
Design and Analysis of Algorithms (XIII)
Linear Programming: Applications

Guoqiang Li
School of Software

1/37

Shortest Path

2/37

Shortest Path

Shortest path problem gives a weighted, directed graph G = (V,E), with weight function
w : E → Q+ mapping edges to real-valued weights, a source vertex s, and destination vertex t. We
wish to compute the weight of a shortest path from s to t.

3/37

Shortest Path in LP

max dt

dv ≤ du + w(u, v) (u, v) ∈ E

ds = 0

di ≥ 0 i ∈ V

Q: Another formalization?

4/37

Shortest Path in LP

max dt

dv ≤ du + w(u, v) (u, v) ∈ E

ds = 0

di ≥ 0 i ∈ V

Q: Another formalization?

4/37

Shortest Path in LP

Let S = {S ⊆ V : s ∈ S, t ̸∈ S}; that is, S is the set of all s-t cuts in the graph. Then
we can model the shortest s-t path problem with the following integer program,

min
∑
e∈E

wexe

∑
e∈δ(S)

xe ≥ 1 S ∈ S

xe ∈ {0, 1} e ∈ E

where δ(S) is the set of all edges that have one endpoint in S and the other endpoint
not in S.

• Can we relax the restriction xe ∈ {0, 1} to 0 ≤ xe ≤ 1?
• How about xe ≥ 0?

5/37

Shortest Path in LP

Let S = {S ⊆ V : s ∈ S, t ̸∈ S}; that is, S is the set of all s-t cuts in the graph. Then
we can model the shortest s-t path problem with the following integer program,

min
∑
e∈E

wexe

∑
e∈δ(S)

xe ≥ 1 S ∈ S

xe ∈ {0, 1} e ∈ E

where δ(S) is the set of all edges that have one endpoint in S and the other endpoint
not in S.

• Can we relax the restriction xe ∈ {0, 1} to 0 ≤ xe ≤ 1?
• How about xe ≥ 0?

5/37

Shortest Path in LP

Let S = {S ⊆ V : s ∈ S, t ̸∈ S}; that is, S is the set of all s-t cuts in the graph. Then
we can model the shortest s-t path problem with the following integer program,

min
∑
e∈E

wexe

∑
e∈δ(S)

xe ≥ 1 S ∈ S

xe ∈ {0, 1} e ∈ E

where δ(S) is the set of all edges that have one endpoint in S and the other endpoint
not in S.

• Can we relax the restriction xe ∈ {0, 1} to 0 ≤ xe ≤ 1?

• How about xe ≥ 0?

5/37

Shortest Path in LP

Let S = {S ⊆ V : s ∈ S, t ̸∈ S}; that is, S is the set of all s-t cuts in the graph. Then
we can model the shortest s-t path problem with the following integer program,

min
∑
e∈E

wexe

∑
e∈δ(S)

xe ≥ 1 S ∈ S

xe ∈ {0, 1} e ∈ E

where δ(S) is the set of all edges that have one endpoint in S and the other endpoint
not in S.

• Can we relax the restriction xe ∈ {0, 1} to 0 ≤ xe ≤ 1?
• How about xe ≥ 0?

5/37

Shortest Path in LP

min
∑
e∈E

wexe

∑
e∈δ(S)

xe ≥ 1 S ∈ S

xe ≥ 0 e ∈ E

max
∑
S∈S

yS

∑
S∈S,e∈δ(S)

yS ≤ we e ∈ E

yS ≥ 0 S ∈ S

6/37

Shortest Path in LP

min
∑
e∈E

wexe

∑
e∈δ(S)

xe ≥ 1 S ∈ S

xe ≥ 0 e ∈ E

max
∑
S∈S

yS

∑
S∈S,e∈δ(S)

yS ≤ we e ∈ E

yS ≥ 0 S ∈ S

6/37

The Moat

s

t

S

yS

7/37

Max-Flow Min-Cut in LP

8/37

Shipping Oil

We have a network of pipelines along which oil can be sent.

The goal is to ship as much oil as possible from the source to the sink.

