

Design and Analysis of Algorithms (XIII)

Linear Programming: Applications

Guoqiang Li
School of Software

Shortest Path

Shortest Path

Shortest path problem gives a weighted, directed graph $G=(V, E)$, with weight function $w: E \rightarrow \mathbb{Q}^{+}$mapping edges to real-valued weights, a source vertex s, and destination vertex t. We wish to compute the weight of a shortest path from s to t.

Shortest Path in LP

$$
\begin{array}{cl}
\max d_{t} & \\
d_{v} \leq d_{u}+w(u, v) & (u, v) \in E \\
d_{s}=0 & \\
d_{i} \geq 0 & i \in V
\end{array}
$$

Shortest Path in LP

$\max d_{t}$

$$
\begin{array}{cc}
d_{v} \leq d_{u}+w(u, v) & \\
d_{s}=0 & (u, v) \in E \\
d_{i} \geq 0 & i \in V
\end{array}
$$

Q: Another formalization?

Shortest Path in LP

Shortest Path in LP

Let $\mathcal{S}=\{S \subseteq V: s \in S, t \notin S\}$; that is, \mathcal{S} is the set of all $s-t$ cuts in the graph. Then we can model the shortest s - t path problem with the following integer program,

$$
\begin{aligned}
& \min \sum_{e \in E} w_{e} x_{e} \\
& \sum_{e \in \delta(S)} x_{e} \geq 1 \\
& x_{e} \in\{0,1\} \\
& x_{e} \in \mathcal{S} \\
& e \in E
\end{aligned}
$$

where $\delta(S)$ is the set of all edges that have one endpoint in S and the other endpoint not in S.

Shortest Path in LP

Let $\mathcal{S}=\{S \subseteq V: s \in S, t \notin S\}$; that is, \mathcal{S} is the set of all $s-t$ cuts in the graph. Then we can model the shortest s - t path problem with the following integer program,

$$
\begin{aligned}
& \min \sum_{e \in E} w_{e} x_{e} \\
& \sum_{e \in \delta(S)} x_{e} \geq 1 \\
& x_{e} \in\{0,1\} \\
& x_{e} \in \mathcal{S} \\
& e \in E
\end{aligned}
$$

where $\delta(S)$ is the set of all edges that have one endpoint in S and the other endpoint not in S.

- Can we relax the restriction $x_{e} \in\{0,1\}$ to $0 \leq x_{e} \leq 1$?

Shortest Path in LP

Let $\mathcal{S}=\{S \subseteq V: s \in S, t \notin S\}$; that is, \mathcal{S} is the set of all $s-t$ cuts in the graph. Then we can model the shortest s - t path problem with the following integer program,

$$
\begin{aligned}
& \min \sum_{e \in E} w_{e} x_{e} \\
& \sum_{e \in \delta(S)} x_{e} \geq 1 \\
& x_{e} \in\{0,1\} \\
& x_{e} \in \mathcal{S} \\
& e \in E
\end{aligned}
$$

where $\delta(S)$ is the set of all edges that have one endpoint in S and the other endpoint not in S.

- Can we relax the restriction $x_{e} \in\{0,1\}$ to $0 \leq x_{e} \leq 1$?
- How about $x_{e} \geq 0$?

Shortest Path in LP

$$
\begin{array}{rl}
\min \sum_{e \in E} w_{e} x_{e} & \\
\sum_{e \in \delta(S)} x_{e} \geq 1 & S \in \mathcal{S} \\
x_{e} \geq 0 & e \in E
\end{array}
$$

Shortest Path in LP

$$
\begin{array}{ll}
\min \sum_{e \in E} w_{e} x_{e} & \\
\sum_{e \in \delta(S)} x_{e} \geq 1 & S \in \mathcal{S} \\
x_{e} \geq 0 & e \in E
\end{array}
$$

$$
\begin{gathered}
\max \sum_{S \in \mathcal{S}} y_{S} \\
\sum_{S \in \mathcal{S}, e \in \delta(S)} y_{S} \leq w_{e} \quad e \in E \\
y_{S} \geq 0
\end{gathered} \quad S \in \mathcal{S} .
$$

The Moat

Max-Flow Min-Cut in LP

Shipping Oil

We have a network of pipelines along which oil can be sent.

Shipping Oil

We have a network of pipelines along which oil can be sent.
The goal is to ship as much oil as possible from the source to the sink.

