

Design and Analysis of Algorithms (XIV)
Various Problems

Poly-Time Reductions

Algorithm design patterns and antipatterns

Algorithm design patterns.

Algorithm design patterns and antipatterns

Algorithm design patterns.

- Divide and conquer.
- Dynamic programming.
- Greedy.
- Duality.
- Reductions.
- Local search.
- Approximation.
- Randomization.

Algorithm design patterns and antipatterns

Algorithm design patterns.

- Divide and conquer.
- Dynamic programming.
- Greedy.
- Duality.
- Reductions.
- Local search.
- Approximation.
- Randomization.

Algorithm design antipatterns.

- NP-completeness.

Algorithm design patterns and antipatterns

Algorithm design patterns.

- Divide and conquer.
- Dynamic programming.
- Greedy.
- Duality.
- Reductions.
- Local search.
- Approximation.
- Randomization.

Algorithm design antipatterns.

- NP-completeness. $O\left(n^{k}\right)$ algorithm unlikely.

Algorithm design patterns and antipatterns

Algorithm design patterns.

- Divide and conquer.
- Dynamic programming.
- Greedy.
- Duality.
- Reductions.
- Local search.
- Approximation.
- Randomization.

Algorithm design antipatterns.

- NP-completeness. $O\left(n^{k}\right)$ algorithm unlikely.
- PSPACE-completeness

Algorithm design patterns and antipatterns

Algorithm design patterns.

- Divide and conquer.
- Dynamic programming.
- Greedy.
- Duality.
- Reductions.
- Local search.
- Approximation.
- Randomization.

Algorithm design antipatterns.

- NP-completeness.
- PSPACE-completeness
$O\left(n^{k}\right)$ algorithm unlikely.
$O\left(n^{k}\right)$ certification algorithm unlikely.

Algorithm design patterns and antipatterns

Algorithm design patterns．
－Divide and conquer．
－Dynamic programming．
－Greedy．
－Duality．
－Reductions．
－Local search．
－Approximation．
－Randomization．

Algorithm design antipatterns．
－NP－completeness．
－PSPACE－completeness
－Undecidability
$O\left(n^{k}\right)$ algorithm unlikely．
$O\left(n^{k}\right)$ certification algorithm unlikely．

Algorithm design patterns and antipatterns

Algorithm design patterns.

- Divide and conquer.
- Dynamic programming.
- Greedy.
- Duality.
- Reductions.
- Local search.
- Approximation.
- Randomization.

Algorithm design antipatterns.

- NP-completeness.
- PSPACE-completeness
- Undecidability
$O\left(n^{k}\right)$ algorithm unlikely.
$O\left(n^{k}\right)$ certification algorithm unlikely.
No algorithm possible.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

von Neumann (1953)

Nash (1955)

Gödel
(1956)

Cobham
(1964)

Edmonds
(1965)

Rabin
(1966)

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

von Neumann (1953)

Nash (1955)

Gödel
(1956)

Cobham
(1964)

Edmonds (1965)

Rabin
(1966)

Theory. Definition is broad and robust.

- Turing machine, word RAM, uniform circuits, ...

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

von Neumann (1953)

Nash (1955)

Gödel
(1956)

Cobham
(1964)

Edmonds (1965)

Rabin
(1966)

Theory. Definition is broad and robust.

- Turing machine, word RAM, uniform circuits, ...

Practice. Poly-time algorithms scale to huge problems.

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

yes	probably no
shortest path	longest path
min cut	max cut
2-satisfiability	3-satisfiability
planar 4-colorability	planar 3-colorability
bipartite vertex cover	vertex cover
2D-matching	3D-matching
primality testing	factoring
linear programming	integer linear programming

Classify problems

Requirement. Classify problems according to those that can be solved in polynomial time and those that cannot.

Classify problems

Requirement. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.

- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by- n generalization of checkers, can black guarantee a win?

Classify problems

Requirement. Classify problems according to those that can be solved in polynomial time and those that cannot.

Provably requires exponential time.

- Given a constant-size program, does it halt in at most k steps?
- Given a board position in an n-by- n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.

Poly-time reductions

Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Poly-time reductions

Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Algorithm for X

Poly-time reductions

Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_{\mathrm{P}} Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Poly-time reductions

Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- Polynomial number of standard computational steps, plus
- Polynomial number of calls to oracle that solves problem Y.

Notation. $X \leq_{\mathrm{P}} Y$.

Note. We pay for time to write down instances of Y sent to oracle \Rightarrow instances of Y must be of polynomial size.

Novice mistake. Confusing $X \leq_{\mathrm{P}} Y$ with $Y \leq_{\mathrm{P}} X$.