Each pipeline has a maximum capacity it can handle, and there are no opportunities for storing oil
en route.

9/37

Shipping Oil

We have a network of pipelines along which oil can be sent.

The goal is to ship as much oil as possible from the source to the sink.

Each pipeline has a maximum capacity it can handle, and there are no opportunities for storing oil
en route.

9/37

Shipping Oil

We have a network of pipelines along which oil can be sent.

The goal is to ship as much oil as possible from the source to the sink.

Each pipeline has a maximum capacity it can handle,

and there are no opportunities for storing oil
en route.

9/37

Shipping Oil

We have a network of pipelines along which oil can be sent.

The goal is to ship as much oil as possible from the source to the sink.

Each pipeline has a maximum capacity it can handle, and there are no opportunities for storing oil
en route.

9/37

A Flow Example

(a)

s

a

b

c

d

e

t
3

3

4

10

1

2

5

5

2

1

1

(b)

s

a

b

c

d

e

t

5

2

0

10
2

1

4

5

2

1

10/37

Maximizing Flow

The networks consist of a directed graph G = (V,E);

two special nodes s, t ∈ V , a source and sink
of G; and capacities ce > 0 on the edges.

Aim to send as much oil as possible from s to t without exceeding the capacities of any of the edges.

11/37

Maximizing Flow

The networks consist of a directed graph G = (V,E); two special nodes s, t ∈ V , a source and sink
of G;

and capacities ce > 0 on the edges.

Aim to send as much oil as possible from s to t without exceeding the capacities of any of the edges.

11/37

Maximizing Flow

The networks consist of a directed graph G = (V,E); two special nodes s, t ∈ V , a source and sink
of G; and capacities ce > 0 on the edges.

Aim to send as much oil as possible from s to t without exceeding the capacities of any of the edges.

11/37

Maximizing Flow

The networks consist of a directed graph G = (V,E); two special nodes s, t ∈ V , a source and sink
of G; and capacities ce > 0 on the edges.

Aim to send as much oil as possible from s to t without exceeding the capacities of any of the edges.

11/37

Maximizing Flow

A flow consists of a variable fe for each edge e of the network, satisfying the following two properties:

1 It doesn’t violate edge capacities: 0 ≤ fe ≤ ce for all e ∈ E.

2 For all nodes u except s and t, the amount of flow entering u equals the amount leaving∑
(w,v)∈E

fwu =
∑

(u,z)∈E

fuz

In other words, flow is conserved.

12/37

Maximizing Flow

A flow consists of a variable fe for each edge e of the network, satisfying the following two properties:

1 It doesn’t violate edge capacities: 0 ≤ fe ≤ ce for all e ∈ E.

2 For all nodes u except s and t, the amount of flow entering u equals the amount leaving∑
(w,v)∈E

fwu =
∑

(u,z)∈E

fuz

In other words, flow is conserved.

12/37

Maximizing Flow

A flow consists of a variable fe for each edge e of the network, satisfying the following two properties:

1 It doesn’t violate edge capacities: 0 ≤ fe ≤ ce for all e ∈ E.

2 For all nodes u except s and t, the amount of flow entering u equals the amount leaving∑
(w,v)∈E

fwu =
∑

(u,z)∈E

fuz

In other words, flow is conserved.

12/37

Maximizing Flow

The value of a flow is the total quantity sent from s to t

and, by the conservation principle, is equal to
the quantity leaving s:

val(f) =
∑

(s,u)∈E

fsu

Our goal is to assign values to {fe|e ∈ E} that will satisfy a set of linear constraints and maximize a
linear objective function.

This is a linear program. The maximum-flow problem reduces to linear programming.

13/37

Maximizing Flow

The value of a flow is the total quantity sent from s to t and, by the conservation principle, is equal to
the quantity leaving s:

val(f) =
∑

(s,u)∈E

fsu

Our goal is to assign values to {fe|e ∈ E} that will satisfy a set of linear constraints and maximize a
linear objective function.

This is a linear program. The maximum-flow problem reduces to linear programming.

13/37

Maximizing Flow

The value of a flow is the total quantity sent from s to t and, by the conservation principle, is equal to
the quantity leaving s:

val(f) =
∑

(s,u)∈E

fsu

Our goal is to assign values to {fe|e ∈ E} that will satisfy a set of linear constraints and maximize a
linear objective function.

This is a linear program. The maximum-flow problem reduces to linear programming.

13/37

Maximizing Flow

The value of a flow is the total quantity sent from s to t and, by the conservation principle, is equal to
the quantity leaving s:

val(f) =
∑

(s,u)∈E

fsu

Our goal is to assign values to {fe|e ∈ E} that will satisfy a set of linear constraints and maximize a
linear objective function.

This is a linear program. The maximum-flow problem reduces to linear programming.

13/37

The Example

(

s

a

b

c

d

e

t
3

3

4

10

1

2

5

5

2

1

1

14/37

LP

11 variables, one per edge.

maximize fsa + fsb + fsc

27 constraints:

• 11 for nonnegativity (such as fsa ≥ 0),
• 11 for capacity (such as fsa ≤ 3),
• 5 for flow conservation (one for each node of the graph other than s and t, such as

fsc + fdc = fce).

15/37

LP

11 variables, one per edge.

maximize fsa + fsb + fsc

27 constraints:

• 11 for nonnegativity (such as fsa ≥ 0),
• 11 for capacity (such as fsa ≤ 3),
• 5 for flow conservation (one for each node of the graph other than s and t, such as

fsc + fdc = fce).

15/37

LP

11 variables, one per edge.

maximize fsa + fsb + fsc

27 constraints:

• 11 for nonnegativity (such as fsa ≥ 0),
• 11 for capacity (such as fsa ≤ 3),
• 5 for flow conservation (one for each node of the graph other than s and t, such as

fsc + fdc = fce).

15/37

LP

11 variables, one per edge.

maximize fsa + fsb + fsc

27 constraints:

• 11 for nonnegativity (such as fsa ≥ 0),

• 11 for capacity (such as fsa ≤ 3),
• 5 for flow conservation (one for each node of the graph other than s and t, such as

fsc + fdc = fce).

15/37

LP

11 variables, one per edge.

maximize fsa + fsb + fsc

27 constraints:

• 11 for nonnegativity (such as fsa ≥ 0),
• 11 for capacity (such as fsa ≤ 3),

• 5 for flow conservation (one for each node of the graph other than s and t, such as
fsc + fdc = fce).

15/37

LP

11 variables, one per edge.

maximize fsa + fsb + fsc

27 constraints:

• 11 for nonnegativity (such as fsa ≥ 0),
• 11 for capacity (such as fsa ≤ 3),
• 5 for flow conservation (one for each node of the graph other than s and t, such as

fsc + fdc = fce).

15/37

Another Representation

First, introduce a fictitious edge of infinite capacity from t to s thus converting the flow to a circulation;

The objective is to maximize the flow on this edge, denoted by fts.

The advantage of making this modification is that we can now require flow conservation at s and t as
well.

16/37

Another Representation

First, introduce a fictitious edge of infinite capacity from t to s thus converting the flow to a circulation;

The objective is to maximize the flow on this edge, denoted by fts.

The advantage of making this modification is that we can now require flow conservation at s and t as
well.

16/37

Another Representation

First, introduce a fictitious edge of infinite capacity from t to s thus converting the flow to a circulation;

The objective is to maximize the flow on this edge, denoted by fts.

The advantage of making this modification is that we can now require flow conservation at s and t as
well.

16/37

Another Representation

max fts

fij ≤ cij (i, j) ∈ E

∑
(w,i)∈E

fwi −
∑

(i,z)∈E

fiz ≤ 0 i ∈ V

fij ≥ 0 (i, j) ∈ E

17/37

Remark

Ford-Fulkersons algorithm can be regarded as a special algorithm of linear programs.

18/37

Min-Max Relations and Duality

19/37

LP for Max Flow

max fts

fij ≤ cij (i, j) ∈ E

∑
(w,i)∈E

fwi −
∑

(i,z)∈E

fiz ≤ 0 i ∈ V

fij ≥ 0 (i, j) ∈ E

20/37

LP-Duality

max fts

fij ≤ cij (i, j) ∈ E

∑
(w,i)∈E

fwi −
∑

(i,z)∈E

fiz ≤ 0 i ∈ V

fij ≥ 0 (i, j) ∈ E

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ≥ 0 (i, j) ∈ E

pi ≥ 0 i ∈ V

21/37

LP-Duality

max fts

fij ≤ cij (i, j) ∈ E

∑
(w,i)∈E

fwi −
∑

(i,z)∈E

fiz ≤ 0 i ∈ V

fij ≥ 0 (i, j) ∈ E

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ≥ 0 (i, j) ∈ E

pi ≥ 0 i ∈ V

21/37

Explanation of the Dual

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ∈ {0, 1} (i, j) ∈ E

pi ∈ {0, 1} i ∈ V

To obtain the dual program we introduce variables dij and pi corresponding to the two types of
inequalities in the primal.

• dij : distance labels on edges;
• pi: potentials on nodes.

22/37

Explanation of the Dual

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ∈ {0, 1} (i, j) ∈ E

pi ∈ {0, 1} i ∈ V

To obtain the dual program we introduce variables dij and pi corresponding to the two types of
inequalities in the primal.

• dij : distance labels on edges;

• pi: potentials on nodes.

22/37

Explanation of the Dual

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ∈ {0, 1} (i, j) ∈ E

pi ∈ {0, 1} i ∈ V

To obtain the dual program we introduce variables dij and pi corresponding to the two types of
inequalities in the primal.

• dij : distance labels on edges;
• pi: potentials on nodes.

22/37

Integer Program

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ∈ {0, 1} (i, j) ∈ E

pi ∈ {0, 1} i ∈ V

Let (d∗,p∗) be an optimal solution to this integer program.

The only way to satisfy the inequality p∗s − p∗t ≥ 1 with a 0/1 substitution is to set p∗s = 1 and p∗t = 0.

This solution defines an s− t cut (X,X), where X is the set of potential 1 nodes, and X the set of
potential 0 nodes.

23/37

Integer Program

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ∈ {0, 1} (i, j) ∈ E

pi ∈ {0, 1} i ∈ V

Let (d∗,p∗) be an optimal solution to this integer program.

The only way to satisfy the inequality p∗s − p∗t ≥ 1 with a 0/1 substitution is to set p∗s = 1 and p∗t = 0.

This solution defines an s− t cut (X,X), where X is the set of potential 1 nodes, and X the set of
potential 0 nodes.

23/37

Integer Program

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ∈ {0, 1} (i, j) ∈ E

pi ∈ {0, 1} i ∈ V

Let (d∗,p∗) be an optimal solution to this integer program.

The only way to satisfy the inequality p∗s − p∗t ≥ 1 with a 0/1 substitution is to set p∗s = 1 and p∗t = 0.

This solution defines an s− t cut (X,X), where X is the set of potential 1 nodes, and X the set of
potential 0 nodes.

23/37

Integer Program

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ∈ {0, 1} (i, j) ∈ E

pi ∈ {0, 1} i ∈ V

Let (d∗,p∗) be an optimal solution to this integer program.

The only way to satisfy the inequality p∗s − p∗t ≥ 1 with a 0/1 substitution is to set p∗s = 1 and p∗t = 0.

This solution defines an s− t cut (X,X), where X is the set of potential 1 nodes, and X the set of
potential 0 nodes.

23/37

Integer Program

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ∈ {0, 1} (i, j) ∈ E

pi ∈ {0, 1} i ∈ V

Consider an edge (i, j) with i ∈ X and j ∈ X, Since p∗i = 1 and p∗j = 0, and thus d∗ij = 1.

The distance label for each of the remaining edges can be set to either 0 or 1 without violating the
first constraints.

The objective function value is precisely the capacity of the cut (X,X), and hence (X,X) must be a
minimum s− t cut.

