walk algorithm, it is a very important algorithm for at least two reasons: First, an improved ver-
sion of it, given by the same authors and Michael Saks [PPSZ05], called ppsz, is one of the two
ingredients of the currently fastest algorithm for 3-SAT (the other ingredient being Schöning’s
algorithm). Furthermore, for k-SAT with k ≥ 4, ppsz is itself the fastest known algorithm.
Second, ppz is better than Schöning when applied to (d, k)-CSP for already moderately large
values of d. In this chapter we present and analyze a version of ppz for (d, k)-CSP. Although
ppz can easily be adapted to (d, k)-CSP, the analysis of its success probability becomes much
more complicated. We prove a correlation inequality to show that a certain easy to analyze case
is in fact the worst case for ppz on (d,≤ k)-CSP formulas.

6.1 Introduction

Consider the following randomized algorithm for k-SAT: Pick a variable uniformly at random
from vbl(F) and call it x. If the formula F contains the unit clause (x), set x to 1. If it contains
(x̄), set it to 0. It if contains neither, set x uniformly at random (and if it contains both unit
clauses, give up). This algorithm has been proposed and analyzed by Paturi, Pudlák, and
Zane [PPZ99] and is called ppz.

The idea behind analyzing its success probability can be illustrated nicely if we assume,
for the moment, that F is a k-CNF formula with a unique satisfying assignment α setting all
variables to 1. Let x be a variable. Since α[x 7→ 0] is not a satisfying assignment, there is a clause
Cx = (x∨ ȳ1∨ · · · ∨ ȳk−1). With probability 1/k, the algorithm picks and sets y1, . . . , yk−1 before
picking x. Supposed the yj have been set correctly (i.e., to 1), the clause Cx is now reduced to
(x), and therefore x is also set correctly. Intuitively, this suggests that on average, the algorithm
has to guess (1−1/k)n variables correctly and can infer the correct values of the remaining n/k

variables. This increases the success probability of the algorithm from 2−n (simple guessing) to
2−n(1−1/k).

51

Chapter 6. PPZ for (d, k)-CSP 52

It is obvious how to generalize the algorithm to (d, k)-CSP problems. Again we process the
variables in random order. When picking x, we collect all unit constraints of the form (x 6= c)
and call the value c forbidden. Values in [d] which are not forbidden are called allowed, and we
set x to a value that we choose uniformly at random from all allowed values. How can one
analyze the success probability? Let us demonstrate this for d = k = 3. Suppose F has exactly
one satisfying assignment α = (1, . . . , 1). Let x be some variable in F . Since neither α[x 7→ 2]
nor α[x 7→ 3] satisfies F , there are constraints of the form

(x 6= 2 ∨ y 6= 1 ∨ z 6= 1)

(x 6= 3 ∨ u 6= 1 ∨ v 6= 1)

We call these constraints critical for x. If all variables y, z, u, v are picked before x, then there
is only one allowed value for x left, namely 1, and with probability 1, the algorithm picks the
correct values. If y, z come before x, but at least one of u or v come after x, then it is possible
that the values 1 and 3 are allowed, and the algorithm picks the correct value with probability
1/2. In theory, we could list all possible cases and compute their probability. But here comes the
difficulty: The probability of all variables y, z, u, v being picked before x depends on whether
these variables are distinct! Maybe y = u, or z = v... For general d and k, we get d − 1 critical
constraints

C2 := (x 6= 2 ∨ y
(2)
1 6= 1 ∨ · · · ∨ y

(2)
k−1 6= 1)

C3 := (x 6= 3 ∨ y
(3)
1 6= 1 ∨ · · · ∨ y

(3)
k−1 6= 1)

. . . (6.1)

Cd := (x 6= d ∨ y
(d)
1 6= 1 ∨ · · · ∨ y

(d)
k−1 6= 1) .

We are interested in the distribution of the number of allowed values for x. However, the above
constraints can overlap in complicated ways, since we have no guarantee that the variables y

(c)
j

are distinct. Our main technical contribution is a correlation lemma showing that in the worst
case, the y

(c)
j are indeed distinct, and therefore we can focus on that case, which we are able to

analyze. Note that in the boolean case, i.e., d = 2, there is only one critical constraint, hence
there are no overlap issues, which is the reason why the analysis is simpler for k-SAT than for
(d, k)-CSP.

Previous Work

Feder and Motwani [FM02] were the first to generalize the ppz to CSP problems. In their paper,
they consider (d, 2)-CSP problem, i.e., each variable can take on d values, and every constraint
has at most two literals. Consider the special case that the CSP formula F has exactly one
satisfying assignment α = (1, . . . , 1). The critical constraints of x are of the form (x 6= 2∨ y(2) 6=
1), . . . , (x 6= d ∨ y(d) 6= 1). Suppose further that all y(i) are distinct. This special case can
indeed be analyzed similarly to the Boolean case in Paturi, Pudák, and Zane [PPZ99]. Feder
and Motwani show that this special case is the worst case. Unfortunately, their proofs do not
generalize to higher values of k, since for k ≥ 3 the constraints in (6.1) can overlap in much
more complex patterns than for k = 2.

52

Chapter 6. PPZ for (d, k)-CSP 53

Li, Li, Liu, and Xu [LLLX08] analyzed ppz for general CSP problems (i.e., d, k ≥ 3). Their
analysis is overly pessimistic, though, since they distinguish only the following two cases, for
each variable x: When ppz processes x, then either (i) all d values are allowed, or (ii) at least
one value is forbidden. In case (ii), ppz chooses one value randomly from at most d− 1 values.
Since case (ii) happens with some reasonable probability, this gives a better success probability
than the trivial d−n. However, the authors ignore the case that two, three, or more values are
forbidden and lump it together with case (ii). Therefore, their analysis does not capture the full
power of ppz.

Our Contribution

Our contribution is to show that “everything works as expected”, i.e., that in the worst case all
variables y

(c)
j in (6.1) are distinct and the formula has a unique satisfying assignment. For this

case, we can compute (or at least, bound from below) the success probability of the algorithm.
Imagine the following random experiment: Choose r ∈ [0, 1] uniformly at random, set

p := 1− rk−1 and then let Z ∼ Bin(d− 1, p) be a binomially distributed random variable which
has expectation (d−1)p. By some reason that will become clear in the analysis of our algorithm,
we are interested in log2(Z + 1). By the law of total probability, we have

G(d, k) := E[log2(Z + 1)]

=
∑d−1

j=0 log2(1 + j)
(
d−1

j

) ∫ 1
0 (1− rk−1)j(rk−1)d−1−jdr (6.2)

Theorem 6.1. For d, k ≥ 2, there is a randomized algorithm running in polynomial time which, given
a satisfiable (d,≤ k)-CSP formula over n variables, returns a satisfying assignment with probability at
least 2−nG(d,k).

Several times in this chapter we make use of Jensen’s inequality:

Lemma 6.2 (Jensen’s Inequality, Theorem 2.4, page 24 of [MU05]). If f : R → R is a convex
function and X is a random variable, then E[f(X)] ≥ f(E[X]), provided that both expectations exist.
Similarly, if f is concave, then E[f(X)] ≤ f(E[X]).

Let us compare the success probability of Schöning’s random walk algorithm to that of
ppz, for different values of d and k, and, perhaps most interestingly, the asymptotic behavior
for d → ∞. What happens for d → ∞? Consider how the random variable Z is defined. For
fixed r ∈ [0, 1], Z is binomially distributed according to Bin(d− 1, 1− rk−1). Thus, it should be
highly concentrated around its threshold, making Jensen’s inequality a rather tight estimate.
Since Z 7→ log2(Z + 1) is a concave function, Jensen’s inequality yields

E[log2(Z + 1) | r] ≤ log2(E[Z | r] + 1)

= log2((d− 1)(1− rk−1) + 1)

≤ log2(d(1− rk−1) + 1)

= log2(d) + log2

(
1− rk−1 +

1
d

)
.

One checks that

lim
d→∞

∫ 1

0
log2

(
1− rk−1 +

1
d

)
dr =

∫ 1

0
log2(1− rk−1) =: ck ,

53

Chapter 6. PPZ for (d, k)-CSP 54

which at least for me is not entirely obvious. We conclude that the success probability 2−nG(d,k)

for very large d is roughly

(2ckd)−n .

Unfortunately, ck does not have a closed form in general, so we have to evaluate it numerically.
We compare (2ckd)−n to t he success probability of Schöning’s algorithm, which is

Ω

((
k − 1

k
d

)−n
)

.

We list the respective success probabilities of Schöning and ppz in the two tables below
, for different values of d and k. We write only the bases of the exponential functions, i.e.
d(k − 1)/k vs. 2ckd. All bounds are approximate. For small values of d, in particular for

d = 2 d = 3 d = 4 d = 5 d→∞
k = 3 1.334 2.0 2.667 3.334 0.667d

k = 4 1.5 2.25 3.0 3.75 0.75d

k = 5 1.6 2.4 3.2 4.0 0.8d

k = 6 1.67 2.5 3.334 4.1667 0.833d

k = 7 1.72 2.572 3.429 4.29 0.858d

Figure 6.1: The success probability of Schöning for (d, k)-CSP.

d = 2 d = 3 d = 4 d = 5 d→∞
k = 3 1.588 2.16 2.73 3.291 0.542d

k = 4 1.682 2.351 3.02 3.672 0.641d

k = 5 1.742 2.471 3.195 3.92 0.705

k = 6 1.782 2.56 3.32 4.09 0.7497d

k = 7 1.82 2.62 3.42 4.21 0.783d

Figure 6.2: The success probability of ppz for (d, k)-CSP.

the boolean case d = 2, Schöning’s random walk algorithm is much faster than ppz, but ppz
overtakes Schöning already for moderately large values of d and thus is, to our knowledge, the
currently fastest algorithm for (d, k)-CSP.

6.2 The Algorithm

The algorithm itself is simple. It processes the variables x1, . . . , xn according to some random
permutation π. When the algorithm processes the variable x, it collects all unit constraints of
the form (x 6= c) and calls c forbidden. A value c that is not forbidden is called allowed. If the
formula is satisfiable when the algorithm processes x, there is obviously at least one allowed
value. The algorithm chooses an allowed value c uniformly at random, replaces F by F [x 7→c],
and proceeds to the next variable. For technical reasons, we think of the permutation π as part

54

Chapter 6. PPZ for (d, k)-CSP 55

of the input to the algorithm, and sampling π uniformly at random from all n! permutations
before calling the algorithm. To analyze the success probability of the algorithm, we can assume

Algorithm 10 ppz-csp(F : a (d,≤ k)-CSP formula over variables V := {x1, . . . , xn}, π: a per-
mutation of V)

1: α := the empty assignment
2: for i = 1, . . . , n do
3: x := xπ(i)

4: S(x, π) := {c ∈ [d] | (x 6= c) 6∈ F} // S(x, π) is the set of allowed values
5: if S(x, π) = ∅ then
6: return failure

7: end if
8: b←u.a.r. S(x, π)
9: α := α ∪ [x 7→ b]

10: F := F [x 7→b]

11: end for
12: if α satisfies F then
13: return α

14: else
15: return failure

16: end if

that F is satisfiable, i.e., the set sat(F) of satisfying assignments is nonempty. This is because
if F is unsatisfiable, the algorithm always correctly returns failure. For a fixed satisfying
assignment, we will bound the probability

Pr[ppz-csp(F, π) returns α] , (6.3)

where the probability is over the choice of π and over the randomness used by ppz-csp. The
overall success probability is given by

Pr[ppz-csp(F, π) is successful] (6.4)

=
∑

α∈satV (F)

Pr[ppz-csp(F, π) returns α] .

In the next section, we will bound (6.3) from below. The bound depends on the level of isolat-
edness of α: An assignment α′ is a neighbor of α if α and α′ disagree on only one variable. If α

has many satisfying neighbors, the probability to that ppz-csp returns α decreases. However,
the existence of many satisfying assignments will in turn increase the sum in (6.5). In the end,
it turns out that the worst case happens if F has a unique satisfying assignment. Observe that
for the ppz-csp-algorithm in the boolean case [PPZ99], the unique satisfiable case is also the
worst case, whereas for the improved version ppsz [PPSZ05], it is not, or at least not known to
be.

55

Chapter 6. PPZ for (d, k)-CSP 56

6.3 Analyzing the Success Probability

Preliminaries

We assume that all constraints have exactly k. Our analysis also holds for the general case, but
the notation would sometimes be more cumbersome. We fix a satisfying assignment α. For
simplicity, assume that α = (1, . . . , 1), i.e. it sets every variable to 1. What is the probability
that ppz-csp returns α? For a permutation π and a variable x, let β be the partial assignment
obtained by restricting α to the variables that come before x in π, and define

S(x, π, α) := {c ∈ [d] | (x 6= c) 6∈ F [β]} .

Example. Let d = 3, k = 2, and α = (1, . . . , 1). We consider

F = (x 6= 2 ∨ y 6= 1) ∧ (x 6= 3 ∧ z 6= 1) .

For π = (x, y, z), no value is forbidden when processing x, therefore we have S(x, π, α) =
{1, 2, 3}. For π′ = (y, x, z) we consider the partial assignment that sets y to 1, obtaining

F [y 7→1] = (x 6= 2) ∧ (x 6= 3 ∨ z 6= 1) ,

and S(x, π′, α) = {1, 3}. Last, for π′′ = (y, z, x) we set y and z to 1, obtaining

F [y 7→1,z 7→1] = (x 6= 2) ∧ (x 6= 3) ,

thus S(x, π′′, α) = {1}. There are three more permutations we could analyze, but let us keep
the example short. �

Observe that S(x, π, α) is non-empty: Let c = α(x). It is not difficult to see that c ∈
S(x, π, α). What has to happen in order for the algorithm to return α? In every step of ppz-csp,
the value b selected in line 8 for variable x must be α(x). Assume now that this was the case
in each of the first i steps of the algorithm, i.e., the variables xπ(1), . . . , xπ(i) have been set to
their respective values under α. Let x = xπ(i+1) be the variable processed in step i + 1. The
set S(x, π, α) coincides with the set S(x, π) of the algorithm, and therefore x is set to α(x) with
probability 1/|S(x, π, α)|. Since this holds in every step of the algorithm, we conclude that for
a fixed permutation π,

Pr[ppz-csp(F, π) returns α] =
∏
x∈V

1
|S(x, π, α)|

.

For π being chosen uniformly at random, we obtain

Pr[ppz-csp(F, π) returns α] = Eπ

[∏
x∈V

1
|S(x, π, α)|

]
.

The expectation of a product is an uncomfortable term if the factors are not independent. The
usual trick in this context is to apply Jensen’s inequality, hoping that we do not lose too much.
We apply it with the convex function being f : x 7→ 2−x and the random variable being X =

56

Chapter 6. PPZ for (d, k)-CSP 57

∑
x∈V log2 |S(x, π, α)|. With this notation, f(X) =

∏n
x∈V

1
|S(x,π,α)| , the expectation of which we

want to bound from below.

E

[∏
x∈V

1
|S(x, π, α)|

]
= E

[
2−

P
x∈V log2 |S(x,π,α)|

]
≥ 2E[−

P
x∈V log2 |S(x,π,α)|] (6.5)

= 2−
P

x∈V E[log2 |S(x,π,α)|] .

Proposition 6.3. Pr[ppz-csp(F, π) returns α] ≥ 2−
P

x∈V E[log2 |S(x,π,α)|].

Example: The boolean case. In the boolean case, the set S(x, π, α) is either {1} or {0, 1}, and
thus the logarithm is either 0 or 1. Therefore, the term E[log2 |S(x, π, α)|] is the probability that
the value of x is not determined by a unit clause, and thus has to be guessed. �

So far the calculations are the same as in the boolean case. This will not stay that way for
long. In the boolean case, there are only two cases: Either the value of x is determined by a unit
clause, or it is not. For d ≥ 3, there are more cases: The set of potential values for x can be the
full range [d], it can be just the singleton {1}, but it can also be anything in between, and even if
the algorithm cannot determine the value of x by looking at unit clauses, it will still be happy
if at least, say, d/2 values are forbidden by unit clauses.

Analyzing E[log2 |S(x, π, α)|]

In this section we prove an upper bound on E[log2 |S(x, π, α)|]. We assume without loss of gen-
erality that α = (1, . . . , 1). There are d assignments α1, . . . , αd agreeing with α on the variables
V \ {x}: For a value c ∈ [d] we define αc := α[x 7→ c]. Clearly, α1 = α and αi is a neighbor of α

for 2 ≤ i ≤ d.

Definition 6.4. The looseness of α at x, denoted by `(α, x), is the number of assignments among
α1, . . . , αd that satisfy F .

Since α1 = α satisfies F , the looseness of α at x is at least 1, and since there are d possible
values for x, the looseness is at most d. Thus 1 ≤ `(α, x) ≤ d. If α is the unique satisfying as-
signment, then `(α, x) = 1 for every x. Note that α being unique is sufficient, but not necessary:
Suppose α = (1, . . . , 1) and α′ = (2, 2, 1, 1, . . . , 1) are the only two satisfying assignments. Then
`(α, x) = `(α′, x) = 1 for every variable x.

Why are we considering the looseness ` of α at x? Suppose without loss of generality that
the assignments α1, . . . , α` satisfy F , whereas α`+1, . . . , αd do not. The set S(x, π, α) is a random
object depending on π, but one thing is sure:

for all π and 1 ≤ c ≤ `(α, x) : c ∈ S(x, π, α) .

For `(α, x) < c ≤ d, what is the probability that c ∈ S(x, π, α)? Since αc does not satisfy F ,
there must be a constraint in F that is satisfied by α but not by αc. Since α and αc disagree on
x only, that constraint must be of the form

(x 6= c ∨ y2 6= 1 ∨ y3 6= 1 ∨ · · · ∨ yk 6= 1) , (6.6)

57

Chapter 6. PPZ for (d, k)-CSP 58

for some k − 1 distinct variables y2, . . . , yk. If the variables y2, . . . , yk come before x in the
permutation π, then c 6∈ S(x, π, α): This is because after setting to 1 the variables that come
before x, the constraint in (6.6) has been reduced to (x 6= c). Note that y2, . . . , yk coming before
x is sufficient for c 6∈ S(x, π, α), but not necessary, since there could be multiple constraints
of the form (6.6). With probability at least 1/k, all variables y2, . . . , yk come before x, and we
conclude:

Proposition 6.5. If αc does not satisfy F , then Pr[c ∈ S(x, π, α)] ≤ 1− 1/k.

This proposition is nice, but not yet useful on its own. We can use it to finish the analysis of
the running time, however we will end up with a suboptimal estimate.

A suboptimal analysis of ppz-csp

The function t 7→ log2(t) is concave. We apply Jensen’s inequality to conclude that

E[log2 |S(x, π, α)|] ≤ log2 (E[|S(x, π, α)|]) (6.7)

= log2

(
n∑

c=1

Pr[c ∈ S(x, π, α)]

)
(6.8)

We apply what we have learned above: For c = 1, . . . , `(α, x), it always holds that c ∈ S(x, π, α),
and for c = `(α, x) + 1, . . . , d, we have computed that Pr[c ∈ S(x, π, α)] ≤ 1− 1/k. Therefore

E[log2 |S(x, π, α)|] ≤ log2

(
`(α, x) + (d− `(α, x))

(
1− 1

k

))
.

The unique case. If α is the unique satisfying assignment, then `(α, x) = 1 for every variable x

in our CSP formula F , and the above term becomes

log2

(
1 +

(d− 1)(k − 1)
k

)
= log2

(
d(k − 1) + 1

k

)
.

We plug this into the bound of Proposition 6.3:

Pr[ppz-csp returns α] ≥ 2−
Pn

i=1 E[log2 |S(xi,π,α)|]

≥ 2−n log2

“
d(k−1)+1

k

”

=
(

d(k − 1) + 1
k

)−n

.

The success probability of Schöning’s algorithm for (d, k)-CSP problems is
(

d(k−1)
k

)n
, and we

see that even for the unique case, our analysis of ppz-csp does not yield anything better than
Schöning. Discouraged by this failure, we do not continue this suboptimal analysis for the
non-unique case.

Detour: Jensen’s Inequality Here, There, and Everywhere

In this section we offer a glimpse behind the scenes of this proof. This will be instructive,
but the reader can also skip to ”A Better Analysis” without missing anything that would be
essential for the proof.

