An Uncountable Chain in $\{0,1\}^{\mathbf{N}}$

An Uncountable Chain in $\{0,1\}^{\mathbf{N}}$

Part I: the proof I showed in class, with a bit more details.

An Uncountable Chain in $\{0,1\}^{\mathbf{N}}$

Part I: the proof I showed in class, with a bit more details.

Definition. Let X and Y be two partially ordered sets.
A function $f: X \rightarrow Y$ is an isomorphism if

- f is bijective,
- $x_{1} \leq x_{2}$ if and only if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$.

If such an f exists, we say X and Y are isomorphic and write $X \cong Y$.

An Uncountable Chain in $\{0,1\}^{\mathbf{N}}$

Part I: the proof I showed in class, with a bit more details.

Definition. Let X and Y be two partially ordered sets.
A function $f: X \rightarrow Y$ is an isomorphism if

- f is bijective,
- $x_{1} \leq x_{2}$ if and only if $f\left(x_{1}\right) \leq f\left(x_{2}\right)$.

If such an f exists, we say X and Y are isomorphic and write $X \cong Y$.

Intuitive meaning: X and Y being isomorphic means that they look identical, differing only by the names of their elements.

Observation 1. $\left(\{0,1\}^{\mathbf{N}}, \leq\right)$ and $\left(2^{\mathbf{N}}, \subseteq\right)$ are isomorphic.

Observation 2. $\left(2^{\mathbf{N}}, \subseteq\right)$ and $\left(2^{\mathbf{Q}}, \subseteq\right)$ are isomorphic.

Observation 3. If X and Y are isomorphic, then X has an uncountable chain if and only if Y has an uncountable chain.

Theorem. $\left(2^{\mathbf{Q}}, \subseteq\right)$ has an uncountable chain.

Proof. For a real number x, definfe $B_{x}:=\{q \in \mathbf{Q} \mid q<x\}$.
Define $C:=\left\{B_{x} \mid x \in \mathbf{R}\right\}$.

- C is a chain. Any B_{x}, B_{y} are comparable. Indeed, if $x \leq y$ then $B_{x} \subseteq B_{y}$.
- C is uncountable. Indeed, the function $f: \mathbf{R} \rightarrow C$ defined by $f(x)=B_{x}$ is injective.

Theorem. $\left(2^{\mathbf{Q}}, \subseteq\right)$ has an uncountable chain.

Proof. For a real number x, definfe $B_{x}:=\{q \in \mathbf{Q} \mid q<x\}$.
Define $C:=\left\{B_{x} \mid x \in \mathbf{R}\right\}$.

- C is a chain. Any B_{x}, B_{y} are comparable. Indeed, if $x \leq y$ then $B_{x} \subseteq B_{y}$.
- C is uncountable. Indeed, the function $f: \mathbf{R} \rightarrow C$ defined by $f(x)=B_{x}$ is injective.

Corollay. $\left(\{0,1\}^{\mathbf{N}}, \leq\right)$ has an uncountable chain.

Okay, maybe this was a bit mysterious...

Let's give a (longer) proof that actually shows how the elements of the chain are constructed.

Okay, maybe this was a bit mysterious...

Let's give a (longer) proof that actually shows how the elements of the chain are constructed.

We'll define a function f that takes as input an infinite bit sequence $\mathbf{a} \in\{0,1\}^{\mathbf{N}}$ and outputs an infinite bit sequence $f(\mathbf{a}) \in\{0,1\}^{\mathbf{N}}$ such that

1. f is an injection.
2. All output elements $f(\mathbf{a})$ are comparable.

Point 1 will ensure the set of outputs is uncountable, Point 2 will ensure it is a chain.

Example of our procedure

input sequence
01101001...

Example of our procedure

$* .$.

Example of our procedure

**...

01101001...

**...
read first bit of input

**...
read first bit of input

01101001...
$* \ldots$
η
put it here
read first bit of input

$0 * \ldots$
read first bit of input

$0 * \ldots$

read first bit of input 1 01101001...

