

Design and Analysis of Algorithms XV

Complexity Classes

Guoqiang Li
School of Software

P VS. NP

Decision problem.

- Problem X is a set of strings.
- Instance s is one string.
- Algorithm A solves problem $X: A(s)= \begin{cases}y e s & \text { if } s \in X \\ n o & \text { if } s \notin X\end{cases}$

Decision problem.

- Problem X is a set of strings.
- Instance s is one string.
- Algorithm A solves problem $X: A(s)= \begin{cases}y e s & \text { if } s \in X \\ n o & \text { if } s \notin X\end{cases}$

Algorithm A runs in polynomial time if for every string $s, A(s)$ terminates in $\leq p(|s|)$ "steps", where $p(\cdot)$ is some polynomial function.

Decision problem.

- Problem X is a set of strings.
- Instance s is one string.
- Algorithm A solves problem $X: A(s)= \begin{cases}y e s & \text { if } s \in X \\ n o & \text { if } s \notin X\end{cases}$

Algorithm A runs in polynomial time if for every string $s, A(s)$ terminates in $\leq p(|s|)$ "steps", where $p(\cdot)$ is some polynomial function.

P: set of decision problems for which there exists a poly-time algorithm.

Decision problem.

- Problem X is a set of strings.
- Instance s is one string.
- Algorithm A solves problem $X: A(s)= \begin{cases}\text { yes } & \text { if } s \in X \\ \text { no } & \text { if } s \notin X\end{cases}$

Algorithm A runs in polynomial time if for every string $s, A(s)$ terminates in $\leq p(|s|)$ "steps", where $p(\cdot)$ is some polynomial function.

P: set of decision problems for which there exists a poly-time algorithm.

```
problem PRImes: {2,3,5,7,11,13,17,19,23,29,31,\ldots}
instance s: 592335744548702854681
algorithm: Agrawal-Kayal-Saxena (2002)
```


Some problems in \mathbf{P}

Shanghai Jiao Tong UNIVERSITY
P. Decision problems for which there exists a poly-time algorithm.

problem	description	poly-time algorithm	yes	no
MULTIPLE	Is x a multiple of y ?	grade-school division	51, 17	51, 16
REL-PRIME	Are x and y relatively prime?	Euclid's algorithm	34, 39	34, 51
PRIMES	Is x prime?	Agrawal-Kayal- Saxena	53	51
EDIT-DISTANCE	Is the edit distance between x and y less than 5 ?	Needleman -Wunsch	niether neither	acgggt tttta
L-SOLVE	Is there a vector x that satisfies $A x=b$?	Gauss-Edmonds elimination	$\left[\begin{array}{ccc}0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15\end{array}\right] \cdot\left[\begin{array}{c}4 \\ 2 \\ 30\end{array}\right]$	$\left[\begin{array}{llll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
U-CONN	Is an undirected graph G connected?	depth-first search	00	$\alpha_{0}^{0} 0$

Definition. Algorithm $C(s, t)$ is a certifier for problem X if for every string $s: s \in X$ iff there exists a string t such that $C(s, t)=y e s$.

Definition. Algorithm $C(s, t)$ is a certifier for problem X if for every string $s: s \in X$ iff there exists a string t such that $C(s, t)=y e s$.

NP: set of decision problems for which there exists a poly-time certifier.

- $C(s, t)$ is a poly-time algorithm.
- Certificate t is of polynomial size: $|t| \leq p(|s|)$ for some polynomial $p(\cdot)$.

Definition. Algorithm $C(s, t)$ is a certifier for problem X if for every string $s: s \in X$ iff there exists a string t such that $C(s, t)=y e s$.

NP: set of decision problems for which there exists a poly-time certifier.

- $C(s, t)$ is a poly-time algorithm.
- Certificate t is of polynomial size: $|t| \leq p(|s|)$ for some polynomial $p(\cdot)$.

```
problem COMPOSITES: }\quad{4,6,8,9,10,12,14,15,16,18,20,\ldots
instance s: 437669
certificate t: 
certifier C(s, t) : grade school division
```


Certifiers and certificates: satisfiability

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals.

Certifiers and certificates: satisfiability

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifiers and certificates: satisfiability

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

```
instance s }\Phi=(\overline{\mp@subsup{x}{1}{}}\vee\mp@subsup{x}{2}{}\vee\mp@subsup{x}{3}{})\wedge(\mp@subsup{x}{1}{}\vee\overline{\mp@subsup{x}{2}{}}\vee\mp@subsup{x}{3}{})\wedge(\overline{\mp@subsup{x}{1}{}}\vee\mp@subsup{x}{2}{}\vee\mp@subsup{x}{4}{}
certificate t }\mp@subsup{x}{1}{}=\mathrm{ true, }\mp@subsup{x}{2}{}=\mathrm{ true, }\mp@subsup{x}{3}{}=\mathrm{ false, , }\mp@subsup{x}{4}{}=\mathrm{ false
```


Certifiers and certificates: satisfiability

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

```
instance s T= (\overline{\mp@subsup{x}{1}{}}\vee\mp@subsup{x}{2}{}\vee\mp@subsup{x}{3}{})\wedge(\mp@subsup{x}{1}{}\vee\overline{\mp@subsup{x}{2}{}}\vee\mp@subsup{x}{3}{})\wedge(\overline{\mp@subsup{x}{1}{}}\vee\mp@subsup{x}{2}{}\vee\mp@subsup{x}{4}{})
certificate t }\mp@subsup{x}{1}{}=\mathrm{ true, }\mp@subsup{x}{2}{}=\mathrm{ true, }\mp@subsup{x}{3}{}=\mathrm{ false, , }\mp@subsup{x}{4}{}=\mathrm{ false
```

Conclusions. $\mathrm{SAT} \in \mathbf{N P}, 3-\mathrm{SAT} \in \mathbf{N P}$

Certifiers and certificates: Hamilton path

Hamilton Path. Given an undirected graph $G=(V, E)$, does there exist a simple path P that visits every node?

Certifiers and certificates: Hamilton path

Hamilton Path. Given an undirected graph $G=(V, E)$, does there exist a simple path P that visits every node?

Certificate. A permutation π of the n nodes.
Certifier. Check that π contains each node in V exactly once, and that G contains an edge between each pair of adjacent nodes.

instance s

certificate t

Certifiers and certificates: Hamilton path

Hamilton Path. Given an undirected graph $G=(V, E)$, does there exist a simple path P that visits every node?

Certificate. A permutation π of the n nodes.
Certifier. Check that π contains each node in V exactly once, and that G contains an edge between each pair of adjacent nodes.

instance s

certificate t

Conclusion. Hamilton path \in NP.

Some problems in NP

NP. Decision problems for which there exists a poly-time certifier.

problem	description	poly-time algorithm	yes	no
L-solve	Is there a vector x that satisfies $A x=b$?	Gauss-Edmonds elimination	$\left[\begin{array}{ccc}0 & 1 & 1 \\ 2 & 4 & -2 \\ 0 & 3 & 15\end{array}\right],\left[\begin{array}{c}4 \\ 2 \\ 36\end{array}\right]$	$\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
Composites	Is x composite ?	Agrawal-Kayal- Saxena	51	53
Factor	Does x have a nontrivial factor less than y ?	???	$(56159,50)$	$(55687,50)$
SAT	Given a CNF formula, does it have a satisfying truth assignment?	???	$\begin{array}{rr} \neg x_{1} \vee & x_{2} \vee \neg x_{3} \\ x_{1} \vee \neg x_{2} \vee & x_{3} \\ \neg x_{1} \vee \neg x_{2} \vee & x_{3} \end{array}$	$\begin{array}{rr} \hline & \neg x_{2} \\ x_{1} \vee & x_{2} \\ \neg x_{1} \vee & x_{2} \\ \hline \end{array}$
Hamilton path	Is there a simple path between u and v that visits every node?	???		

Quiz

Which of the following graph problems are known to be in NP?

A. Is the length of the longest simple path $\leq k$?
B. Is the length of the longest simple path $\geq k$?
C. Is the length of the longest simple path $=k$?
(D. Find the length of the longest simple path.
Θ All of the above.

Quiz

In complexity theory, the abbreviation NP stands for .
(4) Nope.
(3) No problem.
© Not polynomial time.
(0) Not polynomial space.
© © Nondeterministic polynomial time.

Significance of NP

NP. Decision problems for which there exists a poly-time certifier.