58

Chapter 6. PPZ for (d, k)-CSP 59

The main culprit behind the poor performance the above suboptimal analysis is Jensen’s
inequality in (6.8). To improve our analysis, we refrain from applying Jensen’s inequality
there and instead try to analyze E[log2 |S(x, π, α)|] directly. However, recall that we have used
Jensen’s inequality before, in (6.5). Is it safe to apply it there? How can we tell when apply-
ing it makes sense and when it definitely does not? To discuss this issue, we restate the two
applications of Jensen’s inequality:

E
[
2−

P
x∈V log2 |S(x,π,α)|

]
≥ 2E[−

P
x∈V log2 |S(x,π,α)|] (6.9)

E[log2 |S(x, π, α)|] ≤ log2 (E[|S(x, π, α)|]) (6.10)

Jensen’s inequality states that for a random variable X and a convex function f , it holds that

E[f(X)] ≥ f(E[X]) , (6.11)

and by multiplying (6.11) by −1 one obtains a similar inequality for concave functions. As a
rule of thumb, Jensen’s inequality is pretty tight if X is very concentrated around its expecta-
tion: In the most extreme case, X is a constant, and (6.11) holds with equality. On the other
extreme, suppose X is a random variable taking on values −m and m, each with probability
1/2, and let f : t 7→ t2, which is a convex function. The left-hand side of (6.11) evaluates to
E[f(X)] = E[X2] = m2, whereas the right-hand side evaluates to f(E[X]) = f(0) = 0, and
Jensen’s inequality is very loose indeed. What random variables are we dealing with in (6.9)
and (6.10)? These are

X :=
∑
x∈V

log2 |S(x, π, α)| and

Y := |S(x, π, α)| ,

and the corresponding functions are f : t 7→ 2−t, which is convex, and g : t 7→ log2 t, which is
concave. In both cases, the underlying probability space is the set of all permutations of V , en-
dowed with the uniform distribution. We see that Y is not concentrated at all: Suppose x comes
first in π: Since our (d, k)-CSP formula F has no unit constraints, it holds that |S(x, π, α)| = d.
On the other hand, if x comes last in π, then |S(x, π, α)| = `(α, x). Either case happens with
probability 1/n, which is not very small. Thus, the random variable |S(x, π, α)| does not seem
to be very concentrated.

Contrary to Y , the random variable X can be very concentrated, in fact for certain CSP
formulas it can be a constant: Suppose d = 2, i.e., the boolean case. Consider the 2-CNF
formula

∧n/2
i=1 (xi ∨ yi) ∧ (xi ∨ ȳi) ∧ (x̄i ∨ yi) . (6.12)

This formula has n variables, and α = (1, . . . , 1) is the unique satisfying assignment. Observe
that if xi comes before yi in π, then S(xi, π, α) = {0, 1} and S(yi, π, α) = {1}. If yi comes before
xi, then S(xi, π, α) = {1} and S(yi, π, α) = {0, 1}. Hence X ≡ n/2 is a constant. Readers who
balk at the idea of supplying a 2-CNF formula as an example for an exponential-time algorithm
may try to generalize (6.12) for values of k ≥ 3.

59

Chapter 6. PPZ for (d, k)-CSP 60

A Better Analysis

After this interlude on Jensen’s inequality, let us try to bound the expectation E[log2 |S(x, π, α)|]
directly. In this context, x is some variable, α is a satisfying assignment, for simplicity α =
(1, . . . , 1), and π is a permutation of the variables sampled uniformly at random. Again think
of the d assignments α1, . . . , αd obtained by setting αc := α[x 7→ c] for c = 1, . . . , d. Among
them, ` := `(α, x) satisfy the formula F . We assume without loss of generality that those are
α1, . . . , α`. Thus, for each ` < c ≤ d, there is a constraint Cc satisfied by α but not by αc. Let us
write down these constraints:

C`+1 := (x 6= ` + 1 ∨ y
(`+1)
1 6= 1 ∨ · · · ∨ y

(`+1)
k−1 6= 1)

C`+2 := (x 6= ` + 2 ∨ y
(`+2)
1 6= 1 ∨ · · · ∨ y

(`+2)
k−1 6= 1)

. . . (6.13)

Cd := (x 6= d ∨ y
(d)
1 6= 1 ∨ · · · ∨ y

(d)
k−1 6= 1)

Recall that for every ` + 1 ≤ c ≤ d, the k − 1 variables y
(`+1)
1 , . . . , y

(`+1)
k−1 are distinct, but it

is perfectly possible that some variable y appears in several rows. We define binary random
variables Y

(c)
j for 1 ≤ j ≤ k − 1 and ` + 1 ≤ c ≤ d as follows:

Y
(c)
j :=

{
1 if y

(c)
j comes after x in the permutation π ,

0 otherwise .

We define Y (c) := max(Y (c)
1 , . . . , Y

(c)
k−1). For convenience we also introduce random variables

Y (1), . . . , Y (`) that are constant 1. Finally, we define Y :=
∑d

c=1 Y (c). Observe that Y (c) = 0
if and only if all variables yc

1, . . . , y
c
k−1 come before x in the permutation, in which case c 6∈

S(x, π, α). Therefore,

|S(x, π, α)| ≤ Y (6.14)

The variables Y (1), . . . , Y (`) are constant 1, whereas each of the Y (c+1), . . . , Y (d) is 0 with proba-
bility at least 1/k. Since 1 ≤ ` ≤ d, the random variable Y can take values from 1 to d. We want
to bound

E[log2 |S(x, α, π)|] ≤ E[log2(Y)] = E

[
log2

(
` +

d∑
c=`+1

Y (c)

)]
. (6.15)

For this, we must bound the probability Pr[Y = j] for j = 1, . . . , d. This is difficult, since the
Y (c) are not independent: For example, conditioning on x coming very early in π increases the
expectation of each Y (c), and conditioning on x coming late decreases it. We use a standard
trick, also used by Paturi, Pudák, Saks, and Zane [PPSZ05] to overcome these dependencies:
Instead of viewing π as a permutation of V , we think of it as a function V → [0, 1] where for
each x ∈ V , its value π(x) is chosen uniformly at random from [0, 1]. With probability 1, all
values π(x) are distinct and therefore give rise to a permutation. The advantage is that for x, y,
and z being three distinct variables, the events “y comes before x” and “z comes before x” are

60

Chapter 6. PPZ for (d, k)-CSP 61

independent when conditioning on π(x) = r:

Pr[π(y) < π(x) | π(x) = r] = r

Pr[π(z) < π(x) | π(x) = r] = r

Pr[π(x) < π(x) and π(z) < π(x) | π(x) = r] = r2

Compare this to the unconditional probabilities:

Pr[π(y) < π(x)] =
1
2

Pr[π(z) < π(x)] =
1
2

Pr[π(x) < π(x) and π(z) < π(x)] =
1
3

From now on we investigate the random variables Y (c) conditioned on π(x) = r for some
r ∈ [0, 1]. With this condition, Y (c) is the maximum of k− 1 independent binary variables, each
with expectation 1− r for ` + 1 ≤ c ≤ d and with expectation 1 for 1 ≤ c ≤ `. Therefore, Y (c) is
a binary random variable, too, and for ` + 1 ≤ c ≤ d we observe that

Pr[Y (c) = 1 | π(x) = r] = 1− rk−1 .

Still, a variable y
(c)
j might occur in several of the constraints C`+1, . . . , Cd, and therefore the

variables Y (c) are not independent. The main technical tool of our analysis is a lemma stating
that the worst case is achieved exactly if they in fact are independent, i.e., if all the variables
y

(c)
j for c = ` + 1, . . . , d and j = 1, . . . , k − 1 are distinct.

Lemma 6.6 (Independence is the Worst Case). Let r, k, ` and Y (c) be defined as above. Introduce
(d − `)(k − 1) independent binary random variables Z

(c)
j , ` + 1 ≤ c ≤ d, 1 ≤ j ≤ k − 1, each with

expectation 1− r. Let Z(c) := max(Z(c)
1 , . . . , Z

(c)
k−1). Then E[Z(c)] = 1− rk−1 and

E

[
log2

(
` +

d∑
c=`+1

Y (c)

)
| π(x) = r

]
≤ E

[
log2

(
` +

d∑
c=`+1

Z(c)

)]
.

The proof of this lemma is elementary but non-trivial and we will give it in the next section.
Let us finish the analysis of the algorithm. We apply a somewhat peculiar estimate: Let a ≥ 1
and b ≥ 0 be integers. Then log2(a + b) ≤ log2(a · (b + 1)) = log2(a) + log2(b + 1). Applying this
with a := ` and b :=

∑d
c=`+1 Z(c) and combining it with Lemma 6.6 and with (6.15) on page 60,

we obtain

E[log2 |S(x, α, π)|
∣∣ π(x) = r] ≤ log2(`) + E

[
log2

(
1 +

d∑
c=`+1

Z(c)

)]
. (6.16)

In addition to Z(`+1), . . . , Z(d), we introduce ` − 1 new independent binary random variables
Z(2), . . . , Z(`), each with expectation 1− rk−1, and define

g(d, k, r) := E

[
log2

(
1 +

d∑
c=2

Z(c)

)]
.

61

Chapter 6. PPZ for (d, k)-CSP 62

The only difference between the expectation in (6.16) and here is that here, we sum over c =
2, . . . , d, whereas in (6.16) we sum only over c = ` + 1, . . . , d. We get the following version of
(6.16):

E[log2 |S(x, α, π)|
∣∣ π(x) = r] ≤ log2(`) + g(d, k, r) . (6.17)

We get rid of the condition π(x) = r by integrating (6.17) for r from 0 to 1.

E[log2 |S(x, α, π)|] ≤ log2(`) +
∫ 1

0
g(d, k, r)dr = log2(`) + G(d, k) , (6.18)

For the value G(d, k) we have defined in (6.2) on page 53.

Lemma 6.7 (Lemma 1 in Feder, Motwani [FM02]). Let F be a satisfiable CSP formula over variable
set V . Then ∑

α∈satV (F)

∏
x∈V

1
`(α, x)

≥ 1 . (6.19)

This lemma is a quantitative version of the intuitive statement that if a set S ⊆ [d]n is small,
then there must be rather isolated points in S. We now put everything together:

Pr[ppsz(F, π) is successful] =
∑

α∈satV (F)

Pr[ppsz(F, π) returns α]

≥
∑

α∈satV (F)

2−
P

x∈V E[log2 |S(x,α,π)|] ,

where the inequality follows from (6.5) on page 57. Together with (6.18) on page 62, we see that∑
α∈satV (F)

2−
P

x∈V E[log2 |S(x,α,π)|] ≥
∑

α∈satV (F)

2−
P

x∈V (log2(`(α,x))+G(d,k))

= 2−nG(d,k)
∑

α∈satV (F)

2−
P

x∈V log2(`(α,x))

= 2−nG(d,k)
∑

α∈satV (F)

∏
x∈V

1
`(α, x)

≥ 2−nG(d,k) ,

where the last inequality follows from Lemma 6.7. This shows that with probability at least
2−nG(d,k), the algorithm returns some satisfying assignment. This finishes the proof of Theo-
rem 6.1 on page 53.

6.4 A Correlation Inequality

Our goal is to prove Lemma 6.6 on the previous page. Recall that we defined

Y
(c)
j :=

{
1 if y

(c)
j comes after x in the permutation π ,

0 otherwise ,

where y
(c)
j are the variables occurring in the critical constraints for a specific variable x, and

Y (c) := max(Y (c)
1 , . . . , Y

(c)
k−1). For clarity let us repeat Lemma 6.6 on the preceding page:

62

Chapter 6. PPZ for (d, k)-CSP 63

Lemma 6.8 (Independence is the Worst Case). Let r, k, ` and Y (c) be defined as above. Introduce
(d − `)(k − 1) independent binary random variables Z

(c)
j , ` + 1 ≤ c ≤ d, 1 ≤ j ≤ k − 1, each with

expectation 1− r. Let Z(c) := max(Z(c)
1 , . . . , Z

(c)
k−1). Then E[Z(c)] = 1− rk−1 and

E

[
log2

(
` +

d∑
c=`+1

Y (c)

)
| π(x) = r

]
≤ E

[
log2

(
` +

d∑
c=`+1

Z(c)

)]
. (6.20)

On the right side of (6.20) we feed in (k − 1)(d− `) independent random bits, while for the
left side we may use fewer, since several of the Y

(c)
j may be defined by the same underlying d-

ary variable y
(c)
j of our formula. The intuition is that independence of the underlying random

bits causes the sum
∑d

c=`+1 Z(c) to be a “more concentrated” random variable than the sum∑d
c=`+1 Y (c), and since t 7→ log2(` + t) is a concave function, a more concentrated random

variable leads to a larger expectation. This intuition is made precise in the following lemma.

Lemma 6.9. Let X, Y, Y ′, U, V be finite vectors of real random variables, all independent, taking only
finitely many values. Suppose Y and Y ′ are over Rn and have the same distribution. Let f, g :
Rn → R be monotonically increasing functions, and let h : R → R be a concave function. Then
E[h(f(X, Y, U) + g(X, Y, V))] ≤ E[h(f(X, Y, U) + g(X, Y ′, V))].

Think of the left hand and right hand side as two different random experiments. The func-
tions f and g are fed with random input. The vector X represents shared random input, U and
V are individual random input. The vectors Y and Y ′ represent random input that is shared
in the first (left hand) experiment and made individual in the second (right hand) experiment.
Intuitively, the more shared randomness f and g use, the likelier they are to be both large or
both small, making the argument to h vary more wildly and, due to the concavity of h, making
the expected value of h smaller.

By repeatedly using Lemma 6.9 we can take the left hand side of (6.20), replace each Y
(c)
j

by Z
(c)
j one by one, thus eventually obtaining the inequality (6.20). Here we implicitly use

several simple facts: First, the sum on the left-hand side in (6.20), involving d − ` terms, can
be partitioned into two terms, one of which is a again a sum. These two terms play the role
of f(X, Y, U) and g(X, Y, V), respectively. The same holds for the right-hand side. Second, the
function max, playing the role of both f and g, is certainly monotonically increasing. Third, the
function h : t 7→ log2(` + t) is concave. Observe that although h is not a function R 7→ R, we
can find a concave function defined on all of R that agrees with h on [1,∞), which is the range
that matters. It remains to prove Lemma 6.9.

Proof of Lemma 6.9. First we claim that the conclusion of the lemma holds for any particular
choice of X , U , and V , not only when taking expectation over these three vectors. If we can
show this, the lemma follows. By substituting concrete real vectors for X , U , and V , we basi-
cally obtain functions f ′ and g′ that depend only on Y and are still monotone. Hence it suffices
to prove that

E[h(f(Y) + g(Y))] ≤ E[h(f(Y) + g(Y ′))] , (6.21)

where Y and Y ′ are over Rn and f, g : Rn → R are monotonically increasing functions.

63

Chapter 6. PPZ for (d, k)-CSP 64

b c da

h

Figure 6.3: Illustration of the final inequality in the proof of Lemma 6.9.

Second, we claim that it suffices to examine the case n = 1. If we can the lemma for n = 1,
we can repeatedly replace every component Yi of Y by Y ′

i , eventually obtaining the above
inequality. Hence let us assume n = 1, and Y, Y ′ are independent identically distributed real
random variables. By symmetry it holds that E[h(f(Y) + g(Y))] = E[h(f(Y ′) + g(Y ′))] and
E[h(f(Y) + g(Y ′))] = E[h(f(Y) + g(Y ′))]. Multiplying (6.21) by 2 and using these identities,
we obtain

E[h(f(Y) + g(Y))] ≤ E[h(f(Y) + g(Y ′))]

⇔

2E[h(f(Y) + g(Y))] ≤ 2E[h(f(Y) + g(Y ′))]

⇔

E[h(f(Y) + g(Y))] + E[h(f(Y ′) + g(Y ′))]

≤ E[h(f(Y) + g(Y ′))] + E[h(f(Y ′) + g(Y))]

⇔

E[h(f(Y) + g(Y)) + h(f(Y ′) + g(Y ′))]

≤ E[h(f(Y) + g(Y ′)) + h(f(Y ′) + g(Y))] .

Conveniently, the last inequality holds not only in expectation, but for every particular choice
of Y, Y ′ ∈ R: Fix such a choice. Without loss of generality, we can assume that Y ≤ Y ′ and
therefore f(Y) ≤ f(Y ′) and g(Y) ≤ g(Y ′), using monotonicity. Second, we can assume without
loss of generality that f(Y)+g(Y ′) ≤ f(Y ′)+g(Y). Writing a := f(Y)+g(Y), b := f(Y)+g(Y ′),
c := f(Y ′) + g(Y), and d := f(Y ′) + g(Y ′) we see that a ≤ b ≤ c ≤ d. The claimed inequality
states that h(a)+h(d) ≤ h(b)+h(c). Divided by two, the statement becomes equivalent to saying
that the midpoint of the longer line segment in Figure 6.3 is below the one of the shorter. This
follows immediately from h being a concave function.

64

Part II

Extremal Combinatorics of CNF
Formulas

65

Chapter 7

The Conflict Structure of CNF Formulas

7.1 Introduction

WE investigate several questions concerning the conflict structure of CNF formulas.
As outlined in the introduction to this thesis, we have some complexity measure
µ on CNF formulas and want to answer the question

What is the largest integer d such that every k-CNF formula F with µ(F) ≤ d is
satisfiable?

This question is very generic. In this chapter, we let µ be a function that measures the
conflict structure of F in several ways. The extremal parameter we seek to determine will
be a function of k. This stands in contrast to the algorithmic context, where typically k is a
constant and the number of variables tends to infinity. Here, we are interested in the asymptotic
behavior of several extremal parameters as k grows.

Conflicts. Two clauses C and D have a conflict if C ∩ D̄ 6= ∅. That is, if there is a literal u

such that u ∈ C and ū ∈ D. For example, the clauses {x, y, z} and {x̄, ȳ, u} have a conflict, but
{x, y, z} and {x, u, v} do not.

Definition 7.1 (Conflict Neighborhood). For a CNF formula F and a clause C, the set

Γ′F (C) := {D ∈ F | C ∩ D̄ 6= ∅}

is the conflict neighborhood of C. By lc(F) we denote the size of the largest conflict neighborhood of a
clause in F , i.e.,

lc(F) = max{|Γ′F (C)| | C ∈ F} .

For the empty formula {} we define lc({}) = 0.

Note that lc(F) = 0 if and only no two clauses in F have a conflict. In this case, one can
satisfy the clauses of F one by one and never run into a contradiction, unless F contains the
empty clause.

Observation 7.2. If F is a CNF formula that does not contain the empty clause and lc(F) = 0, then F

is satisfiable.

67

Chapter 7. The Conflict Structure of CNF Formulas 68

{x̄}

{x, ȳ, z} {x, ȳ, z̄}

{y, z}

{x, y, z̄}

Figure 7.1: The conflict graph of {{x̄}, {x, ȳ, z}, {x, ȳ, z̄}, {x, y, z̄}, {y, z}}.

We define the conflict graph of a CNF formula F as follows: Its vertices are the clauses of F ,
and two clauses C and D are connected by an edge if C and D have a conflict. See Figure 7.1
for an illustration.

1-Conflicts. There is an alternative definition of conflicts, which looks strange at the begin-
ning but turns out to be very fruitful. We say two clauses C and D have a 1-conflict if |C∩D̄| = 1,
i.e., if there is a unique literal u such that u ∈ C and ū ∈ D. Note that C and D have a 1-conflict
if and only if their resolvent exists and is non-trivial. Clearly, any 1-conflict is a conflict, but not
vice versa. For example, the clauses {x, y, z} and {x̄, ȳ, u} have a conflict, but no 1-conflict. In
analogy to Definition 7.1, we introduce some notation.

Definition 7.3 (1-Conflict Neighborhood). If F is a CNF formula and C is a clause, then

Γ1
F (C) := {D ∈ F | |C ∩ D̄| = 1}

is the 1-conflict neighborhood of C. By lc1(F) we denote the size of the largest conflict neighborhood
of a clause in F , i.e.,

lc1(F) = max{|Γ1
F (C)| | C ∈ F} .

For the empty formula {} we define lc1({}) = 0.

The reader might wonder whether there is an analogous version of Observation 7.2 for the
notion of 1-conflicts. There is, but it is less obvious and requires a proof. We will formally state
it below in Proposition 7.9 on page 75. Let us define the 1-conflict graph of a CNF formula F .
Again, its vertices are the clauses of F , and two clauses C and D are connected by an edge if
C and D have a 1-conflict. The 1-conflict graph is a spanning subgraph of the conflict graph (it
has the same vertex set but possibly fewer edges). See Figure 7.2 for an illustration. Sometimes
it is helpful to describe more precisely which literal gives rise to a conflict between clauses. For
this reason, we define the conflict neighborhood of C generated by literal u: For a CNF formula
F and a literal u we write

ΓF (u) := {C ∈ F | u ∈ C} ,

Γ′F (u) := {C ∈ F | ū ∈ C} .

68

Chapter 7. The Conflict Structure of CNF Formulas 69

{x̄}

{x, ȳ, z} {x, ȳ, z̄}

{y, z}

{x, y, z̄}

Figure 7.2: The 1-conflict graph {{x̄}, {x, ȳ, z}, {x, ȳ, z̄}, {x, y, z̄}, {y, z}}.

Thus Γ′F (u) = ΓF (ū). With this notation, it holds that

Γ′F (C) =
⋃
u∈C

Γ′F (u) . (7.1)

Note that in general, a conflict can be generated by several literals: For example, the clauses
C = {x, y} and D = {x̄, ȳ} have a conflict, generated by both x and y. Therefore, the union in
(7.1) is in general not a disjoint union. We define the 1-conflict neighborhood of a clause C with
respect a literal u ∈ C as

Γ1
F (C, u) := {D ∈ F | C ∪ D̄ = {u}} .

The analog of (7.1) for the 1-conflict neighborhood also holds, and here the union is in fact a
disjoint union:

Γ1
F (C) =

⊎
u∈C

Γ1
F (C, u) .

Extremal Parameters

In Observation 7.2, we have seen that a formula with no conflicts is satisfiable (unless it contains
the empty clause). How large can we allow lc(F) to be and still guarantee satisfiability? In other
words,

For k ∈ N, what is the largest c ∈ N such that every k-CNF formula F with
lc(F) ≤ c is satisfiable?

Let us denote this number by lc(k). It follows from the lopsided Lovász Local Lemma [ES91, AS00,
LS07] that lc(k) ≥ b2k/ec − 1. What about upper bounds? Consider the complete formula
CF (x1, . . . , xk). We defined this to be the k-CNF formula consisting of all 2k clauses over the
variables x1, . . . , xk. Since lc(CF (x1, . . . , xk)) = 2k − 1, we know lc(k) up to a constant factor.
In fact, by techniques developed by Gebauer [Geb09], the upper bound can be improved to
lc(k) < 2k−1. See Gebauer, Moser, Scheder and Welzl [GMSW09] for details.

In analogy to lc(k), we define lc1(k) to be the greatest integer c such that any k-CNF formula
F with lc1(F) ≤ c is satisfiable. Considering the complete formula CF (x1, . . . , xk), we conclude
that lc1(k) ≤ k − 1: The formula is unsatisfiable, and every clause C has one 1-conflicts with

69

Chapter 7. The Conflict Structure of CNF Formulas 70

each of the k clauses in which exactly one literal has opposite polarity as in C. We will see in
Section 7.2 that this is tight: Any k-CNF formula F with lc1(F) ≤ k− 1 is satisfiable. This proof
is rather simple and does not use the Local Lemma.

Variable and Literal Degree. Recall ex(deg, k-CNF), the extremal parameter defined in the
introduction. This is the greatest integer d such that any k-CNF formulas F with deg(F) ≤ d

is satisfiable. In the literature, this number is often simply denoted by f(k). Kratochvı́l, Sav-
ický, and Tuza [KST93] showed that f(k) ≥

⌊
2k/ek

⌋
using the Lovász Local Lemma. Therefore,

every unsatisfiable k-CNF formula F must have deg(F) ≥ 2k/(ek). Gebauer, Szabó, and Tar-
dos [GST10] construct unsatisfiable k-CNF formulas achieving this bound up to lower-order
terms. Recall that for a formula F and a literal u we defined occF (u) := |{C ∈ F | u ∈ C}|.
What happens if for all variables x ∈ vbl(F) we restrict occF (x̄) more severely than occF (x)?
For example, if we require that occF (x̄) ≤ 1.2k and occF (x) ≤ 3k for every x ∈ vbl(F)? Does
this imply that F is satisfiable? This question will be partially answered below in Theorem 7.21
on page 82. I suspect that every unsatisfiable k-CNF formula F with deg(F) not much larger
than 2k (for example deg(F) ≤ 2.01k) has a variable x for which both occF (x) and occF (x̄)
are not much smaller than 2k (for example occF (x), occF (x̄) ≥ 1.9k). This certainly holds for
the complete formula as well as for the formulas constructed in [GST10]. To investigate this
question, we introduce the notion of individual conflicts.

Individual Conflicts. We investigate the term occF (x) · occF (x̄) and define

ic(F) := max{occF (x) · occF (x̄) | x ∈ vbl(F)} .

If vbl(F) = ∅, we define ic(F) = 0. Here, ic stands for individual conflicts, since we are counting
conflicts that are generated by an individual variable x.

For k ∈ N, what is the maximum c ∈ N such that every k-CNF formula F with
ic(F) ≤ c is satisfiable?

We denote this number by ic(k). For F = CF (x1, . . . , xk) we have ic(F) = (2k−1)2 = 4k−1:
Every variable appears 2k−1 times positively and 2k−1 times negatively. The formulas by
Gebauer et al. [GST10] are only slightly better: For F being a k-CNF formula constructed
there, there is a variable x with degF (x) ≥ 2k+1/(ek). However, this variable is balanced,
i.e., occF (x) = occF (x̄), and therefore ic(F) ∈ Θ(4k/k2). This shows that ic(k) ∈ O(4k/k2). As
for lower bounds, the bound on f(k) implies that a k-CNF formula F with ic(F) ≤ f(k)− 1 is
satisfiable. Since f(k) ∈ Θ(2k/k), this proves ic(k) ∈ Ω(2k/k). Note that there is an exponential
gap between these upper and lower bounds for ic(k)!

Global Conflicts. What if we do not only restrict the local number of conflicts or the number
of conflicts generated by an individual variable, but the global number of conflicts in a formula?
How many conflicts can we allow and still guarantee satisfiability? To be more formal,

gc(F) :=
∣∣∣∣{{C,D} ∈

(
F

2

) ∣∣ C ∩ D̄ 6= ∅
}∣∣∣∣ .

This is the number of edges in the conflict graph of F , and
∑

C∈F |Γ′F (C)| = 2gc(F).

70

Chapter 7. The Conflict Structure of CNF Formulas 71

For k ∈ N, what is the maximum c such that every k-CNF formula F with
gc(F) ≤ c is satisfiable?

We denote this maximum c by gc(k). Again, we consider the usual suspects. The complete k-
CNF formula has 2k clauses, and any two clauses have a conflict, therefore gc(CF (x1, . . . , xk)) =(
2k

2

)
∈ Θ(4k). The lower bound on f(k) gives us a lower bound of gc(k) ∈ Ω(2k/k). Here, we

have an exponential gap, too.

We summarize: We know the correct asymptotics of f(k), lc(k) and lc1(k), the extremal
parameters defined by restricting variable degrees, the size of the conflict neighborhoods and
1-conflict neighborhoods, respectively. In fact, we know the value of lc1(k) exactly. In all three
cases, the complete formula provides a not too bad upper bound. For f(k), it is only a fac-
tor k from the true value. For ic(k) and gc(k), the extremal parameters defined by restricting
the number of conflicts generated by any individual variable and the total number conflicts,
respectively, the complete formula gives a very poor upper bound, and we do not know the
correct asymptotics. There is an exponential gap between the trivial lower and upper bounds
we have given above. We will narrow, although not close, this gap for ic(k) in Section 7.3 and
for gc(k) in Section 7.4.

Complexity Jumps

Several of the parameters defined above exhibit a complexity jump. For example, deciding
whether a k-CNF formula F with deg(F) ≤ f(k) is satisfiable is trivial: It is satisfiable. How-
ever, satisfiability of k-CNF formulas with deg(F) ≤ f(k)+1 is already NP-complete, as proved
by Kratochvı́l et al. [KST93] (and by Tovey [Tov84] for k = 3). What about other parameters?
Gebauer, Moser, Welzl, and myself [GMSW09] showed that while satisfiability of k-CNF for-
mulas with lc(F) ≤ c is trivial for c ≤ lc(k), it is NP-complete for c ≥ lc(k)+1. Interestingly, the
parameter lc1 does not exhibit a sudden jump: Every k-CNF formula F with lc1(F) ≤ k − 1 is
satisfiable, and deciding satisfiability for k-CNF formulas with lc1(F) ≤ k + 1 is NP-complete.
However, if we require lc1(F) ≤ k, we obtain a problem that is non-trivial, but can be solved in
polynomial time.

Results

In Section 7.2, we investigate 1-conflicts of CNF formulas. We prove that lc1(k) = k − 1, i.e.,
every k-CNF formula F with lc1(F) ≤ k−1 is satisfiable and there exists an unsatisfiable k-CNF
formula F with lc1(F) = k−1. Furthermore, we show that satisfiability of k-CNF formulas with
lc1(F) ≤ k +1 is NP-complete. Finally, when lc1(F) ≤ k, we can efficiently decide satisfiability.
The latter result rests on several interesting combinatorial properties of 1-conflicts.

In Section 7.3, we prove that ic(k) ∈ O(3.01k). That is, we construct an unsatisfiable k-CNF
formula F such that occF (x) · occF (x̄) ∈ O(3.01k) for every variables x ∈ vbl(F). To achieve
this goal, we develop a machinery for constructing very unbalanced unsatisfiable formulas.
We employ both probabilistic and explicit constructions. Unfortunately, we did not manage to
prove a lower bound of ic(F) ≥ ak for any a > 2.

71

Chapter 7. The Conflict Structure of CNF Formulas 72

In Section 7.4, we use the machinery from Section 7.3 to prove that gc(k) ∈ O(3.51k). This
means, we construct an unsatisfiable k-CNF formula with at most O(3.51k) conflicts. The sec-
ond result of Section 7.4 is the main result of this chapter, and also the most technical. We show
that gc(k) ∈ Ω(2.69k), i.e., every unsatisfiable k-CNF formula has Ω(2.69k) conflicts. We prove
the lower bound by applying the Lovász Local Lemma with a very non-uniform distribution
and subjecting the formula to a “truncation process” which makes it less satisfiable, but makes
satisfiability easier to detect for the Local Lemma.

We think the results of Section 7.4 are interesting not because of the precise numbers, but
since it shows that both the trivial upper bound and the trivial lower bound are far from being
tight. We do not see any “natural” candidate ak for the true asymptotic behavior of gc(k). The
results of Section 7.3 and Section 7.4 are joint work with Philipp Zumstein [SZ08a, SZ08b].

Basically all proofs of lower and upper bounds on ic and gc, i.e., the number of conflicts
generated by an individual variable and the total number of conflicts, respectively, are proba-
bilistic, whereas the proofs concerning the number of 1-conflicts use basic combinatorial rea-
soning. We summarize the currently best bounds of several extremal parameters the following
table.

parameter notation lower bound upper bound
variable degree f(k) 2k+1

ek (1− o(1)) [GST10] 2k+1

ek (1 + o(1)) [GST10]
individual conflicts ic(k) 2k

ek [KST93] O(3.01k) [SZ08b]
global conflict number gc(k) Ω(2.69k) [SZ08b] O(3.51k) [SZ08b]

Tools

The lopsided Lovász Local Lemma. We will formally restate the Lopsided Lovász Local
Lemma and then distill it into a convenient form we will use. For a graph G and a vertex u,
ΓG(u) to denote the set of vertices in G that are adjacent to u, not including u itself.

Definition 7.4 (Lopsided Dependency Graph). Let A1, . . . , Am be events in some probability space.
A graph G(V,E) with V = {u1, . . . , um} is called a lopsided dependency graph if for any Ai and
any set U ⊆ V \ ΓG(ui) of vertices not adjacent to ui with Pr[

⋂
uj∈U Āj] > 0, it holds that

Pr

Ai

∣∣∣∣∣ ⋂
uj∈U

Āj

 ≤ Pr [Ai] . (7.2)

Lemma 7.5 (Lopsided Lovász Local Lemma[ES91, AS00, LS07]). Let A1, . . . , Am be events in
some probability space, and let G be a lopsided dependency graph on these events. If there are numbers
0 ≤ γi < 1, 1 ≤ i ≤ m, such that for any i,

Pr [Ai] ≤ γi

∏
uj∈ΓG(ui)

(1− γj) , (7.3)

then
Pr
[
Ā1 ∩ · · · ∩ Ām

]
> 0 .

72

Chapter 7. The Conflict Structure of CNF Formulas 73

For a CNF formula F = {C1, . . . , Cm} we draw a random assignment α by setting each
variable x to true with a certain probability p(x), independent of all other variables. Let Ai

be the event that α does not satisfy clause Ci. We claim that the conflict graph of F is a lop-
sided dependency graph for the events A1, . . . , Am. We have to show that (7.2) holds. In CNF
terminology, for any satisfiable subformula F ′ ⊆ F consisting of clauses not conflicting with C,

Pr
[
α 6|= C

∣∣α |= F ′] ≤ Pr[α 6|= C] .

Showing this basically boils down to proving that two monotone boolean functions are pos-
itively correlated. This is a well-known fact, a special case of the so-called FKG inequal-
ity [FKG71], a proof of which can also be found in [AS00].

Lemma 7.6 (SAT version of the Lopsided Lovász Local Lemma). Let F be a CNF formula not
containing the empty clause. Sample a assignment α by independently setting each variable x to true
with some probability p(x) ∈ [0, 1]. If for every clause C ∈ F it holds that∑

D∈Γ′F (C)

Pr[α 6|= D] ≤ 1
4

, (7.4)

then F is satisfiable.

Proof. Let G := CG(F). We can assume that every clause C ∈ F conflicts with at least one
other clause, i.e. G has no isolated vertices. Otherwise, F is satisfiable if and only if F \ {C}
is satisfiable, and we prove the statement for F \ {C}. Since C has at least one conflict, (7.4)
implies Pr[Ai] ≤ 1

4 , for all 1 ≤ i ≤ m. For γi := 2 Pr[Ai], we have γi ≤ 1
2 . We show that (7.3)

holds:

γi

∏
Cj∈ΓG(Ci)

(1− γj) ≥ 2 Pr[Ai]

1−
∑

Cj∈ΓG(Ci)

2 Pr[Aj]


≥ 2 Pr[Ai]

(
1− 2 · 1

4

)
= Pr[Ai] .

In the first inequality, we used the definition of the γi and the fact that
∏

(1−γj) ≥ 1−
∑

γi, and
in the second inequality we used the assumption (7.4). Lemma 7.5 now implies that Pr[Ā1 ∩
· · · ∩ Ām] > 0, i.e. with positive probability, no clause will be unsatisfied by α. In other words,
there is a satisfying assignment.

Mostly we do not apply the Lovász Local Lemma directly to the formula for which we want
prove satisfiability, but to a truncation of it:

Definition 7.7 (Truncation). Let F = {C1, . . . , Cm} be a CNF formula. A formula G = {D1, . . . , Dm}
is called a truncation of F if Di ⊆ Ci for all 1 ≤ i ≤ m.

It is possible that Di = Dj even if Ci 6= Cj , so G may have fewer clauses than F .

Observation 7.8. If F is a CNF formula over the variables V , and G is a truncation of F , then
satV (G) ⊆ satV (F). In particular, if G is satisfiable, then F is satisfiable, too.

73

Chapter 7. The Conflict Structure of CNF Formulas 74

Hypergraph 2-Colorability. For proving upper bounds on ic(k) and gc(k), i.e., construct-
ing unsatisfiable k-CNF formulas F for which ic(F) or gc(F) are small, we use a second idea,
coming from colorability of hypergraphs. A hypergraph H = (V,E) is k-uniform if all hyper-
edges e ∈ E have size k. It is 2-colorable if the vertices can be colored red and blue such that no
edge becomes monochromatic. Notice the connection to satisfiability: Given a k-uniform hy-
pergraph H , we construct a k-CNF formula F by taking the vertices of H as our variables, and
introducing for every hyperedge e = {v1, . . . , vk} the two clauses {v1, . . . , vk} and {v̄1, . . . , v̄k}.
Observe that F is satisfiable if and only if H is 2-colorable. Conversely, if F is a monotone k-
CNF formula, i.e., every clause contains either only positive or only negative literals, then we
can build a hypergraph H = (vbl(F), E) by setting E := {vbl(C) | C ∈ F}. Note that if H is
2-colorable, then F is satisfiable, but the converse need not be true.

What is the minimum number of edges in a k-uniform hypergraph that is not 2-colorable?
In 1963, Erdős [Erd63] raised that question and proved a lower bound of 2k−1: Every k-uniform
hypergraph with fewer hyperedges is 2-colorable (simply choose a random 2-coloring). One
year later, he [Erd64] gave a probabilistic construction of a non-2-colorable k-uniform hyper-
graph using ck22k hyperedges for some constant c. What is the minimum number of clauses
in an unsatisfiable monotone k-CNF formula? By the above considerations, the answer must
be the same, up to a factor of 2, as for non-2-colorable k-uniform hypergraphs. For CNF for-
mulas we can ask a more general question: We consider (`, k)-CNF formulas, which are CNF
formulas containing positive clauses of size ` and negative clauses of size k. Thus, a (k, k)-CNF
formula is simply a monotone k-CNF formula. What is the minimum number of clauses in
an unsatisfiable (`, k)-CNF formula? Generalizing Erdős’ methods, we will prove rather tight
bounds on this number in Section 7.3. The upper bounds, i.e., constructions of unsatisfiable
(`, k)-CNF formulas, will help us prove upper bounds on ic(k) and gc(k).

The Combinatorial OR. We introduce a very convenient notation. Let F and G be a CNF
formulas. Then F ∨G is certainly a Boolean formula, although not in conjunctive normal form.
However, by distributivity, we see that it is equivalent to the CNF formula

{C ∪D | C ∈ F,D ∈ G} ,

from which we remove trivial clauses, i.e., clauses containing both x and x̄. We denote the
resulting formula by F YG. The notation extends to clauses via F YC := F Y{C} and to literals
via F Y u := F Y {u}. In any case F Y G ≡ F ∨ G, that is, an assignment satisfies F Y G if and
only if it satisfies F ∨ G. If F is a k1-CNF formula and G is a k2-CNF formula, then F Y G is a
(≤ k1 + k2)-CNF formula. Furthermore, if vbl(F) ∩ vbl(G) = ∅, then F Y G is a (k1 + k2)-CNF
formula. The main application of the combinatorial or is the simple observation that F YG ≡ G

is F is unsatisfiable.

7.2 1-Conflicts

In this section we explore the combinatorial properties of 1-conflicts and study the extremal
parameter lc1. We prove that every k-CNF formula F with lc1(F) ≤ k−1 is satisfiable, deciding

74

Chapter 7. The Conflict Structure of CNF Formulas 75

satisfiability of k-CNF formulas with lc1(F) = k + 1 is NP-complete, and, most interestingly,
deciding satisfiability of k-CNF formulas with lc1(F) = k can be done in polynomial time.

7.2.1 Combinatorial Properties

Let us start with a simple but surprising observation.

Proposition 7.9. Every CNF formula F with � 6∈ F and lc1(F) = 0 is satisfiable.

Note that without such a property, the notion “1-conflict” would be misleading. After all,
under any reasonable notion of conflict, a formula without conflicts should be satisfiable (ex-
treme cases like � ∈ F excluded).

Proof. By completeness of resolution, a CNF formula F is unsatisfiable if and only if there is a
resolution derivation of the empty clause. Since F has no 1-conflicts, we cannot build any new
resolvents. Since � 6∈ F , the formula is satisfiable.

Somewhat amusingly, almost every “reasonable” algorithm for k-SAT will find a satisfying
assignment of F . For example, consider the following algorithm:

Pick some arbitrary variable x ∈ vbl(F) and choose b ∈ {0, 1} as follows: If
{x} ∈ F , set b = 1. If {x̄} ∈ F , set b = 0. If it contains neither, choose b ∈ {0, 1}
arbitrarily. Set F ′ := F [x 7→b] and continue recursively with F ′.

The algorithm is well-defined, since by assumption F cannot contain both {x} and {x̄}.
The algorithm will eventually arrive at the empty formula, having constructed a satisfying
assignment: The formula F ′ fulfills the assumptions of Proposition 7.9 (� 6∈ F ′ and lc1(F ′) =
0, and thus the algorithm finds a satisfying assignment by induction. As a second example,
consider the following variant of Schöning’s random walk algorithm [Sch99]:

Start with some assignment α. As long as α does not satisfy F , pick an arbi-
trary unsatisfied clause C, pick a literal u ∈ C arbitrarily and flip the value of the
underlying variable, obtaining an assignment α′. Formally, α′ := α[u 7→ 1]. Repeat.

To see that this algorithm is correct and terminates, consider α, C, and α′ as above. Obvi-
ously α′ satisfies C. Not so obviously, it also satisfies every clause D that was satisfied by α.
This holds due to the local flipping argument we will use several times in this section.

The local flipping argument. To see that α′ satisfies D, observe what happens when we flip
x, the underlying variable of u. If x 6∈ vbl(D), the clause D will not care, and α′ satisfies D if
and only if α does. If u ∈ D, then D will only benefit from setting u to 1. If ū ∈ D, then C and
D have a conflict. Since they do not have a 1-conflict, there is some literal v 6= u such that v ∈ C

and v̄ ∈ D. Now α(v) = 0, since α does not satisfy C. Since α and α′ agree on v, α′ satisfies D.
This constitutes another proof of Proposition 7.9.

Definition 7.10 (Free Literals and Clauses). Let F be a CNF formula, C ∈ F a clause, and u ∈ C

some literal. We say u is free in C with respect to F if Γ1
F (C, u) = ∅, i.e., if there is no clause D ∈ F

such that C∩D̄ = {u}. Furthermore, we say that C is free with respect to F if it contains some literal
u that is free in C with respect to F .

75

Chapter 7. The Conflict Structure of CNF Formulas 76

If the ambient formula is understood, we simply say that u is free in C and C is free.