Quiz

Suppose that $X \leq_{\mathrm{P}} Y$. Which of the following can we infer?
A. If X can be solved in polynomial time, then so can Y.
B. X can be solved in poly time iff Y can be solved in poly time.
C. If X cannot be solved in polynomial time, then neither can Y.
(D. If Y cannot be solved in polynomial time, then neither can X.

Quiz

Which of the following poly-time reductions are known?
(A) FIND-MAX-FLOW \leq_{P} FIND-MIN-CUT.
B. FIND-MIN-CUT \leq_{P} FIND-MAX-FLOW.
C. Both A and B.
D. Neither A nor B.

Poly-time reductions

Design algorithms. If $X \leq_{\mathrm{P}} Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Poly-time reductions

Design algorithms. If $X \leq_{\mathrm{P}} Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_{\mathrm{P}} Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_{\mathrm{P}} Y$ and $Y \leq_{\mathrm{P}} X$, we use notation $X \equiv_{P} Y$. In this case, X can be solved in polynomial time iff Y can be.

Poly-time reductions

Design algorithms. If $X \leq_{\mathrm{P}} Y$ and Y can be solved in polynomial time, then X can be solved in polynomial time.

Establish intractability. If $X \leq_{\mathrm{P}} Y$ and X cannot be solved in polynomial time, then Y cannot be solved in polynomial time.

Establish equivalence. If both $X \leq_{\mathrm{P}} Y$ and $Y \leq_{\mathrm{P}} X$, we use notation $X \equiv_{P} Y$. In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

Packing and Covering Problems

Independent set

Independent Set. Given a graph $G=(V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Independent set

Independent Set. Given a graph $G=(V, E)$ and an integer k, is there a subset of k (or more) vertices such that no two are adjacent?

Example. Is there an independent set of size ≥ 6 ?
Example. Is there an independent set of size ≥ 7 ?

Vertex Cover. Given a graph $G=(V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Vertex Cover. Given a graph $G=(V, E)$ and an integer k, is there a subset of k (or fewer) vertices such that each edge is incident to at least one vertex in the subset?

Example. Is there a vertex cover of size ≤ 4 ?
Example. Is there a vertex cover of size ≤ 3 ?

Quiz

Consider the following graph G. Which are true?
(4. The white vertices are a vertex cover of size 7 .
(3. The black vertices are an independent set of size 3 .
C. Both A and B.
D. Neither A nor B.

Vertex cover and independent set reduce to one another

Theorem
Independent Set \equiv_{P} Vertex Cover.

Theorem

Independent Set \equiv_{P} Vertex Cover.

Proof. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.

Theorem

Independent Set \equiv_{P} Vertex Cover.

Proof. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.

Theorem

Independent Set \equiv_{P} Vertex Cover.

Proof. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.

- Let S be any independent set of size k.
- $V-S$ is of size $n-k$.
- Consider an arbitrary edge $(u, v) \in E$.

Theorem

Independent Set \equiv_{P} Vertex Cover.

Proof. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.
\Rightarrow

- Let S be any independent set of size k.
- $V-S$ is of size $n-k$.
- Consider an arbitrary edge $(u, v) \in E$.

$$
\begin{aligned}
S \text { independent } & \Rightarrow \text { either } u \notin S \text {, or } v \notin S \text {, or both. } \\
& \Rightarrow \text { either } u \in V-S, \text { or } v \in V-S \text {, or both. }
\end{aligned}
$$

Theorem

Independent Set \equiv_{P} Vertex Cover.

Proof. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.
\Rightarrow

- Let S be any independent set of size k.
- $V-S$ is of size $n-k$.
- Consider an arbitrary edge $(u, v) \in E$.

$$
\begin{aligned}
S \text { independent } & \Rightarrow \text { either } u \notin S, \text { or } v \notin S, \text { or both. } \\
& \Rightarrow \text { either } u \in V-S, \text { or } v \in V-S \text {, or both. }
\end{aligned}
$$

- Thus, $V-S$ covers (u, v).

Theorem

Independent Set \equiv_{P} Vertex Cover．

Proof．We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$ ．

Theorem

Independent Set \equiv_{P} Vertex Cover．

Proof．We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$ ．
－Let $V-S$ be any independent set of size $n-k$ ．
－S is of size k ．
－Consider an arbitrary edge $(u, v) \in E$ ．

Theorem

Independent Set \equiv_{P} Vertex Cover.

Proof. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.

- Let $V-S$ be any independent set of size $n-k$.
- S is of size k.
- Consider an arbitrary edge $(u, v) \in E$.

$$
\begin{aligned}
V-S \text { is a vertex cover } & \Rightarrow \text { either } u \in V-S, \text { or } v \in V-S, \text { or both. } \\
& \Rightarrow \text { either } u \notin S, \text { or } v \notin S \text {, or both. }
\end{aligned}
$$

Theorem

Independent Set \equiv_{P} Vertex Cover.

