Environmental Simulation of Real-Time Systems with Nested Interrupts

Guoqiang Li
BASICS, Shanghai Jiao Tong University
Shanghai, China
li-gq@cs.sjtu.edu.cn

Shoji Yuen
NCES, Nagoya University
Nagoya, Japan
yuen@is.nagoya-u.ac.jp

Masakazu Adachi
Toyota Central R&D Labs. INC.
Nagoya, Japan
adachi@mosk.tytlabs.co.jp

Abstract

Interrupts are important aspects of real-time embedded systems to handle events in time. When there exist nested interrupts in a real-time system, and an urgent interrupt is allowed to preempt the current interrupt handling, the design and analysis of the system become difficult due to the lack of appropriate behavioral models. This paper proposes a compositional model for nested interrupts and an analysis named environmental simulation. We present a new kind of timed transition system, named controller automata, to treat interrupts. Together with an interrupt environment modeled as a timed automaton, and a scheduler as a timed automaton with semaphores, the system behaviors with nested interrupts are realized by a sequence of transitions with time. Although various verification problems for this model are undecidable in general, it is shown that the reachability of error states is practically solvable with our implementation of the environmental simulation by Maude.

1. Introduction

Real-time systems, due to their requirements to complete their works and deliver their services on a timely basis, are easily caused pitfalls when they are not properly designed. In order to guarantee correctness of properties that real-time systems hold, lots of formal models [13], such as timed automata [1], [8] and a variation, timed automata with semaphores [10] have been proposed and widely used for verification of real-time systems.

Interrupts are one of the important aspects of real-time embedded system designs. An interrupt is an event triggered by a signal from hardware or software, indicating the need for attention, which makes the processor suspend the current running task, and begin an execution of an interrupt handler. When there are more than one interrupt, and urgent interrupts are allowed to preempt the current executing interrupt, an interrupt controller is used to allocate different interrupts and to provide priorities for them.

This paper proposes a technique, named environmental simulation, to analyze real-time embedded systems with nested interrupts. Behaviors of interrupts are characterized by the communication between a target system and an environment. The target system consists of interrupt handlers and a controller to invoke the handlers according to the urgency of the interrupts. In order to model the behavior of the real-time system with nested interrupts, we propose controller automata [12], extended from timed automata, which integrates interrupt behaviors with the non-interrupt behaviors of the system. A controller automaton overrides the (non-interrupt) system behavior by interrupts, and resumes the behavior after the interrupt handling is over. Environmental simulation provides an interrupt generator to check whether the whole system works as intended under the certain interrupt environment.

We implement the environmental simulation by Maude [3]. Maude represents model generation rules by rewriting, instead of describing a model directly. A property can thus be analyzed at the same time when a model is generated on-the-fly. Hence even many properties, e.g., reachability problem, on controller automata are undecidable in general, it could uncover subtle counterexamples of a specification in an early step. This simulation can be very useful for debugging the specification, and complements our previous model checking approach [12].

Related Work. In [12], a strict partial order was imposed over the state set of a controller automaton. With this restriction, an ordered controller automaton could be translated to a timed automaton. Hence schedulability analysis was performed by the reachability problem of timed automata, which was solved by translating a timed automaton to a region automaton [1]. It was already implemented by several tools, e.g., UPPAAL [11]. Hence, we drew a conclusion that the reachability problem of ordered controller automata is decidable, while the reachability problem of controller automata is in general undecidable.

As an approach to handle time, Real-Time Maude [15] was proposed, which is a tool for the high-level formal specification, simulation and analysis of real-time and hybrid systems. Based on Real-Time Maude, the CASH scheduling algorithm was formally described and analyzed [16]. We independently implement the time issues with near 2000 lines by Maude, with the aim of features for controller automata, timed automata, timed automata with semaphores, and parallel compositions among them. These features can-
not be directly implemented by Real-Time Maude. Our im-
plementation can be used to describe, simulate and analyze
real-time systems with nested interrupts, as well as other
real-time systems modeled by these automata.

Task automata [5], [4], [6] were a specific model for
scheduling analysis. It assumed that time was dense,
and tasks can come at any time, periodically or sporad-
ically. There were many related researches based on task
automata. For example, When considering the fixed priority
scheduling, two extra clocks were enough to represent a
automaton. For example, When considering the fixed priority
automata. Section 3 introduces the environmental
implementation can be used to describe, simulate and analyze
real-time systems modeled by these automata.