24/37

Integer Program

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ∈ {0, 1} (i, j) ∈ E

pi ∈ {0, 1} i ∈ V

Consider an edge (i, j) with i ∈ X and j ∈ X, Since p∗i = 1 and p∗j = 0, and thus d∗ij = 1.

The distance label for each of the remaining edges can be set to either 0 or 1 without violating the
first constraints.

The objective function value is precisely the capacity of the cut (X,X), and hence (X,X) must be a
minimum s− t cut.

24/37

Integer Program

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ∈ {0, 1} (i, j) ∈ E

pi ∈ {0, 1} i ∈ V

Consider an edge (i, j) with i ∈ X and j ∈ X, Since p∗i = 1 and p∗j = 0, and thus d∗ij = 1.

The distance label for each of the remaining edges can be set to either 0 or 1 without violating the
first constraints.

The objective function value is precisely the capacity of the cut (X,X), and hence (X,X) must be a
minimum s− t cut.

24/37

Integer Program

min
∑

(i,j)∈E

cijdij

dij − pi + pj ≥ 0 (i, j) ∈ E

ps − pt ≥ 1

dij ∈ {0, 1} (i, j) ∈ E

pi ∈ {0, 1} i ∈ V

Consider an edge (i, j) with i ∈ X and j ∈ X, Since p∗i = 1 and p∗j = 0, and thus d∗ij = 1.

The distance label for each of the remaining edges can be set to either 0 or 1 without violating the
first constraints.

The objective function value is precisely the capacity of the cut (X,X), and hence (X,X) must be a
minimum s− t cut.

24/37

Relaxation of the Integer Program

The integer program is a formulation of the minimum s− t cut problem.

The dual program can be viewed as a relaxation of the integer program where the integrality
constraint on the variables is dropped.

This leads to the constraints 1 ≥ dij ≥ 0 for (i, j) ∈ E and 1 ≥ pi ≥ 0 for i ∈ V .

The upper bound constraints on the variables are redundant; their omission cannot give a better
solution.

We will say that this program is the LP relaxation of the integer program.

25/37

Relaxation of the Integer Program

The integer program is a formulation of the minimum s− t cut problem.

The dual program can be viewed as a relaxation of the integer program where the integrality
constraint on the variables is dropped.

This leads to the constraints 1 ≥ dij ≥ 0 for (i, j) ∈ E and 1 ≥ pi ≥ 0 for i ∈ V .

The upper bound constraints on the variables are redundant; their omission cannot give a better
solution.

We will say that this program is the LP relaxation of the integer program.

25/37

Relaxation of the Integer Program

The integer program is a formulation of the minimum s− t cut problem.

The dual program can be viewed as a relaxation of the integer program where the integrality
constraint on the variables is dropped.

This leads to the constraints 1 ≥ dij ≥ 0 for (i, j) ∈ E and 1 ≥ pi ≥ 0 for i ∈ V .

The upper bound constraints on the variables are redundant; their omission cannot give a better
solution.

We will say that this program is the LP relaxation of the integer program.

25/37

Relaxation of the Integer Program

The integer program is a formulation of the minimum s− t cut problem.

The dual program can be viewed as a relaxation of the integer program where the integrality
constraint on the variables is dropped.

This leads to the constraints 1 ≥ dij ≥ 0 for (i, j) ∈ E and 1 ≥ pi ≥ 0 for i ∈ V .

The upper bound constraints on the variables are redundant; their omission cannot give a better
solution.

We will say that this program is the LP relaxation of the integer program.

25/37

Relaxation of the Integer Program

The integer program is a formulation of the minimum s− t cut problem.

The dual program can be viewed as a relaxation of the integer program where the integrality
constraint on the variables is dropped.

This leads to the constraints 1 ≥ dij ≥ 0 for (i, j) ∈ E and 1 ≥ pi ≥ 0 for i ∈ V .

The upper bound constraints on the variables are redundant; their omission cannot give a better
solution.

We will say that this program is the LP relaxation of the integer program.