Shipping Oil

We have a network of pipelines along which oil can be sent.
The goal is to ship as much oil as possible from the source to the sink.
Each pipeline has a maximum capacity it can handle,

Shipping Oil

We have a network of pipelines along which oil can be sent.
The goal is to ship as much oil as possible from the source to the sink.
Each pipeline has a maximum capacity it can handle, and there are no opportunities for storing oil en route.

A Flow Example

（b）

Maximizing Flow

The networks consist of a directed graph $G=(V, E)$;

Maximizing Flow

The networks consist of a directed graph $G=(V, E)$; two special nodes $s, t \in V$, a source and sink of G;

Maximizing Flow

The networks consist of a directed graph $G=(V, E)$; two special nodes $s, t \in V$, a source and sink of G; and capacities $c_{e}>0$ on the edges.

Maximizing Flow

The networks consist of a directed graph $G=(V, E)$; two special nodes $s, t \in V$, a source and sink of G; and capacities $c_{e}>0$ on the edges.

Aim to send as much oil as possible from s to t without exceeding the capacities of any of the edges.

Maximizing Flow

A flow consists of a variable f_{e} for each edge e of the network, satisfying the following two properties:

Maximizing Flow

A flow consists of a variable f_{e} for each edge e of the network, satisfying the following two properties:
(1) It doesn't violate edge capacities: $0 \leq f_{e} \leq c_{e}$ for all $e \in E$.

Maximizing Flow

A flow consists of a variable f_{e} for each edge e of the network, satisfying the following two properties:
(1) It doesn't violate edge capacities: $0 \leq f_{e} \leq c_{e}$ for all $e \in E$.
(2) For all nodes u except s and t, the amount of flow entering u equals the amount leaving

$$
\sum_{(w, v) \in E} f_{w u}=\sum_{(u, z) \in E} f_{u z}
$$

In other words, flow is conserved.

Maximizing Flow

The value of a flow is the total quantity sent from s to t

Maximizing Flow

The value of a flow is the total quantity sent from s to t and, by the conservation principle, is equal to the quantity leaving s :

$$
\operatorname{val}(f)=\sum_{(s, u) \in E} f_{s u}
$$

Maximizing Flow

The value of a flow is the total quantity sent from s to t and, by the conservation principle, is equal to the quantity leaving s :

$$
\operatorname{val}(f)=\sum_{(s, u) \in E} f_{s u}
$$

Our goal is to assign values to $\left\{f_{e} \mid e \in E\right\}$ that will satisfy a set of linear constraints and maximize a linear objective function.

Maximizing Flow

The value of a flow is the total quantity sent from s to t and, by the conservation principle, is equal to the quantity leaving s :

$$
\operatorname{val}(f)=\sum_{(s, u) \in E} f_{s u}
$$

Our goal is to assign values to $\left\{f_{e} \mid e \in E\right\}$ that will satisfy a set of linear constraints and maximize a linear objective function.

This is a linear program. The maximum-flow problem reduces to linear programming.

LP

Shanghai Jiao Tong UNIVERSITY

LP

11 variables，one per edge．

LP

11 variables，one per edge．
maximize $f_{s a}+f_{s b}+f_{s c}$

11 variables, one per edge.
maximize $f_{s a}+f_{s b}+f_{s c}$
27 constraints:

- 11 for nonnegativity (such as $f_{s a} \geq 0$),

11 variables, one per edge.
maximize $f_{s a}+f_{s b}+f_{s c}$
27 constraints:

- 11 for nonnegativity (such as $f_{s a} \geq 0$),
- 11 for capacity (such as $f_{s a} \leq 3$),

11 variables, one per edge.
maximize $f_{s a}+f_{s b}+f_{s c}$
27 constraints:

- 11 for nonnegativity (such as $f_{s a} \geq 0$),
- 11 for capacity (such as $f_{s a} \leq 3$),
- 5 for flow conservation (one for each node of the graph other than s and t, such as $\left.f_{s c}+f_{d c}=f_{c e}\right)$.

Another Representation

First, introduce a fictitious edge of infinite capacity from t to s thus converting the flow to a circulation;

Another Representation

First, introduce a fictitious edge of infinite capacity from t to s thus converting the flow to a circulation;
The objective is to maximize the flow on this edge, denoted by $f_{t s}$.