Paper Organizations. The rest of the paper is organized
as follows. Section 2 proposes the formal definition of
controller automata. Section 3 introduces the environmental
simulation. Section 4 shows the experimental results by
Maude. Section 5 concludes the paper.

2. Controller Automata

This section presents controller automata to model nested
interrupts. We assign a timed automaton to the control
location where an interrupt handler is invoked.

2.1. Timed Automata

This subsection briefly reviews timed automata [1], [8].

Definition 1 (Time constraints). Let $X = \{x_1, \ldots, x_n\}$ be
a finite set of clocks. The set of clock constraints, $\Phi(X)$,
over X is defined by the grammar:

$\phi ::= T \mid x \triangleright c \mid \neg\phi \mid \phi \land \phi \mid \phi \lor \phi$

where $c \in \mathbb{R}^+$, $x \in X$, and $\triangleright \in \{>, \geq\}$.

For the set of clocks X, a clock valuation is a function
$\nu : X \rightarrow \mathbb{R}^+$, which assigns a value to each clock $x \in X$.
For a clock valuation ν and a clock constraint ϕ, we write
$\nu \models \phi$ to denote that ν satisfies the constraint ϕ. Given a set
of clocks $\lambda \subseteq X$ and a clock valuation ν, let a clock reset
function $\nu[\lambda]$ be a clock valuation, defined as follows:

$$(\nu[\lambda])(x) = \begin{cases} 0 & \text{if } x \in \lambda \\ \nu(x) & \text{otherwise} \end{cases}$$

Given a clock valuation ν and a time $t \in \mathbb{R}^+$, we define
$$(\nu + t)(x) = \nu(x) + t, \text{ for } x \in X.$$
Fact 1. A parallel composition of two timed automata is a timed automaton.

2.2. Time Lag on Timed Automata

When a timed automaton is preempted by another one, the system will stop running current timed automaton, store the current status, and begin to run the latter timed automaton. A time lag transforms a timed automaton to wait a certain time when preempted by another timed automata.

A time lag occurs at a given control location q in a timed automaton A. We need an extra idle location q^{id} for q. The definition of $\text{TimeLag} : \mathcal{A} \times Q(\mathcal{A}) \times \mathbb{R}^+ \rightarrow \mathcal{A}$ accepts a timed automaton, a control location on this timed automaton, a time interval, and returns a timed automaton, with the following definition, $\text{TimeLag}(A, q, t) = (E, H \cup \{r, I\}, Q \cup \{q^{id}\}, q_0, X \cup \{x_p\}, I', \delta')$, where

- $I'(q) = I(q) \land \{x_p \leq 0 \lor x_p \geq t\}$, and $I'(q^{id}) = \{x_p \leq t\}$, and
- Define $\delta'' = \left\{ q' \xrightarrow{a, \phi, \lambda} (x_p) \mid q' \in Q', q' \xrightarrow{a, \phi, \lambda} q \in \delta \cup \left\{ q' \xrightarrow{a, \phi, \lambda} q'' \mid q', q'' \in Q', q'' \xrightarrow{a, \phi, \lambda} q'' \in \delta \land q'' \neq q \right\}, \text{ and } \delta' = \delta'' \cup \left\{ q \xrightarrow{r, \tau, 0} q^{id}, q^{id} \xrightarrow{t, x_p \geq t, 0} q \right\}. \right.$

When the location q transits to the idle location q^{id}, it may not return back to q after t time units, due to the violation of $I'(q)$. It also cannot stay in q^{id}, since $I'(q^{id})$ is also violated after t time. Thus an empty timed automaton is produced, which explains that when some unexpected break happens, a system aborts the execution after restored.

2.3. Formal Definition

To avoid conflicts with terminology of timed automata, we name control locations of controller automata states.

Definition 4 (Controller Automata). A controller automaton (CA) is a tuple $\mathcal{C} = (E, H, S, s_0, X, I, M, T, \delta, x_{run})$, where

- E is a finite set of external actions, and H is a finite set of internal actions.
- S is a finite set of states, and $s_0 \in S$ is the initial state.
- X is a finite set of clocks.
- $I : S \rightarrow \Phi(X)$ is a function assigning each state with a clock constraint.
- $M : S \rightarrow \mathcal{A}$ is a function assigning each state with a timed automaton.
- $\delta \subseteq S \times (E \cup H) \times \Phi(X) \times 2^X \times S$.
- $T : S \rightarrow \mathbb{R}^+$ is a function assigning each state with a time, named expected running time.
- $x_{run} \in X$ is the special clock to accumulate the running time of each state.

