

Design and Analysis of Algorithms (XIII)

Linear Programming: Applications

Guoqiang Li School of Software

Shortest Path

▲□▶ <□▶ < 差▶ < 差▶ 差 の < ? 2/37</p>

Shortest Path

Shortest path problem gives a weighted, directed graph G = (V, E), with weight function $w : E \to \mathbb{Q}^+$ mapping edges to real-valued weights, a source vertex *s*, and destination vertex *t*. We wish to compute the weight of a shortest path from *s* to *t*.

$\max d_t$	
$d_v \le d_u + w(u, v)$	$(u,v)\in E$
$egin{array}{llllllllllllllllllllllllllllllllllll$	$i \in V$

Q: Another formalization?

Let $S = \{S \subseteq V : s \in S, t \notin S\}$; that is, S is the set of all *s*-*t* cuts in the graph. Then we can model the shortest *s*-*t* path problem with the following integer program,

$$\begin{split} \min \sum_{e \in E} w_e x_e \\ \sum_{e \in \delta(S)} x_e \geq 1 \quad S \in \mathcal{S} \\ x_e \in \{0, 1\} \quad e \in E \end{split}$$

where $\delta(S)$ is the set of all edges that have one endpoint in *S* and the other endpoint not in *S*.

Let $S = \{S \subseteq V : s \in S, t \notin S\}$; that is, S is the set of all *s*-*t* cuts in the graph. Then we can model the shortest *s*-*t* path problem with the following integer program,

$$\begin{split} \min \sum_{e \in E} w_e x_e \\ \sum_{e \in \delta(S)} x_e \geq 1 \quad S \in \mathcal{S} \\ x_e \in \{0, 1\} \quad e \in E \end{split}$$

where $\delta(S)$ is the set of all edges that have one endpoint in *S* and the other endpoint not in *S*.

• Can we relax the restriction $x_e \in \{0, 1\}$ to $0 \le x_e \le 1$?

Let $S = \{S \subseteq V : s \in S, t \notin S\}$; that is, S is the set of all *s*-*t* cuts in the graph. Then we can model the shortest *s*-*t* path problem with the following integer program,

$$\begin{split} \min \sum_{e \in E} w_e x_e \\ \sum_{e \in \delta(S)} x_e \geq 1 \quad S \in \mathcal{S} \\ x_e \in \{0, 1\} \quad e \in E \end{split}$$

where $\delta(S)$ is the set of all edges that have one endpoint in *S* and the other endpoint not in *S*.

- Can we relax the restriction $x_e \in \{0, 1\}$ to $0 \le x_e \le 1$?
- How about $x_e \ge 0$?

$$egin{aligned} \min \sum_{e \in E} w_e x_e \ & \sum_{e \in \delta(S)} x_e \geq 1 \quad S \in \mathcal{S} \ & x_e \geq 0 \quad e \in E \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ 差 ▶ ◆ 差 ● ① Q ○ 6/37

$$egin{aligned} \min\sum_{e\in E} w_e x_e \ &\sum_{e\in \delta(S)} x_e \geq 1 \quad S\in \mathcal{S} \ &x_e \geq 0 \qquad e\in E \end{aligned}$$

 $\max \sum_{S \in S} y_S$ $\sum_{\substack{S \in S, e \in \delta(S) \\ y_S \ge 0}} y_S \le w_e \quad e \in E$ $y_S \ge 0 \qquad S \in S$

▲□▶ ▲@▶ ▲ 분▶ ▲ 분 ▶ 1 1 1 1 0 0 0 6/37

The Moat

Max-Flow Min-Cut in LP

We have a network of pipelines along which oil can be sent.

We have a network of pipelines along which oil can be sent.

The goal is to ship as much oil as possible from the source to the sink.

We have a network of pipelines along which oil can be sent.

The goal is to ship as much oil as possible from the source to the sink.

Each pipeline has a maximum capacity it can handle,

We have a network of pipelines along which oil can be sent.

The goal is to ship as much oil as possible from the source to the sink.

Each pipeline has a maximum capacity it can handle, and there are no opportunities for storing oil en route.

A Flow Example

▲□▶▲舂▶▲差▶▲差▶ 差 のなぐ 10/37

The networks consist of a directed graph G = (V, E);

The networks consist of a directed graph G = (V, E); two special nodes $s, t \in V$, a source and sink of G;

The networks consist of a directed graph G = (V, E); two special nodes $s, t \in V$, a source and sink of G; and capacities $c_e > 0$ on the edges.

The networks consist of a directed graph G = (V, E); two special nodes $s, t \in V$, a source and sink of G; and capacities $c_e > 0$ on the edges.

Aim to send as much oil as possible from s to t without exceeding the capacities of any of the edges.

A flow consists of a variable f_e for each edge e of the network, satisfying the following two properties:

A flow consists of a variable f_e for each edge e of the network, satisfying the following two properties:

1 It doesn't violate edge capacities: $0 \le f_e \le c_e$ for all $e \in E$.

A flow consists of a variable f_e for each edge e of the network, satisfying the following two properties:

- 1 It doesn't violate edge capacities: $0 \le f_e \le c_e$ for all $e \in E$.
- 2 For all nodes u except s and t, the amount of flow entering u equals the amount leaving

$$\sum_{w,v)\in E} f_{wu} = \sum_{(u,z)\in E} f_{uz}$$

In other words, flow is conserved.

The value of a flow is the total quantity sent from s to t

The value of a flow is the total quantity sent from s to t and, by the conservation principle, is equal to the quantity leaving s:

$$\texttt{val}(f) = \sum_{(s,u) \in E} f_{su}$$

The value of a flow is the total quantity sent from s to t and, by the conservation principle, is equal to the quantity leaving s:

 $\texttt{val}(f) = \sum_{(s,u) \in E} f_{su}$

Our goal is to assign values to $\{f_e | e \in E\}$ that will satisfy a set of linear constraints and maximize a linear objective function.

The value of a flow is the total quantity sent from s to t and, by the conservation principle, is equal to the quantity leaving s:

 $\texttt{val}(f) = \sum_{(s,u) \in E} f_{su}$

Our goal is to assign values to $\{f_e | e \in E\}$ that will satisfy a set of linear constraints and maximize a linear objective function.

This is a linear program. The maximum-flow problem reduces to linear programming.

The Example

11 variables, one per edge.

11 variables, one per edge.

maximize $f_{sa} + f_{sb} + f_{sc}$

11 variables, one per edge.

maximize $f_{sa} + f_{sb} + f_{sc}$

27 constraints:

• 11 for nonnegativity (such as $f_{sa} \ge 0$),

11 variables, one per edge.

maximize $f_{sa} + f_{sb} + f_{sc}$

27 constraints:

- 11 for nonnegativity (such as $f_{sa} \ge 0$),
- 11 for capacity (such as $f_{sa} \leq 3$),

11 variables, one per edge.

maximize $f_{sa} + f_{sb} + f_{sc}$

27 constraints:

- 11 for nonnegativity (such as $f_{sa} \ge 0$),
- 11 for capacity (such as $f_{sa} \leq 3$),
- 5 for flow conservation (one for each node of the graph other than s and t, such as $f_{sc} + f_{dc} = f_{ce}$).

First, introduce a fictitious edge of infinite capacity from t to s thus converting the flow to a circulation;

First, introduce a fictitious edge of infinite capacity from t to s thus converting the flow to a circulation;

The objective is to maximize the flow on this edge, denoted by f_{ts} .

First, introduce a fictitious edge of infinite capacity from t to s thus converting the flow to a circulation;

The objective is to maximize the flow on this edge, denoted by f_{ts} .

The advantage of making this modification is that we can now require flow conservation at s and t as well.

Ford-Fulkersons algorithm can be regarded as a special algorithm of linear programs.

Min-Max Relations and Duality

LP for Max Flow

LP-Duality

$$\max f_{ts}$$

$$f_{ij} \le c_{ij} \qquad (i,j) \in E$$

$$\sum_{(w,i)\in E} f_{wi} - \sum_{(i,z)\in E} f_{iz} \le 0 \quad i \in V$$

$$f_{ij} \ge 0 \qquad (i,j)\in E$$

LP-Duality

$$\max f_{ts}$$

$$f_{ij} \le c_{ij} \qquad (i,j) \in E$$

$$\sum_{(w,i)\in E} f_{wi} - \sum_{(i,z)\in E} f_{iz} \le 0 \quad i \in V$$

$$f_{ij} \ge 0 \qquad (i,j) \in E$$

 $\min \sum_{(i,j)\in E} c_{ij}d_{ij}$ $d_{ij} - p_i + p_j \ge 0 \quad (i,j)\in E$ $p_s - p_t \ge 1$ $d_{ij} \ge 0 \quad (i,j)\in E$ $p_i \ge 0 \qquad i\in V$

Explanation of the Dual

$\min\sum_{(i,j)\in E}c_{ij}d_{ij}$	
$d_{ij}-p_i+p_j\geq 0 \ p_s-p_t\geq 1$	$(i,j)\in E$
$egin{aligned} d_{ij} \in \{0,1\}\ p_i \in \{0,1\} \end{aligned}$	$(i,j) \in E$ $i \in V$

Explanation of the Dual

To obtain the dual program we introduce variables d_{ij} and p_i corresponding to the two types of inequalities in the primal.

