
Mathematical Foundations
of

Computer Science

CS 499, Shanghai Jiaotong University, Dominik Scheder

11 Matchings and Network Flow

• Homework assignment published on Monday 2018-05-14

• Submit questions and first solutions by Sunday, 2018-05-20, 12:00

• Submit final solution by Sunday, 2018-05-27.

11.1 Matchings

Consider the Hamming cube {0, 1}n. We can view it as a graph Hn, where
the vertex set is {0, 1}n and two vertices x, y are connected by an edge if

x and y differ in exactly one coordinate. Define the k
th

layer to be Lk :=
{x ∈ {0, 1}n | |x|1 = k}, where |x|1 denotes the number of 1s in x. Note
that the subgraph induced by layer k and layer k + 1 is a bipartite graph
Hn[Lk ∪ Lk+1]. See the picture below for an illustration (n = 3, k = 1):

000 100

010

001

110

011 111

101

000 100

010

001

110

011 111

101

L0

L1 L2

L3

100

010

001

110

011

101

L1 L2

1

Exercise 11.1. Let 0 ≤ k < n/2. Show that the bipartite graph Hn[Lk ∪
Lk+1] has a matching of size |Lk| =

(
n
k

)
.

Exercise 11.2. Let G = (V,E) be a bipartite graph with left side L and right
side R. Suppose G is d-regular (every vertex has degree d), so in particular
|L| = |R|. Show that G has a perfect matching (that is, a matching M of
size |L|).

Exercise 11.3. Let G a d-regular bipartite graph. Show that the edges E(G)
can be partitioned into d perfect matchings. That is, there are matchings
M1, . . . ,Md ⊆ E(G) such that (1) Mi ∩Mj = ∅ for 1 ≤ i < j ≤ d and (2)
M1 ∪M2 ∪ · · · ∪Md = E(G).

11.2 Networks with Vertex Capacities

Suppose we have a directed graph G = (V,E) but instead of edge capacities
we have vertex capacities c : V → R. Now a flow f should observe the vertex
capacity constraints, i.e., the outflow from a vertex u should not exceed c(u):

∀u ∈ V :
∑

v∈V,f(u,v)>0

f(u, v) ≤ c(u) .

Exercise 11.4. Consider networks with vertex capacities.

1. Show how to model networks with vertex capacities by networks with
edge capacities. More precisely, show how to transform G = (V,E, c)
with c : V → R+ into a network G′ = (V ′, E ′, c′) with c′ : E ′ →
R+ such that every s-t-flow f in G that respects the vertex capacities
corresponds to an s-t-flow f ′ (of same value) in G′ that respects edge
capacities, and vice versa.

2. Draw a picture illustrating your solution.

3. Show that there is a polynomial time algorithm solving the following
problem: Given a directed graph G = (V,E) and two vertices s, t ∈ V .
Are there k paths p1, . . . , pk, each from s to t, such that the paths are
internally vertex disjoint? Here, internally vertex disjoint means that
for i 6= j the paths pi, pj share no vertices besides s and t.

2

Exercise 11.5. Let Hn be the n-dimensional Hamming cube. For i < n/2
consider Li and Ln−i. Note that |Li| =

(
n
i

)
=
(

n
n−i

)
= Ln−i, so the Li and

Ln−i have the same size. Show that there are
(
n
i

)
paths p1, p2, . . . , p(n

i)
in

Hn such that (i) each path p starts in Li and ends in Ln−i; (ii) two different
paths p, p′ do not share any vertices.

11.3 Always, Sometimes, or Never Full

Let (G, s, t, c) be a flow network, G = (V,E). A directed edge e = (u, v) is
called always full if f(e) = c(e) for every maximum flow; it is called sometimes
full if f(e) = c(e) for some but not all maximum flows; it is called never full
if f(e) < c(e) for all maximum flows.

Let (S, V \ S) be a cut. That is, s ∈ S, t ∈ V \ S. We say the edge
e = (u, v) is crossing the cut if u ∈ S and v ∈ V \ S. We say e is always
crossing if it crosses every minimum cut; sometimes crossing if it crosses
some, but not all minimum cuts; never crossing if it crosses no minimum cut.
For example, look at this flow network:

s te : 1 f : 2

g : 1

h : 1

Example network: the edges e, g are sometimes full and never crossing; f is never
full and never crossing; h is always full and always crossing.

Exercise 11.6. Consider this network:

s t

a

b

c

d

e

f h

g i

The fat edge a has capcity 2, all other edges have capacity 1.

1. Indicate which edges are (i) always full, (ii) sometimes full, (iii) never
full.

2. Indicate which edges are (i) always crossing, (ii) sometimes crossing,
(iii) never crossing.

3

Exercise 11.7. An edge e can be (x) always full, (y) sometimes full, (z)
never full; it can be (x’) always crossing, (y′) sometimes crossing, (z′) never
crossing. So there are nine possible combinations: (xx′) always full and
always crossing, (xy′) always full and sometimes crossing, and so on. Or are
there? Maybe some possibilities are impossible. Let’s draw a table:

x: always full y: sometimes full z: never full

x′: always crossing

y′: sometimes crossing

z′: never crossing

e : 1

f : 1

The edge e is:

e : 1

f : 2

s

t

s

t

Possible
or

impossible?

Possible
or

impossible?

Possible
or

impossible?

Possible
or

impossible?

Possible
or

impossible?

Possible
or

impossible?

Possible
or

impossible?

The nine possible cases, some of which are maybe impossible.

The two very simple flow networks in the table already show that (xx′) and
(yy′) are possible; that is, it is possible to be always full and always crossing,
and it is possible to be always full and sometimes crossing. Fill out the table!
That is, for each of the remaining seven cases, find out whether it is possible
or not. If it is possible, draw a (simple) network showing that it is possible;
if impossible, give a proof of this fact.

4