Another Representation

First, introduce a fictitious edge of infinite capacity from t to s thus converting the flow to a circulation;
The objective is to maximize the flow on this edge, denoted by $f_{t s}$.
The advantage of making this modification is that we can now require flow conservation at s and t as well.

Another Representation

$$
\begin{array}{cl}
\max f_{t s} & \\
f_{i j} \leq c_{i j} & (i, j) \in E \\
\sum_{(w, i) \in E} f_{w i}-\sum_{(i, z) \in E} f_{i z} \leq 0 & i \in V \\
f_{i j} \geq 0 & (i, j) \in E
\end{array}
$$

Remark

Ford-Fulkersons algorithm can be regarded as a special algorithm of linear programs.

Min-Max Relations and Duality

$$
\begin{array}{cl}
\max f_{t s} & \\
f_{i j} \leq c_{i j} & (i, j) \in E \\
\sum_{(w, i) \in E} f_{w i}-\sum_{(i, z) \in E} f_{i z} \leq 0 & i \in V \\
f_{i j} \geq 0 & (i, j) \in E
\end{array}
$$

LP-Duality

$$
\begin{array}{cl}
\max f_{t s} & \\
f_{i j} \leq c_{i j} & (i, j) \in E \\
\sum_{(w, i) \in E} f_{w i}-\sum_{(i, z) \in E} f_{i z} \leq 0 & i \in V \\
f_{i j} \geq 0 & (i, j) \in E
\end{array}
$$

$\max f_{t s}$	
$f_{i j} \leq c_{i j}$	$(i, j) \in E$
$\sum_{(w, i) \in E} f_{w i}-\sum_{(i, z) \in E} f_{i z} \leq 0$	$i \in V$
$f_{i j} \geq 0$	$(i, j) \in E$

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} c_{i j} d_{i j} & \\
d_{i j}-p_{i}+p_{j} \geq 0 & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \geq 0 & (i, j) \in E \\
p_{i} \geq 0 & i \in V
\end{array}
$$

Explanation of the Dual

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} c_{i j} d_{i j} & \\
d_{i j}-p_{i}+p_{j} \geq 0 & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \in\{0,1\} & (i, j) \in E \\
p_{i} \in\{0,1\} & i \in V
\end{array}
$$

Explanation of the Dual

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} c_{i j} d_{i j} & \\
d_{i j}-p_{i}+p_{j} \geq 0 & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \in\{0,1\} & (i, j) \in E \\
p_{i} \in\{0,1\} & i \in V
\end{array}
$$

To obtain the dual program we introduce variables $d_{i j}$ and p_{i} corresponding to the two types of inequalities in the primal.

- $d_{i j}$: distance labels on edges;

Explanation of the Dual

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} c_{i j} d_{i j} & \\
d_{i j}-p_{i}+p_{j} \geq 0 & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \in\{0,1\} & (i, j) \in E \\
p_{i} \in\{0,1\} & i \in V
\end{array}
$$

To obtain the dual program we introduce variables $d_{i j}$ and p_{i} corresponding to the two types of inequalities in the primal.

- $d_{i j}$: distance labels on edges;
- p_{i} : potentials on nodes.

Integer Program

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} c_{i j} d_{i j} & \\
d_{i j}-p_{i}+p_{j} \geq 0 & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \in\{0,1\} & (i, j) \in E \\
p_{i} \in\{0,1\} & i \in V
\end{array}
$$

Integer Program

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} c_{i j} d_{i j} & \\
d_{i j}-p_{i}+p_{j} \geq 0 & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \in\{0,1\} & (i, j) \in E \\
p_{i} \in\{0,1\} & i \in V
\end{array}
$$

Let $\left(\mathbf{d}^{*}, \mathbf{p}^{*}\right)$ be an optimal solution to this integer program.

Integer Program

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} c_{i j} d_{i j} & \\
d_{i j}-p_{i}+p_{j} \geq 0 & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \in\{0,1\} & (i, j) \in E \\
p_{i} \in\{0,1\} & i \in V
\end{array}
$$

Let $\left(\mathbf{d}^{*}, \mathbf{p}^{*}\right)$ be an optimal solution to this integer program.
The only way to satisfy the inequality $p_{s}^{*}-p_{t}^{*} \geq 1$ with a $0 / 1$ substitution is to set $p_{s}^{*}=1$ and $p_{t}^{*}=0$.

