上海交通大学试卷(A卷) (2016 至2017 学年第二学期) | 班级号 | 学号 | 姓名 | | |------|--|----|----| | 课程名称 | Mathematical Foundations of Computer Science (CS499) | | 成绩 | Each problem is worth 20 points. 100 points will give you full grade. Please note: (1) Justify your answers. (2) The problems are not sorted from easiest to hardest. So check first before wasting time on the hardest problem. Also, all problems have some easy sub-problems. #### **Problem 1** Recall Lucas' Theorem, which states that $\binom{n}{k}$ is odd if $k \leq n$ and even otherwise, where $k \leq n$ is the "bitwise comparison" of k and n. For example, $4 \leq 12$ since 4 in binary is 100 and 12 is 1100, and bit-by-bit we have $0100 \leq 1100$. To the contrary, $0010 \not\leq 1100$ and therefore $2 \not\leq 12$. Lucas' Theorem now implies that $\binom{12}{4}$ is odd and $\binom{12}{2}$ is even. A fact that can be easily verified by hand. Next, you are going to use Lucas' Theorem to derive a bunch of rules: - 1. For which k is $\binom{2k+1}{k}$ odd? Find a rule and prove it! - 2. For which k is $\binom{4k}{k}$ odd? Find a rule and prove it! - 3. For which k is $\binom{2k}{k}$ odd? Prove this fact WITHOUT using Lucas' Theorem! Let T_n binary tree of depth n. Instead of giving a formal definition, let me draw the first few T_n : Let V_n denote the set of vertices of T_n . We define an ordering on V_n : $x \leq y$ if x is an ancestor of y in T_n . For example, in T_3 above we have $y \leq x$ but $x \not\leq z$ and $z \not\leq x$. - 1. An ordering is a relation and thus a subset of $V_n \times V_n$. What is $| \leq |$? That is, how many pairs (x, y) are there with $x \leq y$? Give a closed formula and prove it. - 2. What is the largest antichain of (V_n, \preceq) ? Prove you answer! For this, you may use Dilworth's Theorem, if you want! - 3. Obviously, \leq is not a linear ordering (for $n \geq 1$). Find and describe some linear extension of \leq . Try to find a very simple one. - 4. Find two linear orderings \leq_1 and \leq_2 such that $\leq \leq_1 \cap \leq_2$. That is, for all x, y in the tree, $x \leq y$ if and only if $x \leq_1 y$ and $y \leq_1 x$. Recall that an automorphism of a graph G = (V, E) is a bijection $\pi : V \to V$ that is an isomorphism. That is, $\{u, v\} \in E$ if and only if $\{\pi(u), \pi(v)\} \in E$. Clearly, the identity function $\pi(u) = u$ is always an automorphism. We call a graph asymmetric if the identity is the only automorphism. Consider the following graph: - 1. How many automorphisms does it have? - 2. Which edge can you add to this graph to make it asymmetric? Justify your answer, i.e., argue why the resulting graph is asymmetric. - 3. Consider the three-dimensional Hamming cube: What is the smallest number of edges you have to remove to make this graph asymmetric? That is, find the smallest such k, exhibit a set of k edges such that removing these edges makes the graph asymmetric, and argue why removing j < k edges is not enough. Recall the definition of the *core* of a function. For example, the core of the function below is $\{1, 2, 3\}$. - 1. Let $s_3(n)$ be the number of functions $f:[n] \to [n]$ with core size 3. Give a summation formula for $s_3(n)$. Don't try to give a *closed* formula. You will have to use \sum , $\binom{j}{i}$ and so on. - 2. For a graph G, let $P_k(G)$ denote the number of paths of length k in G. For example, $P_1(G)$ is simply the number of edges, and for this graph we have $P_2(G) = 4$, $P_3(G) = 2$, and $P_4(G) = 0$. Now consider $\mathbb{E}[P_2(T)]$, the expectation of $P_2(T)$ when T is a random tree on the vertex set $\{1, \ldots, n\}$. Formally, $$\mathbb{E}[P_2(T)] = \frac{1}{n^{n-2}} \sum_{T} P_2(T) \ .$$ Give a closed formula for this in terms of $s_3(n)$. By this I mean, your formula must not contain any \sum , but may contain $s_3(n)$. 3. For a graph G, let $w_2(G) := \sum_v (d(v))^2$, the sum of the squares of the degrees. Give a formula for $w_2(G)$ in terms of $P_2(T)$. - 1. Give an example of a sequence (d_1, \ldots, d_n) , $n \geq 4$, which is the score of a multigraph but not of a graph. - 2. Consider graphs with integer edge weights. These are graphs G = (V, E) together with an edge weight function $w : E \to \mathbf{Z}$. Yes, weights can be negative integers here. A graph with integer weights and score 0, 1, 3. State an integer weights graph score theorem. That is, something like **Theorem.** A sequence d_1, \ldots, d_n is an integer weights graph score if and only if <put a very simple criterion here>. 3. Prove your theorem. Recall that a multigraph is a graph that can have parallel edges. For a multigraph G, we denote by t(G) the number of spanning trees of G. Furthermore, recall that C_k is a cycle with k vertices (and k edges). Suppose we take C_k , remove one edge and replace it by a parallel edges. We call the resulting graph $C_{k,a}$. The graph $C_{3,2}$, a triangle with one edge replaced by two parallel edges. Note that $t(C_{3,2}) = 5$. - 1. Find an explicit formula for $t(C_{k,a})$ and argue why it holds. - 2. Look at the following graph G: Thin edges have weight 1, thick edges have weight 2. Draw a minimum spanning tree of G. - 3. How many minimum spanning trees does G have? - 4. Draw a multigraph H (without edge weights) that has as many spanning trees as G has minimum spanning trees. | 题号 | 1 | 2 | 3 | 4 | 5 | 6 | | | |---------|---|---|---|---|---|---|--|--| | 得分 | | | | | | | | | | 批阅人(流水阅 | | | | | | | | | | 卷教师签名处) | | | | | | | | | 我承诺,我将严格遵守考试纪律。 # 承诺人: