
Design and Analysis of Algorithms (XIV)
Various Problems

Guoqiang Li
School of Software

1/61

Poly-Time Reductions

2/61

Algorithm design patterns and antipatterns

Algorithm design patterns.

• Divide and conquer.
• Dynamic programming.
• Greedy.
• Duality.
• Reductions.
• Local search.
• Approximation.
• Randomization.

Algorithm design antipatterns.

• NP-completeness. O(nk) algorithm unlikely.
• PSPACE-completeness O(nk) certification algorithm unlikely.
• Undecidability No algorithm possible.

3/61

Algorithm design patterns and antipatterns

Algorithm design patterns.

• Divide and conquer.
• Dynamic programming.
• Greedy.
• Duality.
• Reductions.
• Local search.
• Approximation.
• Randomization.

Algorithm design antipatterns.

• NP-completeness. O(nk) algorithm unlikely.
• PSPACE-completeness O(nk) certification algorithm unlikely.
• Undecidability No algorithm possible.

3/61

Algorithm design patterns and antipatterns

Algorithm design patterns.

• Divide and conquer.
• Dynamic programming.
• Greedy.
• Duality.
• Reductions.
• Local search.
• Approximation.
• Randomization.

Algorithm design antipatterns.

• NP-completeness.

O(nk) algorithm unlikely.
• PSPACE-completeness O(nk) certification algorithm unlikely.
• Undecidability No algorithm possible.

3/61

Algorithm design patterns and antipatterns

Algorithm design patterns.

• Divide and conquer.
• Dynamic programming.
• Greedy.
• Duality.
• Reductions.
• Local search.
• Approximation.
• Randomization.

Algorithm design antipatterns.

• NP-completeness. O(nk) algorithm unlikely.

• PSPACE-completeness O(nk) certification algorithm unlikely.
• Undecidability No algorithm possible.

3/61

Algorithm design patterns and antipatterns

Algorithm design patterns.

• Divide and conquer.
• Dynamic programming.
• Greedy.
• Duality.
• Reductions.
• Local search.
• Approximation.
• Randomization.

Algorithm design antipatterns.

• NP-completeness. O(nk) algorithm unlikely.
• PSPACE-completeness

O(nk) certification algorithm unlikely.
• Undecidability No algorithm possible.

3/61

Algorithm design patterns and antipatterns

Algorithm design patterns.

• Divide and conquer.
• Dynamic programming.
• Greedy.
• Duality.
• Reductions.
• Local search.
• Approximation.
• Randomization.

Algorithm design antipatterns.

• NP-completeness. O(nk) algorithm unlikely.
• PSPACE-completeness O(nk) certification algorithm unlikely.

• Undecidability No algorithm possible.

3/61

Algorithm design patterns and antipatterns

Algorithm design patterns.

• Divide and conquer.
• Dynamic programming.
• Greedy.
• Duality.
• Reductions.
• Local search.
• Approximation.
• Randomization.

Algorithm design antipatterns.

• NP-completeness. O(nk) algorithm unlikely.
• PSPACE-completeness O(nk) certification algorithm unlikely.
• Undecidability

No algorithm possible.

3/61

Algorithm design patterns and antipatterns

Algorithm design patterns.

• Divide and conquer.
• Dynamic programming.
• Greedy.
• Duality.
• Reductions.
• Local search.
• Approximation.
• Randomization.

Algorithm design antipatterns.

• NP-completeness. O(nk) algorithm unlikely.
• PSPACE-completeness O(nk) certification algorithm unlikely.
• Undecidability No algorithm possible.

3/61

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.

• Turing machine, word RAM, uniform circuits, . . .

Practice. Poly-time algorithms scale to huge problems.

4/61

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.

• Turing machine, word RAM, uniform circuits, . . .

Practice. Poly-time algorithms scale to huge problems.

4/61

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.

• Turing machine, word RAM, uniform circuits, . . .

Practice. Poly-time algorithms scale to huge problems.

4/61

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

Theory. Definition is broad and robust.

• Turing machine, word RAM, uniform circuits, . . .

Practice. Poly-time algorithms scale to huge problems.

4/61

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with poly-time algorithms.

yes probably no

shortest path longest path

min cut max cut

2-satisfiability 3-satisfiability

planar 4-colorability planar 3-colorability

bipartite vertex cover vertex cover

2D-matching 3D-matching

primality testing factoring

linear programming integer linear programming

5/61

Classify problems

Requirement. Classify problems according to those that can be solved in polynomial time and those
that cannot.

Provably requires exponential time.

• Given a constant-size program, does it halt in at most k steps?
• Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.

6/61

Classify problems

Requirement. Classify problems according to those that can be solved in polynomial time and those
that cannot.

Provably requires exponential time.

• Given a constant-size program, does it halt in at most k steps?
• Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.

6/61

Classify problems

Requirement. Classify problems according to those that can be solved in polynomial time and those
that cannot.

Provably requires exponential time.

• Given a constant-size program, does it halt in at most k steps?
• Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied classification for decades.

6/61

Poly-time reductions

Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial
time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of
problem X can be solved using:

• Polynomial number of standard computational steps, plus
• Polynomial number of calls to oracle that solves problem Y .

7/61

Poly-time reductions

Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial
time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of
problem X can be solved using:

• Polynomial number of standard computational steps, plus
• Polynomial number of calls to oracle that solves problem Y .

7/61

Poly-time reductions

Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial
time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of
problem X can be solved using:

• Polynomial number of standard computational steps, plus
• Polynomial number of calls to oracle that solves problem Y .

Notation. X ≤P Y .

Note. We pay for time to write down instances of Y sent to oracle ⇒ instances of Y must be of
polynomial size.

Novice mistake. Confusing X ≤P Y with Y ≤P X.

8/61

Poly-time reductions

Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial
time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of
problem X can be solved using:

• Polynomial number of standard computational steps, plus
• Polynomial number of calls to oracle that solves problem Y .

Notation. X ≤P Y .

Note. We pay for time to write down instances of Y sent to oracle ⇒ instances of Y must be of
polynomial size.

Novice mistake. Confusing X ≤P Y with Y ≤P X.

8/61

Quiz

Suppose that X ≤P Y . Which of the following can we infer?

A. If X can be solved in polynomial time, then so can Y .

B. X can be solved in poly time iff Y can be solved in poly time.

C. If X cannot be solved in polynomial time, then neither can Y .

D. If Y cannot be solved in polynomial time, then neither can X.

9/61

Quiz

Which of the following poly-time reductions are known?

A. FIND-MAX-FLOW ≤P FIND-MIN-CUT.

B. FIND-MIN-CUT ≤P FIND-MAX-FLOW.

C. Both A and B.

D. Neither A nor B.

10/61

Poly-time reductions

Design algorithms. If X ≤P Y and Y can be solved in polynomial time, then X can be solved in
polynomial time.

Establish intractability. If X ≤P Y and X cannot be solved in polynomial time, then Y cannot be
solved in polynomial time.

Establish equivalence. If both X ≤P Y and Y ≤P X, we use notation X ≡P Y . In this case, X can
be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

11/61

Poly-time reductions

Design algorithms. If X ≤P Y and Y can be solved in polynomial time, then X can be solved in
polynomial time.

Establish intractability. If X ≤P Y and X cannot be solved in polynomial time, then Y cannot be
solved in polynomial time.

Establish equivalence. If both X ≤P Y and Y ≤P X, we use notation X ≡P Y . In this case, X can
be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

11/61

Poly-time reductions

Design algorithms. If X ≤P Y and Y can be solved in polynomial time, then X can be solved in
polynomial time.

Establish intractability. If X ≤P Y and X cannot be solved in polynomial time, then Y cannot be
solved in polynomial time.

Establish equivalence. If both X ≤P Y and Y ≤P X, we use notation X ≡P Y . In this case, X can
be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

11/61

Packing and Covering Problems

12/61

Independent set

INDEPENDENT SET. Given a graph G = (V,E) and an integer k, is there a subset of k (or more)
vertices such that no two are adjacent?

Example. Is there an independent set of size ≥ 6?
Example. Is there an independent set of size ≥ 7?

13/61

Independent set

INDEPENDENT SET. Given a graph G = (V,E) and an integer k, is there a subset of k (or more)
vertices such that no two are adjacent?

Example. Is there an independent set of size ≥ 6?
Example. Is there an independent set of size ≥ 7?

13/61

Vertex cover

Vertex Cover. Given a graph G = (V,E) and an integer k, is there a subset of k (or fewer) vertices
such that each edge is incident to at least one vertex in the subset?

Example. Is there a vertex cover of size ≤ 4?
Example. Is there a vertex cover of size ≤ 3?

14/61

Vertex cover

Vertex Cover. Given a graph G = (V,E) and an integer k, is there a subset of k (or fewer) vertices
such that each edge is incident to at least one vertex in the subset?

Example. Is there a vertex cover of size ≤ 4?
Example. Is there a vertex cover of size ≤ 3?

14/61

Quiz

Consider the following graph G. Which are true?

A. The white vertices are a vertex cover of size 7.

B. The black vertices are an independent set of size 3.

C. Both A and B.

D. Neither A nor B.

15/61

Vertex cover and independent set reduce to one another

Theorem

Independent Set ≡P Vertex Cover.

Proof. We show S is an independent set of size k iff V − S is a vertex cover of size n− k.

16/61

Vertex cover and independent set reduce to one another

Theorem

Independent Set ≡P Vertex Cover.

Proof. We show S is an independent set of size k iff V − S is a vertex cover of size n− k.

16/61

Vertex cover and independent set reduce to one another

Theorem

Independent Set ≡P Vertex Cover.

Proof. We show S is an independent set of size k iff V − S is a vertex cover of size n− k.

⇒

• Let S be any independent set of size k.
• V − S is of size n− k.
• Consider an arbitrary edge (u, v) ∈ E.
•

S independent ⇒ either u /∈ S, or v /∈ S, or both.

⇒ either u ∈ V − S, or v ∈ V − S, or both.

• Thus, V − S covers (u, v).

17/61

Vertex cover and independent set reduce to one another

Theorem

Independent Set ≡P Vertex Cover.

Proof. We show S is an independent set of size k iff V − S is a vertex cover of size n− k.

⇒

• Let S be any independent set of size k.
• V − S is of size n− k.
• Consider an arbitrary edge (u, v) ∈ E.

•
S independent ⇒ either u /∈ S, or v /∈ S, or both.

⇒ either u ∈ V − S, or v ∈ V − S, or both.

• Thus, V − S covers (u, v).

17/61

Vertex cover and independent set reduce to one another

Theorem

Independent Set ≡P Vertex Cover.

Proof. We show S is an independent set of size k iff V − S is a vertex cover of size n− k.

⇒

• Let S be any independent set of size k.
• V − S is of size n− k.
• Consider an arbitrary edge (u, v) ∈ E.
•

S independent ⇒ either u /∈ S, or v /∈ S, or both.

⇒ either u ∈ V − S, or v ∈ V − S, or both.

• Thus, V − S covers (u, v).

17/61

Vertex cover and independent set reduce to one another

Theorem

Independent Set ≡P Vertex Cover.

Proof. We show S is an independent set of size k iff V − S is a vertex cover of size n− k.

⇒

• Let S be any independent set of size k.
• V − S is of size n− k.
• Consider an arbitrary edge (u, v) ∈ E.
•

S independent ⇒ either u /∈ S, or v /∈ S, or both.

⇒ either u ∈ V − S, or v ∈ V − S, or both.

• Thus, V − S covers (u, v).

17/61

Vertex cover and independent set reduce to one another

Theorem

Independent Set ≡P Vertex Cover.

Proof. We show S is an independent set of size k iff V − S is a vertex cover of size n− k.

⇐

• Let V − S be any independent set of size n− k.
• S is of size k.
• Consider an arbitrary edge (u, v) ∈ E.
•

V − S is a vertex cover ⇒ either u ∈ V − S, or v ∈ V − S, or both.

⇒ either u /∈ S, or v /∈ S, or both.

• Thus, S is an independent set.

18/61

Vertex cover and independent set reduce to one another

Theorem

Independent Set ≡P Vertex Cover.

Proof. We show S is an independent set of size k iff V − S is a vertex cover of size n− k.

⇐

• Let V − S be any independent set of size n− k.
• S is of size k.
• Consider an arbitrary edge (u, v) ∈ E.

•
V − S is a vertex cover ⇒ either u ∈ V − S, or v ∈ V − S, or both.

⇒ either u /∈ S, or v /∈ S, or both.

• Thus, S is an independent set.

18/61

Vertex cover and independent set reduce to one another

Theorem

Independent Set ≡P Vertex Cover.

Proof. We show S is an independent set of size k iff V − S is a vertex cover of size n− k.

⇐

• Let V − S be any independent set of size n− k.
• S is of size k.
• Consider an arbitrary edge (u, v) ∈ E.
•

V − S is a vertex cover ⇒ either u ∈ V − S, or v ∈ V − S, or both.

⇒ either u /∈ S, or v /∈ S, or both.

• Thus, S is an independent set.

18/61

Vertex cover and independent set reduce to one another

Theorem

Independent Set ≡P Vertex Cover.

Proof. We show S is an independent set of size k iff V − S is a vertex cover of size n− k.

⇐

• Let V − S be any independent set of size n− k.
• S is of size k.
• Consider an arbitrary edge (u, v) ∈ E.
•

V − S is a vertex cover ⇒ either u ∈ V − S, or v ∈ V − S, or both.

⇒ either u /∈ S, or v /∈ S, or both.

• Thus, S is an independent set.

18/61

Quiz

CLIQUE. Given a graph G = (V,E) and an integer k, is there a subset of k (or more) vertices such
that each of two are adjacent?

19/61

Set cover

SET COVER. Given a set U of elements, a collection S of subsets of U , and an integer k, are there
≤ k of these subsets whose union is equal to U?

Sample application.

• m available pieces of software.
• Set U of n capabilities that we would like our system to have.
• The ith piece of software provides the set Si ⊆ U of capabilities.
• Goal: achieve all n capabilities using fewest pieces of software.

U = {1, 2, 3, 4, 5, 6, 7}
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf = {1, 2, 6, 7}
k = 2

20/61

Set cover

SET COVER. Given a set U of elements, a collection S of subsets of U , and an integer k, are there
≤ k of these subsets whose union is equal to U?

Sample application.

• m available pieces of software.
• Set U of n capabilities that we would like our system to have.
• The ith piece of software provides the set Si ⊆ U of capabilities.
• Goal: achieve all n capabilities using fewest pieces of software.

U = {1, 2, 3, 4, 5, 6, 7}
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf = {1, 2, 6, 7}
k = 2

20/61

Quiz

Given the universe U = {1, 2, 3, 4, 5, 6, 7} and the following sets, which is the minimum size of a set
cover?

A. 1

B. 2

C. 3

D. None of the above.

U = {1, 2, 3, 4, 5, 6, 7}
Sa = {1, 4, 6} Sb = {1, 6, 7}
Sc = {1, 2, 3, 6} Sd = {1, 3, 5, 7}
Se = {2, 6, 7} Sf = {3, 4, 5}

21/61

Vertex cover reduces to set cover

Theorem

VERTEX COVER ≤P SET COVER.

Proof. Given a VERTEX COVER instance G = (V,E) and k, we construct a SET COVER instance
(U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

• Universe U = E.
• Include one subset for each node v ∈ V : Sv = {e ∈ E : e incident to v }.

U = {1, 2, 3, 4, 5, 6, 7}
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf = {1, 2, 6, 7}

22/61

Vertex cover reduces to set cover

Theorem

VERTEX COVER ≤P SET COVER.

Proof.

Given a VERTEX COVER instance G = (V,E) and k, we construct a SET COVER instance
(U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

• Universe U = E.
• Include one subset for each node v ∈ V : Sv = {e ∈ E : e incident to v }.

U = {1, 2, 3, 4, 5, 6, 7}
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf = {1, 2, 6, 7}

22/61

Vertex cover reduces to set cover

Theorem

VERTEX COVER ≤P SET COVER.

Proof. Given a VERTEX COVER instance G = (V,E) and k, we construct a SET COVER instance
(U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

• Universe U = E.
• Include one subset for each node v ∈ V : Sv = {e ∈ E : e incident to v }.

U = {1, 2, 3, 4, 5, 6, 7}
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf = {1, 2, 6, 7}

22/61

Vertex cover reduces to set cover

Theorem

VERTEX COVER ≤P SET COVER.

Proof. Given a VERTEX COVER instance G = (V,E) and k, we construct a SET COVER instance
(U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

• Universe U = E.
• Include one subset for each node v ∈ V : Sv = {e ∈ E : e incident to v }.

U = {1, 2, 3, 4, 5, 6, 7}
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf = {1, 2, 6, 7}

22/61

Vertex cover reduces to set cover

Lemma

G = (V,E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Proof. ⇒

Let X ⊆ V be a vertex cover of size k in G, then Y = {Sv : v ∈ X} is a set cover of size k.

U = {1, 2, 3, 4, 5, 6, 7}
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf = {1, 2, 6, 7}

23/61

Vertex cover reduces to set cover

Lemma

G = (V,E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Proof. ⇒

Let X ⊆ V be a vertex cover of size k in G, then Y = {Sv : v ∈ X} is a set cover of size k.

U = {1, 2, 3, 4, 5, 6, 7}
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf = {1, 2, 6, 7}

23/61

Vertex cover reduces to set cover

Lemma

G = (V,E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.

Proof. ⇐

Let Y ⊆ S be a set cover of size k in (U, S, k), then X = {v : Sv ∈ Y } is a vertex cover of size k in
G.

U = {1, 2, 3, 4, 5, 6, 7}
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf = {1, 2, 6, 7}

24/61

Constraint Satisfaction Problems

25/61

Satisfiability

Literal. A Boolean variable or its negation: xi or xi.

Clause. A disjunction of literals: Cj = x1 ∨ x2 ∨ x3

Conjunctive normal form (CNF): Φ = C1 ∧ C2 ∧ C3 ∧ C4

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different
variable).

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

yes instance: x1= true, x2= true, x3= false x4= false

Key application. Electronic design automation (EDA).

26/61

Satisfiability

Literal. A Boolean variable or its negation: xi or xi.