$0 * \ldots$
read first bit of input

Rule 1: Read bit of input. In output, replace first $*$ by that bit.
Rule 2:

- If that bit is 0 , replace every other $*$ by 0 , starting with the first *.
- If that bit is 1 , replace every other $*$ by 1 , starting with the second $*$.
$0 * \ldots$
read first bit of input

Rule 1: Read bit of input. In output, replace first $*$ by that bit.
Rule 2:

- If that bit is 0 , replace every other by 0 , starting with the first *.
- If that bit is 1 , replace every other $*$ by 1 , starting with the second $*$.
$0 * \ldots$
read first bit of input

Rule 1: Read bit of input. In output, replace first $*$ by that bit.
Rule 2:

- If that bit is 0 , replace every other by 0 , starting with the first *.
- If that bit is 1 , replace every other $*$ by 1 , starting with the second $*$.
$00 * 0 \ldots$
read first bit of input

Rule 1: Read bit of input. In output, replace first $*$ by that bit.
Rule 2:

- If that bit is 0 , replace every other $*$ by 0 , starting with the first *.
- If that bit is 1 , replace every other $*$ by 1 , starting with the second $*$.
$00 * 0 \ldots$
read next bit of input

01101001...

Rule 1: Read bit of input. In output, replace first $*$ by that bit.
Rule 2:

- If that bit is 0 , replace every other $*$ by 0 , starting with the first $*$.
- If that bit is 1 , replace every other $*$ by 1 , starting with the second $*$.

$$
00 * 0 \ldots
$$

read next bit of input

Rule 1: Read bit of input. In output, replace first $*$ by that bit.
Rule 2:

- If that bit is 0 , replace every other $*$ by 0 , starting with the first *.
- If that bit is 1 , replace every other $*$ by 1 , starting with the second $*$.
$0010 * 010 * 010 * 010 * 010 * 010 * 010 * 010 * 010 * 010 * 0 \ldots$

read next bit of input

Rule 1: Read bit of input. In output, replace first $*$ by that bit.
Rule 2:

- If that bit is 0 , replace every other $*$ by 0 , starting with the first $*$. - If that bit is 1 , replace every other by 1 , starting with the second $*$.
$00101010 * 010 * 010 * 010 * 010 * 010 * 010 * 010 * 010 * 0 \ldots$
read next bit of input

Rule 1: Read bit of input. In output, replace first $*$ by that bit.
Rule 2:

- If that bit is 0 , replace every other $*$ by 0 , starting with the first *. - If that bit is 1 , replace every other by 1 , starting with the second $*$.
$00101010 * 0101010 * 0101010 * 0101010 * 0101010 * 0 \ldots$
read next bit of input

Rule 1: Read bit of input. In output, replace first $*$ by that bit.
Rule 2:

- If that bit is 0 , replace every other $*$ by 0 , starting with the first *.
- If that bit is 1 , replace every other $*$ by 1 , starting with the second $*$.
$00101010 * 0101010 * 0101010 * 0101010 * 0101010 * 0 \ldots$

AND SO ON FOREVER
input a

01101001...

output $f(\mathbf{a})$

$001010100010101000101010 * 010101000101010 * 0 \ldots$

Claim. This procedure is injective and produces a chain.

Proof. Let \mathbf{a} and \mathbf{b} be two different input sequences.
Let i be the first coordinate where $a_{i} \neq b_{i}$.
Let's assume $a_{i}=0, b_{i}=1$.
Let's run the previous procedure on \mathbf{a} and \mathbf{b} and stop just before it reads the $i^{\text {th }}$ bit.