Note that a controller automaton shares external actions with timed automata assigned to its states. For each $M(s)$, $X(M(s)) \cap X = \emptyset$, δ is partitioned into three disjoint subsets, δ_{push}, δ_{pop}, δ_{int}, for push, pop and internal actions, respectively, which are disjoint.

We prepare a stack for configurations of a controller automaton, recording the state and the running control location when a push event performed, and restoring the running context when a pop event performed.

Definition 5 (Semantics of Controller Automata). A configuration for a controller automaton is a tuple (s, q, ν, κ, S),

- s is the running state;
- q is the current running location in $M(s)$;
- ν is the clock valuation for all clocks of the controller automaton and timed automata in the states;
- κ is the set of clocks keeping frozen when the time elapses, named frozen clocks;
- S is the stack.

Progress transitions:

- $\text{Intra-action}: (s, q, \nu, \kappa, S) \xrightarrow{\kappa} (s', q', \nu[\kappa], \kappa, S)$, if $(q, \mu) \xrightarrow{\kappa} (q, \mu + t)$, where $\mu \leq \nu$ is a clock valuation on $X(M(s))$.

Discrete transitions:

- $\text{Intra-action}: (s, q, \nu, \kappa, S) \xrightarrow{\kappa} (s', q', \nu[\kappa], \kappa, S)$, if $(q, \mu) \xrightarrow{\kappa} (q', \mu[\kappa])$ in $M(s)$, where $\mu \leq \nu$ is a clock valuation on $X(M(s))$.

- Push: $(s, q, \nu, \kappa, S) \xrightarrow{\nu} (s', q_0(M(s')), \nu[\kappa] \cup \{x_{run}\}, \kappa \backslash X(M(s')), (s, q) :: \emptyset)$, and $M(s) := \text{TimeLag}(M(s), q, \nu(x_{run}))$ for all $(s, q) \in S$, if $s \xrightarrow{a, \phi, \lambda} s' \in \delta_{push}$, $\nu[\kappa] | \emptyset$, and $\nu[\kappa] | I(s')$.

- Pop: $(s, q, \nu, \kappa, S) \xrightarrow{\nu} (s', q', \nu[\kappa] \cup \{x_{run}\}, \kappa \backslash X(M(s)), S)$, and $M(s) := \text{TimeLag}(M(s), q, T(s))$ for all (s, q) in the stack, if $s \xrightarrow{a, \phi, \lambda} s' \in \delta_{push}$, $x_{run} = T(s)$, $\nu[\kappa] | \emptyset$, and $\nu[\kappa] \cup \{x_{run}\} | I(s')$.

Each transition has the intuitive meanings as follows,

- Progress transitions mean that if the control location of the timed automaton in the state can run t time, and after t time elapsed, the invariant of the state is not violated, then the state can run t time.
- Intra-action transitions mean that if one control location transits to another one in the state, the the controller automaton can also perform such a transition.
- Push transitions mean that if time conditions are satisfied (constraints on the transition and invariant of the state), the system pushes the running state and control location into the stack, and transits to the initial location of the time automaton in the latter state.
Simultaneously, all timed automata in the states pushed in the stack have a time lag, with the time recorded by \(x_{\text{run}} \).

- Pop transitions mean that if the latter state is on the top of the stack, and time conditions are satisfied, then after the execution of the expected running time, the system pops the previous state and control location from the stack, and begins to run the timed automaton from the popped control location. Simultaneously, all timed automata in the states within the stack have a time lag, with the time recorded by \(T(s) \).

- Inter-action transitions mean that if time conditions are satisfied, then after the execution of the expected running time, the system transits to the initial location of the time automaton in the latter state. Simultaneously, all timed automata in the states within the stack have a time lag, with the time recorded by \(T(s) \).

Generally, if an interrupt has lower priority than another one, then the transition from the former to the latter belongs to \(\delta_{\text{pop}} \), and from the latter to the former belongs to \(\delta_{\text{int}} \). When two interrupt handlers have the same priority, the transition between them belongs to \(\delta_{\text{int}} \).

Consider a timed automaton \(A \) and a controller automaton \(C \), where for each \(s_i \in S(C) \), \(M(s_i) = (E_i, H_i, Q_i, q_i^0, X_i, I_i, \delta_i) \). Assume that \(A \) shares common sets of external actions, and clocks with \(C \) and all \(M(s_i) \). A parallel composition of \(A \) and \(C \) is denoted as \(A||C \). We distinguish external actions \(E \) as two disjoint sets, for triggering actions, and triggered actions, respectively.