Proposition 7.11. Let F be a CNF formula and C ∈ F some clause. If C is free, then F is satisfiable if
and only if F \ {C} is.

Proof. If F is satisfiable, then F \ {C} is satisfiable, too. For the other direction, assume that
F \ {C} is satisfiable and let α be an assignment that is defined on every variable of vbl(F) and
satisfies F \{C}. Let u ∈ C be a literal that is free in C. If α satisfies C, we are done. Otherwise,
α(u) = 0 and we define α′ := α[u 7→ 1]. We apply the local flipping argument from above to
show that α′ satisfies F : Clearly, α′ satisfies C, and also every clause D ∈ F with ū ∈ D. This
holds because if ū ∈ D, then |C ∩ D̄| ≥ 2, and α satisfies at least two literals in D. Therefore, α′

satisfies at least one literal in D. Thus, α′ satisfies F .

Algorithm 11 removeFree(CNF formula F)
1: while there is a clause C ∈ F that is free with respect to F do
2: F := F \ {C}
3: end while
4: return F

We can use Proposition 7.11 to repeatedly remove free clauses in a formula, finally arriving
at a formula without free clauses. The algorithm removeFree formalizes this procedure.

Proposition 7.12. Let F be a CNF formula and let F ′ := removeFree(F). Then F ≡SAT F ′.

Proof. This follows from Proposition 7.11 and induction on the number of clauses.

Proposition 7.12 yields another proof of Proposition 7.9 on the previous page: If lc1(F) =
0, then every non-empty clause contains a free literal, i.e., every clause C is free in F . The
algorithm removeFree will remove one by one, finally arriving at the empty formula, which
is satisfiable. Here we were using an innocent but crucial fact: If a clause C is free with respect
to F , then it is also free with respect to every subformula F ′ ⊆ F for which C ∈ F ′.

Lemma 7.13. A CNF formula is satisfiable if and only if every connect component of its 1-conflict graph
is satisfiable.

Again, this is something we expect from a reasonable notion of conflict. Since each clause
in F is itself satisfiable, unless � ∈ F , the lemma implies that a formula F with an empty
1-conflict graph and without the empty clause is satisfiable, providing yet another proof of
Proposition 7.9.

Proof. The one direction is trivial: If F is satisfiable, then all connected components are sat-
isfiable. For the other direction, we assume that every connected component is satisfiable
and use induction on the number of connected components. If this number is 1, i.e., if the
1-conflict graph of F is connected, the lemma holds trivially true. Otherwise, F can be written
as F = F1]F2 such that there is no 1-conflict between F1 and F2, i.e., for all C ∈ F1 and D ∈ F2,
it holds that |C ∩ D̄| 6= 1. Furthermore, both F1 and F2 have fewer connected components than
F and therefore are satisfiable by induction.

76

Chapter 7. The Conflict Structure of CNF Formulas 77

The rest of the proof is a variation of what we have seen above. Since F1 and F2 are satisfi-
able, we can choose a pair α1, α2 of assignments to vbl(F) such that α1 satisfies F1, α2 satisfies
F2, and the Hamming distance dH(α1, α2) is minimized. We claim that α1 satisfies F2 as well,
and therefore F . Suppose for the sake of contradiction that this is not the case. There is a clause
D ∈ F2 such that α1 does not satisfy D. Since α2 satisfies D, there is a literal u ∈ D such that
α1(u) = 0 and α2(u) = 1. Define α′1 := α[u 7→ 1]. Clearly dH(α′1, α2) = dH(α1, α2) − 1. If we
can prove that α′1 still satisfies F1, we have arrived at a contradiction to dH being minimal, and
are done. Showing that α′1 satisfies F1 is another application of the local flipping argument:
Consider any C ∈ F1. By the assumptions of the lemma, there is no 1-conflict between C and
D. Hence either C ∩ D̄ = ∅ or |C ∩ D̄| ≥ 2. In the first case, α1(C) = α′1(C) = 1. In the second
case, α1 satisfies at least two literals in C, and therefore, α′1 satisfies at least one literal in C.
This shows that α′1 indeed satisfies F1, contradicting minimality of dH(α1, α2).

Definition 7.14 (Frugal Literals, Clauses, and Formulas). Let F be a CNF formula, C ∈ F a clause
u ∈ C a literal. We say u is frugal in C with respect to F if |Γ1

F (C, u)| = 1, i.e., there is exactly one
clause D ∈ F with C ∩ D̄ = {u}. If every u ∈ C is free or frugal with respect to F , we say C is frugal
with respect to F . If every clause C ∈ F is frugal with respect to F , we call F itself frugal.

Again, if the ambient formula F is understood, we simply say u is frugal in C. Note that
lc1(F) ≤ k if F is frugal. Furthermore, if F is frugal then every F ′ ⊆ F is frugal, and if u is
frugal in C with respect to F , then u is also frugal in C with respect to every F ′ ⊆ F , provided
that C ∈ F ′

Proposition 7.15. Let F be a frugal CNF formula. Then removeFree(F) consists of exactly those
clauses of F that lie in a connected component of the 1-conflict graph of F that does not contain any
clause that is free with respect to F .

Proof. We have to show two things: First, if C is free with respect to F and D lies in the same
connected component as C, then D 6∈ removeFree(F). Second, if D lies in a connected com-
ponent G ⊆ F for which no C ∈ G is free with respect to F , then D ∈ removeFree.

For the first part, let C = C1, C2, . . . , Ct = D be a path from C to D in the 1-conflict graph.
We claim that for all 1 ≤ i ≤ t, the procedure removeFree(F) will at some point remove Ci.
This is shown by induction: For i = 1, this is true since C1 = C is free with respect to F , thus
removeFree(F) will remove C1 at some point. For i ≥ 2, we know by induction that Ci−1

will be removed at some point. Consider the point in time immediately after Ci−1 has been
removed. Either Ci has already been removed, and we are done. Or, it is still there. In this case,
we use the fact that Ci−1 and Ci have a 1-conflict and that F is frugal. There is some literal u

such that Γ1
F (Ci, u) = {Ci−1}. Once Ci−1 is removed from F , u is free in Ci with respect to F ,

thus Ci will be removed, too. This concludes the proof of the first part.
For the second part, we assume that D is in a connected component G ⊆ F which does not

contain any clause that is free with respect to F . We have to show that D ∈ removeFree(F).
This is easy: After the first iteration of removeFree(F), one free clause C has been removed,
and F has been replaced by a smaller formula F ′. By assumption, C 6∈ G, therefore G ⊆ F ′.
Since the 1-conflict graph of F ′ is a subgraph of that of F , the assumption still holds: D lies in
a connected component G ⊆ F ′ which does not contain any free clause. The claim now follows
from induction on |F |.

77

Chapter 7. The Conflict Structure of CNF Formulas 78

{ȳ1, y2, ū}

{ȳ3, y1}

{y3}

{ȳ2}

{u, x̄1} {x̄4}{x1, x2, x3}

{x̄3, x4}

{x̄2}

y3 y1

y2

u x1

x2

x3
x4

Figure 7.3: Illustration of Proposition 7.16. When we set u to 1, the clause {u, x̄1} disappears. Since
the clause {x1, x2, x3} is frugal, it has only one outgoing edge labeled x1. Once {u, x̄1} disappears, the
literal x1 will be free in {x1, x2, x3}, and {x1, x2, x3}will be deleted, too. Then x̄2 will be free in {x̄2} and
x̄3 will be free in {x̄3, x4}, thus these clauses are also deleted, and so on.

In the 1-conflict graph every edge can be labeled with the unique variable that is responsible
for it. For example, if C∩D̄ = {x̄}, then C and D have a 1-conflict, and the edge in the 1-conflict
graph would be labeled with x. For a literal u and a formula F , let Fu ⊆ F denote the set of
clauses D ∈ F such that the 1-conflict graph of F contains a path C = C1, C2, . . . , Ct = D for
which u ∈ C, and no edge on the path is labeled with vbl(u).

Proposition 7.16. If F is a frugal CNF formula and u is some literal, then it holds that removeFree(F [u 7→1]) ⊆
F [u 7→1] \ F

[u 7→1]
u ⊆ (F \ Fu)[u 7→1].

Proof. We show the first inclusion. The second follows easily from elementary set theory. Let
D ∈ Fu. We will show that the clause D[u 7→1] is not contained in removeFree(F [u 7→1]). See
Figure 7.3 for an illustration. First, if u ∈ D the statement is clearly true. Otherwise, there is
some path C = C1, C2, . . . , Ct = D such that u ∈ C and for 1 ≤ i ≤ t − 1 the edge Ci, Ci+1

is labeled with some xi 6= vbl(u). Let Cj be the last clause in this path that contains u. Since
u ∈ C = C1, this is well-defined, and since u 6∈ D = Ct, it holds that j ≤ t − 1. The 1-conflict
graph of F [u 7→1] contains the path C

[u 7→1]
j+1 , . . . , C

[u 7→1]
t . Since u ∈ Cj , setting u 7→ 1 satisfies Cj .

Recall that xj is the variable with which the edge Cj , Cj+1 is labeled. This means that there
is a literal v ∈ {xj , xj+1} such that C̄j ∩ Cj+1 = v. This literal v is free in C

[u 7→1]
j+1 with respect

to F [u 7→1]. This means that in the 1-conflict graph of F [u 7→1], the clause D[u 7→1] lies in the same
connected component as a free clause. By Proposition 7.15, the clause C

[u 7→1]
t is not contained

in removeFree(F [u 7→1]). This completes the proof.

We are now ready to state and prove the main theorem of this section.

Theorem 7.17. The following three statements hold for all k ≥ 0:

(i) Every k-CNF formula F with lc1(F) ≤ k − 1 is satisfiable.
(ii) There exists an unsatisfiable k-CNF formula F with lc1(F) = k.

(iii) Satisfiability of k-CNF formulas F with lc1(F) ≤ k can be decided in polynomial time.
(iv) Deciding satisfiability of k-CNF formulas F with lc1(F) ≤ k + 1 is NP-complete, if k ≥ 3.

Proof. If F is a k-CNF formula and lc1(F) ≤ k − 1, then every clause C ∈ F is free. Therefore
removeFree(F) = {} and by Proposition 7.12, F is satisfiable. To prove (i), consider the

78

Chapter 7. The Conflict Structure of CNF Formulas 79

complete formula CF (x1, . . . , xk). It is unsatisfiable, and every clause has exactly k many 1-
conflicts.

Let us show point (iii). Suppose F is a k-CNF formula and lc1(F) ≤ k. We give a polynomial
time algorithm deciding whether F is satisfiable. First, we claim that every clause in F is frugal
or free: Let C ∈ F . If |Γ1

F (C)| ≤ k − 1, then C is free. If |Γ1
F (C)| = k, then there are two

cases: Either, it could be that the k sets Γ1
F (C, u) for u ∈ C all have size 1. In this case, all

u ∈ C are frugal, and C is frugal. Or, there is some u ∈ C such that Γ1
F (C, u) = ∅, i.e., u is

free in C. In this case, C is free. This shows that every clause in F is frugal or free. Define
F ′ := removeFree(F). By the property of the algorithm removeFree, F ′ contains no free
clauses. Therefore, every clause in F ′ is frugal, thus F ′ is frugal.

Lemma 7.18. Satisfiability of frugal CNF formulas can be decided in polynomial time.

Algorithm 12 frugalSAT(CNF formula F)
1: if � ∈ F then
2: return false

3: else if F = {} then
4: return true

5: else if F = F1] F2 for some F1, F2 6= {} and |C ∩ D̄| 6= 1 for all C ∈ F1, D ∈ F2 then
6: return frugalSAT(F1) ∧ frugalSAT(F2)
7: else
8: x→ vbl(F)
9: G1 := removeFree(F [x 7→1])

10: G0 := removeFree(F [x 7→0])
11: return frugalSAT(G1) ∨ frugalSAT(G0)
12: end if

This is achieved by the algorithm frugalSAT. To see the correctness of frugalSAT, con-
sider lines 5 and 6. The algorithm recurses on F1 and F2 and returns true if both calls return
true. By Lemma 7.13, F is satisfiable if and only if F1 and F2 are both satisfiable individually.
If the condition in line 5 is not fulfilled, the algorithm recurses on G1 and G0. Clearly, F is
satisfiable if and only if at least one of F [x 7→0] and F [x 7→1] is satisfiable. Since F [x 7→0] ≡SAT G0

and F [x 7→1] ≡SAT G1, F is satisfiable if and only if G0 is or G1 is. This shows that frugalSAT
is correct. Note that so far we have not used frugality of F : In fact, frugalSAT is a correct
algorithm for SAT, but it will take exponential time in general: In the worst case, G0 = F [x 7→0]

and G1 = F [x 7→1], and G0 and G1 have |vbl(F)| − 1 variables, leading to a running time of
O(2npoly(n)). The crucial fact about frugal formulas is that G0 and G1 cannot both be large:

Proposition 7.19. Let F be a frugal CNF formula with a connected 1-conflict graph and without free
clauses. Let x ∈ vbl(F). Define G0 := removeFree(F [x 7→0]) and G1 := removeFree(F [x 7→1]).
Then |G0|+ |G1| ≤ |F |, and |G0|, |G1| ≤ |F | − 1.

Proof. Since x ∈ vbl(F), some clause C ∈ F contains x or x̄. Without loss of generality, x ∈ C.
Since C is not free, there is some clause D with C ∩ D̄ = {x}. In particular, x̄ ∈ D. This

79

Chapter 7. The Conflict Structure of CNF Formulas 80

already implies that setting x to 0 and setting x to 1 both removes at least one clause, showing
|G0| ≤ |F | − 1 and |G1| ≤ |F | − 1.

As above, let Fu ⊆ F denote the set of clauses D ∈ F such that the 1-conflict graph of F

contains a path C = C1, C2, . . . , Ct = D for which u ∈ C, and no edge on the path is labeled
with vbl(u). Since the 1-conflict graph of F is connected, we can walk from D until we reach a
clause containing x or x̄. Therefore, F = Fx ∪ Fx̄. By Proposition 7.16 it holds that

G1 = removeFree(F [x 7→1]) ⊆ (F \ Fx)[x 7→1]

G1 = removeFree(F [x 7→1]) ⊆ (F \ Fx̄)[x 7→0]

Therefore |G0|+ |G1| ≤ |F \ Fx|+ |F \ Fx̄| ≤ 2|F | − |Fx ∪ Fx̄| = 2|F | − |F | = |F |.

Once frugalSAT reaches line 9, F is frugal, has no free clause, and has a connected conflict
graph. Therefore Proposition 7.19 applies and |G0| + |G1| ≤ |F |, and |G0|, |G1| ≤ |F | − 1.
Consider the recursion tree built by the frugalSAT. If F is empty, the tree consists of a single
node. Otherwise, we claim that it has at most 4m − 1 nodes, where m = |F | is the number of
clauses. We prove this claim by induction on m. If m = 1, then F = {C} for some clause C.
If C = �, the algorithm immediately returns false, hence the tree has one node. Otherwise,
it branches at some variable. In this case, one checks that G0 is either {�} or {}, likewise G1.
This holds because a clause C in a formula {C} is either the empty clause �, or it is free, thus
removed by the call to removeFree. Thus if |F | = 1, the recursion tree has at most 3 nodes. If
|F | ≥ 2, then the algorithm recurses on two formulas with a and b clauses, respectively, with
a, b ≤ m− 1 and a + b ≤ m. By induction the number of nodes in the tree is at most

(4a− 1) + (4b− 1) ≤ (4a− 1) + (4(m− a)− 1) + 1 = 4m− 1 ,

as claimed. This finishes the proof of point (iii).

Finally, we show point (iv) of Theorem 7.17 on page 78 The proof is similar to the proof by
Gebauer et al. [GMSW09] that the number of local conflicts exhibits a complexity jump. We will
give a reduction that takes a k-CNF formula F as input and outputs a k-CNF formula F ′, such
that F ≡SAT F ′, and lc1(F ′) ≤ k + 1, i.e., every clause in F ′ has a 1-conflict with at most k + 1
other clauses. In fact, F ′ will have a stronger property: Of the k literals in a clause C ∈ F ′, k−1
literals generate at most one 1-conflict, i.e., are frugal or free in C, and one literal is allowed to
have up to two 1-conflicts. If k ≥ 3, this shows that deciding satisfiability of k-CNF formulas
with lc1(F) ≤ k + 1 is NP-complete.

In a first step, for each variable x ∈ vbl(F) we set d := degF (x) and introduce 2d new vari-
ables x1, x2, . . . , x2d. We replace the d occurrences of x by the variables x2, x4, . . . , x2d. Skipping
the odd indices will prove useful soon. We call the new formula F2. For example, if x appears
in three clauses, say

F = {{x, ȳ, z̄}, {x, u, v}, {x̄, y, ū}, . . . },

then we replace those three occurrences by x2, x4, and x6 and obtain

{{x2, ȳ, z̄}, {x4, u, v}, {x̄6, y, ū}, . . . }.

80

Chapter 7. The Conflict Structure of CNF Formulas 81

We apply the same procedure to y, z, and all other variables. F2 has no conflicts, since each vari-
able appears in only one clause. It is satisfiable, which is not good, because we want a formula
F ′ such that F ≡SAT F ′. We introduce an equalizer formula for the variables x1, x2, . . . , x2d,
that is a formula which is satisfied only if one assigns the same value to x1, x2, . . . , x2d. This is
achieved by the following formula

Eq(x1, . . . , x2d) = {{x̄1, x2}, {x̄2, x3}, . . . , {x̄d−1, xd}, {x̄d, x1}} .

Eq(x1, . . . , x2d) has exactly two satisfying assignments: One that sets every variable to 1, and
one that sets every variable to 0. We obtain F3 by adding an equalizer for every variable x ∈
vbl(F):

F3 := F2 ∪
⋃

x∈vbl(F)

Eq(x1, x2, . . . , x2 degF (x)) .

The property of the equalizers implies F ≡SAT F3. Furthermore, |Γ1
F3

(C)| ≤ |C| + 1 for ev-
ery C ∈ F3: Since each occurrence of a variable in F gets replaced by a fresh copy of this
variable, there are no conflicts within F2. Every clause C ∈ F2 has a 1-conflict with ex-
actly |C| clauses in the equalizer formulas: If xi ∈ C, then C has a 1-conflict with the clause
{x̄i, xi+1} ∈ Eq(x1, . . . , xdegF (x)). Similarly, if x̄i ∈ C, then C has a 1-conflict with {x̄i−1, xi}.
Therefore, C is frugal. Consider a clause {x̄i, xi+1} in an equalizer. Each of the two literals
generates one 1-conflict with another equalizer-clause. Additionally, x̄i (if i is even) or xi+1 (if
i is odd) might generate a 1-conflict with a clause in F2. Thus, |Γ1

F3
(C)| ≤ |C| if C ∈ F2, and

|Γ1
F3

(C)| ≤ |C|+ 1 if C is an equalizer-clause.
The formula F3 fulfills almost all our needs, except that its clauses are too short: We want to

output a k-CNF formula. For this reason, we add k − 2 new variables to each equalizer clause:
We replace {x̄i, xi+1} by

{x̄i, xi+1, u3, . . . , uk} .

We add clauses that force the variables u3, . . . , uk to 0: For each uj , we take a complete formula
CF (v1, . . . , vk) over k new variables v1, . . . , vk. In this formula, every clause is frugal. We pick
one clause from it, say {v1, . . . , vk}, and replace it by {v1, . . . , vk−1, ūj}. We call this k-CNF
formula G(uj). It is satisfiable, but every satisfying assignment sets uj to 0. Furthermore, every
clause in G(uj) is frugal, and ūj is free in {v1, . . . , vk−1, ūj}. with respect to G(uj). We denote
by F ′ the k-CNF formula we obtain from F3 by filling up the equalizer-clauses and adding the
formulas G(uj) to it.

For every x ∈ vbl(F), we add 2 degF (x) equalizer clauses, each of which we fill up to a k-
clause, introducing a total of (k−2)2 degF (x) new variables. Finally, we add the formulas G(uj),
consisting of 2k clauses. That is, for each x ∈ vbl(F), we add 2 degF (x) + 2(k − 2) degF (x)2k

clauses. A lot, but only a blow-up by a constant factor.
There are three types of clauses in F ′: First, there are the “original” clauses, those of F2.

These clauses are frugal in F3, and they are also frugal in F ′. Second, there are equalizer clauses
{x̄i, xi+1, u3, . . . , uk}. Here, every literal is frugal, except possibly xi (if i is even) or xi+1 (if i

is odd). Thus this clause has at most k + 1 many 1-conflicts. Third, there are clauses in G(uj).
Every clause C ∈ G(uj) is frugal in G(uj), and the literal ūj is free in {v1, . . . , vk−1, ūj} with
respect to G(uj). Since uj occurs in exactly one equalizer clause, this adds exactly one 1-conflict
to {v1, . . . , vk−1, ūj}. Therefore every C ∈ G(uj) is frugal in F ′. This concludes the proof.