Significance of NP

NP. Decision problems for which there exists a poly-time certifier.
"NP captures vast domains of computational, scientific, and mathematical endeavors, and seems to roughly delimit what mathematicians and scientists have been aspiring to compute feasibly."
-Christos Papadimitriou

Significance of NP

NP. Decision problems for which there exists a poly-time certifier.
"NP captures vast domains of computational, scientific, and mathematical endeavors, and seems to roughly delimit what mathematicians and scientists have been aspiring to compute feasibly."
-Christos Papadimitriou
"In an ideal world it would be renamed P vs VP. "
-Clyde Kruskal

P, NP, and EXP

P. Decision problems for which there exists a poly-time algorithm.

NP. Decision problems for which there exists a poly-time certifier.
EXP. Decision problems for which there exists an exponential-time algorithm.

P, NP, and EXP

Proposition. $\mathbf{P} \subseteq \mathbf{N P}$.

P, NP, and EXP

Proposition. $\mathbf{P} \subseteq \mathbf{N P}$.

Proof.

P, NP, and EXP

Proposition. $\mathbf{P} \subseteq \mathbf{N P}$.

Proof. Consider any problem $X \in \mathbf{P}$.

- By definition, there exists a poly-time algorithm $A(s)$ that solves X.
- Certificate $t=\varepsilon$, certifier $C(s, t)=A(s)$.

P, NP, and EXP

Proposition. $\mathbf{P} \subseteq \mathbf{N P}$.

Proof. Consider any problem $X \in \mathbf{P}$.

- By definition, there exists a poly-time algorithm $A(s)$ that solves X.
- Certificate $t=\varepsilon$, certifier $C(s, t)=A(s)$.

Proposition. NP $\subseteq \mathbf{E X P}$.

P, NP, and EXP

Proposition. $\mathbf{P} \subseteq \mathbf{N P}$.

Proof. Consider any problem $X \in \mathbf{P}$.

- By definition, there exists a poly-time algorithm $A(s)$ that solves X.
- Certificate $t=\varepsilon$, certifier $C(s, t)=A(s)$.

Proposition. NP \subseteq EXP.
Proof. Consider any problem $X \in \mathbf{N P}$.

P，NP，and EXP

Proposition． $\mathbf{P} \subseteq \mathbf{N P}$ ．

Proof．Consider any problem $X \in \mathbf{P}$ ．
－By definition，there exists a poly－time algorithm $A(s)$ that solves X ．
－Certificate $t=\varepsilon$ ，certifier $C(s, t)=A(s)$ ．

Proposition．NP $\subseteq \mathbf{E X P}$ ．

Proof．Consider any problem $X \in \mathbf{N P}$ ．
－By definition，there exists a poly－time certifier $C(s, t)$ for X ，where certificate t satisfies $|t| \leq p(|s|)$ for some polynomial $p(\cdot)$ ．
－To solve instance s ，run $C(s, t)$ on all strings t with $|t| \leq p(|s|)$ ．
－Return yes iff $C(s, t)$ returns yes for any of these potential certificates．

P, NP, and EXP

Proposition. $\mathbf{P} \subseteq \mathbf{N P}$.

Proof. Consider any problem $X \in \mathbf{P}$.

- By definition, there exists a poly-time algorithm $A(s)$ that solves X.
- Certificate $t=\varepsilon$, certifier $C(s, t)=A(s)$.

Proposition. NP $\subseteq \mathbf{E X P}$.

Proof. Consider any problem $X \in \mathbf{N P}$.

- By definition, there exists a poly-time certifier $C(s, t)$ for X, where certificate t satisfies $|t| \leq p(|s|)$ for some polynomial $p(\cdot)$.
- To solve instance s, run $C(s, t)$ on all strings t with $|t| \leq p(|s|)$.
- Return yes iff $C(s, t)$ returns yes for any of these potential certificates.

Fact. $\mathbf{P} \neq \mathbf{E X P} \Rightarrow$ either $\mathbf{P} \neq \mathbf{N P}$, or $\mathbf{N P} \neq \mathbf{E X P}$, or both.

The main question: P vs. NP

Q. How to solve an instance of 3-SAT with n variables?

The main question： P vs．NP

Q．How to solve an instance of 3－SAT with n variables？
A．Exhaustive search：try all 2^{n} truth assignments．

The main question: P vs. NP

Q. How to solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2^{n} truth assignments.
Q. Can we do anything substantially more clever?