Input:

$\mathbf{a}=a_{1} a_{2} \ldots a_{i-1} 0 a_{i+1} a_{i+2} \ldots$
$\mathbf{b}=a_{1} a_{2} \ldots a_{i-1} 1 b_{i+1} b_{i+2} \ldots$

Input:

$\mathbf{a}=a_{1} a_{2} \ldots a_{i-1} 0 a_{i+1} a_{i+2} \ldots$
$\mathbf{b}=a_{1} a_{2} \ldots a_{i-1} 1 b_{i+1} b_{i+2} \ldots$
Input, just before reading bit i :
$f(\mathbf{a})=\cdots \cdots * \cdots \cdots * \cdots \cdots * \cdots \cdot \cdots \cdots \cdot \cdots * \cdot \cdots *$
$f(\mathbf{b})=\cdots \cdots * * \cdots \cdots * \cdots \cdots * \cdots \cdots * \cdots \cdot{ }_{*} \cdot \cdots \cdot \cdots *$

Input:
$\mathbf{a}=a_{1} a_{2} \ldots a_{i-1} 0 a_{i+1} a_{i+2} \ldots$
$\mathbf{b}=a_{1} a_{2} \ldots a_{i-1} 1 b_{i+1} b_{i+2} \ldots$
Input, just before reading bit i :

These parts of $f(\mathbf{a})$ and $f(\mathbf{b})$ consist of 0 's and 1's. They are equal, because the parts of \mathbf{a} and \mathbf{b} read so far as identical.

Input:

$\mathbf{a}=a_{1} a_{2} \ldots a_{i-1} 0 a_{i+1} a_{i+2} \ldots$
Now we read the next bit of
\mathbf{a} and \mathbf{b}
$\mathbf{b}=a_{1} a_{2} \ldots a_{i-1} 1 b_{i+1} b_{i+2} \ldots$
Input, just before reading bit i :
$f(\mathbf{a})=\cdots \cdots * \cdots \cdots \cdots$
$f(\mathbf{b})=\cdots \cdots * \cdots \cdots *$

Input:

$\mathbf{a}=a_{1} a_{2} \ldots a_{i-1} 0 a_{i+1} a_{i+2} \ldots$
Now we read the next bit of
\mathbf{a} and \mathbf{b}
$\mathbf{b}=a_{1} a_{2} \ldots a_{i-1} 1 b_{i+1} b_{i+2} \ldots$
Input, just before reading bit i :
$f(\mathbf{a})=\cdots \cdots 0 \cdots \cdots * \cdots \cdots * \cdots \cdots * \cdots \cdots * \cdots \cdots *$
$f(\mathbf{b})=\ldots \cdots 1 \cdots \cdots * \cdots \cdots * \cdots \cdots * \cdots \cdots * \cdots \cdots *$

Input:

$\mathbf{a}=a_{1} a_{2} \ldots a_{i-1} 0 a_{i+1} a_{i+2} \ldots$
Now we read the next bit of
\mathbf{a} and \mathbf{b}
$\mathbf{b}=a_{1} a_{2} \ldots a_{i-1} 1 b_{i+1} b_{i+2} \ldots$
Input, just before reading bit i :

Input:
$\mathbf{a}=a_{1} a_{2} \ldots a_{i-1} 0 a_{i+1} a_{i+2} \ldots$
Now we read the next bit of
\mathbf{a} and \mathbf{b}
$\mathbf{b}=a_{1} a_{2} \ldots a_{i-1} 1 b_{i+1} b_{i+2} \ldots$
Input, just before reading bit i :

Whatever happens from now on, it is clear that $f(\mathbf{a})<f(\mathbf{b})$.

Input:
$\mathbf{a}=a_{1} a_{2} \ldots a_{i-1} 0 a_{i+1} a_{i+2} \ldots$
Now we read the next bit of
\mathbf{a} and \mathbf{b}
$\mathbf{b}=a_{1} a_{2} \ldots a_{i-1} 1 b_{i+1} b_{i+2} \ldots$
Input, just before reading bit i :

$f(\mathbf{b})=\cdots \cdots 1 \cdots \cdots * \cdots \cdots 1 \cdots \cdots * \cdots \cdots \cdot 1 \cdots \cdots *$

Whatever happens from now on, it is clear that $f(\mathbf{a})<f(\mathbf{b})$.
So f is injective and $\operatorname{Im}(f)$ is a chain.