• *d*_{*ij*}: distance labels on edges;

Explanation of the Dual

$$\begin{split} \min \sum_{(i,j) \in E} c_{ij} d_{ij} \\ d_{ij} - p_i + p_j &\geq 0 \quad (i,j) \in E \\ p_s - p_t &\geq 1 \\ d_{ij} \in \{0,1\} \quad (i,j) \in E \\ p_i \in \{0,1\} \quad i \in V \end{split}$$

To obtain the dual program we introduce variables d_{ij} and p_i corresponding to the two types of inequalities in the primal.

- *d_{ij}*: distance labels on edges;
- p_i : potentials on nodes.

$$\min\sum_{(i,j)\in E}c_{ij}d_{ij}$$

$$\begin{array}{ll} d_{ij} - p_i + p_j \geq 0 & (i,j) \in E \\ p_s - p_t \geq 1 \\ d_{ij} \in \{0,1\} & (i,j) \in E \\ p_i \in \{0,1\} & i \in V \end{array}$$

$$\begin{split} \min \sum_{(i,j) \in E} c_{ij} d_{ij} \\ d_{ij} - p_i + p_j &\geq 0 \quad (i,j) \in E \\ p_s - p_t &\geq 1 \\ d_{ij} \in \{0,1\} \quad (i,j) \in E \\ p_i \in \{0,1\} \quad i \in V \end{split}$$

. 5

Let $(\mathbf{d}^*, \mathbf{p}^*)$ be an optimal solution to this integer program.

$$\min \sum_{(i,j)\in E} c_{ij} d_{ij}$$
$$d_{ij} - p_i + p_j \ge 0 \quad (i,j) \in E$$

 $\begin{array}{ll} p_s - p_t \geq 1 \\ d_{ij} \in \{0, 1\} & (i, j) \in E \\ p_i \in \{0, 1\} & i \in V \end{array}$

Let $(\mathbf{d}^*, \mathbf{p}^*)$ be an optimal solution to this integer program.

The only way to satisfy the inequality $p_s^* - p_t^* \ge 1$ with a 0/1 substitution is to set $p_s^* = 1$ and $p_t^* = 0$.

$$\min \sum_{(i,j) \in E} c_{ij} d_{ij}$$

$$d_{ij} - p_i + p_j \ge 0 \quad (i,j) \in E$$

$$p_s - p_t \ge 1$$

$$d_{ij} \in \{0,1\} \quad (i,j) \in E$$

$$p_i \in \{0,1\} \quad i \in V$$

Let $(\mathbf{d}^*, \mathbf{p}^*)$ be an optimal solution to this integer program.

The only way to satisfy the inequality $p_s^* - p_t^* \ge 1$ with a 0/1 substitution is to set $p_s^* = 1$ and $p_t^* = 0$.

This solution defines an $s - t \operatorname{cut} (X, \overline{X})$, where X is the set of potential 1 nodes, and \overline{X} the set of potential 0 nodes.

$$\min \sum_{(i,j)\in E} c_{ij} d_{ij}$$

$$\begin{array}{ll} d_{ij} - p_i + p_j \geq 0 & (i,j) \in E \\ p_s - p_t \geq 1 \\ d_{ij} \in \{0,1\} & (i,j) \in E \\ p_i \in \{0,1\} & i \in V \end{array}$$

$$\begin{split} \min \sum_{(i,j) \in E} c_{ij} d_{ij} \\ d_{ij} - p_i + p_j \geq 0 \quad (i,j) \in E \\ p_s - p_t \geq 1 \\ d_{ij} \in \{0,1\} \quad (i,j) \in E \\ p_i \in \{0,1\} \quad i \in V \end{split}$$

Consider an edge (i, j) with $i \in X$ and $j \in \overline{X}$, Since $p_i^* = 1$ and $p_j^* = 0$, and thus $d_{ij}^* = 1$.

$$\begin{split} \min \sum_{(i,j) \in E} c_{ij} d_{ij} \\ d_{ij} - p_i + p_j &\geq 0 \quad (i,j) \in E \\ p_s - p_t &\geq 1 \\ d_{ij} \in \{0,1\} \quad (i,j) \in E \\ p_i \in \{0,1\} \quad i \in V \end{split}$$

Consider an edge (i, j) with $i \in X$ and $j \in \overline{X}$, Since $p_i^* = 1$ and $p_j^* = 0$, and thus $d_{ij}^* = 1$.

The distance label for each of the remaining edges can be set to either 0 or 1 without violating the first constraints.

$$\begin{split} \min \sum_{(i,j) \in E} c_{ij} d_{ij} \\ d_{ij} - p_i + p_j \geq 0 \quad (i,j) \in E \\ p_s - p_t \geq 1 \\ d_{ij} \in \{0,1\} \quad (i,j) \in E \\ p_i \in \{0,1\} \quad i \in V \end{split}$$

Consider an edge (i, j) with $i \in X$ and $j \in \overline{X}$, Since $p_i^* = 1$ and $p_j^* = 0$, and thus $d_{ij}^* = 1$.