81

Chapter 7. The Conflict Structure of CNF Formulas 82

7.3 Conflicts Generated by an Individual Variable

In this section we investigate what happens when we restrict the conflict structure of each indi-
vidual variable. Recall the result from Kratochvı́l, Savický, and Tuza [KST93] that every k-CNF
formula F with deg(F) ≤ 2k/(ek) is satisfiable. In words, imposing sufficiently strong restric-
tions on the frequency of each variable in a k-CNF formula guarantees that it is satisfiable. In
this section, we investigate what happens if both polarities of a variable (positive and negative)
are restricted separately. This leads us to several questions:

Is there a real number a > 1 such that for every unsatisfiable k-CNF formula F

there is a variable with occF (x) ≥ ak and occF (x̄) ≥ ak?

The answer to this question is a very strong “no”:

Theorem 7.20. For every k ∈ N0, there is an unsatisfiable k-CNF formula F with occF (x̄) ≤ 1 for all
x ∈ vbl(F).

Proof. The proof is by induction. For k = 0, take F0 = {�}. For the induction step, we suppose
the theorem holds for k, and let Fk be an unsatisfiable k-CNF formula such that occFk

(x̄) ≤ 1
for all x ∈ vbl(Fk). We construct an unsatisfiable (k + 1)-CNF formula Fk+1 as follows: We
take k + 1 disjoint copies F

(1)
k , . . . , F

(k+1)
k of Fk, i.e., rename the variables in every copy. We

introduce k + 1 new variables x1, . . . , xk+1. For 1 ≤ i ≤ k + 1, we obtain Gi by adding xi to
every clause in F i

k, i.e., Gi := F i
k Y xi. Since Fk is unsatisfiable, every satisfying assignment of

Gi sets xi to 1. Finally, we let

Fk+1 := G1 ∪ · · · ∪Gk+1 ∪ {{x̄1, . . . , x̄k+1}} .

This is an unsatisfiable (k + 1)-CNF formula, and degFk+1
(x̄) ≤ 1 for every x ∈ vbl(Fk+1).

Note that achieving occF (x̄) ≤ 1 comes at a cost: The formulas in the proof contain variables
x with occF (x) ≥ (k−1)!. Intuitively, if we want to construct an unsatisfiable k-CNF formula F

for which occF (x̄) is “very small” for every variable x, then we must allow occF (y) to be “very
large” for some variable y. The next theorem justifies this intuition.

Theorem 7.21 (Exponential Tradeoff Between Positive and Negative Degree). The following two
statements hold:

(i) (Upper Bound) For every 1 < a ≤ 2 and b = a
a−1 there is a constant c such that for all

sufficiently large k, there is an unsatisfiable k-CNF formula F with occF (x̄) ≤ ck2ak and
occF (x) ≤ ck2bk, for all x.

(ii) (Lower Bound) Let 1 < a <
√

2 and b =
√

a4

a2−1
. Then every k-CNF formula F with occF (x) ≤

bk

8k and occF (x̄) ≤ ak

8k is satisfiable.

The point of Theorem 7.21 is to show that some tradeoff exists, even if we cannot quantify it
exactly. For example, point (ii) implies that every k-CNF formula in which occF (x̄) ≤ 1.25k/8k

and occF (x) ≤ 2.08333k/8k for every variable x is satisfiable. On the other hand point (i) shows
that there are unsatisfiable k-CNF formulas with occF (x̄) ≤ c1.25kk2 and occF (x) ≤ c5kk2. It
leaves open whether there is an unsatisfiable k-CNF formula F with occF (x̄) ≤ 1.25k/(8k) and

82

Chapter 7. The Conflict Structure of CNF Formulas 83

occF (x) ≤ 4k for all x ∈ vbl(F). We suspect that if F is unsatisfiable, then for some variable x,
the product occF (x) · occF (x̄) is large. For this we have defined

ic(F) := max{occF (x) · occF (x̄) | x ∈ vbl(F)}

and ic(k) to be the greatest integer c such that every k-CNF formula F with ic(F) ≤ c is satisfi-
able. We will prove the following theorem:

Theorem 7.22. ic(k) ∈ O(3.01k).

The best lower bound we have is ic(F) ≥ f(k) − 1: Take a k-CNF formula F . We can
assume that occF (x) ≥ 1 and occF (x̄) ≥ 1 for all x ∈ vbl(F): If for example occF (x̄) = 0, then
F ′ := F [x 7→1] is a k-CNF formula as well, and ic(F ′) ≤ ic(F). If occF (x) · occF (x̄) ≤ f(k) − 1,
then degF (x) = occF (x) + occF (x̄) ≤ (f(k)− 1) + 1, and F is satisfiable by definition of f(k).

We will first prove upper bounds, that is, construct unsatisfiable k-CNF formulas with cer-
tain properties. The goal is to prove Theorem 7.22 and point (i) of Theorem 7.21. Afterwards,
we prove the lower bound, i.e., point (ii) of Theorem 7.21.

Proving the Upper Bounds

We want to construct very unbalanced unsatisfiable k-CNF formulas, i.e., formulas in which
positive literals are much more frequent than negative literals. For this, we first employ a
probabilistic construction of unsatisfiable CNF formulas with clauses of size k and `, for some
` ≤ k. In a second step, we expand all smaller clauses to size k.

Definition 7.23. Let F be a (≤ k)-CNF formula. For each C ∈ F we introduce k − |C| new variables
yC
1 , . . . , yC

k−|C| and construct the complete (k − |C|)-CNF formula GC := CF (yC
1 , . . . , yC

k−|C|). Note
that C Y GC is a k-CNF formula and, since GC is unsatisfiable, C Y GC ≡ C. Finally we define

G :=
⋃

C∈F

(C Y GC) ,

which we call the k-CNFification of F .

For example, a 3-CNFification of {{x, y}, {x̄, y, z}} is the 3-CNF formula {{x, y, y1}, {x, y, ȳ1},
{x̄, y, z}}. Note that the k-CNFification is unique up to the names of the newly introduced vari-
ables. By the property of Y we see that a CNF formula is equivalent to its k-CNFification.

Definition 7.24. Let `, k ∈ N0. An (`, k)-CNF formula is a formula consisting of `-clauses containing
only positive literals, and k-clauses containing only negative literals.

If F is an (`, k)-CNF formula, we write F = F+∪F−, where F+ consists of positive `-clauses
and F− of negative k-clauses.

Lemma 7.25. Let ` ≤ k and let F = F+ ∪ F− be an (`, k)-CNF formula. Let G be the k-CNFification
of F . Then ic(F) ≤ max{4k−`, 2k−`|F+| · |F−|}.

Proof. Let x be any variable in vbl(G). We want to show that occG(x) · occG(x̄) is as stated in
the proposition. We distinguish two cases: A variable x ∈ vbl(G) either appears in F , or it
has been introduced in the k-CNFification. First, if x appears in F , then occG(x̄) = occF (x̄) and
occG(x) = occF (x)2k−`, thus occG(x)occG(x̄) ≤ 2k−`|F+|·|F−|. Second, if x has been introduced
in the k-CNFification, then occG(x) = occG(x̄) = 2k−`−1, and occG(x) · occG(x̄) ≤ 4k−`.

83

Chapter 7. The Conflict Structure of CNF Formulas 84

Our proof strategy now is as follows: We use a probabilistic construction to obtain unsat-
isfiable (`, k)-CNF formulas for some ` ≤ k that suits our needs. Should this ` be smaller than
k, we build the k-CNFification of it and use Lemma 7.25 to estimate the maximum number of
individual conflicts in it.

Lemma 7.26. For any ρ ∈ (0, 1), there is a constant c such that for all sufficiently large k and all
` ≤ k, there exists an unsatisfiable (`, k)-CNF formula F = F+ ∪ F− with |F−| ≤ ck2ρ−k and
|F+| ≤ ck2(1− ρ)−`.

Proof. We choose a set V = {x1, . . . , xn} of n = k2 variables. There are
(
n
k

)
k-clauses over V

containing only negative literals. We form F− by sampling ck2ρ−k of them, uniformly with
replacement, and form F+ by sampling ck2(1− ρ)−` purely positive `-clauses, where c is some
suitable constant determined later. Set F = F− ∪ F+. We claim that with high probability, F is
unsatisfiable. Let α be any assignment. There are two cases.

Case 1. α sets at least ρn variables to true. For a random negative clause C,

Pr[α 6|= C] ≥
(
ρn
k

)(
n
k

) ≥ c′ρk ,

The last inequality follows from the following fact about the binomial coefficient:

Lemma 7.27. Let a, b ∈ N with b/a ≤ 0.75. Then

ab

b!
≥
(

a

b

)
>

ab

b!
e−b2/a .

Proof. The upper bound follows from elementary calculations and is true for all a, b. The lower
bound holds because(

a

b

)
=

a(a− 1) · · · (a− b + 1)
b!

=
ab

b!

b−1∏
j=0

a− j

a
>

ab

b!
e−2/a

Pb−1
j=0 j ≥ ab

b!
e−b2/a ,

where we used the fact that 1− x > e−2x for 0 ≤ x ≤ 0.75.

Since we select the clauses of F− independently of each other, we obtain

Pr[α |= F−] ≤ (1− c′ρk)ck2ρ−k
< e−cc′k2 ≤ e−k2

,

provided we chose c large enough, i.e., c ≥ 1
c′ .

Case 2: α sets at most ρn variables to true. Now a similar calculation shows that α satisfies
F+ with probability at most e−k2

.
In any case, Pr[α |= F] ≤ e−k2

. Thus, the expected number of satisfying assignments of F

is at most 2k2
e−k2 � 1 and with high probability F is unsatisfiable. This concludes the proof of

Lemma 7.26.

The bound in Lemma 7.26 is tight up to a polynomial factor in k:

Lemma 7.28. Let F = F+ ∪ F− be an (`, k)-CNF formula. If there is a ρ ∈ (0, 1) such that |F+| <
1
2(1− ρ)−` and |F−| < 1

2ρ−k, then F is satisfiable.

84

Chapter 7. The Conflict Structure of CNF Formulas 85

Proof. Sample an assignment α by setting each variable independently to truewith probability
ρ. For a negative k-clause C, it holds that Pr[α 6|= C] = ρk. Similarly, for a positive `-clause D,
Pr[α 6|= D] = (1 − ρ)`. Hence the expected number of clauses in F that are unsatisfied by α is
ρk|F−|+ (1− ρ)`|F+| < 1

2 + 1
2 = 1. Therefore, with positive probability α satisfies F .

We are now ready to put everything together and prove the promised upper bounds.

Proof of point (i) of Theorem 7.21 on page 82. We construct an unsatisfiable k-CNF formula F such
that occF (x̄) ≤ ck2ak and occF (x) ≤ ck2bk, for all x ∈ vbl(F). In fact, we construct an unsatis-
fiable monotone k-CNF formula F = F+ ∪ F−. Clearly occF (x) ≤ |F+| and occF (x̄) ≤ |F−| for
all x ∈ vbl(F). We use Lemma 7.26 to construct such a formula. Since both F+ and F− must
consist of k-clauses, we set ` = k. By setting ρ = 1

a , we obtain

|F−| ≤ ck2ρ−k = ck2ak ,

which implies occF (x̄) ≤ ck2ak for all x ∈ vbl(F). Similarly,

|F+| ≤ ck2(1− ρ)−k = ck2

(
a− 1

a

)−k

= ck2

(
a

a− 1

)k

≤ ck2bk ,

where the last inequality comes from the assumption that b ≥ a/(a − 1) in point (i) of the
theorem.

Proof of Theorem 7.22. We will describe a probabilistic construction of an unsatisfiable k-CNF
formula F with ic(F) ∈ O(3.01k). More precisely,

occF (x) · occF (x̄) ≤ ck23.009k ,

for some constant c. We choose some ` ≤ k and some ρ ∈ (0, 1), to be determined later, and use
Lemma 7.26 to construct an unsatisfiable (`, k)-CNF formula F ′ = F+∪F− with |F−| ≤ ck2ρ−k

and |F+| ≤ ck2(1 − ρ)−`. Let F be the k-CNFification of F ′. As described above, this is a
formula we obtain by introducing k− ` new variables for every `-clause C, and replacing C by
2k−` new k-clauses, such that any assignment satisfies C if and only if it satisfies the 2k−` new
clauses k-clauses. F is an unsatisfiable k-CNF formula, and by Lemma 7.25 on page 83, it holds
that

occF (x) · occF (x̄) ≤ max{4k−`, 2k−`c2k4ρ−k(1− ρ)−`} ∀x ∈ vbl(F) .

The constant c depends on ρ, but not on k or `. For fixed k, ` > 1, the term ρ−k(1 − ρ)−` is
minimized for ρ = k

k+` . Choosing ` = d0.2055ke, we get ρ ≈ 0.83 and occF (x) · occF (x̄) ∈
O(3.01k).

Proving the Lower Bound

Proof of point (ii) of Theorem 7.21 on page 82. (ii) We are given a k-CNF formula F with occF (x) ≤
bk

8k and occF (x̄) ≤ ak

8k for every x ∈ vbl(x). Further, 1 < a <
√

2 and b =
√

a4

a2−1
. We have to

show that F is satisfiable. We fix a probability p := 1
a2 and set every variable of F to true with

probability p, independent of each other. This gives a random assignment α. Since a <
√

2, it
follows that p > 1

2 , which means that under α, every variable is more likely to be set to true

85

Chapter 7. The Conflict Structure of CNF Formulas 86

than to false. We define F ′ as follows: For each clause C ∈ F , if more than half the literals
of C are negative, we remove all positive literals from C and insert the truncated clause into
F ′, otherwise we insert C into F ′ without truncating it. Note that F ′ is “stricter” than F , in the
sense that every assignment that satisfies F ′ also satisfies F . We will prove that F ′ is satisfiable.
We write F ′ = Fk ∪ F−, where F− consists of purely negative clauses of size at least k

2 , and Fk

consists of k-clauses, each containing at least k
2 positive literals. A clause in F− is unsatisfied

with probability at most p
k
2 , and a clause in Fk is unsatisfied with probability at most p

k
2 (1−p)

k
2 .

This is because in the worst case, half of all literals are negative: Since p > 1
2 , negative literals

are more likely to be unsatisfied than positive ones. Let C ∈ F ′ be any clause. A positive literal
x ∈ C causes conflicts between C and the occF ′(x̄) ≤ ak

8k clauses of F ′ containing x̄. Similarly, a
negative literal ȳ ∈ C causes conflicts with the at most bk

8k clauses of Fk containing y. Therefore∑
D∈Γ′F (C)

Pr[α 6|= D] ≤
∑
u∈C

∑
D∈Γ′(u)

Pr[α 6|= D]

=
∑
x∈C

∑
D∈Γ′(x)

Pr[α 6|= D] +
∑
x̄∈C

∑
D∈Γ′(x)

Pr[α 6|= D]

≤
∑
x∈C

∑
D∈Γ′(x)

p
k
2 +

∑
x̄∈C

∑
D∈Γ′(x)

p
k
2 (1− p)

k
2

≤ k · a
k

8k
p

k
2 + k · bk

8k
p

k
2 (1− p)

k
2

=
1
4

,

since p = 1
a2 and b =

√
a4

a2−1
. By Lemma 7.6 on page 73 (the Lovász Local Lemma), F ′ is

satisfiable.

Remark: Part (ii) of Theorem 7.21 on page 82 can easily be improved by defining a more
careful truncation procedure: We remove all positive literals from a clause C if C contains less
than λk of them, for some λ ∈ [0, 1]. Choosing λ and p optimally, we obtain a better result, but
the calculations become messy, and it offers no additional insight. The crucial part of the proof
is that by removing positive literals from a clause, we can use the fact that occF (x̄) is small
to bound the number of clauses D that conflict with C and have a large probability of being
unsatisfied. We will use this idea again in the next section when proving a lower bound on the
total number of conflicts in an unsatisfiable k-CNF formula. However, the truncation process
and its analysis there will be more complicated.

7.4 Total Number of Conflicts

Theorem 7.29. Every unsatisfiable k-CNF formula contains Ω
(
2.69k

)
conflicts. There are unsatisfiable

k-CNF formulas with O
(
3.51k

)
conflicts.

Proof of the upper bound in Theorem 7.29. We want to construct an unsatisfiable k-CNF formula
with O(3.51k) conflicts. We re-use parts of the machinery from Section 7.3. We state a modified
version of Lemma 7.25 on page 83.

Lemma 7.30. Let ` ≤ k and let F = F+ ∪ F− be an (`, k)-CNF formula. Let G be the k-CNFification
of F . Then gc(G) ≤ 4k−`|F+|+ 2k−`|F+| · |F−|.

86

Chapter 7. The Conflict Structure of CNF Formulas 87

Proof. Every edge in the conflict graph of F runs between a positive `-clause C and a negative
k-clause D. Thus, gc(F) ≤ |F+| · |F−|. In G, this edge is replaced by 2k−` edges, since C is
replaced by 2k−` copies. This explains the term 2k−`|F+| · |F−|. Replacing C by 2k−` many
k-clauses introduces at most

(
2k−`

2

)
≤ 4k−` new conflicts. This explains the term 4k−`|F+|.

We construct an unsatisfiable (`, k)-CNF formula using Lemma 7.26 on page 84 and then
take its k-CNFification. We choose some ` ≤ k and ρ ∈ (0, 1), to be determined later. By
Lemma 7.26 there is an unsatisfiable (`, k)-CNF formula F ′ = F+∪F− with |F−| ≤ ck2ρ−k and
|F+| ≤ ck2(1− ρ)−`. Let F be the k-CNFification of F ′. This is an unsatisfiable k-CNF formula,
and by Lemma 7.30, it holds that

gc(F) ≤ 4k−`ck2(1− ρ)−` + 2k−`c2k4ρ−k(1− ρ)−` .

For ρ ≈ 0.6298 and ` = d0.333ke, we obtain gc(F) ∈ O(3.51k).

Proof of the lower bound in Theorem 7.29. Define s := −
∫ 1
1/2

1
x ln(1−x)dx < 0.572. We will prove

that for every ε > 0, there is a k0 such that for k ≥ k0, every k-CNF with gc(F) < 2(2−s−ε)k

128k is
satisfiable. Since 2(2−0.572) > 2.69, this proves the lower bound. The value of s follows from
some calculation at the end of the proof and shall not bother us now.

For the rest of the proof, let F be a k-CNF formula with gc(F) < 2(2−s−ε)k

128k . In the proof, x

denotes a variable and u a positive or negative literal. We assume occF (x̄) ≤ occF (x) for all
variables x. We can do so since otherwise we just replace x by x̄ and vice versa. This changes
neither gc(F) nor satisfiability of F . Also we can assume that occF (x) and occF (x̄) are both at
least 1 for all x ∈ vbl(F). For x, we define

p(x) := max

{
1
2
, k

√
occF (x)
16gc(F)

}
.

Note that occF (x) ≤ gc(F), and therefore p(x) will never exceed 1. Therefore we can set each
variable x to true with probability p(x) independently of all other variables. This gives a
random assignment α. We set p(x̄) = 1 − p(x). By definition, p(x) ≥ 1/2 ≥ p(x̄). We list some
properties of this distribution, which are easily verified.

Proposition 7.31. If p(u) < 1
2 for some literal u, then u is a negative literal x̄, and p(x) = k

√
occF (x)
16gc(F) >

1
2 . If p(u) = 1

2 , then both k

√
occF (u)
16gc(F) ≤

1
2 and k

√
occF (ū)
16gc(F) ≤

1
2 hold.

We distinguish two types of clauses: Bad clauses, which contain at least one literal u with
p(u) < 1

2 , and good clauses, which contain only literals u with p(u) ≥ 1
2 . With this definition,

a bad clause always contains at least one negative literal. However, a good clause can contain
negative literals x̄, provided that p(x̄) = 1/2. We write F = B ∪ G, where B is the set of bad
clauses and G the set of good clauses.

Our goal is to show that if F is a k-CNF formula and it holds that gc(F) ≤ 2(2−s−ε)k/(128k),
then F is satisfiable. One strategy is to apply the Lovász Local Lemma with our random as-
signment α. As a first step, we prove a lemma concerning only the bad clauses. Note that for a
formula F and literal u, we denote defined ΓF (u) = {C ∈ F | u ∈ C} and Γ′F (u) = ΓF (ū).

87

Chapter 7. The Conflict Structure of CNF Formulas 88

Lemma 7.32. Let α be the random assignment defined above. Then it holds that
∑

C∈B Pr [α 6|= C] ≤
1
8 .

Proof. For each clause C ∈ B, let uC be the literal in C minimizing p(u), breaking ties arbitrarily.
This means

Pr[α 6|= C] =
∏
u∈C

p(ū) ≤ p(ūC)k .

Since C is a bad clause, p(uC) < 1
2 , uC is a negative literal x̄C , and p(xC) = k

√
occF (xC)
16gc(F) . Thus

∑
C∈B

Pr[α 6|= C] ≤
∑
C∈B

p(xC)k =
∑
C∈B

occF (xC)
16gc(F)

. (7.5)

For each clause C ∈ B, it holds that x̄C ∈ C, and therefore C conflicts with the occF (x̄C) clauses
containing xC . Therefore ∑

C∈B

occF (xC) ≤ 2gc(F) .

The factor 2 arises since we count each conflict possibly twice, once from each side. Combining
this with (7.5) yields ∑

C∈B

Pr[α 6|= C] ≤
∑
C∈B

occF (xC)
16gc(F)

≤ 2gc(F)
16gc(F)

=
1
8

,

which proves the lemma.

To apply the Lovász Local Lemma (Lemma 7.6 on page 73), we have to show that (7.4)
holds, i.e., for every C ∈ F , ∑

D∈Γ′F (C)

Pr[α 6|= D] ≤ 1/4 .

We split this sum into two terms, one involving bad clauses, one involving good clauses:∑
D∈Γ′F (C)

Pr[α 6|= D] =
∑

D∈Γ′B(C)

Pr[α 6|= D] +
∑

D∈Γ′G(C)

Pr[α 6|= D]

≤ 1
8

+
∑
u∈C

∑
D∈ΓG(ū)

Pr[α 6|= D]

Here we use Lemma 7.32 to bound the first sum by 1/8. To finish the proof, one could try to
show that ∑

D∈ΓG(ū)

Pr[α 6|= D] ≤ 1
8k

. (7.6)

for every literal u, i.e., that the good clauses containing any given literal do not cause too much
trouble. Why should this hold? Well, if the set ΓG(ū) is very large, then occF (ū) is at least
as large. By the property of our random distribution, very frequent literals are satisfied with
a probability greater than 1/2. This in turn decreases the terms Pr[α 6|= D] for D ∈ ΓG(ū).
However, the decrease might not be strong enough to guarantee (7.6): Consider the case that
u = x̄ and x is extremely frequent, say occF (x) = 2.6k. Furthermore, suppose x occurs only
in good clauses. Then |ΓG(x)| = occF (x) = 2.6k. By the definition of our distribution, p(x) =

88

Chapter 7. The Conflict Structure of CNF Formulas 89

k
√

2.6k/16gc(F) > k
√

2.6k/16 · 2.69k ≈ 0.967. Hence x is very likely to be set to true. However,
it could be that in the clauses in ΓG(x), the literal x is the only literal satisfied with a probability
greater than 1/2, and therefore for D ∈ ΓG(x), it holds that Pr[α 6|= D] = 0.967 · 2−k+1. We
calculate ∑

D∈ΓG(x)

Pr[α 6|= D] ≈ 2.6k · 0.967 · 2−k+1 � 1
8k

,

and our proof method fails. We have to do something smarter: We perform a truncation process,
i.e., we delete certain literals from certain clauses in G, arriving at a formula G′ such that (7.6)
holds for G′. This will imply that B∪G′ is satisfiable. Since every assignment satisfying G′ also
satisfies G, F is satisfiable, too. On the one hand, deleting literals makes F “less satisfiable”,
which runs against our goal, but it also thins out the conflict structure of F , making it more
amenable to the Lovász Local Lemma. If we are lucky, the benefits outweigh the damage.

Algorithm 13 truncate(CNF formula F)
1: G′ := {D ∈ F | p(u) ≥ 1

2 ,∀u ∈ D}
2: while there is a literal u such that

∑
D∈ΓG′ (u) Pr[α 6|= D] > 1

8k do
3: C := a clause in G′(u) maximizing Pr[α 6|= D]
4: C ′ := C \ {u}
5: G′ := (G′ \ {C}) ∪ {C ′}
6: end while
7: return F ′ := G′ ∪B

Lemma 7.33. Let F ′ := truncate(F). If F ′ does not contain the empty clause, then F is satisfiable.

Proof. We will show that (7.4) applies to F ′. Fix a clause C ∈ F ′. After the truncation process,
every literal u fulfills

∑
D∈ΓG′(ū) Pr[α 6|= D] ≤ 1

8k . Thus for a clause C ∈ F ′, it holds that

∑
D∈Γ′

G′ (C)

Pr[α 6|= D] ≤
∑
u∈C

∑
D∈ΓG′ (ū)

Pr[α 6|= D] ≤ k · 1
8k

=
1
8

.

From Lemma 7.32 we conclude that
∑

D∈Γ′B(C) Pr[α 6|= D] ≤ 1/8, and therefore
∑

D∈Γ′
F ′ (C) Pr[α 6|=

D] ≤ 1/4. By the Lovász Local Lemma (Lemma 7.6 on page 73), F ′ is satisfiable, and clearly F

as well.

It remains to show that if F is as promised, i.e., F is a k-CNF formula and gc(F) < 2(2−s−ε)k/(128k),
then truncate does not produce the empty clause. We will prove this by contradiction.
Suppose the truncation process produces the empty clause. In this case, we will show that
gc(F) > 2(2−s−ε)k/(128k).

If truncate produces the empty clause, then there is some C ∈ G all whose literals are
being deleted during the truncation process. Write C = {u1, u2, . . . , uk}, and order the ui such
that occF (u1) ≤ occF (u2) ≤ · · · ≤ occF (uk). One checks that this implies that p(u1) ≤ p(u2) ≤
· · · ≤ p(uk). Consider any ` ∈ {1, . . . , k} and let uj be the first literal among u1, . . . , u` that is
deleted from C. Let C ′ denote what is left of C just before that deletion, and consider the set G′

at this point of time. Then {u1, . . . , u`} ⊆ C ′ ∈ G′. The procedure truncate deletes uj from

89

Chapter 7. The Conflict Structure of CNF Formulas 90

the clause D that maximizes Pr[α 6|= D] among all clauses of ΓG′(uj). Hence C ′ maximizes this
probability, and ∑

D∈ΓG′ (uj)

Pr[α 6|= D] ≤ Pr[α 6|= C ′] · occG′(uj) (7.7)

≤ Pr[α 6|= C ′] · occF (uj) . (7.8)

Since α sets every variable x independently to true with probability p(x), it holds that Pr[α 6|=
C ′] =

∏`
i=1(1 − p(ui)). Furthermore, we ordered the literals in C ′ such that occF (u1) ≤

occF (u2) ≤ · · · ≤ occF (uk). Therefore, we conclude that

Pr[α 6|= C ′] · occF (uj) ≤ occF (u`) ·
∏̀
i=1

(1− p(ui)) . (7.9)

Finally, we use the fact that truncate removes uj from C ′. This means that∑
D∈ΓG′(uj)

Pr[α 6|= D] >
1
8k

. (7.10)

Combining (7.8), (7.9), and (7.10), we conclude that

1
8k

< occF (u`) ·
∏̀
i=1

(1− p(ui)) . (7.11)

Since C is a good clause, it holds that p(ui) ≥ 1/2 for every literal ui ∈ C. Hence also
p(u`) ≥ 1/2. By Proposition 7.31, this implies that either p(u`) = 1/2, in which case p(u`) ≥
k

√
occF (u`)
16gc(F) , or p(u`) > 1/2, in which case u` is a positive literal. In the second case it follows by

definition of p that p(u`) = k

√
occF (u`)
16gc(F) . In either case, p(u`)k ≥ occF (u`)

16gc(F) , and therefore

occF (u`) ≤ 16gc(F)p(u`)k .

Combining this with (7.11) yields

1
128kgc(F)

< p(u`)k ·
∏̀
i=1

(1− p(ui)) . (7.12)

And of course this inequality holds for every 1 ≤ ` ≤ k. At this point, we can forget everything
about the formula and the truncation process, and simply observe that there exists a sequence
q1, . . . , qk of numbers in [1/2, 1] such that

1
128kgc(F)

≤ qk
1 (1− q1)

1
128kgc(F)

≤ qk
2 (1− q1)(1− q2)

· · · (7.13)

1
128kgc(F)

≤ qk
`

∏̀
i=1

(1− qi)

· · ·
1

128kgc(F)
≤ qk

k

k∏
i=1

(1− qi)

90

Chapter 7. The Conflict Structure of CNF Formulas 91

Suppose now that there is some ` ∈ {1, . . . , k} such that the `th inequality is not tight and
q` > 1/2. What happens when we slowly decrease q`? The first, second, up to (`−1)st inequality
stay satisfied, since they do not involve q`. The (`+1)st up to kth inequality will be happy: Their
respective right sides increase as q` decreases. We decrease q` until either q` = 1/2 or the `th

inequality holds with equality. In this way, we first decrease q1 as long as possible, then q2, up
to qk. In the end, we have sequence q1, . . . , qk of numbers in [1/2, 1] satisfying the inequalities
(7.13) such that for each 1 ≤ ` ≤ k, the `th inequality holds with equality, or q` = 1/2 (or both).

We claim that the sequence q1, . . . , qk we obtain is non-decreasing: Suppose otherwise. Then
there would be some 1 ≤ ` < k such that q` > q`+1 ≥ 1/2. Hence q` > 1/2, and the `th inequality
would hold with equality. Therefore

1
128kgc(F)

≤ qk
`+1

`+1∏
i=1

(1− qi) < qk
`

∏̀
i=1

(1− qi) =
1

128kgc(F)
,

a contradiction. We conclude that the sequence is non-decreasing.
Second, we claim that not all qi are equal to 1/2. Suppose they were. The kth inequality

would yield

1
128kgcF

≤ 2−k
k∏

i=1

1
2

= 4−k ,

which would imply gc(F) ≥ 4k/(128k), a clear contradiction to our assumption.
We conclude that there is some `∗ = min{i | qi > 1

2}. That is, q1 = q2 = · · · = q`∗−1 = 1/2,
and q`∗ > 1/2. Take a number j with `∗ ≤ j < k. Since qj > 1/2 and qj+1 > 1/2, we conclude
that the jth and (j + 1)st inequalities of (7.13) are tight, and therefore

qk
j

j∏
i=1

(1− qi) =
1

128kgc(F)
= qk

j+1

j+1∏
i=1

(1− qi) .

This is great, because it allows us to solve it for qj :

qj = qj+1
k
√

1− qj+1 .

We conclude that if we know qk, we can compute q1, . . . , qk−1, using qj = max(1/2, qj+1
k
√

1− qj+1).
We define

fk(t) := t k
√

1− t ,

By f
(j)
k (t) we denote fk(fk(. . . (fk(t)) . . .)), the j-fold iterated application of fk(t), with f

(0)
k (t) =

t. We observe that qj = f
(k−j)
k (qk) > 1

2 for `∗ ≤ j ≤ k. We list several properties of fk and
f

(j)
k below in Proposition 7.35. By point (v) of Proposition 7.35, f

(k−1)
k (qk) ≤ 1

2 , thus `∗ ≥ 2.
Therefore q1 = · · · = q`∗−1 = 1

2 , and the (l∗ − 1)st inequality reads as

1
128kgc(F)

≤ qk
`∗−1

`∗−1∏
i=1

(1− qi) = 2−k−`∗+1 .

We obtain gc(F) ≥ 2k+`∗−1

128k . Recall that we want to obtain a contradiction to our assumption
that gc(F) < 2(2−s−ε)k/(128k). For this, we should prove a lower bound on `∗. Define Sk :=
min{j ∈ N0 | f (j)

k (t) ≤ 1
2 ∀t ∈ [0, 1]}. By point (v) of Proposition 7.35, Sk is finite. Since it holds

that f
(k−`∗)
k (qk) = q`∗ > 1

2 , we conclude that k − `∗ ≤ Sk − 1, thus gc(F) ≥ 22k−Sk

128k .

91

Chapter 7. The Conflict Structure of CNF Formulas 92

Figure 7.4: The graph of fk(x) for k = 4. The function has a unique maximum, and fk(x) ≤ x for all
x ∈ [0, 1].

Lemma 7.34. The sequence Sk
k converges to s = −

∫ 1
1
2

1
x ln(1−x)dx < 0.572.

By Lemma 7.34, it holds for all sufficiently large k that Sk ≤ (s + ε)k, and therefore

gc(F) ≥ 22k−Sk

128k
≥ 22k−(s+ε)k

128k
=

2(2−s−ε)k

128k
,

contradicting our assumption. This finishes the proof.

Proof of Lemma 7.34

Proposition 7.35. Let k ∈ N and fk : [0, 1] → [0, 1] with fk(t) = t k
√

1− t. For t ∈ [0, 1], the
following statements hold.

(i) fk(t) attains its unique maximum at t = t∗k := k
k+1 .

(ii) fk(t) ≤ t, and fk(t) = t if and only if t = 0.

(iii) For ` ≥ 1, f
(`)
k (t) ≤ f

(`)
k

(
k

k+1

)
.

(iv) For ` ≥ 0 and t ∈ [0, 1], (1− t)`/k t ≤ f
(`)
k (t) ≤ (1− f

(`)
k (t))`/k t.

(v) For k ≥ 2 and any t ∈ [0, 1], f
(k−1)
k (t) ≤ 1

2 .

Proof. (i) follows from elementary calculus. (ii) holds since k
√

1− t is less than 1 for all t > 0.
For ` = 1, (iii) follows from (i), and for greater `, it follows from (ii) and induction on `.
(iv) holds because each of the ` applications of fk multiplies its argument with a factor that

92

Chapter 7. The Conflict Structure of CNF Formulas 93

is at least k
√

1− t and at most k

√
1− f

(`)
t . Suppose (v) does not hold. Then by (iii) we get

f
(k−1)
k

(
k

k+1

)
≥ f

(k−1)
k (t) > 1

2 , and by (iv), we have

1
2

< f
(k−1)
k

(
k

k + 1

)
≤
(

1
2

) k−1
k k

k + 1
.

An elementary calculation shows that this does not hold for any k ≥ 1.

To prove Lemma 7.34, we compute limk→∞
Sk
k (and show that the limit exists). Recall the

definition
Sk = min{` ∈ N0 | f (`)

k (t) ≤ 1
2
∀t ∈ [0, 1]} ,

where fk(t) = t k
√

1− t. By Part (iii) of Proposition 7.35, we have Sk = min{` | f (`)
k (t∗k) ≤

1
2}, for

t∗k := k
k+1 . We generalize the definition of Sk by defining for t ∈ (0, 1],

Sk(t) := min{` | f (`)
k (t∗k) ≤ t} .

Further, we set sk(t) := Sk(t)
k . Let 0 < t2 < t1 < t∗k. We want to estimate sk(t2) − sk(t1). This

should be small if |t1 − t2| is small. For brevity, we write a := Sk(t1), b := Sk(t2). Clearly a ≤ b.
We calculate

t2 ≥ f
(b)
k (t∗k) = f

(b−a+1)
k (f (a−1)

k (t∗k)) ≥ f
(b−a+1)
k (t1) ≥ (1− t1)((b−a+1)/k)t1 ,

t2 < f
(b−1)
k (t∗k) = f

(b−a−1)
k (f (a)

k (t∗k)) ≤ f
(b−a−1)
k (t1) ≤ (1− t2)((b−a−1)/k)t1 .

Where we used part (iv) of Proposition 7.35. In fact, these inequalities also hold if t1 ≥ t∗k,
when a = 0:

t2 ≥ f
(b)
k (t∗k) ≥ (1− t∗k)

b/kt1 ≥ (1− t1)(b+1)/kt1 ,

t2 < f
(b−1)
k (t∗k) = (1− t2)((b−1)/k)t1 .

One checks that the inequalities even hold if t∗ ≤ t2 < t1 ≤ 1. Note that b−a
k = sk(t2) − sk(t1).

Solving for b−a
k , the above inequalities yield

log t2 − log t1
log(1− t1)

− 1
k
≤ sk(t2)− sk(t1) ≤

log t2 − log t1
log(1− t2)

+
1
k

, (7.14)

for all 0 < t2 < t1 < 1. The right inequality also holds for 0 < t2 < t1 ≤ 1. Multiplying with
−1, we see that it also holds if t2 > t1. If t2 = t1, it is trivially true. Hence this inequality is true
for all t1, t2 ∈ (0, 1).

Suppose s(t) = limk→∞ sk(t) exists, for every fixed t. Inequality (7.14) also holds in the
limit. Writing t1 = t and t2 = t + h and dividing (7.14) by h gives

log(t + h)− log t

h log(1− t)
≤ s(t + h)− s(t)

h
≤ log(t + h)− log t

h log(1− t− h)
,

When we let h go to 0, we obtain s′(t) = 1
t log(1−t) , thus s(t) = s(1)−

∫ 1
t

1
x log(1−x)dx. Observing

that Sk
k = sk(1

2) and sk(1) = 0 for all k proves the Lemma.

93

Chapter 7. The Conflict Structure of CNF Formulas 94

The above argument shows that if sk(t) converges pointwise, then it converges to a contin-
uous function s(t) on (0, 1). We have to show that limk→∞ sk(t) does in fact exist. First plug in
t1 = 1 into the right inequality of (7.14) to observe that for each fixed t2, the sequence sk(t2)
is bounded from above. Clearly it is bounded from below by 0. Hence there exist s(t) :=
lim sup sk(t) and similarly s(t) := lim inf sk(t). We write shorthand L(t1, t2) := log t2−log t1

log(1−t1) and

U(t1, t2) := log t2−log t1
log(1−t2) . Now (7.14) reads as L(t1, t2) − 1

k ≤ sk(t2) − sk(t1) ≤ U(t1, t2) + 1
k . We

claim that

L(t1, t2) ≤ s(t2)− s(t1) ≤ U(t1, t2) , (7.15)

L(t1, t2) ≤ s(t2)− s(t1) ≤ U(t1, t2) . (7.16)

For sequences (ak)k∈N, (bk)k∈N, lim sup ak − lim sup bk = lim sup(ak − bk) does not hold in
general, hence the claim is now completely trivial. We will proof that s(t2) − s(t1) ≤ U(t1, t2).
This will prove one claimed inequality. The other three inequalities can be proven similarly.
Fix some small ε > 0. For all sufficiently large k, 1

k ≤ ε. We have sk(t2) ≥ s(t2)− ε for infinitely
many k, thus sk(t1) ≥ sk(t2)−U(t1, t2)− 1

k ≥ s(t2)−U(t1, t2)− 2ε for infinitely many k. There-
fore s(t1) ≥ s(t2)−U(t1, t2)− 2ε. By making ε arbitrarily small, the claimed inequality follows.

We can now apply our non-rigorous argument from above, this time rigorously. Write t =
t1, t2 = t+h, and divide (7.15) and (7.16) by h, send h to 0, and we obtain s′(t) = s′(t) = 1

t log(1−t) .
Since s(1) = s(1) = 0, we obtain

s(t) = s(t) =
∫ 1

t

−1
x log(1− x)

dx .

94

Chapter 8

Linear Formulas

8.1 Introduction

THE results of this chapter appeared in [Sch10]. Well call a CNF formula F linear if
|vbl(C) ∩ vbl(D)| ≤ 1 for any two distinct clauses C,D ∈ F . For example, the CNF
formula {{x̄1, x2}, {x̄2, x3}, {x3, x4}, {x̄4, x̄1}} is linear, but the formula {{x̄1, x2}, {x1, x2}, {x2, x3}}

is not. Are there unsatisfiable linear CNF formulas? Trivially, yes: {�} is unsatisfiable, and
{{x}, {x̄}} is unsatisfiable, too, and both are obviously linear. Okay, but are there linear k-CNF
formulas? Now it becomes interesting. For k = 2, the answer is yes: The formula

{{x̄1, x2}, {x̄2, x3}, {x̄3, x4}, {x̄4, x1}, {{x1, x3}, {x̄2, x̄4}}

is linear and it is unsatisfiable. To see this, note that the first four clauses are satisfied if and only
if either all variables are 0 or all variables are 1. However, the last two clauses forbid exactly
those assignments. Some case analysis shows that every unsatisfiable linear 2-CNF formula
has at least four variables and at least six clauses. On the other hand, the 2-CNF formula
{{x, y}, {x, ȳ}, {x̄, y}, {x̄, ȳ}}, which is not linear, is unsatisfiable and has four clauses. Jumping
to conclusions, we observe

Unsatisfiable linear k-CNF formulas seem to be larger than general unsatisfiable
k-CNF formulas.

What about k = 3? This takes considerably more effort, but if you try for a while, you will
also find an unsatisfiable linear 3-CNF formula. I will not give any example, since the smallest
one I have found has 30 clauses. Achieving 48 clauses is rather easy after Theorem 8.1 on the
next page below, 32 clauses is slightly more tricky, and from there one can save two clauses. As
seen above, any unsatisfiable 3-CNF formula has at least 8 clauses, and by some case analysis
one gets a lower bound of maybe 13 or 14 for linear 3-CNF formulas. I have no idea what the
smallest possible number is. The subject of this chapter will be the existence, size, and structure
of unsatisfiable linear k-CNF formulas.

It is not obvious whether unsatisfiable linear k-CNF formulas exist for every k. These ques-
tions have been asked first by Porschen, Speckenmeyer and Randerath [PSR06], who also
proved that for any k ≥ 3, if an unsatisfiable linear k-CNF formula exists, then deciding
satisfiability of linear k-CNF formulas is NP-complete. Later, Porschen, Speckenmeyer and

95

Chapter 8. Linear Formulas 96

Zhao [PSZ09] and, independently, myself [Sch07] gave a construction of unsatisfiable linear
k-CNF formulas, for every k ∈ N:

Theorem 8.1 ([PSZ09], [Sch07]). For every k ≥ 0, there exists an unsatisfiable linear k-CNF formula
Fk, with F0 containing one clause and Fk+1 containing |Fk|2|Fk| clauses.

We will prove this and the next theorems in the following sections. We obtain the formulas
Fk from Theorem 8.1 by a simple explicit construction. However, from an extremal combina-
torist’s point of view, these formulas are disastrous, because their size (measured in number

of clauses) is gigantic. In fact, Fk is greater than 22. . .
2

, where the height of the tower is k. We
will find much smaller linear formulas by using a probabilistic construction and also prove that
their size is as small as possible, up to a polynomial factor in k.

Let us introduce a relaxation of linearity. We call F weakly linear if |C∩D| ≤ 1 for any distinct
C,D ∈ F . For example, the formula {{x̄1, x2}, {x1, x2}, {x2, x3}} is weakly linear, but not linear,
and finally {{x1, x2, x3}, {x1, x2, x̄3}} is not weakly linear (and not linear, either). Our results do
not much depend on which notion one uses (linear or weakly linear). Typically we will state
the strongest version of each result, i.e., proving the existence of certain unsatisfiable linear
formulas and proving lower bounds for weakly linear formulas.

Theorem 8.2. All weakly linear k-CNF formulas with at most 4k

8e2(k−1)2
− 2k

4e(k−1) clauses are satisfiable.
There exists an unsatisfiable linear k-CNF formula with 4k24k clauses.

It is a common phenomenon in extremal combinatorics that by probabilistic means one can
show that a certain object exists (in our case, a “small” linear unsatisfiable k-CNF formula),
but one cannot explicitly construct it. We have no explicit construction avoiding the tower-like
growth in Theorem 8.1. We give some arguments why this is so, and show that small linear
unsatisfiable k-CNF formulas have a more complex structure than their non-linear relatives. To
do so, we speak about resolution.

Resolution Trees

If C and D are clauses and there is unique literal u such that u ∈ C and ū ∈ D, then (C \ {u})∪
(D \ {ū}) is called the resolvent of C and D. It is easy to check that every assignment satisfying
C and D also satisfies the resolvent.

Definition 8.3. A resolution tree for a CNF formula F is a rooted tree T whose vertices are labeled
with clauses, such that

• each vertex is either a leaf or has two children,

• each leaf of T is labeled with a clause of F ,

• the root of T is labeled with the empty clause,

• if vertex a has children b and c, and these three vertices are labeled with clauses Ca, Cb, Cc, respec-
tively, then Ca is the resolvent of Cb and Cc.

96

Chapter 8. Linear Formulas 97

It is well-known that a CNF formula F is unsatisfiable if and only if it has a resolution tree.
Proving lower bounds on the size of resolution trees (and general resolution proofs, which we
will not introduce here) has been and still is an area of intensive research. See for example
Ben-Sasson and Wigderson [BSW01].

Theorem 8.4. Let k ≥ 2. Every resolution tree of an unsatisfiable weakly linear k-CNF formula has at

least 22
k
2−1

leaves.

We do not know whether 22
k
2−1

is asymptotically the correct bound. Neither do we know
whether one can prove good lower bounds on the general resolution complexity of linear for-
mulas (general meaning not necessarily treelike). A large ratio between the size of F and the size
of a smallest resolution tree is an indication that F has a complex structure. For example, it is
well-known that the running time of so-called Davis-Putnam procedures [DP60, DLL62] on a
formula F is lower bounded by the size of the smallest resolution tree of F . Such a procedure
tries to find a satisfying assignment for a formula F (or to prove that none exists) by choosing
a variable x, and then recursing on the formulas F [x 7→0] and F [x 7→1], obtained from F by fixing
the value of x to 0 or 1, respectively. If F is unsatisfiable, the procedure implicitly constructs a
resolution tree.

Strictly Treelike Formulas

A CNF formula F is minimal unsatisfiable if it is unsatisfiable, and for every clause C ∈ F ,
F \ {C} is satisfiable. For example, the complete k-CNF formula CF (x1, . . . , xk) is minimal
unsatisfiable, and has a resolution tree with 2k leaves, one for every clause. This is as small
as possible, since for a minimal unsatisfiable formula, every clause must appear as the label
of at least one leaf of any resolution tree. We call a resolution tree strict if no two leaves are
labeled by the same clause, and a formula F strictly treelike if it has a strict resolution tree. In
some sense, strictly treelike formulas are the least complex formulas possible. For example,
the complete formula Kk and the formulas constructed in the proof of Theorem 8.1 are strictly
treelike.

Theorem 8.5. For every ε > 0, there exists a constant c such that for all k ∈ N, every strictly tree-
like weakly linear k-CNF formula has at least tower2−ε(k − c) clauses, where towera(n) is defined by
towera(0) = 1 and towera(n + 1) = atowera(n).

Strictly treelike formulas appear in other contexts, too. Consider MU(1), the class of mini-
mal unsatisfiable formulas whose number of variables is one less than the number of clauses.
A result of Davydov, Davydova and Kleine Büning ([DDB98], Theorem 12) implies that every
MU(1)-formula is strictly treelike. Also, MU(1)-formulas serve as “universal patterns” for un-
satisfiable formulas: Szeider [Sze03] shows that a formula F is unsatisfiable if and only if it
can be obtained from a MU(1)-formula G by renaming the variables of G (in a possibly non-
injective manner). It is not difficult to show that a strictly treelike linear k-CNF formula can be
transformed into a linear MU(1)-formula with at most as many clauses.

MU(1)-formulas appear in another familiar context. Recall the extremal parameter f(k) :=
ex(deg, k-CNF), which is the greatest integer d such that any k-CNF formulas F with deg(F) ≤
d is satisfiable. The best upper bounds on f(k) come from MU(1)-formulas constructed by

97

Chapter 8. Linear Formulas 98

Gebauer, Szabó and Tardos [GST10]. We define f1(k) to be the greatest integer d such that there
is no MU(1)-formula F with deg(F) ≤ d (note that MU(1)-formulas are always unsatisfiable).
This function was defined first by Hoory and Szeider [HS05] when investigating f(k) for small
values of k. Clearly f(k) ≤ f1(k), and all values of k for which we know the value of f(k)
exactly (which is up to k = 5), it holds that f(k) = f1(k). To summarize: Hoory and Szei-
der [HS05] show f(k) = f1(k) for k ≤ 5, and Gebauer, Szabó and Tardos [GST10] show that
f(k) and f1(k) have the same asymptotic behavior, i.e., f(k)/f1(k) converges to 1 as k grows.

MU(1)-formulas work fine in providing tight upper bounds for f(k). Unfortunately, in the
context of linear formulas, the upper bounds achieved by MU(1)-formulas perform horribly, as
we show in Theorem 8.5.

While interest in linear CNF formulas is rather young, linear hypergraphs have been studied
for quite some time. A hypergraph H = (V,E) is linear if |e ∩ f | ≤ 1 for any two distinct
hyperedges e, f ∈ E. A k-uniform hypergraph is a hypergraph where every hyperedge has
cardinality k. We ask when a hypergraph is 2-colorable, i.e., admits a 2-coloring of its vertices
such that no hyperedge becomes monochromatic. Bounds on the number of edges in such a hy-
pergraph were given by Erdős and Lovász [EL75] (this is the paper in which the Local Lemma
appeared first). They show that there are non-2-colorable linear k-uniform hypergraphs with
ck44k hyperedges, but not with less than c′4k

k3 . The proof of the lower bound directly translates
into our lower bound for linear k-CNF formulas. For the number of edges in linear k-uniform
hypergraphs that are not 2-colorable, the currently best upper bound is ck24k by Kostochka
and Rödl [KR], and the best lower bound is k−ε4k, for any ε > 0 and sufficiently large k, due to
Kostochka and Kumbhat [KK].

8.2 Existence and Size

Proof of Theorem 8.1 on page 96. Choose F0 to be the formula consisting of only the empty clause.
Suppose we have constructed Fk, and want to construct Fk+1. Let m = |Fk|. We create m new
variables x1, . . . , xm, and let Km = {D1, D2, . . . , D2m} be the complete m-CNF formula over
x1, . . . , xm. It is unsatisfiable, but not linear. We take 2m variable disjoint copies of Fk, denoted
by F

(1)
k , F

(2)
k , . . . , F

(2m)
k . For each 1 ≤ i ≤ 2m, we build a linear (k + 1)-CNF formula F̃

(i)
k from

F
(i)
k by adding, for each 1 ≤ j ≤ m, the jth literal of Di to the jth clause of F

(i)
k . Note that

every assignment satisfying F̃
(i)
k also satisfies Di. Finally, we set Fk+1 :=

⋃2m

i=1 F̃
(i)
k . This is an

unsatisfiable linear (k + 1)-CNF formula with m2m clauses.

Using induction, it is not difficult to see that the formulas Fk are strictly treelike. Having
proved the existence of unsatisfiable linear k-CNF formulas, we will now prove the upper
bound stated in Theorem 8.2 on page 96. We give a probabilistic construction of a comparably
small unsatisfiable linear k-CNF formula. Our construction consists of two steps. First, we
construct a linear k-uniform hypergraph H that is “dense” in the sense that m

n is large, where m

and n are the number of hyperedges and vertices, respectively, and then transform it randomly
into a linear k-CNF formula F that is unsatisfiable with high probability. We explain the second
step first, because it is conceptually simpler.

98

Chapter 8. Linear Formulas 99

Lemma 8.6. If there is a linear k-uniform hypergraph H with n vertices and m edges such that m
n ≥ 2k,

then there is an unsatisfiable linear k-CNF formula with m clauses.

Proof. Let H = (V,E). By viewing V as a set of variables and E as a set of clauses (each contain-
ing only positive literals), this is a (satisfiable) linear k-CNF formula. We replace each literal in
each clause by its complement with probability 1

2 , independently in each clause. Let F denote
the resulting (random) formula. For any fixed assignment α, it holds that Pr[α satisfies F] =
(1− 2−k)m. Hence the expected number of satisfying assignments of F is

2n(1− 2−k)m < 2ne−2−km = eln(2)n−2−km ≤ 1 ,

where the last inequality follows from m
n ≥ 2k. Hence some formula F has fewer than one

satisfying assignment, i.e., none.

How can we construct such a dense linear hypergraph? We use a construction by Kuzjurin [Kuz95].
Our application of this construction is motivated by Kostochka and Rödl [KR], who use it to
construct linear hypergraphs of large chromatic number.

Lemma 8.7. For every prime power q and every k ∈ N, there exists a k-uniform linear hypergraph with
kq vertices and q2 edges.

With n = kq, this hypergraph has n2/k2 hyperedges. This is almost optimal, since any linear
k-uniform hypergraph on n vertices has at most

(
n
2

)
/
(
k
2

)
hyperedges: The n vertices provide us

with
(
n
2

)
vertex pairs. Each hyperedge occupies

(
k
2

)
pairs, and because of linearity, no pair can

be occupied by more than one hyperedge.

Proof. Choose the vertex set V = V1] · · ·]Vk, where each Vi is a disjoint copy of the finite field
GF (q). The hyperedges consist of all k-tuples (x1, . . . , xk) with xi ∈ Vi, 1 ≤ i ≤ k, such that



1 1 1 1
1 2 . . . i . . . k

1 4 i2 k2

...
...

...
...

1 2k−3 . . . ik−3 . . . kk−3





x1

x2

...

xi

...

xk


= 0 . (8.1)

Consider two distinct vertices x ∈ Vi, y ∈ Vj . How many hyperedges contain both of them?
If i = j, none. If i 6= j, we can find out by plugging the fixed values x, y into (8.1). We obtain a
(possibly non-uniform) (k − 2)× (k − 2) linear system with a Vandermonde matrix, which has
a unique solution. In other words, x and y are in exactly one hyperedge, and the hypergraph is
linear. Since every pair (x, y) ∈ V1 × V2 is contained in exactly one hyperedge, there are exactly
q2 hyperedges.

Proof of the upper bound in Theorem 8.2 on page 96. We choose a prime power q ∈ {k2k, . . . , 2k2k−
1}. By Lemma 8.7, there is a linear k-uniform hypergraph H with n = qk vertices and m = q2

hyperedges. Since m
n = q

k ≥ 2k, Lemma 8.6 shows that there is an unsatisfiable linear k-CNF
formula with q2 ≤ 4k24k clauses.

99

Chapter 8. Linear Formulas 100

Let us prove the lower bound of Theorem 8.2 on page 96. For a literal u and a CNF formula
F , we write occF (u) := |{C ∈ F | u ∈ C}|, the degree of the literal u. Thus dF (x) = occF (x) +
occF (x̄). We write occ(F) = maxu occF (u). In analogy to f(k), we define focc(k) to be the largest
integer d such that any k-CNF formula F with occ(F) ≤ d is satisfiable. Clearly focc(k) ≥⌊

f(k)
2

⌋
, and thus from [KST93] it follows that focc(k) ≥

⌊
2k

2ek

⌋
. Actually, an application of the

Lopsided Lovász Local Lemma [ES91, AS00, LS07] yields focc(k) ≥
⌊

2k

ek − 1
⌋

.

Lemma 8.8. Let F be a weakly linear k-CNF formula in which there are most 1 + focc(k − 1) literals
of degree at least 1 + focc(k − 1). Then F is satisfiable.

Proof. Transform F into a (k − 1)-CNF formula F ′ by removing in every clause in F a literal
of maximum degree. We claim that degF ′(u) ≤ focc(k − 1) for every literal u. Therefore F ′ is
satisfiable, and F is, as well.

For the sake of contradiction, suppose there is a literal u such that t := occF ′(u) ≥ 1+focc(k−
1). Let C ′

i, i = 1, 2, . . . , t, be the clauses in F ′ containing u. C ′
i is obtained by removing some

literal vi from some clause Ci ∈ F . By construction of F ′, occF (vi) ≥ occF (u) ≥ focc(k − 1) + 1
for all 1 ≤ i ≤ t. The vi are pairwise distinct: If vi = vj , then {u, vi} ⊆ Ci∩Cj . Since F is weakly
linear, this can only mean i = j. Now u, v1, v2, . . . , vt are t + 1 ≥ 2 + focc(k − 1) variables of
degree at least 1 + focc(k − 1) in F, a contradiction.

We see that an unsatisfiable weakly linear k-CNF formula has at least focc(k − 1) + 2 ≥⌊
2k

2e(k−1) + 1
⌋

literals of degree at least focc(k − 1) + 1 ≥
⌊

2k

2e(k−1)

⌋
. Double counting yields

k|F | =
∑

u occF (u) ≥ (focc(k−1)+2)(focc(k−1)+1) ∈ Ω(4k/k3). By a more careful argument,
we can improve this by a factor of k. We call a hypergraph (j, d)-rich if at least j vertices have
degree at least d. The following lemma is due to Welzl [Wel].

Lemma 8.9. For d ∈ N0, every linear (d, d)-rich hypergraph has at least
(
d+1
2

)
edges. This bound is

tight for all d ∈ N0.

Proof. We proceed by induction over d. Clearly, the assertion of the lemma is true for d = 0.
Now let H = (V,E) be a linear (d, d)-rich hypergraph for d ≥ 1. Choose some vertex v of degree
at least d in H and let H ′ = (V,E′) be the hypergraph with E′ := E \{e ∈ E | e 3 v}. We have (i)
|E| ≥ |E′|+d, (ii) H ′ is linear, since this property is inherited when edges are removed, and (iii)
H ′ is (d−1, d−1)-rich, since for no vertex other than v the degree decreases by more than 1 due
to the linearity of H . It follows hat |E| ≥

(
d
2

)
+ d =

(
d+1
2

)
. The complete 2-uniform hypergraph

(graph, so to say) on d + 1 vertices shows that the bound given is tight for all d ∈ N0.

Proof of the lower bound in Theorem 8.2 on page 96. Let F be a weakly linear k-CNF formula. F is
a linear k-uniform hypergraph, with its literals as vertices and its clauses as hyperedges. If F

is unsatisfiable, then by Lemma 8.8, it is (focc(k− 1) + 1, focc(k− 1) + 1)-rich. By Lemma 8.9, F

has at least
(
focc(k−1)+2

2

)
> 4k

8e2(k−1)2
− 2k

4e(k−1) clauses.

8.3 Resolution Complexity

Let F be an unsatisfiable weakly linear k-CNF formula, and let T be a resolution tree of min-
imum size of F . We want to show that T has a large number of nodes. It is not difficult to

100

Chapter 8. Linear Formulas 101

{x} {x̄}

{x, y} {ȳ} {x̄, u} {x̄, ū}

x 7→
0

y
7→

0

x 7→
1

u 7→
1

y
7→

1
u
7→

0

Figure 8.1: A resolution tree, with its edges labeled in the obvious way. The assignment defined
by the edges on the path from a node u to the root unsatisfies the clause with which u is labeled.

see that a resolution tree of minimum size is regular, meaning that no variable is resolved more
than once on a path from a leaf to the root. See Urquhart [Urq95], Lemma 5.1, for a proof of this
fact. We fix some natural number `, to be determined later. Consider a random walk of length
` in T starting at the root, in every step choosing randomly to go to one of the two children of
the current node. If we arrive at a leaf, we stay there. We claim that if ` ≤

√
2k−2, then with

probability at least 1
2 , our walk does not end at a leaf. This means that there are at least 2`−1

distinct paths of length ` at start at the root. The endpoints of these paths are all distinct inner
nodes, hence the tree has at least 2`−1 inner nodes, thus at least 2` nodes.

As illustrated in Figure 8.1, we label each edge in T with an assignment. If C is the resolvent
of D1 and D2, x ∈ D1 and x̄ ∈ D2, we label the edge from C to D1 by x 7→ 0 and from C to
D2 by x 7→ 1. Each path from the root to a node gives a partial assignment α. If that node is
labeled with clause C, then C evaluates to false under α. In our random walk, let αi denote
the partial assignment associated with the first i steps. Then α0 is the empty assignment, and
αi assigns exactly i variables (if we are not yet at a leaf). We set Fi := F [αi], i.e., the formula
obtained from F by fixing the variables according to the partial assignment αi. For a formula
G, we define the weight w(G) to be

w(G) :=
∑

C∈G,|C|≤k−2

2k−|C| . (8.2)

Since F is a k-CNF formula, w(F) = 0. If some formula G contains the empty clause, then
w(G) ≥ 2k. In our random walk, w(Fi) is a random variable.

Lemma 8.10. E[w(Fi+1)] ≤ E[w(Fi)] + 4i.

Since w(F0) = 0, this implies E[w(F`)] ≤ 4
(

`
2

)
≤ 2`2. If our random walk ends at a leaf, then

F` contains the empty clause, thus w(F`) ≥ 2k. Therefore

2`2 ≥ E[w(F`)] ≥ 2k Pr[the random walk ends at a leaf] ,

and consequently Pr[the random walk ends at a leaf] ≤ 2`2/2k. Choosing `∗ =
√

2k−2, we con-
clude that at least half of all paths of length ` starting at the root do not end at a leaf. Thus T

has at least 2`∗−1 internal nodes at distance `∗ from the root, and thus at least 2`∗ leaves, which
proves Theorem 8.4. It remains to prove the lemma.

101

Chapter 8. Linear Formulas 102

Proof of the lemma. For a formula G and a variable x, let dk−1(x,G) denote the number of (k−1)-
clauses containing x or x̄. Since F0 is a k-CNF formula, dk−1(x, F0) = 0, for all variables x. We
claim that dk−1(x, Fi+1) ≤ dk−1(x, Fi) + 2 for every variable x. To see this, note that in step i,
some variable y is set to b ∈ {0, 1}, say to 0. At most one k-clause of Fi contains y and x, and
at most one contains y and x̄, since Fi is weakly linear, thus dk−1(x, Fi+1) ≤ dk−1(x, Fi) + 2. It
follows immediately that dk−1(x, Fi) ≤ 2i.

Consider w(Fi), which was defined in (8.2). Fi+1 is obtained from Fi by setting some vari-
able y randomly to 0 or 1. Let C be some clause. How does its contribution to (8.2) change when
setting y? If (i) y 6∈ vbl(C) or |C| = k, it does not change. If (ii) y ∈ vbl(C) and |C| ≤ k− 2, then
with probability 1

2 each, its contribution to (8.2) doubles or vanishes. Hence on expectation, it
does not change. If (iii) y ∈ vbl(C) and |C| = k − 1, then C contributes nothing to w(Fi), and
with probability 1

2 , it contributes 4 to w(Fi+1). On expectation, its contribution to (8.2) increases
by 2. Case (iii) applies to at most dk−1(y, Fi) ≤ 2i clauses. Hence E[w(Fi+1)] ≤ E[w(Fi)]+4i.