Definition 6 (Triggering and triggered symbols). External actions \(E \) are partitioned to two disjoint sets \(E = E_o \cup E_i \), where \(E_o \) is the set of triggering symbols, ranged over by \(a, b, \ldots \), and \(E \) is the set of triggered symbols, ranged over by \(a', b', \ldots \).

A location pair is a \(\tilde{q} = (q_a, q_i) \), where \(q_a \in Q(A) \) and \(q_i \in Q(M(s_i)) \). The invariant function over location pairs is composed by \(I((q_a, q_i)) = I(q) \cap I_a(q_i) \) and \(I(s_i) \) where \(q_i \in Q(M(s_i)) \). Let \(q_i[q_a'/q_a] \) denote the location pair where the \(i \)-th element \(q_i \) is replaced by \(q_a' \).

Definition 7. A configuration of parallel composition between a timed automaton and a controller automaton is a tuple \((s, \tilde{q}, \nu, \kappa, S) \), where \(s \) is a state of the controller \(\tilde{q} \) is a location pair, \(\tilde{q} \in Q(A) \times Q(M(s_i)) \), \(\nu \) is a clock valuation, \(\kappa \) is a set of frozen clocks, and \(S \) is a stack.

- Progress transition:
 - \((s, \tilde{q}, \nu, \kappa, S) \rightarrow \varphi (s, \tilde{q}, (\nu + t)[\kappa], \kappa, S) \), where \(t \in \mathbb{R}^+ \) and \((\nu + t)[\kappa] = I(\tilde{q}) \).

- Discrete transition:
 - \((s, \tilde{q}, \nu, \kappa, S) \rightarrow \varphi (s, \tilde{q}[q_i'/q_i], v[\lambda], \kappa, S) \), if \(q_i \xrightarrow{a, \phi, \lambda} q_i' \), \(\nu = \phi \) where \(a \in H_i \) and \(v[\lambda] = I(\tilde{q}[q_i'/q_i]) \).

The symmetric forms for parallel push, and parallel rules for pop and internal actions in discrete transitions are elided.

A parallel composition between a timed automaton \(A \) and a controller automaton \(C \) can be translated to parallel compositions of the \(A \) and the timed automaton assigned to each state of \(C \). Hence it does not enrich the expressiveness of controller automata.

Fact 2. A parallel composition of a timed automaton and a controller automaton is a controller automaton.

A parallel composition between a timed automaton with semaphores and a controller automaton can also be defined.

3. Environmental Simulation

In existing formal models [5], [9], a real-time system is usually described as a closed model, without interacting with the environment, e.g., a system composed of a task system and a scheduler [5]. However, behaviors of interrupts may vary according to the time and frequency of occurrences of interrupt signals that can trigger these interrupt handlers. Hence a real-time system with interrupts should be analyzed under a context of its environment.

In our approach, nested interrupts are described as a composition of two parts: an interrupt environment, represented as a timed automaton, describing the time and
the frequency of occurrences of interrupt signals, and an interrupt controller, represented as a controller automaton. A system usually needs a scheduler to arrange task instances, described as a timed automaton with semaphores [4], [6], [5].

Usually, priorities assigned to interrupts are integers. When two interrupts with the same priority are triggered simultaneously, an interrupt controller allocates them nondeterministically. It is appropriate to model the priorities as a well-quasi-order. Controller automata, in which priorities are not considered, are a superclass for the description of nested interrupts, whose reachability problem is in general undecidable. Ordered controller automata [12], in which priorities are modeled as a strict partial order, are a subclass, whose reachability problem is proven decidable [12].

In what follows, we model the behavior of a robot puppy as a running example. Suppose the robot puppy has two functions, turning around and moving forward. If one pats the puppy’s body, it will turn around; after 25 time units, if no one touch the puppy, it will stop. When the puppy is turning around, and patted again, the puppy will move forward; after 30 time units, it will stop. At any time, when it is doubly patted, the puppy will stop. An interrupt handler is used to handle the interrupt signal from its skin sensor; another interrupt handler is assumed to handle the interrupt with a higher priority, triggered by low battery power.

3.1. Interrupt Environments

Interrupt signals of the puppy come from the sensor of its skin, triggered by human’s touch. A group of interrupt signals can be represented by a timed automaton \(A^{\text{sig}} \), with external actions as events that trigger the interrupt handler.