Proof. We show S is an independent set of size k iff $V-S$ is a vertex cover of size $n-k$.

- Let $V-S$ be any independent set of size $n-k$.
- S is of size k.
- Consider an arbitrary edge $(u, v) \in E$.

$$
\begin{aligned}
V-S \text { is a vertex cover } & \Rightarrow \text { either } u \in V-S, \text { or } v \in V-S, \text { or both. } \\
& \Rightarrow \text { either } u \notin S, \text { or } v \notin S, \text { or both. }
\end{aligned}
$$

- Thus, S is an independent set.

Quiz

Clique. Given a graph $G=(V, E)$ and an integer k, is there a subset of k (or more) vertices such that each of two are adjacent?

SET Cover. Given a set U of elements, a collection S of subsets of U, and an integer k, are there $\leq k$ of these subsets whose union is equal to U ?

SET Cover．Given a set U of elements，a collection S of subsets of U ，and an integer k ，are there $\leq k$ of these subsets whose union is equal to U ？

Sample application．

－m available pieces of software．
－Set U of n capabilities that we would like our system to have．
－The $i^{\text {th }}$ piece of software provides the set $S_{i} \subseteq U$ of capabilities．
－Goal：achieve all n capabilities using fewest pieces of software．

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} & \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\} \\
k=2 &
\end{array}
$$

Quiz

Given the universe $U=\{1,2,3,4,5,6,7\}$ and the following sets, which is the minimum size of a set cover?
(4) 1
(3) 2
(c) 3
(c) None of the above.

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} & \\
S_{a}=\{1,4,6\} & S_{b}=\{1,6,7\} \\
S_{c}=\{1,2,3,6\} & S_{d}=\{1,3,5,7\} \\
S_{e}=\{2,6,7\} & S_{f}=\{3,4,5\}
\end{array}
$$

Vertex cover reduces to set cover

Theorem

Vertex Cover \leq_{P} Set Cover.

Vertex cover reduces to set cover

Theorem

Vertex Cover \leq_{P} Set Cover.

Proof.

Vertex cover reduces to set cover

Theorem

Vertex Cover \leq_{P} Set Cover.

Proof. Given a Vertex Cover instance $G=(V, E)$ and k, we construct a Set Cover instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Theorem

Vertex Cover \leq_{P} Set Cover.

Proof. Given a Vertex Cover instance $G=(V, E)$ and k, we construct a Set Cover instance (U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

- Universe $U=E$.
- Include one subset for each node $v \in V: S_{v}=\{e \in E:$ e incident to $v\}$.

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} & \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\}
\end{array}
$$

Vertex cover reduces to set cover

Lemma

$G=(V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Vertex cover reduces to set cover

Lemma

$G=(V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Proof. \Rightarrow
Let $X \subseteq V$ be a vertex cover of size k in G, then $Y=\left\{S_{v}: v \in X\right\}$ is a set cover of size k.

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} & \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\}
\end{array}
$$

Lemma

$G=(V, E)$ contains a vertex cover of size k iff (U, S, k) contains a set cover of size k ．

Proof．\Leftarrow

Let $Y \subseteq S$ be a set cover of size k in (U, S, k) ，then $X=\left\{v: S_{v} \in Y\right\}$ is a vertex cover of size k in G ．

$$
\begin{array}{ll}
U=\{1,2,3,4,5,6,7\} & \\
S_{a}=\{3,7\} & S_{b}=\{2,4\} \\
S_{c}=\{3,4,5,6\} & S_{d}=\{5\} \\
S_{e}=\{1\} & S_{f}=\{1,2,6,7\}
\end{array}
$$

Satisfiability

Literal. A Boolean variable or its negation: x_{i} or \bar{x}_{i}.

Satisfiability

Literal. A Boolean variable or its negation: x_{i} or \bar{x}_{i}.
Clause. A disjunction of literals: $C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$

Satisfiability

Literal. A Boolean variable or its negation: x_{i} or \bar{x}_{i}.
Clause. A disjunction of literals: $C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$
Conjunctive normal form (CNF): $\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$

Satisfiability

Literal. A Boolean variable or its negation: x_{i} or \bar{x}_{i}.
Clause. A disjunction of literals: $C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$
Conjunctive normal form (CNF): $\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

Satisfiability

Literal．A Boolean variable or its negation：x_{i} or \bar{x}_{i} ．
Clause．A disjunction of literals：$C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$
Conjunctive normal form（CNF）：$\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$