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} c_{i j} d_{i j} & \\
d_{i j}-p_{i}+p_{j} \geq 0 & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \in\{0,1\} & (i, j) \in E \\
p_{i} \in\{0,1\} & i \in V
\end{array}
$$

Let $\left(\mathbf{d}^{*}, \mathbf{p}^{*}\right)$ be an optimal solution to this integer program.
The only way to satisfy the inequality $p_{s}^{*}-p_{t}^{*} \geq 1$ with a $0 / 1$ substitution is to set $p_{s}^{*}=1$ and $p_{t}^{*}=0$.
This solution defines an $s-t$ cut (X, \bar{X}), where X is the set of potential 1 nodes, and \bar{X} the set of potential 0 nodes.

Integer Program

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} c_{i j} d_{i j} & \\
d_{i j}-p_{i}+p_{j} \geq 0 & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \in\{0,1\} & (i, j) \in E \\
p_{i} \in\{0,1\} & i \in V
\end{array}
$$

Integer Program

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} c_{i j} d_{i j} & \\
d_{i j}-p_{i}+p_{j} \geq 0 & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \in\{0,1\} & (i, j) \in E \\
p_{i} \in\{0,1\} & i \in V
\end{array}
$$

Consider an edge (i, j) with $i \in X$ and $j \in \bar{X}$ ，Since $p_{i}^{*}=1$ and $p_{j}^{*}=0$ ，and thus $d_{i j}^{*}=1$ ．

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} c_{i j} d_{i j} & \\
d_{i j}-p_{i}+p_{j} \geq 0 & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \in\{0,1\} & (i, j) \in E \\
p_{i} \in\{0,1\} & i \in V
\end{array}
$$

Consider an edge (i, j) with $i \in X$ and $j \in \bar{X}$, Since $p_{i}^{*}=1$ and $p_{j}^{*}=0$, and thus $d_{i j}^{*}=1$.
The distance label for each of the remaining edges can be set to either 0 or 1 without violating the first constraints.

$$
\begin{array}{cl}
\min \sum_{(i, j) \in E} c_{i j} d_{i j} & \\
d_{i j}-p_{i}+p_{j} \geq 0 & (i, j) \in E \\
p_{s}-p_{t} \geq 1 & \\
d_{i j} \in\{0,1\} & (i, j) \in E \\
p_{i} \in\{0,1\} & i \in V
\end{array}
$$

Consider an edge (i, j) with $i \in X$ and $j \in \bar{X}$, Since $p_{i}^{*}=1$ and $p_{j}^{*}=0$, and thus $d_{i j}^{*}=1$.
The distance label for each of the remaining edges can be set to either 0 or 1 without violating the first constraints.

The objective function value is precisely the capacity of the cut (X, \bar{X}), and hence (X, \bar{X}) must be a minimum $s-t$ cut.

Relaxation of the Integer Program

The integer program is a formulation of the minimum $s-t$ cut problem.

Relaxation of the Integer Program

The integer program is a formulation of the minimum $s-t$ cut problem.
The dual program can be viewed as a relaxation of the integer program where the integrality constraint on the variables is dropped.

Relaxation of the Integer Program

The integer program is a formulation of the minimum $s-t$ cut problem.
The dual program can be viewed as a relaxation of the integer program where the integrality constraint on the variables is dropped.

This leads to the constraints $1 \geq d_{i j} \geq 0$ for $(i, j) \in E$ and $1 \geq p_{i} \geq 0$ for $i \in V$.

Relaxation of the Integer Program

The integer program is a formulation of the minimum $s-t$ cut problem.
The dual program can be viewed as a relaxation of the integer program where the integrality constraint on the variables is dropped.

This leads to the constraints $1 \geq d_{i j} \geq 0$ for $(i, j) \in E$ and $1 \geq p_{i} \geq 0$ for $i \in V$.
The upper bound constraints on the variables are redundant; their omission cannot give a better solution.

Relaxation of the Integer Program

The integer program is a formulation of the minimum $s-t$ cut problem.
The dual program can be viewed as a relaxation of the integer program where the integrality constraint on the variables is dropped.

This leads to the constraints $1 \geq d_{i j} \geq 0$ for $(i, j) \in E$ and $1 \geq p_{i} \geq 0$ for $i \in V$.
The upper bound constraints on the variables are redundant; their omission cannot give a better solution.

We will say that this program is the LP relaxation of the integer program.