The timed automaton in Figure 1 describes the signal \(\text{pat} \) occurs once each 10 time units; after 30 time units, the signal \(\text{turn} \) for low battery power warning is triggered.

![Figure 1. An Interrupt Signal Timed Automaton](image)

An interrupt environment is an external assumption for the system to work correctly with respect to interrupts. This may be derived by the physical constraints, or by the experiences and restrictions of operations.

3.2. Nested Interrupts

An controller automaton is used to represent nested interrupts, allocating different interrupt handlers. An interrupt handler is represented as a timed automaton in a state of the controller automaton, with external actions as awaited requirements of signals, or as events to trigger tasks.

A controller automaton to represent the system of robot puppy is shown in Figure 2, which has three states. The right-top state is the initial state, representing the situation when no interrupts are invoked. The timed automaton in the left one represents the interrupt handler to handle interrupt signals from the skin sensor. The right-bottom state is for the interrupt handler triggered by low battery power.

![Figure 2. The Controller Automaton of The Robot Puppy](image)

3.3. Schedulers

Assume there is a bounded set of task types \(\Phi \), ranged over by \(P(C, D) \), which has two parameters \(C \) and \(D \), with \(C \leq D \), where \(C \) is its execution time, and \(D \) is its relative deadline. Given a task type \(P(C, D) \), we use \(C(P) \) and \(D(P) \) to represent its execution time and relative deadline, respectively. A task may have several instances released in a system. A task queue is a list of task instances awaited to be executed by the processor. A scheduling strategy, e.g. FPS (fixed priority scheduling), is a sorting function on the task queue, which inserts a new task instance into the queue, according to the task parameters.

The length of a schedulable task queue is bounded, since the number of instances of each task type \(P_i(C_i, D_i) \in \Phi \) in a schedulable queue is bounded by \(\lceil C_i/D_i \rceil \), and thus the length of a schedulable queue is bounded by
\(\sum_{P_i(C_i,D_i) \in \phi} [D_i/C_i] \). With this result, a scheduler can be represented by a timed automaton with semaphores [4], [6], [5]. Here we only show a scheduler of our running example. Assume that our puppy robot has two tasks, \(P(3, 7) \) and \(Q(2, 5) \), for the functionalities of turning around and moving forward respectively, with the priority that \(Q(2, 5) \succ P(3, 7) \). A timed automaton \(A_{p}^{sch} \) for the task \(P(3, 7) \) is constructed in Figure 3, following the approach in [6].

Clocks and semaphores of \(A_{p}^{sch} \):
- \(c \) is a clock to measure time when a task instance of \(P \) is released.
- \(d \) is a clock to measure time when a task instance of \(P \) is released.
- \(r \) is a semaphore to calculate the time needed to complete all released tasks.

Constants of \(A_{p}^{sch} \):
- \(t \) is the minimal execution time of a task instance. It can be any value greater than 0. Usually, it is assigned to the maximal value of all execution time of tasks in the system \(t = Max_{P_i} P_i(C_i,D_i)(C(P_i)) \).
- \(R_p \) is the value of \(P \) that leads the task queue unschedulable. The maximum value of the executable task queue, \(r_{max} \) is calculated by \(\sum_{P_i(C_i,D_i) \in \phi} [D_i/C_i] \times C_i \).

Note that \(r - c \) is the time remaining until all released tasks are executed. Thus \(r - c < r_{max} + D(i) \) where \(D(i) \) is one of the relative deadline. We also have \(c \leq t \). Hence \(R_p = r_{max} + D(P) + t \).

General explanations for control locations of the \(A_{p}^{sch} \):
- Idle means that no task instances are being executed. It is reentered when the released tasks have been executed (by the guard \(c \geq r \)).
- Check: An instance of the task \(P(3, 7) \), which is released and possibly executed, is being analyzed for schedulability. It is entered when a task instance of \(P(3, 7) \) is non-deterministically chosen for analyzing. Two self-loops are in the Check: one represents the execution of the current task instance; the other represents the arrival of the new task instance of \(Q(2, 5) \).
- Runp and Runq: A task instance of \(P(3, 7) \) or \(Q(2, 5) \) is current executed, respectively. The task instance executed in the Runp is not the analyzed one. When a task instance of \(P(3, 7) \) is released, it can non-deterministically enter Check or Runp. There are three self-loops in Runp and Runq, respectively, to represent the execution of the task instance, the arrival of the new task instances of two task types.
- Error: The analyzed task queue is not schedulable. It is entered when the analyzed task instance met its deadline \((d \geq 7) \) before completion of execution \((c \leq r) \), or the whole released tasks cannot be scheduled \((r > R_p) \).