SAT．Given a CNF formula Φ ，does it have a satisfying truth assignment？
3－SAT．SAT where each clause contains exactly 3 literals（and each literal corresponds to a different variable）．

Satisfiability

Literal. A Boolean variable or its negation: x_{i} or \bar{x}_{i}.
Clause. A disjunction of literals: $C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$
Conjunctive normal form (CNF): $\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
$$

yes instance: $x_{1}=$ true, $x_{2}=$ true, $x_{3}=$ false $x_{4}=$ false

Satisfiability

Literal. A Boolean variable or its negation: x_{i} or \bar{x}_{i}.
Clause. A disjunction of literals: $C_{j}=x_{1} \vee \overline{x_{2}} \vee x_{3}$
Conjunctive normal form (CNF): $\Phi=C_{1} \wedge C_{2} \wedge C_{3} \wedge C_{4}$

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different variable).

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
$$

$$
\text { yes instance: } x_{1}=\text { true, } x_{2}=\text { true }, x_{3}=\text { false } x_{4}=\text { false }
$$

Key application. Electronic design automation (EDA).

Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.

Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.
P vs. NP This hypothesis is equivalent to $\mathbf{P} \neq \mathbf{N P}$ conjecture.

Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.
P vs. NP This hypothesis is equivalent to $\mathbf{P} \neq \mathbf{N P}$ conjecture.

Donald J. Trump

@realDonaldTrump
Computer Scientists have so much funding and time and can't even figure out the boolean satisfiability problem. SAT!

new	

6:31 AM - 17 Apr 2017
4 20 K \& 17 K
https://www.facebook.com/pg/npcompleteteens

Theorem

3 －SAT \leq_{P} Independent Set．

Theorem

3 －SAT \leq_{P} INDEPENDENT SET．
Proof．

3-satisfiability reduces to independent set

Theorem

3 -SAT \leq_{P} Independent Set.
Proof. Given an instance Φ of 3-SAT, we construct an instance (G, k) of Independent Set that has an independent set of size $k=|\Phi|$ iff Φ is satisfiable.

3-satisfiability reduces to independent set

Theorem

3 -SAT \leq_{P} Independent Set.

Proof. Given an instance Φ of 3-SAT, we construct an instance (G, k) of Independent Set that has an independent set of size $k=|\Phi|$ iff Φ is satisfiable.

Construction.

- G contains 3 nodes for each clause, one for each literal.
- Connect 3 literals in a clause in a triangle.
- Connect literal to each of its negations.

Theorem

3 -SAT \leq_{P} Independent Set.

Proof.

3-satisfiability reduces to independent set

Theorem

$3-$ SAT \leq_{P} Independent Set.

Proof. \Rightarrow
Consider any satisfying assignment for Φ.

- Select one true literal from each clause/triangle.
- This is an independent set of size $k=|\Phi|$.

Theorem

3 -SAT \leq_{P} Independent Set.

Proof.

3－satisfiability reduces to independent set

Theorem

3 －SAT \leq_{P} Independent Set．

Proof．\Leftarrow
Let S be independent set of size k ．
－S must contain exactly one node in each triangle．
－Set these literals to true and remaining literals consistently．
－All clauses in Φ are satisfied．

$$
\Phi=\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee x_{4}\right)
$$

Review

Basic reduction strategies.

- Simple equivalence: Independent Set \equiv_{P} Vertex Cover
- Special case to general case: Vertex Cover \leq_{P} Set Cover.
- Encoding with gadgets: 3 -SAT \leq_{P} Independent Set.

Review

Basic reduction strategies.

- Simple equivalence: Independent Set \equiv_{P} Vertex Cover
- Special case to general case: Vertex Cover \leq_{P} Set Cover.
- Encoding with gadgets: 3 -SAT \leq_{P} Independent Set.

Transitivity. If $X \leq_{P} Y$ and $Y \leq_{P} Z$, then $X \leq_{P} Z$.

Review

Basic reduction strategies.

- Simple equivalence: Independent Set \equiv_{P} Vertex Cover
- Special case to general case: Vertex Cover \leq_{P} Set Cover.
- Encoding with gadgets: 3 -SAT \leq_{P} Independent Set.

Transitivity. If $X \leq_{P} Y$ and $Y \leq_{P} Z$, then $X \leq_{P} Z$.
Proof idea. Compose the two algorithms.

Review

Basic reduction strategies.

- Simple equivalence: Independent Set \equiv_{P} Vertex Cover
- Special case to general case: Vertex Cover \leq_{P} Set Cover.
- Encoding with gadgets: 3 -SAT \leq_{P} Independent Set.

