Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

- Homework assignment published on Monday, 2017-02-27
- Work on it and submit questions by Wednesday, 2017-03-01, 18:00 by email to dominik.scheder@gmail.com
- We will discuss some problems on Thursday, 2017-03-02.
- Submit your solution by Sunday, 2017-02-05 to me and TA (kenny_kong@foxmail.com)
- We will give you feedback, you will have an opportunity to revise your solution before we will grade it.

2 Relations

A relation on finite set can be drawn as a diagram, as I illustrate with the relation $\{(a, b) \in \{2, \dots, 9\}^2 \mid a \text{ divides } b\}$.

Note that the relation is reflexive, so I would have to draw a little self-loop at every number. However, exactly because it is reflexive it makes sense to be lazy and drop all these self-loops.

If the relation is symmetric, we do not need the arrowheads. Thus, here is a diagram of the relation $\{(a, b) \in [8]^2 \mid b - a \text{ is divisible by } 3\}$:

Again, I did not draw the self-loops, because I want to keep the picture simple.

Suppose $R\subseteq A\times B$ and $S\subseteq B\times C$ are relations. We define $R\circ S$ to be the relation

$$R \circ S := \{ (a, c) \in A \times C \mid \exists b \in B : (a, b) \in R, (b, c) \in S \} .$$

In the above definition I corrected a typo.

Exercise 2.1. Consider the three following relations on [8]:

 $R_1 := \{ (a,b) \in [8]^2 \mid b-a \text{ is a prime } \} , R_2 := \{ (a,b) \in [8]^2 \mid a+b \text{ is a square } \} .$

- Draw R_1 and R_2 as a diagram.
- Draw $R_1 \circ R_2$.
- Draw $R_2 \circ R_1$.

Exercise 2.2. Show that \circ is associative. That is, if $R \subseteq A \times B$, $S \subseteq B \times C$, and $T \subseteq C \times D$ are relations, then $(R \circ S) \circ T = R \circ (S \circ T)$. **Remark 1.** Your proof should be quite formal in this case. **Remark 2.** First, think about what exactly you have to prove!

2.1 The Reflexive Transitive Closure

Let $R \subseteq A \times A$ be a relation. We define $R^{(0)} := \{(x, x) \mid x \in A\}$, which is obviously reflexive. For $n \ge 1$, we define inductive $R^{(n)} := R^{(n-1)} \circ R$. Next, we define

$$\tilde{R} := R^{(0)} \cup R^{(1)} \cup R^{(2)} \cup R^{(3)} \cup \dots = \bigcup_{n \ge 0} R^{(n)}$$

Exercise 2.3. Let $S := \{(a, b) \in \mathbb{Z}^2 \mid |a - b| = 3\}$ and $T := \{(a, b) \in \mathbb{Z}^2 \mid a - b \text{ is divisible by } 3\}$. Show that $\tilde{S} = T$. Some students apparently missed that the tilde above the S: show that $\tilde{S} = T$, not S = T!

Exercise 2.4. Show that R is transitive.

For a relation R we define its reflexive transitive closure R^* by

 $R^* := \bigcap \{ S \subseteq A \times A \mid S \supseteq R \text{ and } S \text{ is reflexive and transitive} \} \ .$

That is, R^* is the "smallest" relation that (1) contains R, (2) is reflexive, (3) is transitive.

Exercise 2.5. Show that $\tilde{R} = R^*$. **Remark.** Your proof should be very rigorous and quite formal. Think about what exactly you have to prove!

Define $R_k := \{(a, b) \in \mathbb{Z}^2 \mid a - b \text{ is divisible by } k\}.$

Exercise 2.6. Let $a, b \in Z$ be integers. What is $R_a \cap R_b$?

Exercise 2.7. Let $a, b \in Z$ be integers. What is $(R_a \cup R_b)^*$?

3 A String Transformation System

Consider $X = \{0, 1\}^*$, the set of all finite 0/1 strings. Let us define two operations on elements of X. First, we can replace two consecutive 0s by a 1, for example $1100 \rightarrow 111$. Second, we can insert a 0 between two consecutive 1, for example $011 \rightarrow 0101$. We write $x \rightarrow y$ if we can obtain y by one of the two operations. Note that \rightarrow defines a relation R on X, namely $R := \{(x, y) \in X \times X \mid x \rightarrow y\}.$

Exercise 3.1. Let X_3 be the set of 0/1 strings of length at most 3 and let R_3 be the restriction of R to strings in X_3 . Formally, $R_3 := R \cap (X_3 \times X_3)$. Draw R_3 as a diagram with arrows.

Consider \rightarrow^* , the transitive closure of \rightarrow . That is, $x \rightarrow y^*$ if there are z_1, \ldots, z_n such that $x = z_1 \rightarrow z_2 \rightarrow \cdots \rightarrow z_n = y$ (note that for n = 1 this includes the case x = y). Define

Descendant
$$(x) := \{y \in \{0,1\}^* \mid x \to^* y\}$$
,
Ancestor $(v) := \{u \in \{0,1\}^* \mid u \to^* v\}$.

Exercise 3.2. Show that $|\text{Descendant}(\mathbf{x})|$ is finite for every $x \in \{0, 1\}^*$!

Exercise 3.3. Show that |Ancestor(x)| is finite for every $x \in \{0, 1\}^*$!