The main question: P vs. NP

Q. How to solve an instance of 3-SAT with n variables?
A. Exhaustive search: try all 2^{n} truth assignments.
Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for 3-SAT. "intractable"

The main question: P vs. NP

Does $\mathbf{P}=\mathbf{N P}$? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
Is the decision problem as easy as the certification problem?

if $P=N P$

if $\mathbf{P} \neq \mathbf{N} \mathbf{P}$

The main question: P vs. NP

Does $\mathbf{P}=\mathbf{N P}$? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
Is the decision problem as easy as the certification problem?

if $\mathbf{P}=\mathbf{N} \mathbf{P}$

if $\mathbf{P} \neq \mathbf{N} \mathbf{P}$

If yes... Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR...
If no... No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER. . .

The main question： P vs．NP

Does $\mathbf{P}=\mathbf{N P}$ ？［Cook 1971，Edmonds，Levin，Yablonski，Gödel］
Is the decision problem as easy as the certification problem？

if $\mathbf{P}=\mathbf{N P}$

if $\mathbf{P} \neq \mathbf{N} \mathbf{P}$

If yes．．．Efficient algorithms for 3－SAT，TSP，VERTEX－COVER，FACTOR．．．
If no．．．No efficient algorithms possible for 3－SAT，TSP，VERTEX－COVER．．．

Millennium prize. $\$ 1$ million for resolution of $\mathbf{P} \neq \mathbf{N P}$ problem.

Glay Mathematics Institute
Dedicated to increasing and ditsseminating mat hematical knowledge

Millennium Problems
In order to celebrate mathematics in the new millennium, The Clay
Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven Prize Problems. The Sclentific Advisory Board of CMI selected these problems, focusing on important cassic questions that have resisted solution over the years. The Board of Dractors of CMI designated a $\$ 7$ million prize fund for the solution to these problens, with $\$ 1$ million allocated to each. During the Millennium Meeting held on May 24, 2000 at the Collège de France, Timothy Gowers presented a lecture entitled The Importance of Mothematics, aimed for the general public, while John Tate and Michael Ativah spoke on the problems. The CMI invited specialists to formulate each problem.

Birch and Swinnerton-Dyer Coriecture Hocge Coniec Navier-Stokes Equations
P vs NP
Poincaré Coniccture Poincoré Coniccture Yana-Mils Theory

- Rules

Millennium Meetina Videos

NP-complete

Definition

Problem X polynomial (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- polynomial number of standard computational steps, and
- Polynomial number of calls to oracle that solves problem Y.

Definition

Problem X polynomial (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- polynomial number of standard computational steps, and
- Polynomial number of calls to oracle that solves problem Y.

Definition

Problem X polynomial (Karp) transforms to problem Y if given any instance x of X, we can construct an instance y of Y such that x is a yes instance of X iff y is a yes instance of Y.

Definition

Problem X polynomial (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- polynomial number of standard computational steps, and
- Polynomial number of calls to oracle that solves problem Y.

Definition

Problem X polynomial (Karp) transforms to problem Y if given any instance x of X, we can construct an instance y of Y such that x is a yes instance of X iff y is a yes instance of Y.

Note. Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X. Almost all previous reductions were of this form.

Definition

Problem X polynomial (Cook) reduces to problem Y if arbitrary instances of problem X can be solved using:

- polynomial number of standard computational steps, and
- Polynomial number of calls to oracle that solves problem Y.

Definition

Problem X polynomial (Karp) transforms to problem Y if given any instance x of X, we can construct an instance y of Y such that x is a yes instance of X iff y is a yes instance of Y.

Note. Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at the end of the algorithm for X. Almost all previous reductions were of this form.

Open question. Are these two concepts the same with respect to NP?

NP－complete

NP－complete．A problem $Y \in \mathbf{N P}$ with the property that for every problem $X \in \mathbf{N P}, X \leq_{P} Y$ ．

NP-complete

NP-complete. A problem $Y \in \mathbf{N P}$ with the property that for every problem $X \in \mathbf{N P}, X \leq_{P} Y$.

Proposition

Suppose $Y \in \boldsymbol{N P}$-complete. Then, $Y \in \boldsymbol{P}$ iff $\boldsymbol{P}=\boldsymbol{N} \boldsymbol{P}$.