Transitivity. If $X \leq_{P} Y$ and $Y \leq_{P} Z$, then $X \leq_{P} Z$.
Proof idea. Compose the two algorithms.

Example. 3 -SAT \leq_{P} Independent Set \leq_{P} Vertex Cover \leq_{P} Set Cover.

Decision, search and optimization problems

Decision problem. Does there exist a vertex cover of size $\leq k$?

Decision, search and optimization problems

Decision problem. Does there exist a vertex cover of size $\leq k$?
Search problem. Find a vertex cover of size $\leq k$.

Decision, search and optimization problems

Decision problem. Does there exist a vertex cover of size $\leq k$?
Search problem. Find a vertex cover of size $\leq k$.
Optimization problem. Find a vertex cover of minimum size.

Decision, search and optimization problems

Decision problem. Does there exist a vertex cover of size $\leq k$?
Search problem. Find a vertex cover of size $\leq k$.
Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size $\leq k$?
Find vertex cover. Find a vertex cover of size $\leq k$.

Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size $\leq k$?
Find vertex cover. Find a vertex cover of size $\leq k$.

Theorem. Vertex cover \equiv_{P} Find vertex cover.

Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size $\leq k$?
Find vertex cover. Find a vertex cover of size $\leq k$.

Theorem. Vertex cover $\equiv{ }_{P}$ Find vertex cover.
Proof.

Search problems VS. Decision problems

Vertex cover. Does there exist a vertex cover of size $\leq k$?
Find vertex cover. Find a vertex cover of size $\leq k$.

Theorem. Vertex cover $\equiv{ }_{P}$ Find vertex cover.
Proof.
\leq_{P}. Decision problem is a special case of search problem.

Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size $\leq k$?
Find vertex cover. Find a vertex cover of size $\leq k$.

Theorem. Vertex cover \equiv_{P} Find vertex cover.
Proof.
\leq_{P}. Decision problem is a special case of search problem.
\geq_{P}. To find a vertex cover of size $\leq k$:

Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size $\leq k$?
Find vertex cover. Find a vertex cover of size $\leq k$.

Theorem. Vertex cover $\equiv{ }_{P}$ Find vertex cover.
Proof.
\leq_{P}. Decision problem is a special case of search problem.
\geq_{P}. To find a vertex cover of size $\leq k$:

- Determine if there exists a vertex cover of size $\leq k$.
- Find a vertex v such that $G-\{v\}$ has a vertex cover of size $\leq k-1$. (any vertex in any vertex cover of size $\leq k$ will have this property)
- Include v in the vertex cover.
- Recursively find a vertex cover of size $\leq k-1$ in $G-\{v\}$.

Optimization problems VS. Search problems VS. Decision problems

Find vertex cover. Find a vertex cover of size $\leq k$.
Find min vertex cover. Find a vertex cover of minimum size.

Optimization problems VS. Search problems VS. Decision problems

Find vertex cover. Find a vertex cover of size $\leq k$.
Find min vertex cover. Find a vertex cover of minimum size.

Theorem. Find vertex cover \equiv_{P} Find min vertex cover.

Optimization problems VS. Search problems VS. Decision problems

Find vertex cover. Find a vertex cover of size $\leq k$.
Find min vertex cover. Find a vertex cover of minimum size.

Theorem. Find vertex cover \equiv_{P} Find min vertex cover.
Proof.

Optimization problems VS. Search problems VS. Decision problems

Find vertex cover. Find a vertex cover of size $\leq k$.
Find min vertex cover. Find a vertex cover of minimum size.

Theorem. Find vertex cover \equiv_{P} Find min vertex cover.
Proof.
\leq_{P}. Search problem is a special case of optimization problem.

Optimization problems VS. Search problems VS. Decision problems

Find vertex cover. Find a vertex cover of size $\leq k$.
Find min vertex cover. Find a vertex cover of minimum size.

Theorem. Find vertex cover \equiv_{P} Find min vertex cover.
Proof.
\leq_{p}. Search problem is a special case of optimization problem.
\geq_{P}. To find vertex cover of minimum size:

Optimization problems VS. Search problems VS. Decision problems

Find vertex cover. Find a vertex cover of size $\leq k$.
Find min vertex cover. Find a vertex cover of minimum size.

Theorem. Find vertex cover \equiv_{P} Find min vertex cover.
Proof.
\leq_{P}. Search problem is a special case of optimization problem.
\geq_{P}. To find vertex cover of minimum size:

- Binary search (or linear search) for size k^{*} of min vertex cover.
- Solve search problem for given k^{*}.

Sequencing Problems

Hamilton cycle

Hamilton cycle．Given an undirected graph $G=(V, E)$ ，does there exist a cycle Γ that visits every node exactly once？

no

Directed Hamilton cycle reduces to Hamilton cycle

Directed Hamilton cycle. Given a directed graph $G=(V, E)$, does there exist a directed cycle Γ that visits every node exactly once?

Theorem

Directed Hamilton cycle \leq_{P} Hamilton cycle.

Directed Hamilton cycle reduces to Hamilton cycle

Directed Hamilton cycle. Given a directed graph $G=(V, E)$, does there exist a directed cycle Γ that visits every node exactly once?

Theorem

Directed Hamilton cycle \leq_{P} Hamilton cycle.

Proof. Given a directed graph $G=(V, E)$, construct a graph G^{\prime} with $3 n$ nodes.

Directed Hamilton cycle reduces to Hamilton cycle

Lemma

G has a directed Hamilton cycle iff G^{\prime} has a Hamilton cycle.

Directed Hamilton cycle reduces to Hamilton cycle

Lemma

G has a directed Hamilton cycle iff G^{\prime} has a Hamilton cycle．

Proof．

Directed Hamilton cycle reduces to Hamilton cycle

Lemma

G has a directed Hamilton cycle iff G^{\prime} has a Hamilton cycle.

Proof.
\Rightarrow

- Suppose G has a directed Hamilton cycle Γ.
- Then G^{\prime} has an undirected Hamilton cycle (same order).

Directed Hamilton cycle reduces to Hamilton cycle

Lemma

G has a directed Hamilton cycle iff G^{\prime} has a Hamilton cycle.

Proof.
\Rightarrow

- Suppose G has a directed Hamilton cycle Г.
- Then G^{\prime} has an undirected Hamilton cycle (same order).
\Leftarrow
- Suppose G^{\prime} has an undirected Hamilton cycle Γ^{\prime}.
- Γ^{\prime} must visit nodes in G^{\prime} using one of following two orders:
...,black, white, blue, black, white, blue, black, white, blue, ...
..., black, blue, white, black, blue, white, black, blue, white, ...
- Black nodes in Γ^{\prime} comprise either a directed Hamilton cycle Γ in G, or reverse of one.

3－satisfiability reduces to directed Hamilton cycle

Theorem

3 －SAT \leq_{P} Directed Hamilton cycle．

3－satisfiability reduces to directed Hamilton cycle

Theorem

3 －SAT \leq_{P} Directed Hamilton cycle．

Proof．

3-satisfiability reduces to directed Hamilton cycle

Theorem

3 -SAT \leq_{P} Directed Hamilton cycle.

Proof.
Given an instance Φ of 3-SAT, we construct an instance G of Directed Hamilton cycle that has a Hamilton cycle iff Φ is satisfiable.

3-satisfiability reduces to directed Hamilton cycle

Theorem

3 -SAT \leq_{P} Directed Hamilton cycle.

Proof.

Given an instance Φ of 3-SAT, we construct an instance G of Directed Hamilton cycle that has a Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that has 2^{n} Hamilton cycles, with each cycle corresponding to one of the 2^{n} possible truth assignments.

3－satisfiability reduces to directed Hamilton cycle

Construction．Given 3－SAT instance Φ with n variables x_{i} and k clauses．
－Construct G to have 2^{n} Hamilton cycles．
－Intuition：traverse path i from left to right \Leftrightarrow set variables $x_{i}=$ true

Quiz

Which is truth assignment corresponding to Hamilton cycle below？
A．$x_{1}=$ true,$x_{2}=$ true,$x_{3}=$ true
C．$x_{1}=$ false，$x_{2}=$ false，$x_{3}=$ true
（3．$x_{1}=$ true,$x_{2}=$ true，$x_{3}=$ false
C．$x_{1}=$ false，$x_{2}=$ false，$x_{3}=$ false

3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_{i} and k clauses.

- For each clause: add a node and 2 edges per literal.

3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables x_{i} and k clauses.

- For each clause: add a node and 2 edges per literal.

3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

3－satisfiability reduces to directed Hamilton cycle

Lemma
Φ is satisfiable iff G has a Hamilton cycle．

Proof．

3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

Proof.

- Suppose 3-SAT instance Φ has satisfying assignment x^{*}.
- Then, define Hamilton cycle Γ in G as follows:
- if $x_{i}^{*}=$ true, traverse row i from left to right.
- if $x_{i}^{*}=$ false, traverse row i from right to left.
- for each clause C_{j}, there will be at least one row i in which we are going in "correct" direction to splice clause node C_{j} into cycle (and we splice in C_{j} exactly once)

3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

Proof.