25/37

Relaxation of the Integer Program

The best fractional s− t cut could have lower capacity than the best integral cut. This does not
happen here.

Now, it can be proven that each vertex solution is integral, with each coordinate being 0 or 1.

The constraint matrix of this program is totally unimodular, Thus, the dual program always has an
integral optimal solution.

26/37

Relaxation of the Integer Program

The best fractional s− t cut could have lower capacity than the best integral cut. This does not
happen here.

Now, it can be proven that each vertex solution is integral, with each coordinate being 0 or 1.

The constraint matrix of this program is totally unimodular, Thus, the dual program always has an
integral optimal solution.

26/37

Relaxation of the Integer Program

The best fractional s− t cut could have lower capacity than the best integral cut. This does not
happen here.

Now, it can be proven that each vertex solution is integral, with each coordinate being 0 or 1.

The constraint matrix of this program is totally unimodular, Thus, the dual program always has an
integral optimal solution.

26/37

More Examples

27/37

Set Cover

Set Cover
• Input: A set of elements U , sets S1, . . . , Sm ⊆ U

• Output: A selection of the Si whose union is U .
• Cost: Number of sets picked.

28/37

Set Cover

min
∑
S∈S

xS∑
S:e∈S

xS ≥ 1, e ∈ U

xS ≥ 0, S ∈ S

max
∑
e∈U

ye∑
e:e∈S

ye ≤ 1, S ∈ S

ye ≥ 0, e ∈ U

29/37

Set Cover

min
∑
S∈S

xS∑
S:e∈S

xS ≥ 1, e ∈ U

xS ≥ 0, S ∈ S

max
∑
e∈U

ye∑
e:e∈S

ye ≤ 1, S ∈ S

ye ≥ 0, e ∈ U

29/37

Set Cover

min
∑
S∈S

xS∑
S:e∈S

xS ≥ 1, e ∈ U

xS ≥ 0, S ∈ S

max
∑
e∈U

ye∑
e:e∈S

ye ≤ 1, S ∈ S

ye ≥ 0, e ∈ U

29/37

Set Cover

Set Cover

• Input: A set of elements U , sets S1, . . . , Sm ⊆ U , and a cost function c : S → Q+.
• Output: A selection of the Si whose union is U .
• Cost: Sum of costs of set picked.

The special case, in which all subsets are of unit cost, will be called the cardinality set
cover problem.

30/37

Set Cover

min
∑
S∈S

c(S)xS∑
S:e∈S

xS ≥ 1, e ∈ U

xS ≥ 0, S ∈ S

max
∑
e∈U

ye∑
e:e∈S

ye ≤ c(S), S ∈ S

ye ≥ 0, e ∈ U

31/37

Quiz: Set Multicover

Each element, e, needs to be covered a specified integer number, re, of times.

The objective again is to cover all elements up to their coverage requirements at minimum cost.

Each set can be picked at most once.

32/37

Integer Program

Let re ∈ Z+ be the coverage requirement for each element e ∈ U .

min
∑
S∈S

c(S)xS∑
S:e∈S

xS ≥ re, e ∈ U

xS ∈ {0, 1}, S ∈ S

33/37

Linear Program Relaxation

In the LP-relaxation, the constraints xS ≤ 1 are no longer redundant.

min
∑
S∈S

c(S)xS∑
S:e∈S

xS ≥ re, e ∈ U

− xS ≥ −1, S ∈ S
xS ≥ 0, S ∈ S

34/37

Dual Program

The additional constraints in the primal lead to new variables, zS , in the dual.

max
∑
e∈U

reye −
∑
S∈S

zS

(
∑
e:e∈S

ye)− zS ≤ c(S), S ∈ S

ye ≥ 0, e ∈ U

zS ≥ 0, S ∈ S

35/37

Referred Materials

36/37

Referred Materials

Content of this lecture comes from Section 12.2 in [Vaz04] and Section 7.3 in [WS11].

Suggest to read Section 26.1 and 26.2 in [CLRS09].

37/37

	Shortest Path
	Max-Flow Min-Cut in LP
	More Examples
	Referred Materials

