Mathematical Foundations of Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

- Homework assignment published on Tuesday, 2018-03-13
- Submit questions and first solutions by Sunday, 2018-03-18, 12:00 by email to dominik.scheder@gmail.com and the TAs.
- You will receive feedback by Wednesday, 2018-03-21
- Revise your solution and submit your final solution by Sunday, 2018-$03-25$ by email to dominik.scheder@gmail.com and the TAs.

3 Basic Counting

A function $[m] \rightarrow[n]$ is monotone if $f(1) \leq f(2) \leq \cdots \leq f(m)$. It is strictly monotone if $f(1)<f(2)<\cdots<f(m)$.

Exercise 3.1. Find and justify a closed formula for the number of strictly monotone functions from $[m]$ to $[n]$.

Exercise 3.2. Find and justify a closed formula for the number of monotone functions from $[m]$ to $[n]$.

Remark. By "closed" I mean something using expressions like $\times,+$, $\binom{n}{k}, n$!, but not \sum or Π. For example, $\binom{n}{k^{2}}$ is a closed formula but $\sum_{k=0}^{n}\binom{n}{k}$ is not.

Exercise 3.3. Prove that $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$ for every $n \geq 0$ by finding a combinatorial interpretation.

Exercise 3.4. [From the textbook] Find a closed formula for $\sum_{k=m}^{n}\binom{k}{m}\binom{n}{k}$ and prove it combinatorially, i.e., by giving an interpretation.

Exercise 3.5. Let B_{n} be the number of partitions of the set $[n]$ (this is the same as the number of equivalence relations on $[n]$). This is called the Bell number, thus we denote it B_{n}. Prove that the following recursive formula for B_{n} is correct:

$$
\begin{aligned}
B_{0} & =1 \\
B_{n+1} & =\sum_{k=0}^{n}\binom{n}{k} B_{k} .
\end{aligned}
$$

Exercise 3.6. Let P_{n} be the number of ways to write the natural number n as a sum $a_{1}+a_{2}+\cdots+a_{k}$ such that $1 \leq a_{1} \leq a_{2} \leq \cdots \leq a_{k}$. For example, 3 can be written as $3,2+1$, and $1+1+1$, so $P_{3}=3$. Find a recursive formula for P_{n}.

Remark. The formula might not be as simple as the above for B_{n}. Be creative! Start by writing a simple recursive program that computes P_{n}.