3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

Proof. \Leftarrow

- Suppose G has a Hamilton cycle Γ.
- If Γ enters clause node C_{j}, it must depart on mate edge.
- nodes immediately before and after C_{j} are connected by an edge $e \in E$.
- removing C_{j} from cycle, and replacing it with edge e yields Hamilton cycle on $G-\left\{C_{j}\right\}$.
- Continuing in this way, we are left with a Hamilton cycle Γ^{\prime} in $G-\left\{C_{1}, C_{2}, \ldots, C_{k}\right\}$.
- Set $x_{i}^{*}=$ true if Γ^{\prime} traverses row i left-to-right; otherwise, set $x_{i}^{*}=$ false.
- traversed in "correct" direction, and each clause is satisfied.

Graph Coloring

Home reading!

Numerical Problems

Subset sum

SUBSET SUM. Given n natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ?

Subset sum

SUBSET SUM. Given n natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ?

Example. $\{215,215,275,275,355,355,420,420,580,580,655,655\}, W=1505$.

Subset sum

SUBSET SUM．Given n natural numbers w_{1}, \ldots, w_{n} and an integer W ，is there a subset that adds up to exactly W ？

Example．$\{215,215,275,275,355,355,420,420,580,580,655,655\}, W=1505$.
Yes． $215+355+355+580=1505$ ．

Subset sum

SUBSET SUM. Given n natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ?

Example. $\{215,215,275,275,355,355,420,420,580,580,655,655\}, W=1505$.
Yes. $215+355+355+580=1505$.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must be polynomial in binary encoding.

Subset sum

Theorem

3 -SAT \leq_{P} SUBSET SUM.

Theorem

3 －SAT \leq_{P} SUBSET SUM．

Proof．Given an instance Φ of 3－SAT，we construct an instance of Subset sum that has solution iff Φ is satisfiable．

3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2 n+2 k$ decimal integers, each having $n+k$ digits:

- Include one digit for each variable x_{i} and one digit for each clause C_{j}.
- Include two numbers for each variable x_{i}.
- Include two numbers for each clause C_{j}.

3-satisfiability reduces to subset sum

- Sum of each x_{i} digit is 1 ;
- Sum of each C_{j} digit is 4 .

Key property. No carries possible \Rightarrow each digit yields one equation.

	${ }^{1}$	x_{2}	x_{3}	C_{1}	C_{2}	C_{3}	
x_{1}	1	0	0	0	1	0	100,010
$\neg x_{1}$	1	0	0	1	0	1	100,101
x_{2}	0	1	0	1	0	0	10,100
$\neg x_{2}$	0	1	0	0	1	1	10,011
x_{3}	0	0	1	1	1	0	1,110
$\neg x_{3}$	0	0	1	0	0	1	1,001
	0	0	0	1	0	0	100
	0	0	0	2	0	0	200
	0	0	0	0	1	0	10
\}	0	0	0	0	2	0	20
	0	0	0	0	0	1	
(0	0	0	0	0	2	
W	1	1	1	4	4	4	111,444

3-satisfiability reduces to subset sum

Lemma

Φ is satisfiable iff there exists a subset that sums to W.

3-satisfiability reduces to subset sum

Lemma

Φ is satisfiable iff there exists a subset that sums to W.
Proof.

3-satisfiability reduces to subset sum

Lemma

Φ is satisfiable iff there exists a subset that sums to W.
Proof. \Rightarrow Suppose 3-SAT instance Φ has satisfying assignment x^{*}. If $x_{i}^{*}=$ true, select integer in row x_{i}, otherwise, select integer in row $\neg x_{i}$.

- Each x_{i} digit sums to 1 .
- Since Φ is satisfiable, each C_{j} digit sums to at least 1 from x_{i} and $\neg x_{i}$ rows.
- Select dummy integers to make C_{j} digits sum to 4 .

C_{1}	$\neg x_{1}$	\vee	x_{2}	\vee
C_{2}	$=$	x_{3}		
x_{1}	\vee	$\neg x_{2}$	\vee	x_{3}
C_{3}	$=\neg x_{1}$	\vee	$\neg x_{2}$	\vee
C_{3}	$\neg x_{3}$			

dummies to get clause columns to sum to 4

	x_{1}	x_{2}	$x 3$	C_{1}	C_{2}	C3	
x_{1}	1	0	0	0	1	0	100,010
$\neg x_{1}$	1	0	0	1	0	1	100,101
x_{2}	0	1	0	1	0	0	10,100
$\neg x_{2}$	0	1	0	0	1	1	10,011
x3	0	0	1	1	1	0	1,110
ᄀ. x_{3}	0	0	1	0	0	1	1,001
	0	0	0	1	0	0	100
	0	0	0	2	0	0	200
	0	0	0	0	1	0	10
)	0	0	0	0	2	0	20
	0	0	0	0	0	1	1
(0	0	0	0	0	2	2
W	1	1	1	4	4	4	111,444

3-satisfiability reduces to subset sum

Lemma

Φ is satisfiable iff there exists a subset that sums to W.
Proof.