NP－complete

NP－complete．A problem $Y \in \mathbf{N P}$ with the property that for every problem $X \in \mathbf{N P}, X \leq_{P} Y$ ．

Proposition

Suppose $Y \in \boldsymbol{N P}$－complete．Then，$Y \in \boldsymbol{P}$ iff $\boldsymbol{P}=\boldsymbol{N} \mathbf{P}$ ．

Proof．

NP－complete

NP－complete．A problem $Y \in \mathbf{N P}$ with the property that for every problem $X \in \mathbf{N P}, X \leq_{P} Y$ ．

Proposition

Suppose $Y \in \boldsymbol{N P}$－complete．Then，$Y \in \boldsymbol{P}$ iff $\boldsymbol{P}=\boldsymbol{N} \mathbf{P}$ ．

Proof．
\Leftarrow If $\mathbf{P}=\mathbf{N} \mathbf{P}$ ，then $Y \in \mathbf{P}$ ．

NP-complete

NP-complete. A problem $Y \in \mathbf{N P}$ with the property that for every problem $X \in \mathbf{N P}, X \leq_{P} Y$.

Proposition

```
Suppose Y \inNP
```

```
Proof.
& If P}=\mathbf{NP}\mathrm{ , then }Y\in\mathbf{P}
# Suppose Y & P.
    - Consider any problem X NP. Since }X\mp@subsup{\leq}{P}{}Y\mathrm{ , we have }X\in\mathbf{P}\mathrm{ .
    - This implies NP\subseteqP.
    - We already know P}\subseteq\mathbf{P}P\mathrm{ . Thus P=NP
```


NP-complete

NP-complete. A problem $Y \in \mathbf{N P}$ with the property that for every problem $X \in \mathbf{N P}, X \leq_{P} Y$.

Proposition

```
Suppose Y 㖉complete. Then, Y \in P iff P=NP
```

Proof.
\Leftarrow If $\mathbf{P}=\mathbf{N} \mathbf{P}$, then $Y \in \mathbf{P}$.
$\Rightarrow \quad$ Suppose $Y \in \mathbf{P}$.

- Consider any problem $X \in \mathbf{N P}$. Since $X \leq_{P} Y$, we have $X \in \mathbf{P}$.
- This implies NP $\subseteq \mathbf{P}$.
- We already know $\mathbf{P} \subseteq \mathbf{N P}$. Thus $\mathbf{P}=\mathbf{N P}$.

Fundamental question. Are there any "natural" NP-complete problems?

The＂first＂NP－complete problem

Theorem（Cook 1971，Levin 1973 ）

$S A T \in \mathbf{N P}$－complete．

ПРОБЛЕМЫ ПЕРЕДАЧИ ИНФОРМАЦИИ

 удка ыали न．А．Iceun

and

Establishing NP-completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Establishing NP-completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe. To prove that $Y \in$ NP-complete:

Establishing NP-completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe. To prove that $Y \in$ NP-complete:

- Step 1. Show that $Y \in$ NP.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{P} Y$.

Establishing NP-completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe. To prove that $Y \in$ NP-complete:

- Step 1. Show that $Y \in \mathbf{N P}$.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{P} Y$.

Proposition

If $X \in \mathbf{N P}$-complete, $Y \in \mathbf{N P}$, and $X \leq_{P} Y$, then $Y \in \mathbf{N P}$-complete.

Establishing NP-completeness

Remark. Once we establish first "natural" NP-complete problem, others fall like dominoes.

Recipe. To prove that $Y \in$ NP-complete:

- Step 1. Show that $Y \in \mathbf{N P}$.
- Step 2. Choose an NP-complete problem X.
- Step 3. Prove that $X \leq_{P} Y$.

Proposition

If $X \in \mathbf{N P}$-complete, $Y \in \mathbf{N P}$, and $X \leq_{P} Y$, then $Y \in \mathbf{N P}$-complete.

Proof. Consider any problem $W \in \mathbf{N P}$. Then, both $W \leq_{P} X$ and $X \leq_{P} Y$.

- By transitivity, $W \leq_{P} Y$.
- Hence $Y \in$ NP-complete.

Quiz

Suppose that $X \in \mathbf{N P}$－Complete，$Y \in \mathbf{N P}$ ，and $X \leq_{P} Y$ ．Which can you infer？
（4．Y is NP－complete．
B．If $Y \notin \mathbf{P}$ ，then $\mathbf{P} \neq \mathbf{N} \mathbf{P}$ ．
C．If $\mathbf{P} \neq \mathbf{N P}$ ，then neither X nor Y is in \mathbf{P} ．
（D．All of the above．

Implications of Karp

Implications of Cook-Levin

Implications of Karp + Cook-Levin

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

- Packing/covering problems: Set cover, Vertex cover Independent set.

