Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

- Homework assignment published on Monday, 2017-02-27
- Work on it and submit questions by Wednesday, 2017-03-01, 18:00 by email to dominik.scheder@gmail.com
- We will discuss some problems on Thursday, 2017-03-02.
- Submit your solution by Sunday, 2017-02-05 to me and TA (kenny_kong@foxmail.com)
- We will give you feedback, you will have an opportunity to revise your solution before we will grade it.

2 Relations

A relation on finite set can be drawn as a diagram, as I illustrate with the relation $\left\{(a, b) \in\{2, \ldots 9\}^{2} \mid a\right.$ divides $\left.b\right\}$.

Note that the relation is reflexive, so I would have to draw a little self-loop at every number. However, exactly because it is reflexive it makes sense to be lazy and drop all these self-loops.

If the relation is symmetric, we do not need the arrowheads. Thus, here is a diagram of the relation $\left\{(a, b) \in[8]^{2} \mid b-a\right.$ is divisible by 3$\}$:

Again, I did not draw the self-loops, because I want to keep the picture simple.
Suppose $R \subseteq A \times B$ and $S \subseteq B \times C$ are relations. We define $R \circ S$ to be the relation

$$
R \circ S:=\{(a, c) \in A \times C \mid \exists b \in B:(a, b) \in R,(b, c) \in S\} .
$$

In the above definition I corrected a typo.
Exercise 2.1. Consider the three following relations on [8]:
$R_{1}:=\left\{(a, b) \in[8]^{2} \mid b-a\right.$ is a prime $\}, R_{2}:=\left\{(a, b) \in[8]^{2} \mid a+b\right.$ is a square $\}$.

- Draw R_{1} and R_{2} as a diagram.
- Draw $R_{1} \circ R_{2}$.
- Draw $R_{2} \circ R_{1}$.

Exercise 2.2. Show that o is associative. That is, if $R \subseteq A \times B, S \subseteq B \times C$, and $T \subseteq C \times D$ are relations, then $(R \circ S) \circ T=R \circ(S \circ T)$. Remark 1 . Your proof should be quite formal in this case. Remark 2. First, think about what exactly you have to prove!

2.1 The Reflexive Transitive Closure

Let $R \subseteq A \times A$ be a relation. We define $R^{(0)}:=\{(x, x) \mid x \in A\}$, which is obviously reflexive. For $n \geq 1$, we define inductive $R^{(n)}:=R^{(n-1)} \circ R$. Next, we define

$$
\tilde{R}:=R^{(0)} \cup R^{(1)} \cup R^{(2)} \cup R^{(3)} \cup \cdots=\bigcup_{n \geq 0} R^{(n)} .
$$

Exercise 2.3. Let $S:=\left\{(a, b) \in \mathbb{Z}^{2}| | a-b \mid=3\right\}$ and $T:=\{(a, b) \in$ $\mathbb{Z}^{2} \mid a-b$ is divisible by 3$\}$. Show that $\tilde{S}=T$. Some students apparently missed that the tilde above the S : show that $\tilde{S}=T$, not $S=T$!

Exercise 2.4. Show that \tilde{R} is transitive.
For a relation R we define its reflexive transitive closure R^{*} by

$$
R^{*}:=\bigcap\{S \subseteq A \times A \mid S \supseteq R \text { and } S \text { is reflexive and transitive }\}
$$

That is, R^{*} is the "smallest" relation that (1) contains R, (2) is reflexive, (3) is transitive.

Exercise 2.5. Show that $\tilde{R}=R^{*}$. Remark. Your proof should be very rigorous and quite formal. Think about what exactly you have to prove!

Define $R_{k}:=\left\{(a, b) \in \mathbb{Z}^{2} \mid a-b\right.$ is divisible by $\left.k\right\}$.
Exercise 2.6. Let $a, b \in Z$ be integers. What is $R_{a} \cap R_{b}$?
Exercise 2.7. Let $a, b \in Z$ be integers. What is $\left(R_{a} \cup R_{b}\right)^{*}$?

3 A String Transformation System

Consider $X=\{0,1\}^{*}$, the set of all finite $0 / 1$ strings. Let us define two operations on elements of X. First, we can replace two consecutive 0 s by a 1 , for example $1100 \rightarrow 111$. Second, we can insert a 0 between two consecutive 1 , for example $011 \rightarrow 0101$. We write $x \rightarrow y$ if we can obtain y by one of the two operations. Note that \rightarrow defines a relation R on X, namely $R:=\{(x, y) \in X \times X \mid x \rightarrow y\}$.

Exercise 3.1. Let X_{3} be the set of $0 / 1$ strings of length at most 3 and let R_{3} be the restriction of R to strings in X_{3}. Formally, $R_{3}:=R \cap\left(X_{3} \times X_{3}\right)$. Draw R_{3} as a diagram with arrows.

Consider \rightarrow^{*}, the transitive closure of \rightarrow. That is, $x \rightarrow y^{*}$ if there are z_{1}, \ldots, z_{n} such that $x=z_{1} \rightarrow z_{2} \rightarrow \cdots \rightarrow z_{n}=y$ (note that for $n=1$ this includes the case $x=y$). Define

$$
\begin{aligned}
\operatorname{Descendant}(x) & :=\left\{y \in\{0,1\}^{*} \mid x \rightarrow^{*} y\right\}, \\
\text { Ancestor }(v) & :=\left\{u \in\{0,1\}^{*} \mid u \rightarrow^{*} v\right\}
\end{aligned}
$$

Exercise 3.2. Show that $\mid \operatorname{Descendant(x)|}$ is finite for every $x \in\{0,1\}^{*}$!
Exercise 3.3. Show that \mid Ancestor $(\mathrm{x}) \mid$ is finite for every $x \in\{0,1\}^{*}$!

