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This homework is special. First of all, it is more difficult than the previous
ones. Second, you will have two weeks time to work on them. Third, different
groups will get different problem sets. Your solution will be given to two other
groups, who give you feedback. Similarly, you will have to read two other
groups’ solutions and give them feedback.

You have to solve only one version (the one assigned to you), but you
have to understand the questions all four versions, since you have to give
feedback / grade them, and since all versions might be part of the exam.

Do include your team name in filename of the the pdf file you submit,
but NOT in the content of the pdf. The feedback / grading process will be
anonymous, i.e., you will not know which group you are reviewing.

• 2017-03-20 (Monday): homework handed out

• 2017-03-22 (Wednesday), 18:00: submit questions

• 2017-03-26 (Sunday), 18:00: submit first solution.

• 2017-03-29 (Wednesday), 18:00: submit your review of the other group’s
first submission.

• 2017-04-02 (Sunday), 18:00: submit second solution.
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• 2017-04-05 (Wednesdy), 18:00: submit your review of the other group’s
second submission.

• 2017-04-09 (Sunday), 18:00: submit your final solution.

5 A Proof of Dilworth’s Theorem

Let (X,≤) be a partially ordered set. In the video lecture we defined the
width of X to be the size of a maximal antichain:

w(X) := max{|A| | A ⊆ X is an antichain} .

We also talked about the minimum size cp of a chain partition.1 Formally,

cp(X) := min{t | ∃ chain C1, . . . , Ct with C1 ∪ · · · ∪ Ct = X} .

Obviously w(X) ≤ cp(X): let A be a maximum size antichain, i.e., |A| =
w(X). A chain Ci contains at most one element from A, and all w(X)
elements must be covered. Thus, we need at least |A| chains, and cp(X) ≥
w(X).

Theorem 5.1 (Dilworth’s Theorem). w(X) = cp(X).

In this homework you will prove Dilworth’s Theorem.

Exercise 5.2. Show that Dilworth’s Theorem follows from the following
theorem:

Theorem 5.3. There exists an antichain A ⊆ X and a partition X = C1 ∪
· · · ∪ Ct into chains such that t = |A|.

Alright, so next you should prove Theorem 5.3. Of course, this is too
much for an exercise in an undergraduate course, so let me walk you through
a nice inductive proof.

Proof of Theorem 5.3. We proceed by induction on |X|. For |X| = 1 or
|X| = 0 the theorem is trivially true.

1Note that we can equivalently talk about chain covers. The chains need not be disjoint;
in fact, if they are not, we can safely remove elements from certain chains to make them
disjoint, thus convert a cover into a partition.
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Exercise 5.4. As a warm-up, show that Dilworth’s Theorem holds for |X| =
2 and |X| = 3 by drawing some nice pictures that take care of all different
order relations on X.

Alright, so let |X| = n and let’s assume Theorem 5.3 holds for all ordered
sets on at most n − 1 elements. We set w := w(X), the width of X. Our
goal is to partition X into w chains.

Now let’s get going. Let C be a maximum size chain in X (that’s true; a
chain, not an antichain). Note that X \ C is again an ordered set.

Exercise 5.5. Show how to finish the proof in the case that w(X\C) ≤ w−1.

Now that this case is taken care of, let’s try to handle the case that
w(X \C) = w. That means, suppose there is an antichain A ⊆ X \C of size
|A| = w.

Exercise 5.6. Show that this case can happen! That is, draw some partial
ordered set (i.e., draw its Hasse diagram), highlight some maximum size chain
C in it, such that w(X \ C) = w(X).

Now let us fix this antichain A and define the following sets:

X+ := {x ∈ X | ∃ a ∈ A with a < x} ,
X− := {x ∈ X | ∃ a ∈ A with x < a} .

Recall that we write x < y as a shorthand for “x ≤ y and x 6= y. Let us
write C = {c1, c2, . . . , ch} with h = |C| and c1 < c2 < · · · < ch (remember
that C is of maximum size and therefore h = h(X), the height of X). We
list some basic facts:

Proposition 5.7. The following things are true about C, A, X+, and X−:

1. X = X− ∪ A ∪X+,

2. c1 ∈ X−,

3. ch ∈ X+.

Exercise 5.8. Draw a picture that nicely illustrates Proposition 5.7.

Exercise 5.9. Prove Proposition 5.7.

Exercise 5.10. Show that w(X− ∪ A) = w(X+ ∪ A) = |A|.
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By the above proposition, |X−∪A| ≤ n−1 since this set does not contain
ch. Thus, we can apply the inductive hypothesis to X− ∪ A and obtain a
chain partition of X− ∪ A into w chains:

X− ∪ A = C−
1 ∪ · · · ∪ C−

w .

By the analogous argument, we see that |X+ ∪A|, apply induction and find
a chain partition of X+ ∪ A into w chains:

X+ ∪ A = C+
1 ∪ · · · ∪ C+

w .

Exercise 5.11. Finish the proof of Theorem 5.3.
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