8.4 Linear MU(1)-Formulas

Let F be a strictly treelike weakly linear k-CNF formula F , and let T be a strict resolution tree
of F . We want to prove Theorem 8.5 on page 97. Loosely speaking, we want to show that the
number of clauses in F is a tower function in k. Equivalently, we can show that the size of T is
a tower function in k. The proof is somewhat technical and requires some notation.

Letters a, b, c denote nodes of T , and u, v, w denote literals. Every node a of T is labeled
with a clause Ca. We define a graph Ga with vertex set Ca, connecting u, v ∈ Ca with an edge
if u, v ∈ D for some clause D ∈ F that occurs as a label of a leaf in the subtree of T rooted
at a. Since T is a strict resolution tree and F is weakly linear, every edge in Ga comes from
a unique leaf of T . If a is a leaf, then Ga = Kk. Since the root of a resolution tree is labeled
with the empty clause, we have Groot = (∅, ∅). Resolution now has a simple interpretation as a
”calculus on graphs”, see Figure 8.2: The complete graph Kk is the axiom, and for a derivation
step, we take two graphs G1 and G2, overlay them in an edge-disjoint manner and remove one
vertex of the resulting graph. The goal of this calculus is to derive the graph (∅, ∅).

For a graph G, let κi(G) denote the minimum size of a set U ⊆ V (G) such that G−U contains
no i-clique. Here, G−U is the subgraph of G induced by V (G) \U . Thus, κ1(G) = |V (G)|, and
κ2(G) is the size of a minimum vertex cover of G. For the complete graph Kk, κi(Kk) = k−i+1.
We write κi(a) := κi(Ga). The tuple (κ1(a), . . . , κk(a)) can be viewed as the complexity measure
for a. We observe that if a is a leaf, then κi(a) = k − i + 1, and κi(root) = 0, for all 1 ≤ i ≤ k.

Proposition 8.11. Let a be an inner node in T and let b be one of the two children of a. Then κi(b) ≤
κi(a) + 1 for 1 ≤ i ≤ k.

Proof. Let c be the other child of a. There is some vertex u ∈ Gb such that Ga is obtained by
removing u from Gb, removing ū from Gc, and taking the union of the two remaining graphs.
Thus Gb− u is a subgraph of Ga. Now let U ⊆ V (Ga) be a set such that |U | = κi(a) and Ga−U

has no i-clique. Since Gb − u is a subgraph of Ga, we conclude that Gb − (U ∪ {u}) contains no
i-clique either, thus κi(b) ≤ |U ∪ {u}| = κi(a) + 1.

102

Chapter 8. Linear Formulas 103

zx

y

z

y

u

v

y

u

v

y v
z̄ u

v

x̄ u

w

uz̄ vy

w̄

Figure 8.2: Resolution as a calculus on graphs. A resolution step amounts to deleting the re-
solved vertices and taking the union of the two graphs.

If a is an ancestor of b in T , let dist(a, b) denote the number of edges in the T -path from a to
b. Applying Proposition 8.11 dist(a, b) times, we obtain the following proposition:

Proposition 8.12. If b is a descendant of a in T , then κi(b) ≤ κi(a) + dist(a, b).

We will now show that if the values κi(a) are small for some node a in the tree, then the
subtree of a is big, where the exact value of “big” depends in i and κi(a). Since κi(root) = 0,
this implies that the whole tree is very big. We have to define what small and big actually
means in this context. We fix a value 1 ≤ ` ≤ k and define νi and θi for 1 ≤ i ≤ ` as follows:

θ` :=
⌊

k − ` + 1
2

⌋
− 1

ν` := 1

θi :=
⌊

2νi+1θi+1−2

θi+1

⌋
− 1 , 1 ≤ i < `

νi :=
νi+1θi+1 − 1

θi

⌊
θi

θi+1

⌋
, 1 ≤ i < ` .

These expressions look more terrifying than they are. They are simply chosen in way that
makes the induction go through. We claim that the values θ`−i grow very fast in i. Let us do
a back-of-the-envelope calculation to convince ourselves. For ` = k − 1000, we have θ` ≈ k/2.
For i = `− 1, we see that θ`−1 ≥ (2k/2 − 2)/(k/2)− 2 ≥ (2− ε)θ` for some small ε, if k is large.
Since θ`−1 is much much bigger than θ`, we see that ν`−1 is only slightly smaller than v` = 1.
Inductively, one checks that νi is at least (1− ε), for some small ε, and therefore θi ≥ (2− ε′)θi+1

for some small ε′. More precisely, for any ε > 0, there exists a c ∈ N such that with ` := k − c

it holds that θi ≥ (2 − ε)θi+1 for all 1 ≤ i ≤ `. Therefore θ1 ≥ tower2−ε(k − c). The following
theorem is a more precise version of Theorem 8.5.

Theorem 8.13. Let F be a strictly treelike weakly linear k-CNF formula. Then F has at least 2ν1θ1

clauses.

Proof. A node a in T is i-extendable if κj(a) ≤ θj for each i ≤ j ≤ `. By definition, if a is i-
extendable, it is also (i + 1)-extendable. For i = ` + 1, the condition is void, so every node is
(` + 1)-extendable. Also, the root is 1-extendable, since κ1(root) = 0.

103

Chapter 8. Linear Formulas 104

a

θi
b

A

θi+1

Figure 8.3: Illustration of the claim in the proof of Lemma 8.15. If node a is i-extendable, and
b is a close (i + 1)-extendable descendant of a, then b itself has many close descendants A, at
least half of which are (i + 1)-extendable themselves.

Definition 8.14. Let a be a node in T . A set A of descendants of a in T such that (i) no vertex in A is
an ancestor of any other vertex in A and (ii) dist(a, b) ≤ d for all b ∈ A is called an antichain of a at
distance at most d. If furthermore every b ∈ A is i-extendable, we call A an i-extendable antichain.

Lemma 8.15. Let 1 ≤ i ≤ `, and let a be a node in T . If a is i-extendable, then there is an (i + 1)-
extendable antichain A of a at distance at most θi such that |A| = 2νiθi .

Proof. We use induction on `−i. For the base case i = `, we have κ`(a) ≤ θ`, as a is `-extendable.
Since each leaf b of T has κ`(b) = k − ` + 1 ≥ 2θ` + 2, Proposition 8.12 tells us that every leaf in
the subtree of a has distance at least θ` + 2 from a. Hence there are 2θ` different paths of length
` starting at a and going to descendants of a. These descendants of a form an antichain A of a

at distance `. Since every node is (` + 1)-extendable by definition, the base case holds. For the
step, let a be i-extendable, for 1 ≤ i < `.

Claim: Let b be a descendant of a with dist(a, b) ≤ θi. If b is (i + 1)-extendable, then there is
an (i + 1)-extendable antichain A of b at distance at most θi+1 of size 2νi+1θi+1−1.

Proof of the claim. By applying the induction hypothesis of the lemma to b, there is an (i + 2)-
extendable antichain A of b at distance at most θi+1 of size 2νi+1θi+1 . Let Agood := {c ∈
A | κi+1(c) ≤ θi+1}. This is an (i + 1)-extendable antichain. If Agood contains at least half of A,
we are done. See Figure 3 for an illustration. Write Abad := A \Agood and suppose for the sake
of contradiction that Abad > 2νi+1θi+1−1. Consider any c ∈ Abad. On the path from c to b, in each
step some literal gets removed (and others may be added). Let P denote the set of the removed
literals. Then Cc \ {P} ⊆ Cb, and Gc − P is a subgraph of Gb. Node c is not (i + 1)-extendable,
thus κi+1(c) ≥ θi+1 + 1. Since |P | = dist(b, c) ≤ θi+1, the graph Gc − P contains at least one
(i + 1)-clique, which is also contained in Gb. This holds for every c ∈ Abad, and by weak linear-
ity, Gb contains at least |Abad| edge disjoint (i+1)-cliques. Since b is (i+1)-extendable, we have
κi+1(b) ≤ θi+1, thus there exists a set U ⊆ V (Gb), |U | ≤ θi+1 such that Gb−U contains no (i+1)-
clique. Each of the |Abad| edge-disjoint (i+1)-cliques of Gb contains some vertex of U , thus some
vertex v ∈ U is contained in at least |Abad|

|U | ≥
2νi+1θi+1−1

θi+1
≥ 2θi + 1 edge-disjoint (i + 1)-cliques.

Two such cliques overlap in no vertex besides v, hence Gb contains at least 2θi +1 vertex-disjoint

104

Chapter 8. Linear Formulas 105

i-cliques, thus κi(b) ≥ 2θi + 1. By Proposition 8.12, κi(a) ≥ κi(b)− dist(a, b) ≥ θi + 1. This con-
tradicts the assumption of Lemma 8.15 that a is i-extendable. We conclude that |Abad| ≤ 1

2 |A|,
which proves the claim.

Let us continue with the proof of the lemma. If A is an (i + 1)-extendable antichain of a

at distance d ≤ θi, then by the claim for each vertex b ∈ A there exists an (i + 1)-extendable
antichain of b at distance at most θi+1, of size 2νi+1θi+1−1. Their union is an (i + 1)-extendable
antichain A′ of a at distance at most d + θi+1, of size |A|2νi+1θi+1−1. Hence we can “inflate” A

to A′, as long as d ≤ θi. Starting with the (i + 1)-extendable antichain {a} and inflate it
⌊

θi
θi+1

⌋
times, and obtain a final (i + 1)-extendable antichain of a at distance at most θi of size at least(
2νi+1θi+1−1

)j
θi

θi+1

k
= 2νiθi .

Applying Lemma 8.15 to the root of T , which is 1-extendable, we obtain an antichain A of
size 2ν1θ1 . Since T has at least |A| leaves, this proves the theorem.

105

Bibliography

[AS00] Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons],
New York, second edition, 2000. With an appendix on the life and work of Paul
Erdős.

[BK04] Tobias Brueggemann and Walter Kern. An improved deterministic local search
algorithm for 3-SAT. Theor. Comput. Sci., 329(1-3):303–313, 2004.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made
simple. J. ACM, 48(2):149–169, 2001.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, STOC ’71, pages 151–158,
New York, NY, USA, 1971. ACM.

[DDB98] Gennady Davydov, Inna Davydova, and Kleine Büning. An efficient algorithm for
the minimal unsatisfiability problem for a subclass of CNF. Ann. Math. Artificial
Intelligence, 23(3-4):229–245, 1998.

[DGH+02] E. Dantsin, A. Goerdt, E. A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou,
O. Raghavan, and U. Schöning. A deterministic (2 − 2/(k + 1))n algorithm for
k-SAT based on local search. In Theoretical Computer Science 289, pages 69–83, 2002.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving. Comm. ACM, 5:394–397, 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification the-
ory. J. Assoc. Comput. Mach., 7:201–215, 1960.

[EL75] Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs
and some related questions. In A. Hajnal, R. Rado, and Vera T. Sós, editors, Infinite
and Finite Sets (to Paul Erdős on his 60th birthday), Vol. II, pages 609–627. North-
Holland, 1975.

[Erd63] P. Erdős. On a combinatorial problem. Nordisk Mat. Tidskr., 11:5–10, 40, 1963.

[Erd64] P. Erdős. On a combinatorial problem. II. Acta Math. Acad. Sci. Hungar, 15:445–447,
1964.

107

Bibliography 108

[ES91] Paul Erdős and Joel Spencer. Lopsided Lovász Local Lemma and Latin transver-
sals. Discrete Appl. Math., 30(2-3):151–154, 1991. ARIDAM III (New Brunswick, NJ,
1988).

[FKG71] C. M. Fortuin, P. W. Kasteleyn, and J. Ginibre. Correlation inequalities on some
partially ordered sets. Comm. Math. Phys., 22:89–103, 1971.

[FM02] Tomás Feder and Rajeev Motwani. Worst-case time bounds for coloring and satis-
fiability problems. J. Algorithms, 45(2):192–201, 2002.

[Geb09] Heidi Gebauer. Disproof of the neighborhood conjecture with implications to SAT.
In Amos Fiat and Peter Sanders, editors, 17th Annual European Symposium on Algo-
rithms (ESA 2009), volume 5757 of Lecture Notes in Computer Science, pages 764–775.
Springer, 2009.

[GMSW09] Heidi Gebauer, Robin A. Moser, Dominik Scheder, and Emo Welzl. The lovász
local lemma and satisfiability. In Susanne Albers, Helmut Alt, and Stefan Näher,
editors, Efficient Algorithms, volume 5760 of Lecture Notes in Computer Science, pages
30–54. Springer, 2009.

[GST10] Heidi Gebauer, Tibor Szabó, and Gábor Tardos. The local lemma is tight for sat.
CoRR, abs/1006.0744, 2010.

[HMS] Timon Hertli, Robin A. Moser, and Dominik Scheder. Improving PPSZ for 3-SAT
using critical variables, to appear in STACS 2011.

[Hoc97] Dorit S. Hochbaum, editor. Approximation algorithms for NP-hard problems. PWS
Publishing Co., Boston, MA, USA, 1997.

[HS05] Shlomo Hoory and Stefan Szeider. Computing unsatisfiable k-SAT instances with
few occurrences per variable. Theoretical Computer Science, 337(1-3):347–359, 2005.

[HSSW02] Thomas Hofmeister, Uwe Schöning, Rainer Schuler, and Osamu Watanabe. A
probabilistic 3-sat algorithm further improved. In STACS, pages 192–202, 2002.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity. J. Comput. System Sci., 63(4):512–530, 2001. Special
issue on FOCS 98 (Palo Alto, CA).

[ISTT] Kazuo Iwama, Kazuhisa Seto, Tadashi Takai, and Suguru Tamaki. Improved ran-
domized algorithms for 3-SAT. To appear.

[IT04] Kazuo Iwama and Suguru Tamaki. Improved upper bounds for 3-SAT. In SODA
’04: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 328–328, Philadelphia, PA, USA, 2004. Society for Industrial and Applied
Mathematics.

[KK] A. V. Kostochka and M. Kumbhat. Coloring uniform hypergraphs with few edges,
manuscript.

108

Bibliography 109

[KR] A. V. Kostochka and V. Rödl. Constructions of sparse uniform hypergraphs with
high chromatic number, manuscript.

[KS10] Konstantin Kutzkov and Dominik Scheder. Using CSP to improve deterministic
3-SAT. CoRR, abs/1007.1166, 2010.

[KST93] J. Kratochvı́l, P. Savický, and Z. Tuza. One more occurrence of variables makes sat-
isfiability jump from trivial to NP-complete. SIAM Journal of Computing, 22(1):203–
210, 1993.

[Kul99] Oliver Kullmann. New methods for 3-sat decision and worst-case analysis. Theor.
Comput. Sci., 223(1-2):1–72, 1999.

[Kuz95] Nikolai N. Kuzjurin. On the difference between asymptotically good packings and
coverings. European J. Combin., 16(1):35–40, 1995.

[Lev73] Lenoid Levin. Universal sequential search problems. PPI, 9(3):115–116, 1973. En-
glish translation in Problems of Information Transmission 9 (1973), 265–266.

[LLLX08] Liang Li, Xin Li, Tian Liu, and Ke Xu. From k-SAT to k-CSP: Two generalized
algorithms. CoRR, abs/0801.3147, 2008.

[LS07] Linyuan Lu and László Székely. Using Lovász Local Lemma in the space of random
injections. Electron. J. Combin., 14(1):Research Paper 63, 13 pp. (electronic), 2007.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. II. North-
Holland Publishing Co., Amsterdam, 1977. North-Holland Mathematical Library,
Vol. 16.

[MS85] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps. Discrete
Applied Mathematics, 10:287–295, 1985.

[MS10] Robin A. Moser and Dominik Scheder. A full derandomization of Schöning’s k-
SAT algorithm. CoRR, abs/1008.4067, 2010.

[MU05] M. Mitzenmacher and E. Upfal. Probability and computing: randomized algorithms
and probabilistic analysis. Cambridge University Press, 2005.

[Pap91] Christos H. Papadimitriou. On selecting a satisfying truth assignment (extended
abstract). In Proceedings of the 32nd annual symposium on Foundations of computer
science, SFCS ’91, pages 163–169, Washington, DC, USA, 1991. IEEE Computer So-
ciety.

[PPSZ05] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An im-
proved exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364, 2005.

[PPZ99] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma.
Chicago J. Theoret. Comput. Sci., pages Article 11, 19 pp. (electronic), 1999.

[PSR06] Stefan Porschen, Ewald Speckenmeyer, and Bert Randerath. On linear CNF for-
mulas. In SAT, pages 212–225, 2006.

109

Bibliography 110

[PSZ09] Stefan Porschen, Ewald Speckenmeyer, and Xishun Zhao. Linear CNF formulas
and satisfiability. Discrete Appl. Math., 157(5):1046–1068, 2009.

[Rod96] Robert Rodosek. A new approach on solving 3-satisfiability. In Jacques Calmet,
John A. Campbell, and Jochen Pfalzgraf, editors, AISMC, volume 1138 of Lecture
Notes in Computer Science, pages 197–212. Springer, 1996.

[Rol03] Daniel Rolf. 3-sat in rtime(o(1.32793n)) - improving randomized local search by
initializing strings of 3-clauses. Electronic Colloquium on Computational Complexity
(ECCC), (054), 2003.

[Rol05] Daniel Rolf. Improved bound for the PPSZ/Schöning-algorithm for 3-SAT. Elec-
tronic Colloquium on Computational Complexity (ECCC), (159), 2005.

[Sch99] Uwe Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction
problems. In FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations of
Computer Science, page 410, Washington, DC, USA, 1999. IEEE Computer Society.

[Sch07] Dominik Scheder. Unsatisfiable linear k-CNFs exist, for every k. CoRR,
abs/0708.2336, 2007.

[Sch08] Dominik Scheder. Guided search and a faster deterministic algorithm for 3-SAT.
In Proc. of the 8th Latin American Symposium on Theoretical Informatics (LATIN’08),
Lecture Notes In Computer Science, Vol. 4957, pages 60–71, 2008.

[Sch09] Stefan Schneider. Random walk algorithms for SAT, 2009. Master’s Thesis, ETH
Zürich.

[Sch10] Dominik Scheder. Unsatisfiable linear cnf formulas are large and complex. In Jean-
Yves Marion and Thomas Schwentick, editors, STACS, volume 5 of LIPIcs, pages
621–632. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[SZ08a] Dominik Scheder and Philipp Zumstein. How many conflicts does it need to be
unsatisfiable? In Eleventh International Conference on Theory and Applications of Sat-
isfiability Testing (SAT 2008), Lecture Notes in Computer Science, Vol. 4996, pages 246–
256, 2008.

[SZ08b] Dominik Scheder and Philipp Zumstein. Unsatisfiable cnf formulas need many
conflicts. CoRR, abs/0806.1148, 2008.

[Sze03] Stefan Szeider. Homomorphisms of conjunctive normal forms. Discrete Appl. Math.,
130(2):351–365, 2003.

[Tov84] Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Appl.
Math., 8(1):85–89, 1984.

[Urq95] Alasdair Urquhart. The complexity of propositional proofs. Bulletin of Symbolic
Logic, 1:425–467, 1995.

[Wel] E. Welzl. personal communication.

110

Bibliography 111

[Wel05] Emo Welzl. Boolean satisfiability – combinatorics and algorithms (lecture notes),
2005. http://www.inf.ethz.ch/˜emo/SmallPieces/SAT.ps.

[Wil06] Herbert S. Wilf. generatingfunctionology. A K Peters Ltd., Wellesley, MA, third
edition, 2006.

111

Curriculum Vitae

Dominik Scheder

born August 28, 1980 in Nürnberg, Germany

1990 - 1999 Labenwolf-Gymnasium Nürnberg, Germany
Degree: Abitur

1999 - 2003 Studies of Computer Science
Universität Erlangen-Nürnberg, Germany

2003 - 2005 Studies of Computer Science
University of Colorado at Boulder, USA
Degree: Master of Science

since October 2005 Ph.D. student at ETH Zürich, Switzerland

113

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Why SAT?
	Algorithms for SAT
	Extremal Combinatorics

	Notation
	I Algorithms for SAT and CSP
	Local Search Algorithms for SAT
	Schöning's Algorithm
	The Algorithm by Dantsin et al.
	A Complete Derandomization of Schöning's Algorithm

	Local Search Algorithms for CSP
	Schöning and cover-search for (d,k)-CSP formulas
	A Better Deterministic Algorithm for (d,k)-CSP
	A Deterministic Reduction from (d,k)-CSP to k-SAT

	Construction of Covering Codes
	Covering {0,1}n With Hamming Balls
	A General Framework for Covering Codes
	Application to 2-Boxes
	Application to G-balls

	PPZ for (d,k)-CSP
	Introduction
	The Algorithm
	Analyzing the Success Probability
	A Correlation Inequality

	II Extremal Combinatorics of CNF Formulas
	The Conflict Structure of CNF Formulas
	Introduction
	1-Conflicts
	Combinatorial Properties

	Conflicts Generated by an Individual Variable
	Total Number of Conflicts

	Linear Formulas
	Introduction
	Existence and Size
	Resolution Complexity
	Linear MU(1)-Formulas

	Bibliography