Some NP－complete problems

Basic genres of NP－complete problems and paradigmatic examples．
－Packing／covering problems：Set cover，Vertex cover Independent set．
－Constraint satisfaction problems：Circuit SAT，SAT，3－SAT．

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

- Packing/covering problems: Set cover, Vertex cover Independent set.
- Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.
- Sequencing problems: Hamilton circle, TSP.

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

- Packing/covering problems: Set cover, Vertex cover Independent set.
- Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.
- Sequencing problems: Hamilton circle, TSP.
- Partitioning problems: 3D-matching, 3-color.

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

- Packing/covering problems: Set cover, Vertex cover Independent set.
- Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.
- Sequencing problems: Hamilton circle, TSP.
- Partitioning problems: 3D-matching, 3-color.
- Numerical problems: Subset sum, Knapsack.

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

- Packing/covering problems: Set cover, Vertex cover Independent set.
- Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.
- Sequencing problems: Hamilton circle, TSP.
- Partitioning problems: 3D-matching, 3-color.
- Numerical problems: Subset sum, Knapsack.

Practice. Most NP problems are known to be in either P or NP-complete.

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

- Packing/covering problems: Set cover, Vertex cover Independent set.
- Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.
- Sequencing problems: Hamilton circle, TSP.
- Partitioning problems: 3D-matching, 3-color.
- Numerical problems: Subset sum, Knapsack.

Practice. Most NP problems are known to be in either P or NP-complete.
NP-intermediate? Factor, Discrete log, Graph isomorphism, . . .

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

- Packing/covering problems: Set cover, Vertex cover Independent set.
- Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.
- Sequencing problems: Hamilton circle, TSP.
- Partitioning problems: 3D-matching, 3-color.
- Numerical problems: Subset sum, Knapsack.

Practice. Most NP problems are known to be in either \mathbf{P} or NP-complete.
NP-intermediate? Factor, Discrete log, Graph isomorphism, ...

Theorem (Ladner 1975)

Unless $\mathbf{P}=\mathbf{N P}$, there exist problems in NP that are in neither \mathbf{P} nor $\mathbf{N P}$-complete.

More hard computational problems

Garey and Johnson. Computers and Intractability.

- Appendix includes over 300 NP-complete problems.
- Most cited reference in computer science literature.

Most Cited Computer Science Citations

This list is generated from documents in the Cite Seork database as of January 17, 2013. This list is automatically generated and may contain errore. The list is genorated in bateh mode and citation counts may differ from those currenty in the CiteSeer ${ }^{x}$ database, since the database is continuously updated.
All Years | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1990 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2000 | 2007 | 2000 | 2000 | 2010 | 2011 | 2012 | 2013
M R Garey, D S Johnson
Computers and intractability. A Guide to the Theory of NP-Completeness 1979
8665
2. TCormen, CEL Leisorson, R Rivos

Introduction to Algorithms 1990
7210
The nature of statistical learning theory 1998
6580
4. A P Dempster, $\mathrm{N} M$ Lairc, D B Rubin

Maximum likelhood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977 OB2
5. T Cover, JThomas

Elements of information Theory 1991
6075
b. DE Goldberg

Genetc Algorithms in Search, Optimization, and Machine Learning, 1989 5998
7. J Pearl

Probabilistic Reasoning in Inteligent Systems: Networks of Plausible Inference 1988
5582
8. E Gamma, R Helm, R Johnson, J Vissides

Design Patterns: Elements of Reusable Object-Oriented Sofware 1995
4614
9. CEShannon

A mathematcal theory of communication Bell Syst. Tec. J, 1948
4118
10. JR Quinlan

C4.5: Programs for Machine Learning 1993
4018

More hard computational problems

[^0]
co-NP

Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Example 1. SAT vs. Un-SAT.

- Can prove a CNF formula is satisfiable by specifying an assignment.
- How could we prove that a formula is not satisfiable?

Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Example 1. SAT vs. Un-SAT.

- Can prove a CNF formula is satisfiable by specifying an assignment.
- How could we prove that a formula is not satisfiable?

$$
\text { SAT. Given a CNF formula } \Phi \text {, is there a satisfying truth assignment? }
$$

Un-SAT. Given a CNF formula Φ, is there no satisfying truth assignment?

Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.
Example 2. Hamilton cycle vs. No Hamilton cycle.

- Can prove a graph is Hamiltonian by specifying a permutation.
- How could we prove that a graph is not Hamiltonian?

Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.
Example 2. Hamilton cycle vs. No Hamilton cycle.