Relaxation of the Integer Program

The best fractional $s-t$ cut could have lower capacity than the best integral cut. This does not happen here.

Relaxation of the Integer Program

The best fractional $s-t$ cut could have lower capacity than the best integral cut. This does not happen here.

Now, it can be proven that each vertex solution is integral, with each coordinate being 0 or 1 .

Relaxation of the Integer Program

The best fractional $s-t$ cut could have lower capacity than the best integral cut. This does not happen here.

Now, it can be proven that each vertex solution is integral, with each coordinate being 0 or 1 .
The constraint matrix of this program is totally unimodular, Thus, the dual program always has an integral optimal solution.

More Examples

Set Cover

- Input: A set of elements U, sets $S_{1}, \ldots, S_{m} \subseteq U$
- Output: A selection of the S_{i} whose union is U.
- Cost: Number of sets picked.

Set Cover

Set Cover

$$
\begin{array}{rlr}
\min & \sum_{S \in \mathcal{S}} x_{S} \\
& \sum_{S: e \in S} x_{S} \geq 1, \quad e \in U \\
& x_{S} \geq 0, \quad S \in \mathcal{S}
\end{array}
$$

$$
\begin{aligned}
\min & \sum_{S \in \mathcal{S}} x_{S} \\
& \sum_{S: e \in S} x_{S} \geq 1, \quad e \in U \\
& x_{S} \geq 0, \quad S \in \mathcal{S}
\end{aligned}
$$

$$
\begin{array}{ll}
\max & \sum_{e \in U} y_{e} \\
& \sum_{e: e \in S} y_{e} \leq 1, \quad S \in \mathcal{S} \\
& y_{e} \geq 0, \\
e \in U
\end{array}
$$

Set Cover

- Input: A set of elements U, sets $S_{1}, \ldots, S_{m} \subseteq U$, and a cost function $c: \mathcal{S} \rightarrow \mathbb{Q}^{+}$.
- Output: A selection of the S_{i} whose union is U.
- Cost: Sum of costs of set picked.

The special case, in which all subsets are of unit cost, will be called the cardinality set cover problem.

$$
\begin{array}{rlr}
\min & \sum_{S \in \mathcal{S}} c(S) x_{S} & \\
& \sum_{S: e \in S} x_{S} \geq 1, \quad e \in U \\
& x_{S} \geq 0, & S \in \mathcal{S}
\end{array}
$$

$$
\begin{array}{ll}
\max & \sum_{e \in U} y_{e} \\
& \sum_{e: e \in S} y_{e} \leq c(S), \quad S \in \mathcal{S} \\
& y_{e} \geq 0, \\
e \in U
\end{array}
$$

Quiz: Set Multicover

Each element, e, needs to be covered a specified integer number, r_{e}, of times.
The objective again is to cover all elements up to their coverage requirements at minimum cost. Each set can be picked at most once.

Integer Program

Let $r_{e} \in \mathbb{Z}_{+}$be the coverage requirement for each element $e \in U$.

$$
\begin{array}{ll}
\min & \sum_{S \in \mathcal{S}} c(S) x_{S} \\
& \\
& \sum_{S: e \in S} x_{S} \geq r_{e}, \\
& x_{S} \in\{0,1\},
\end{array} \quad S \in U
$$

Linear Program Relaxation

In the LP-relaxation, the constraints $x_{S} \leq 1$ are no longer redundant.

$$
\begin{array}{ll}
\min & \\
& \\
& \\
& \sum_{S \in \mathcal{S}} x_{S} \geq r_{e}, \\
& e \in U \\
& -x_{S} \geq-1, \\
x_{S} \geq 0, & S \in \mathcal{S} \\
& S \in \mathcal{S}
\end{array}
$$

Dual Program

The additional constraints in the primal lead to new variables, z_{S}, in the dual.

$$
\begin{array}{ll}
\max & \sum_{e \in U} r_{e} y_{e}-\sum_{S \in \mathcal{S}} z_{S} \\
& \\
\left(\sum_{e: e \in S} y_{e}\right)-z_{S} \leq c(S), & S \in \mathcal{S} \\
y_{e} \geq 0, & e \in U \\
& z_{S} \geq 0,
\end{array}
$$

Referred Materials

Referred Materials

Content of this lecture comes from Section 12.2 in [Vaz04] and Section 7.3 in [WS11].
Suggest to read Section 26.1 and 26.2 in [CLRS09].