The distance label for each of the remaining edges can be set to either 0 or 1 without violating the first constraints.

The objective function value is precisely the capacity of the cut (X, \overline{X}) , and hence (X, \overline{X}) must be a minimum s - t cut.

The integer program is a formulation of the minimum s - t cut problem.

The integer program is a formulation of the minimum s - t cut problem.

The dual program can be viewed as a relaxation of the integer program where the integrality constraint on the variables is dropped.

The integer program is a formulation of the minimum s - t cut problem.

The dual program can be viewed as a relaxation of the integer program where the integrality constraint on the variables is dropped.

This leads to the constraints $1 \ge d_{ij} \ge 0$ for $(i, j) \in E$ and $1 \ge p_i \ge 0$ for $i \in V$.

The integer program is a formulation of the minimum s - t cut problem.

The dual program can be viewed as a relaxation of the integer program where the integrality constraint on the variables is dropped.

This leads to the constraints $1 \ge d_{ij} \ge 0$ for $(i, j) \in E$ and $1 \ge p_i \ge 0$ for $i \in V$.

The upper bound constraints on the variables are redundant; their omission cannot give a better solution.

The integer program is a formulation of the minimum s - t cut problem.

The dual program can be viewed as a relaxation of the integer program where the integrality constraint on the variables is dropped.

This leads to the constraints $1 \ge d_{ij} \ge 0$ for $(i, j) \in E$ and $1 \ge p_i \ge 0$ for $i \in V$.

The upper bound constraints on the variables are redundant; their omission cannot give a better solution.

We will say that this program is the LP relaxation of the integer program.

The best fractional s - t cut could have lower capacity than the best integral cut. This does not happen here.

The best fractional s - t cut could have lower capacity than the best integral cut. This does not happen here.

Now, it can be proven that each vertex solution is integral, with each coordinate being 0 or 1.

The best fractional s - t cut could have lower capacity than the best integral cut. This does not happen here.

Now, it can be proven that each vertex solution is integral, with each coordinate being 0 or 1.

The constraint matrix of this program is totally unimodular, Thus, the dual program always has an integral optimal solution.

More Examples

◆□ ▶ < @ ▶ < E ▶ < E ▶ ○ 27/37</p>

Set Cover

- Input: A set of elements U, sets $S_1, \ldots, S_m \subseteq U$
- Output: A selection of the S_i whose union is U.
- Cost: Number of sets picked.

$$egin{array}{lll} \min & \sum\limits_{S\in\mathcal{S}} x_S \ & \sum\limits_{S:e\in S} x_S \geq 1, & e\in U \ & x_S \geq 0, & S\in\mathcal{S} \end{array}$$

max	$\sum_{e \in U} y_e$		
	$\sum_{e:e\in S} y_e \le 1,$	$S\in\mathcal{S}$	
	$y_e \ge 0,$	$e \in U$	

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへで 29/37

Set Cover

- Input: A set of elements U, sets $S_1, \ldots, S_m \subseteq U$, and a cost function $c : S \to \mathbb{Q}^+$.
- Output: A selection of the S_i whose union is U.
- Cost: Sum of costs of set picked.

The special case, in which all subsets are of unit cost, will be called the cardinality set cover problem.

Quiz: Set Multicover

Each element, e, needs to be covered a specified integer number, r_e , of times.

The objective again is to cover all elements up to their coverage requirements at minimum cost.

Each set can be picked at most once.
Integer Program

Let $r_e \in \mathbb{Z}_+$ be the coverage requirement for each element $e \in U$.

 $\begin{array}{ll} \min & \sum_{S \in \mathcal{S}} c(S) x_S \\ & \sum_{S: e \in S} x_S \geq r_e, \\ & x_S \in \{0,1\}, \end{array} \qquad \qquad e \in U \\ & S \in \mathcal{S} \end{array}$

Linear Program Relaxation

In the LP-relaxation, the constraints $x_S \leq 1$ are no longer redundant.

 $\begin{array}{ll} \min & \sum_{S \in \mathcal{S}} c(S) x_S \\ & \sum_{S: e \in S} x_S \geq r_e, \\ & -x_S \geq -1, \\ & x_S \geq 0, \end{array} \qquad \qquad e \in U \\ & S \in \mathcal{S} \\ \end{array}$

Dual Program

The additional constraints in the primal lead to new variables, z_S , in the dual.

Referred Materials

◆□▶ ◆□▶ ◆ 注▶ ◆ 注▶ 注 の � ♡ 36/37

Referred Materials

Content of this lecture comes from Section 12.2 in [Vaz04] and Section 7.3 in [WS11].

Suggest to read Section 26.1 and 26.2 in [CLRS09].