- Can prove a graph is Hamiltonian by specifying a permutation.
- How could we prove that a graph is not Hamiltonian?

Hamilton cycle. Given a graph $G=(V, E)$, is there a simple cycle Γ that contains every node in V ?

No Hamilton cycle. Given a graph $G=(V, E)$, is there no simple cycle Γ that contains every node in V ?

Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.
Q. How to classify Un-SAT and No Hamilton cycle?

Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.
Q. How to classify Un-SAT and No Hamilton cycle?

- SAT \in NP-complete and SAT \equiv_{P} Un-SAT.
- Hamilton circle \in NP-complete and Hamilton circle \equiv_{P} No Hamilton circle.
- But neither Un-SAT nor No Hamilton circle are known to be in NP.

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Example. SAT, Hamilton cycle, and Composites.

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Example. SAT, Hamilton cycle, and Composites.

Definition

Given a decision problem X, its complement \bar{X} is the same problem with the yes and no answers reversed.

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Example. SAT, Hamilton cycle, and Composites.

Definition

Given a decision problem X, its complement \bar{X} is the same problem with the yes and no answers reversed.

Example $X=\{4,6,8,9,10,12,14,15, \ldots\}$
$\bar{X}=\{2,3,5,7,11,13,17,23,29, \ldots\}$

NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Example. SAT, Hamilton cycle, and Composites.

Definition

Given a decision problem X, its complement \bar{X} is the same problem with the yes and no answers reversed.

Example $X=\{4,6,8,9,10,12,14,15, \ldots\}$
$\bar{X}=\{2,3,5,7,11,13,17,23,29, \ldots\}$
co-NP. Complements of decision problems in NP.
Example. Un-SAT, No Hamilton cycle, and Primes.

NP＝co－NP？

Fundamental open question．Does NP＝co－NP？

NP = co-NP?

Fundamental open question. Does NP = co-NP?

- Do yes instances have succinct certificates iff no instances do?
- Consensus opinion: no.

NP = co-NP?

Fundamental open question. Does NP = co-NP?

- Do yes instances have succinct certificates iff no instances do?
- Consensus opinion: no.

Theorem

If $\mathbf{N P} \neq \mathbf{c o}-\mathbf{N} P$, then $\mathbf{P} \neq \mathbf{N} P$.

NP = co-NP?

Fundamental open question. Does NP = co-NP?

- Do yes instances have succinct certificates iff no instances do?
- Consensus opinion: no.

Theorem

If $\mathbf{N P} \neq \mathbf{c o}-\mathbf{N} P$, then $\mathbf{P} \neq \mathbf{N} P$.

Proof idea.

NP = co-NP?

Fundamental open question. Does NP = co-NP?

- Do yes instances have succinct certificates iff no instances do?
- Consensus opinion: no.

Theorem

If $\mathbf{N P} \neq \mathbf{c o}-\mathbf{N} P$, then $\mathbf{P} \neq \mathbf{N} P$.

Proof idea.

- \mathbf{P} is closed under complementation.
- If $\mathbf{P}=\mathbf{N P}$, then NP is closed under complementation.
- In other words, NP = co-NP.
- This is the contrapositive of the theorem.

Good characterizations

Good characterization.[Edmonds 1965] NP $\cap \mathbf{c o - N P}$.

Good characterizations

Good characterization.[Edmonds 1965] NP $\cap \mathbf{c o - N P}$.

- If problem X is in both NP and co-NP, then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem.

Good characterizations

Good characterization.[Edmonds 1965] NP \cap co-NP.

- If problem X is in both NP and co-NP, then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem.

Example. Given a bipartite graph, is there a perfect matching?

Good characterizations

Good characterization.[Edmonds 1965] NP \cap co-NP.

- If problem X is in both NP and co-NP, then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier
- Provides conceptual leverage for reasoning about a problem.

Example. Given a bipartite graph, is there a perfect matching?

- If yes, can exhibit a perfect matching.
- If no, can exhibit a set of nodes S such that $|N(S)|<|S|$.

Good characterizations

Observation． $\mathbf{P} \subseteq \mathbf{N P} \cap \mathbf{c o} \mathbf{- N P}$ ．

Good characterizations

Observation. $\mathbf{P} \subseteq \mathbf{N P} \cap \mathbf{c o}-\mathbf{N P}$.

- Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in \mathbf{P}.
- Sometimes finding a good characterization seems easier than finding an efficient algorithm.