Clause. A disjunction of literals: Cj = x1 ∨ x2 ∨ x3

Conjunctive normal form (CNF): Φ = C1 ∧ C2 ∧ C3 ∧ C4

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different
variable).

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

yes instance: x1= true, x2= true, x3= false x4= false

Key application. Electronic design automation (EDA).

26/61

Satisfiability

Literal. A Boolean variable or its negation: xi or xi.

Clause. A disjunction of literals: Cj = x1 ∨ x2 ∨ x3

Conjunctive normal form (CNF): Φ = C1 ∧ C2 ∧ C3 ∧ C4

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different
variable).

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

yes instance: x1= true, x2= true, x3= false x4= false

Key application. Electronic design automation (EDA).

26/61

Satisfiability

Literal. A Boolean variable or its negation: xi or xi.

Clause. A disjunction of literals: Cj = x1 ∨ x2 ∨ x3

Conjunctive normal form (CNF): Φ = C1 ∧ C2 ∧ C3 ∧ C4

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different
variable).

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

yes instance: x1= true, x2= true, x3= false x4= false

Key application. Electronic design automation (EDA).

26/61

Satisfiability

Literal. A Boolean variable or its negation: xi or xi.

Clause. A disjunction of literals: Cj = x1 ∨ x2 ∨ x3

Conjunctive normal form (CNF): Φ = C1 ∧ C2 ∧ C3 ∧ C4

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different
variable).

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

yes instance: x1= true, x2= true, x3= false x4= false

Key application. Electronic design automation (EDA).

26/61

Satisfiability

Literal. A Boolean variable or its negation: xi or xi.

Clause. A disjunction of literals: Cj = x1 ∨ x2 ∨ x3

Conjunctive normal form (CNF): Φ = C1 ∧ C2 ∧ C3 ∧ C4

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different
variable).

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

yes instance: x1= true, x2= true, x3= false x4= false

Key application. Electronic design automation (EDA).

26/61

Satisfiability

Literal. A Boolean variable or its negation: xi or xi.

Clause. A disjunction of literals: Cj = x1 ∨ x2 ∨ x3

Conjunctive normal form (CNF): Φ = C1 ∧ C2 ∧ C3 ∧ C4

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different
variable).

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

yes instance: x1= true, x2= true, x3= false x4= false

Key application. Electronic design automation (EDA).
26/61

Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.

P vs. NP This hypothesis is equivalent to P ̸= NP conjecture.

https://www.facebook.com/pg/npcompleteteens

27/61

https://www.facebook.com/pg/npcompleteteens

Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.

P vs. NP This hypothesis is equivalent to P ̸= NP conjecture.

https://www.facebook.com/pg/npcompleteteens

27/61

https://www.facebook.com/pg/npcompleteteens

Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.

P vs. NP This hypothesis is equivalent to P ̸= NP conjecture.

https://www.facebook.com/pg/npcompleteteens

27/61

https://www.facebook.com/pg/npcompleteteens

3-satisfiability reduces to independent set

Theorem

3-SAT ≤P INDEPENDENT SET.

Proof. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT SET that
has an independent set of size k = |Φ| iff Φ is satisfiable.

Construction.

• G contains 3 nodes for each clause, one for each literal.
• Connect 3 literals in a clause in a triangle.
• Connect literal to each of its negations.

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

28/61

3-satisfiability reduces to independent set

Theorem

3-SAT ≤P INDEPENDENT SET.

Proof.

Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT SET that
has an independent set of size k = |Φ| iff Φ is satisfiable.

Construction.

• G contains 3 nodes for each clause, one for each literal.
• Connect 3 literals in a clause in a triangle.
• Connect literal to each of its negations.

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

28/61

3-satisfiability reduces to independent set

Theorem

3-SAT ≤P INDEPENDENT SET.

Proof. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT SET that
has an independent set of size k = |Φ| iff Φ is satisfiable.

Construction.

• G contains 3 nodes for each clause, one for each literal.
• Connect 3 literals in a clause in a triangle.
• Connect literal to each of its negations.

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

28/61

3-satisfiability reduces to independent set

Theorem

3-SAT ≤P INDEPENDENT SET.

Proof. Given an instance Φ of 3-SAT, we construct an instance (G, k) of INDEPENDENT SET that
has an independent set of size k = |Φ| iff Φ is satisfiable.

Construction.

• G contains 3 nodes for each clause, one for each literal.
• Connect 3 literals in a clause in a triangle.
• Connect literal to each of its negations.

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

28/61

3-satisfiability reduces to independent set

Theorem

3-SAT ≤P INDEPENDENT SET.

Proof.

⇒

Consider any satisfying assignment for Φ.

• Select one true literal from each clause/triangle.
• This is an independent set of size k = |Φ|.

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

29/61

3-satisfiability reduces to independent set

Theorem

3-SAT ≤P INDEPENDENT SET.

Proof. ⇒

Consider any satisfying assignment for Φ.

• Select one true literal from each clause/triangle.
• This is an independent set of size k = |Φ|.

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

29/61

3-satisfiability reduces to independent set

Theorem

3-SAT ≤P INDEPENDENT SET.

Proof.

⇐

Let S be independent set of size k.

• S must contain exactly one node in each triangle.
• Set these literals to true and remaining literals consistently.
• All clauses in Φ are satisfied.

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

30/61

3-satisfiability reduces to independent set

Theorem

3-SAT ≤P INDEPENDENT SET.

Proof. ⇐

Let S be independent set of size k.

• S must contain exactly one node in each triangle.
• Set these literals to true and remaining literals consistently.
• All clauses in Φ are satisfied.

Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)
30/61

Review

Basic reduction strategies.

• Simple equivalence: Independent Set ≡P Vertex Cover
• Special case to general case: Vertex Cover ≤P Set Cover.
• Encoding with gadgets: 3-SAT ≤P Independent Set.

Transitivity. If X ≤P Y and Y ≤P Z, then X ≤P Z.

Proof idea. Compose the two algorithms.

Example. 3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover.

31/61

Review

Basic reduction strategies.

• Simple equivalence: Independent Set ≡P Vertex Cover
• Special case to general case: Vertex Cover ≤P Set Cover.
• Encoding with gadgets: 3-SAT ≤P Independent Set.

Transitivity. If X ≤P Y and Y ≤P Z, then X ≤P Z.

Proof idea. Compose the two algorithms.

Example. 3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover.

31/61

Review

Basic reduction strategies.

• Simple equivalence: Independent Set ≡P Vertex Cover
• Special case to general case: Vertex Cover ≤P Set Cover.
• Encoding with gadgets: 3-SAT ≤P Independent Set.

Transitivity. If X ≤P Y and Y ≤P Z, then X ≤P Z.

Proof idea. Compose the two algorithms.

Example. 3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover.

31/61

Review

Basic reduction strategies.

• Simple equivalence: Independent Set ≡P Vertex Cover
• Special case to general case: Vertex Cover ≤P Set Cover.
• Encoding with gadgets: 3-SAT ≤P Independent Set.

Transitivity. If X ≤P Y and Y ≤P Z, then X ≤P Z.

Proof idea. Compose the two algorithms.

Example. 3-SAT ≤P Independent Set ≤P Vertex Cover ≤P Set Cover.

31/61

Decision, search and optimization problems

Decision problem. Does there exist a vertex cover of size ≤ k?

Search problem. Find a vertex cover of size ≤ k.

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

32/61

Decision, search and optimization problems

Decision problem. Does there exist a vertex cover of size ≤ k?

Search problem. Find a vertex cover of size ≤ k.

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

32/61

Decision, search and optimization problems

Decision problem. Does there exist a vertex cover of size ≤ k?

Search problem. Find a vertex cover of size ≤ k.

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

32/61

Decision, search and optimization problems

Decision problem. Does there exist a vertex cover of size ≤ k?

Search problem. Find a vertex cover of size ≤ k.

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another.

32/61

Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size ≤ k?

FIND VERTEX COVER. Find a vertex cover of size ≤ k.

Theorem. Vertex cover ≡P Find vertex cover.

Proof.

≤P . Decision problem is a special case of search problem.

≥P . To find a vertex cover of size ≤ k:

• Determine if there exists a vertex cover of size ≤ k.
• Find a vertex v such that G− {v} has a vertex cover of size ≤ k − 1. (any vertex in any vertex

cover of size ≤ k will have this property)
• Include v in the vertex cover.
• Recursively find a vertex cover of size ≤ k − 1 in G− {v}.

33/61

Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size ≤ k?

FIND VERTEX COVER. Find a vertex cover of size ≤ k.

Theorem. Vertex cover ≡P Find vertex cover.

Proof.

≤P . Decision problem is a special case of search problem.

≥P . To find a vertex cover of size ≤ k:

• Determine if there exists a vertex cover of size ≤ k.
• Find a vertex v such that G− {v} has a vertex cover of size ≤ k − 1. (any vertex in any vertex

cover of size ≤ k will have this property)
• Include v in the vertex cover.
• Recursively find a vertex cover of size ≤ k − 1 in G− {v}.

33/61

Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size ≤ k?

FIND VERTEX COVER. Find a vertex cover of size ≤ k.

Theorem. Vertex cover ≡P Find vertex cover.

Proof.

≤P . Decision problem is a special case of search problem.

≥P . To find a vertex cover of size ≤ k:

• Determine if there exists a vertex cover of size ≤ k.
• Find a vertex v such that G− {v} has a vertex cover of size ≤ k − 1. (any vertex in any vertex

cover of size ≤ k will have this property)
• Include v in the vertex cover.
• Recursively find a vertex cover of size ≤ k − 1 in G− {v}.

33/61

Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size ≤ k?

FIND VERTEX COVER. Find a vertex cover of size ≤ k.

Theorem. Vertex cover ≡P Find vertex cover.

Proof.

≤P . Decision problem is a special case of search problem.

≥P . To find a vertex cover of size ≤ k:

• Determine if there exists a vertex cover of size ≤ k.
• Find a vertex v such that G− {v} has a vertex cover of size ≤ k − 1. (any vertex in any vertex

cover of size ≤ k will have this property)
• Include v in the vertex cover.
• Recursively find a vertex cover of size ≤ k − 1 in G− {v}.

33/61

Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size ≤ k?

FIND VERTEX COVER. Find a vertex cover of size ≤ k.

Theorem. Vertex cover ≡P Find vertex cover.

Proof.

≤P . Decision problem is a special case of search problem.

≥P . To find a vertex cover of size ≤ k:

• Determine if there exists a vertex cover of size ≤ k.
• Find a vertex v such that G− {v} has a vertex cover of size ≤ k − 1. (any vertex in any vertex

cover of size ≤ k will have this property)
• Include v in the vertex cover.
• Recursively find a vertex cover of size ≤ k − 1 in G− {v}.

33/61

Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size ≤ k?

FIND VERTEX COVER. Find a vertex cover of size ≤ k.

Theorem. Vertex cover ≡P Find vertex cover.

Proof.

≤P . Decision problem is a special case of search problem.

≥P . To find a vertex cover of size ≤ k:

• Determine if there exists a vertex cover of size ≤ k.
• Find a vertex v such that G− {v} has a vertex cover of size ≤ k − 1. (any vertex in any vertex

cover of size ≤ k will have this property)
• Include v in the vertex cover.
• Recursively find a vertex cover of size ≤ k − 1 in G− {v}.

33/61

Optimization problems VS. Search problems VS. Decision problems

FIND VERTEX COVER. Find a vertex cover of size ≤ k.

FIND MIN VERTEX COVER. Find a vertex cover of minimum size.

Theorem. Find vertex cover ≡P Find min vertex cover.

Proof.

≤P . Search problem is a special case of optimization problem.

≥P . To find vertex cover of minimum size:

• Binary search (or linear search) for size k∗ of min vertex cover.
• Solve search problem for given k∗.

34/61

Optimization problems VS. Search problems VS. Decision problems

FIND VERTEX COVER. Find a vertex cover of size ≤ k.

FIND MIN VERTEX COVER. Find a vertex cover of minimum size.

Theorem. Find vertex cover ≡P Find min vertex cover.

Proof.

≤P . Search problem is a special case of optimization problem.

≥P . To find vertex cover of minimum size:

• Binary search (or linear search) for size k∗ of min vertex cover.
• Solve search problem for given k∗.

34/61

Optimization problems VS. Search problems VS. Decision problems

FIND VERTEX COVER. Find a vertex cover of size ≤ k.

FIND MIN VERTEX COVER. Find a vertex cover of minimum size.

Theorem. Find vertex cover ≡P Find min vertex cover.

Proof.

≤P . Search problem is a special case of optimization problem.

≥P . To find vertex cover of minimum size:

• Binary search (or linear search) for size k∗ of min vertex cover.
• Solve search problem for given k∗.

34/61

Optimization problems VS. Search problems VS. Decision problems

FIND VERTEX COVER. Find a vertex cover of size ≤ k.

FIND MIN VERTEX COVER. Find a vertex cover of minimum size.

Theorem. Find vertex cover ≡P Find min vertex cover.

Proof.

≤P . Search problem is a special case of optimization problem.

≥P . To find vertex cover of minimum size:

• Binary search (or linear search) for size k∗ of min vertex cover.
• Solve search problem for given k∗.

34/61

Optimization problems VS. Search problems VS. Decision problems

FIND VERTEX COVER. Find a vertex cover of size ≤ k.

FIND MIN VERTEX COVER. Find a vertex cover of minimum size.

Theorem. Find vertex cover ≡P Find min vertex cover.

Proof.

≤P . Search problem is a special case of optimization problem.

≥P . To find vertex cover of minimum size:

• Binary search (or linear search) for size k∗ of min vertex cover.
• Solve search problem for given k∗.

34/61

Optimization problems VS. Search problems VS. Decision problems

FIND VERTEX COVER. Find a vertex cover of size ≤ k.

FIND MIN VERTEX COVER. Find a vertex cover of minimum size.

Theorem. Find vertex cover ≡P Find min vertex cover.

Proof.

≤P . Search problem is a special case of optimization problem.

≥P . To find vertex cover of minimum size:

• Binary search (or linear search) for size k∗ of min vertex cover.
• Solve search problem for given k∗.

34/61

Sequencing Problems

35/61

Hamilton cycle

HAMILTON CYCLE. Given an undirected graph G = (V,E), does there exist a cycle Γ that visits every
node exactly once?

yes
no

36/61

Directed Hamilton cycle reduces to Hamilton cycle

DIRECTED HAMILTON CYCLE. Given a directed graph G = (V,E), does there exist a directed cycle Γ

that visits every node exactly once?

Theorem

DIRECTED HAMILTON CYCLE ≤P HAMILTON CYCLE.

Proof. Given a directed graph G = (V,E), construct a graph G′ with 3n nodes.

37/61

Directed Hamilton cycle reduces to Hamilton cycle

DIRECTED HAMILTON CYCLE. Given a directed graph G = (V,E), does there exist a directed cycle Γ

that visits every node exactly once?

Theorem

DIRECTED HAMILTON CYCLE ≤P HAMILTON CYCLE.

Proof. Given a directed graph G = (V,E), construct a graph G′ with 3n nodes.

37/61

Directed Hamilton cycle reduces to Hamilton cycle

Lemma

G has a directed Hamilton cycle iff G′ has a Hamilton cycle.

Proof.

⇒

• Suppose G has a directed Hamilton cycle Γ.
• Then G′ has an undirected Hamilton cycle (same order).

⇐

• Suppose G′ has an undirected Hamilton cycle Γ′.
• Γ′ must visit nodes in G′ using one of following two orders:

. . . , black, white, blue, black, white, blue, black, white, blue, . . .

. . . , black, blue, white, black, blue, white, black, blue, white, . . .

• Black nodes in Γ′ comprise either a directed Hamilton cycle Γ in G, or reverse of one.

38/61

Directed Hamilton cycle reduces to Hamilton cycle

Lemma

G has a directed Hamilton cycle iff G′ has a Hamilton cycle.

Proof.

⇒

• Suppose G has a directed Hamilton cycle Γ.
• Then G′ has an undirected Hamilton cycle (same order).

⇐

• Suppose G′ has an undirected Hamilton cycle Γ′.
• Γ′ must visit nodes in G′ using one of following two orders:

. . . , black, white, blue, black, white, blue, black, white, blue, . . .

. . . , black, blue, white, black, blue, white, black, blue, white, . . .

• Black nodes in Γ′ comprise either a directed Hamilton cycle Γ in G, or reverse of one.

38/61

Directed Hamilton cycle reduces to Hamilton cycle

Lemma

G has a directed Hamilton cycle iff G′ has a Hamilton cycle.

Proof.

⇒

• Suppose G has a directed Hamilton cycle Γ.
• Then G′ has an undirected Hamilton cycle (same order).

⇐

• Suppose G′ has an undirected Hamilton cycle Γ′.
• Γ′ must visit nodes in G′ using one of following two orders:

. . . , black, white, blue, black, white, blue, black, white, blue, . . .

. . . , black, blue, white, black, blue, white, black, blue, white, . . .

• Black nodes in Γ′ comprise either a directed Hamilton cycle Γ in G, or reverse of one.

38/61

Directed Hamilton cycle reduces to Hamilton cycle

Lemma

G has a directed Hamilton cycle iff G′ has a Hamilton cycle.

Proof.

⇒

• Suppose G has a directed Hamilton cycle Γ.
• Then G′ has an undirected Hamilton cycle (same order).

⇐

• Suppose G′ has an undirected Hamilton cycle Γ′.
• Γ′ must visit nodes in G′ using one of following two orders:

. . . , black, white, blue, black, white, blue, black, white, blue, . . .

. . . , black, blue, white, black, blue, white, black, blue, white, . . .

• Black nodes in Γ′ comprise either a directed Hamilton cycle Γ in G, or reverse of one.

38/61

3-satisfiability reduces to directed Hamilton cycle

Theorem

3-SAT ≤P DIRECTED HAMILTON CYCLE.

Proof.

Given an instance Φ of 3-SAT, we construct an instance G of Directed Hamilton cycle that has a
Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that
has 2n Hamilton cycles, with each cycle corresponding to one of the 2n possible truth assignments.

39/61

3-satisfiability reduces to directed Hamilton cycle

Theorem

3-SAT ≤P DIRECTED HAMILTON CYCLE.

Proof.

Given an instance Φ of 3-SAT, we construct an instance G of Directed Hamilton cycle that has a
Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that
has 2n Hamilton cycles, with each cycle corresponding to one of the 2n possible truth assignments.

39/61

3-satisfiability reduces to directed Hamilton cycle

Theorem

3-SAT ≤P DIRECTED HAMILTON CYCLE.

Proof.

Given an instance Φ of 3-SAT, we construct an instance G of Directed Hamilton cycle that has a
Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that
has 2n Hamilton cycles, with each cycle corresponding to one of the 2n possible truth assignments.

39/61

3-satisfiability reduces to directed Hamilton cycle

Theorem

3-SAT ≤P DIRECTED HAMILTON CYCLE.

Proof.

Given an instance Φ of 3-SAT, we construct an instance G of Directed Hamilton cycle that has a
Hamilton cycle iff Φ is satisfiable.

Construction overview. Let n denote the number of variables in Φ. We will construct a graph G that
has 2n Hamilton cycles, with each cycle corresponding to one of the 2n possible truth assignments.

39/61

3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables xi and k clauses.

• Construct G to have 2n Hamilton cycles.
• Intuition: traverse path i from left to right ⇔ set variables xi =true

40/61

Quiz

Which is truth assignment corresponding to Hamilton cycle below?

A. x1 = true, x2 = true, x3 = true

B. x1 = true, x2 = true, x3 = false

C. x1 = false, x2 = false, x3 = true

C. x1 = false, x2 = false, x3 = false

41/61

3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables xi and k clauses.

• For each clause: add a node and 2 edges per literal.

42/61

3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance Φ with n variables xi and k clauses.

• For each clause: add a node and 2 edges per literal.

43/61

3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

Proof. ⇒

• Suppose 3-SAT instance Φ has satisfying assignment x∗.
• Then, define Hamilton cycle Γ in G as follows:

- if x∗
i = true, traverse row i from left to right.

- if x∗
i = false, traverse row i from right to left.

- for each clause Cj , there will be at least one row i in which we are going in “correct” direction to splice
clause node Cj into cycle (and we splice in Cj exactly once)

44/61

3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

Proof.

⇒

• Suppose 3-SAT instance Φ has satisfying assignment x∗.
• Then, define Hamilton cycle Γ in G as follows:

- if x∗
i = true, traverse row i from left to right.

- if x∗
i = false, traverse row i from right to left.

- for each clause Cj , there will be at least one row i in which we are going in “correct” direction to splice
clause node Cj into cycle (and we splice in Cj exactly once)

44/61

3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

Proof. ⇒

• Suppose 3-SAT instance Φ has satisfying assignment x∗.
• Then, define Hamilton cycle Γ in G as follows:

- if x∗
i = true, traverse row i from left to right.

- if x∗
i = false, traverse row i from right to left.

- for each clause Cj , there will be at least one row i in which we are going in “correct” direction to splice
clause node Cj into cycle (and we splice in Cj exactly once)

44/61

3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

Proof.

⇐

• Suppose G has a Hamilton cycle Γ.
• If Γ enters clause node Cj , it must depart on mate edge.

- nodes immediately before and after Cj are connected by an edge e ∈ E.
- removing Cj from cycle, and replacing it with edge e yields Hamilton cycle on G− {Cj}.

• Continuing in this way, we are left with a Hamilton cycle Γ′ in G− {C1, C2, . . . , Ck}.
• Set x∗

i = true if Γ′ traverses row i left-to-right; otherwise, set x∗
i = false.

• traversed in “correct” direction, and each clause is satisfied.

45/61

3-satisfiability reduces to directed Hamilton cycle

Lemma

Φ is satisfiable iff G has a Hamilton cycle.

Proof. ⇐

• Suppose G has a Hamilton cycle Γ.
• If Γ enters clause node Cj , it must depart on mate edge.

- nodes immediately before and after Cj are connected by an edge e ∈ E.
- removing Cj from cycle, and replacing it with edge e yields Hamilton cycle on G− {Cj}.

• Continuing in this way, we are left with a Hamilton cycle Γ′ in G− {C1, C2, . . . , Ck}.
• Set x∗

i = true if Γ′ traverses row i left-to-right; otherwise, set x∗
i = false.

• traversed in “correct” direction, and each clause is satisfied.

45/61

Graph Coloring

46/61

Home reading!

47/61

Numerical Problems

48/61

Subset sum

SUBSET SUM. Given n natural numbers w1, . . . , wn and an integer W , is there a subset that adds up
to exactly W?

Example. { 215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655 }, W = 1505.

Yes. 215 + 355 + 355 + 580 = 1505.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must
be polynomial in binary encoding.

49/61

Subset sum

SUBSET SUM. Given n natural numbers w1, . . . , wn and an integer W , is there a subset that adds up
to exactly W?

Example. { 215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655 }, W = 1505.

Yes. 215 + 355 + 355 + 580 = 1505.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must
be polynomial in binary encoding.

49/61

Subset sum

SUBSET SUM. Given n natural numbers w1, . . . , wn and an integer W , is there a subset that adds up
to exactly W?

Example. { 215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655 }, W = 1505.

Yes. 215 + 355 + 355 + 580 = 1505.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must
be polynomial in binary encoding.

49/61

Subset sum

SUBSET SUM. Given n natural numbers w1, . . . , wn and an integer W , is there a subset that adds up
to exactly W?

Example. { 215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655 }, W = 1505.

Yes. 215 + 355 + 355 + 580 = 1505.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time reduction must
be polynomial in binary encoding.

49/61

Subset sum

Theorem

3-SAT ≤P SUBSET SUM.

Proof. Given an instance Φ of 3-SAT, we construct an instance of Subset sum that has solution iff Φ
is satisfiable.

50/61

Subset sum

Theorem

3-SAT ≤P SUBSET SUM.

Proof. Given an instance Φ of 3-SAT, we construct an instance of Subset sum that has solution iff Φ
is satisfiable.

50/61

3-satisfiability reduces to subset sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form 2n+ 2k decimal
integers, each having n+ k digits:

• Include one digit for each variable xi and one digit for each clause Cj .

• Include two numbers for each variable xi.

• Include two numbers for each clause Cj .

51/61

3-satisfiability reduces to subset sum

• Sum of each xi digit is 1;
• Sum of each Cj digit is 4.

Key property. No carries possible ⇒ each digit
yields one equation.

52/61

3-satisfiability reduces to subset sum

Lemma

Φ is satisfiable iff there exists a subset that sums to W .

Proof. ⇒ Suppose 3-SAT instance Φ has satisfying assignment x∗. If x∗
i = true, select integer

in row xi, otherwise, select integer in row ¬xi.

• Each xi digit sums to 1.
• Since Φ is satisfiable, each Cj digit sums to

at least 1 from xi and ¬xi rows.
• Select dummy integers to make Cj digits

sum to 4.

53/61

3-satisfiability reduces to subset sum

Lemma

Φ is satisfiable iff there exists a subset that sums to W .

Proof.

⇒ Suppose 3-SAT instance Φ has satisfying assignment x∗. If x∗
i = true, select integer

in row xi, otherwise, select integer in row ¬xi.

• Each xi digit sums to 1.
• Since Φ is satisfiable, each Cj digit sums to

at least 1 from xi and ¬xi rows.
• Select dummy integers to make Cj digits

sum to 4.

53/61

3-satisfiability reduces to subset sum

Lemma

Φ is satisfiable iff there exists a subset that sums to W .

Proof. ⇒ Suppose 3-SAT instance Φ has satisfying assignment x∗. If x∗
i = true, select integer

in row xi, otherwise, select integer in row ¬xi.

• Each xi digit sums to 1.
• Since Φ is satisfiable, each Cj digit sums to

at least 1 from xi and ¬xi rows.
• Select dummy integers to make Cj digits

sum to 4.

53/61

3-satisfiability reduces to subset sum

Lemma

Φ is satisfiable iff there exists a subset that sums to W .

Proof.

⇐ Suppose there exists a subset S∗ that sums to W . Digit xi forces subset S∗ to select
either row xi or row ¬xi (but not both). If row xi selected, assign x∗

i = true; otherwise, assign
x∗
i = false.

Digit Cj forces subset S∗ to select at least one
literal in clause.

54/61

3-satisfiability reduces to subset sum

Lemma

Φ is satisfiable iff there exists a subset that sums to W .

Proof. ⇐ Suppose there exists a subset S∗ that sums to W . Digit xi forces subset S∗ to select
either row xi or row ¬xi (but not both). If row xi selected, assign x∗

i = true; otherwise, assign
x∗
i = false.

Digit Cj forces subset S∗ to select at least one
literal in clause.

54/61

Subset sum reduces to knapsack

Subset sum. Given n natural numbers w1, . . . , wn and an integer W , is there a subset that adds up
to exactly W?

Knapsack. Given a set of items X, weights ui ≥ 0, values vi ≥ 0, a weight limit U , and a target value
V , is there a subset S ⊆ X such that:∑

i∈S

ui ≤ U,
∑
i∈S

vi ≥ V

Recall. O(nU) dynamic programming algorithm for knapsack.

Challenge. Prove subset sum ≤P Knapsack.

55/61

Subset sum reduces to knapsack

Subset sum. Given n natural numbers w1, . . . , wn and an integer W , is there a subset that adds up
to exactly W?

Knapsack. Given a set of items X, weights ui ≥ 0, values vi ≥ 0, a weight limit U , and a target value
V , is there a subset S ⊆ X such that:∑

i∈S

ui ≤ U,
∑
i∈S

vi ≥ V

Recall. O(nU) dynamic programming algorithm for knapsack.

Challenge. Prove subset sum ≤P Knapsack.

55/61

Subset sum reduces to knapsack

Subset sum. Given n natural numbers w1, . . . , wn and an integer W , is there a subset that adds up
to exactly W?

Knapsack. Given a set of items X, weights ui ≥ 0, values vi ≥ 0, a weight limit U , and a target value
V , is there a subset S ⊆ X such that:∑

i∈S

ui ≤ U,
∑
i∈S

vi ≥ V

Recall. O(nU) dynamic programming algorithm for knapsack.

Challenge. Prove subset sum ≤P Knapsack.

55/61

SAT to 3SAT

56/61

From SAT problem to 3SAT problem

{
(a1 ∨ a2 ∨ · · · ∨ ak)
is satisfied

}
⇐⇒

there is a setting of the yi’s for which
(a1 ∨ a2 ∨ y1) (y1 ∨ a3 ∨ y2) · · · (yk−3 ∨ ak−1 ∨ ak)

are all satisfied

Suppose that the clauses on the right are all satisfied. Then at least one of the literals a1, . . . , ak

must be true.

Otherwise y1 would have to be true, which would in turn force y2 to be true, and so on.

Conversely, if (a1 ∨ a2 ∨ . . . ∨ ak) is satisfied, then some ai must be true. Set y1, . . . , yi−2 to true

and the rest to false.

57/61

From SAT problem to 3SAT problem

{
(a1 ∨ a2 ∨ · · · ∨ ak)
is satisfied

}
⇐⇒

there is a setting of the yi’s for which
(a1 ∨ a2 ∨ y1) (y1 ∨ a3 ∨ y2) · · · (yk−3 ∨ ak−1 ∨ ak)

are all satisfied

Suppose that the clauses on the right are all satisfied. Then at least one of the literals a1, . . . , ak

must be true.

Otherwise y1 would have to be true, which would in turn force y2 to be true, and so on.

Conversely, if (a1 ∨ a2 ∨ . . . ∨ ak) is satisfied, then some ai must be true. Set y1, . . . , yi−2 to true

and the rest to false.

57/61

Poly-time reductions

3-SAT

constraint satisfaction

3-SAT poly-time reduces
to INDEPENDENT-SET

INDEPENDENT-SET SUBSET-SUMDIR-HAM-CYCLE 3-COLOR

VERTEX-COVER KNAPSACKHAM-CYCLE

SET-COVER

packing and covering numericalsequencing partitioning

58/61

Karp’s 20 poly-time reductions from satisfiability

59/61

Referred Materials

60/61

Referred Materials

• Content of this lecture comes from Chapter 8 in [KT05].

61/61

	Poly-Time Reductions
	Packing and Covering Problems
	Constraint Satisfaction Problems
	Sequencing Problems
	Graph Coloring
	Numerical Problems
	SAT to 3SAT
	Referred Materials