3-satisfiability reduces to subset sum

Lemma

Φ is satisfiable iff there exists a subset that sums to W.
Proof. \Leftarrow Suppose there exists a subset S^{*} that sums to W. Digit x_{i} forces subset S^{*} to select either row x_{i} or row $\neg x_{i}$ (but not both). If row x_{i} selected, assign $x_{i}^{*}=\operatorname{true}$; otherwise, assign $x_{i}^{*}=$ false.

Digit C_{j} forces subset S^{*} to select at least one literal in clause.

dummies to get clause columns to sum to 4

	${ }^{1}$	x_{2}	x^{3}	C_{1}	C_{2}	C_{3}		
x_{1}	1	0	0	0	1	0	100,010	
$\rightarrow x_{1}$	1	0	0	1	0	1	100,101	
x_{2}	0	1	0	1	0	0	10,100	
ᄀ. x_{2}	0	1	0	0	1	1	10,011	
x_{3}	0	0	1	1	1	0	1,110	
$\neg . x_{3}$	0	0	1	0	0	1	1,001	
「	0	0	0	1	0	0	100	
	0	0	0	2	0	0	200	
	0	0	0	0	1	0	10	
	0	0	0	0	2	0	20	
	0	0	0	0	0	1	1	
(0	0	0	0	0	2	2	
W	1	1	1	4	4	4	111,444	

Subset sum reduces to knapsack

Subset sum. Given n natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ?

Knapsack. Given a set of items X, weights $u_{i} \geq 0$, values $v_{i} \geq 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$
\sum_{i \in S} u_{i} \leq U, \quad \sum_{i \in S} v_{i} \geq V
$$

Subset sum reduces to knapsack

Subset sum. Given n natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ?

Knapsack. Given a set of items X, weights $u_{i} \geq 0$, values $v_{i} \geq 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$
\sum_{i \in S} u_{i} \leq U, \quad \sum_{i \in S} v_{i} \geq V
$$

Recall. $O(n U)$ dynamic programming algorithm for knapsack.

Subset sum reduces to knapsack

Subset sum. Given n natural numbers w_{1}, \ldots, w_{n} and an integer W, is there a subset that adds up to exactly W ?

Knapsack. Given a set of items X, weights $u_{i} \geq 0$, values $v_{i} \geq 0$, a weight limit U, and a target value V, is there a subset $S \subseteq X$ such that:

$$
\sum_{i \in S} u_{i} \leq U, \quad \sum_{i \in S} v_{i} \geq V
$$

Recall. $O(n U)$ dynamic programming algorithm for knapsack.

Challenge. Prove subset sum \leq_{P} Knapsack.

SAT to 3SAT

From SAT problem to 3SAT problem

$$
\left\{\begin{array}{c}
\left(a_{1} \vee a_{2} \vee \cdots \vee a_{k}\right) \\
\text { is satisfied }
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{c}
\text { there is a setting of the } y_{i} \text { 's for which } \\
\left(a_{1} \vee a_{2} \vee y_{1}\right)\left(\bar{y}_{1} \vee a_{3} \vee y_{2}\right) \cdots\left(\bar{y}_{k-3} \vee a_{k-1} \vee a_{k}\right) \\
\text { are all satisfied }
\end{array}\right\}
$$

From SAT problem to 3SAT problem

$$
\left\{\begin{array}{c}
\left(a_{1} \vee a_{2} \vee \cdots \vee a_{k}\right) \\
\text { is satisfied }
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{c}
\text { there is a setting of the } y_{i} \text { 's for which } \\
\left(a_{1} \vee a_{2} \vee y_{1}\right)\left(\bar{y}_{1} \vee a_{3} \vee y_{2}\right) \cdots\left(\bar{y}_{k-3} \vee a_{k-1} \vee a_{k}\right) \\
\text { are all satisfied }
\end{array}\right\}
$$

Suppose that the clauses on the right are all satisfied. Then at least one of the literals a_{1}, \ldots, a_{k} must be true.

Otherwise y_{1} would have to be true, which would in turn force y_{2} to be true, and so on.
Conversely, if ($a_{1} \vee a_{2} \vee \ldots \vee a_{k}$) is satisfied, then some a_{i} must be true. Set y_{1}, \ldots, y_{i-2} to true and the rest to false.
constraint satisfaction

Karp's 20 poly-time reductions from satisfiability

Referred Materials

Referred Materials

- Content of this lecture comes from Chapter 8 in [KT05].