3.4. System Representations
The controller automaton \(C \) shows conditions that task instances are released by interrupt handlers. A scheduler \(A^{sch} \) shows the way to schedule tasks when they are released. An timed automaton \(A^{sig} \) represents an environment where the system executes. The puppy is thus represented by the parallel composition of the three automata, \(A^{sig} || C || A^{sch} \). Note that in the example, all tasks are triggered by interrupts. However, some tasks in a general system may be executed.
independently from interrupts. A system with tasks can also be represented by a timed automaton, \(A^{sys} \) [4]. A general representation of a real-time system with nested interrupts is as follows,

\[
A^{\text{sig}} \parallel C \parallel A^{sys} \parallel A^{\text{sch}}
\]

As a comparison, a real-time system without interrupts [4] is represented by

\[
A^{sys} \parallel A^{\text{sch}}
\]

The former representation, due to the occurrence of a controller automaton, is more expressive than the latter. The price to pay for the expressiveness is that reachability problem in general is undecidable. In [12], we show that with a strict partial order over the controller automaton, the controller automata can be translated to a timed automaton. Thus the reachability problem becomes decidable.

4. Experimental Results

We take schedulability analysis, one of the most important issues in developing real-time systems, as a case study to show how the environmental simulation works. The simulation is implemented by Maude [3], a language and system supporting both equational and rewriting logic computation. The basic units of Maude specifications are modules. In Core Maude, there are two kinds of modules: functional modules and system modules. Functional modules define data types and operations on them by means of equational theories whose equations are assumed to be confluent and terminating. System modules specify a model by a rewrite theory, and the model is a transition system with an initial term. Elementary types, definitions and functions are defined in functional modules, and their respective semantics and parallel composition among three kinds of automata are implemented by system modules.

Maude provides many strategies to expand models, rewrite for simulating one possible path of the execution, search for exploring all possible execution paths from the initial term, and rewrite for fair rewriting, etc. Maude also provides LTL model checker on the transition system defined in system modules. Hence, a system can be generated following these strategies. Users can also define strategies flexibly in Maude, if needed.

By our implementation, an error state of the running puppy example is found within 0.2 sec., after rewriting 457 states, which is shown in Figure 4. If we use show search graph command in Maude, we can obtain the trace from the initial state to the error state.

In the Figure 4, \(\text{EN1}, \text{SN1} \) and \(\text{LN1} \) show the location number of the interrupt environment, the state number of the controller, and the location number of the current running handler, respectively. \(\text{VAL11} \) and \(\text{SVAL11} \) are the clock valuation and the semaphore valuation, respectively. \(\text{FRE1} \) indicates the list of frozen clocks. \(\text{STACK} \) is the stack.

CTRLI, ETRLI, STRLI, and TRLI are the list possible next transitions of the controller, the interrupt environment, the scheduler and the current handler, respectively. \(\text{CA} \) shows the current controller automaton.

5. Conclusion

We presented an environmental simulation to analyze properties for real-time systems with nested interrupts by introducing controller automata. The behavior of interrupts was characterized by the communication between a target system and an environment. A virtue of our modeling was that since an interrupt behavior was combined as a separate component of a real-time embedded system, interrupts could be flexibly modeled as an embedded mechanism and an environment.

The research was to investigate the analysis technique of controller automata. The experimental result showed that although the reachability analysis of a controller automaton in general was undecidable, it was reasonably feasible with the environmental simulation by Maude.

The future work will be: firstly, to perform the analysis on some complex and practical examples. Secondly, to find more efficient time rewriting rules that can handle dense time. Thirdly, to combine the simulation methods to our previous model checking approach [12], developing a more powerful and useful tool for the analysis of real-time systems with nested interrupts.

Acknowledgement

This research is supported by the collaborative research, “verification techniques for automobile software systems with high reliability” between Nagoya University and Toyota R&D laboratories, and also by the Japanese Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (C) 19500026, Scientific Research(B) 20300009. The authors thank Dr. Noriyoshi Sano and Dr. Shigeharu Teshima for exercising the research project, and thank Prof. Mizuho Ogawa for fruitful discussions.

References