Good characterizations

Observation. $\mathbf{P} \subseteq \mathbf{N P} \cap \mathbf{c o}-\mathbf{N P}$.

- Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in \mathbf{P}.
- Sometimes finding a good characterization seems easier than finding an efficient algorithm.

Fundamental open question. Does $\mathbf{P}=\mathbf{N P} \cap \mathbf{c o - N P}$?

Good characterizations

Observation. $\mathbf{P} \subseteq \mathbf{N P} \cap$ co-NP.

- Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in \mathbf{P}.
- Sometimes finding a good characterization seems easier than finding an efficient algorithm.

Fundamental open question. Does $\mathbf{P}=\mathbf{N P} \cap \mathbf{c o - N P}$?

- Mixed opinions.
- Many examples where problem found to have a nontrivial good characterization, but only years later discovered to be in \mathbf{P}.

Factoring is in NP \cap co-NP

Linear programming. Given $A \in \mathcal{R}^{m \times n}, b \in \mathcal{R}^{m}, c \in \mathcal{R}^{n}$, and $\alpha \in R$, does there exist $x \in \mathcal{R}^{n}$ such that $A x \leq b, x \geq 0$ and $c^{T} x \geq \alpha$?

Factoring is in NP \cap co-NP

Linear programming. Given $A \in \mathcal{R}^{m \times n}, b \in \mathcal{R}^{m}, c \in \mathcal{R}^{n}$, and $\alpha \in R$, does there exist $x \in \mathcal{R}^{n}$ such that $A x \leq b, x \geq 0$ and $c^{T} x \geq \alpha$?

Theorem (Gale-Kuhn-Tucker 1948)

Linear programming $\in \boldsymbol{N P} \cap \mathbf{C o} \mathbf{- N P}$.

Proof sketch. If (P) and (D) are nonempty, then $\max =\min$.
(P) $\max c^{T} x$
(D) $\min y^{T} b$
s.t. $A x \leq b$
$x \geq 0$
s.t. $A^{T} y \geq c$
$y \geq 0$
$y \geq 0$

Factoring is in NP \cap co－NP

Linear Programming．Given $A \in \mathcal{R}^{m \times n}, b \in \mathcal{R}^{m}, c \in \mathcal{R}^{n}$ ，and $\alpha \in R$ ，does there exist $x \in \mathcal{R}^{n}$ such that $A x \leq b, x \geq 0$ and $c^{T} x \geq \alpha$ ？

Factoring is in NP \cap co-NP

Linear Programming. Given $A \in \mathcal{R}^{m \times n}, b \in \mathcal{R}^{m}, c \in \mathcal{R}^{n}$, and $\alpha \in R$, does there exist $x \in \mathcal{R}^{n}$ such that $A x \leq b, x \geq 0$ and $c^{T} x \geq \alpha$?

Theorem (Khachiyan 1979)

LINEAR PROGRAMMING $\in \boldsymbol{P}$.

Factoring is in NP \cap co-NP

Theorem (Pratt 1975)

PRIMES $\in \boldsymbol{N} \boldsymbol{P} \cap \boldsymbol{c o} \boldsymbol{- N} \boldsymbol{N}$.

Factoring is in NP \cap co-NP

Theorem (Pratt 1975)

PRIMES $\in \boldsymbol{N} \boldsymbol{P} \cap \boldsymbol{c o} \boldsymbol{- N P}$.

Proof sketch. An odd integer s is prime iff there exists an integer $1<t<s$ s.t.

$$
\begin{aligned}
t^{s-1} & \equiv 1 & & (\bmod s) \\
t^{(s-1) / p} & \neq 1 & & (\bmod s)
\end{aligned}
$$

for all prime divisors p of $s-1$.

Primality testing is in \mathbf{P}

Theorem (Agrawal-Kayal-Saxena 2004)

PRIMES $\in \boldsymbol{P}$.

Factoring is in NP \cap co-NP

FActorize. Given an integer x, find its prime factorization.
FACtor. Given two integers x and y, does x have a nontrivial factor $<y$?

Factoring is in NP \cap co-NP

FACtorize. Given an integer x, find its prime factorization.
FACtor. Given two integers x and y, does x have a nontrivial factor $<y$?

Theorem

FACTOR $\equiv{ }_{P}$ FACTORIZE

Factoring is in NP \cap co-NP

FACtorize. Given an integer x, find its prime factorization.
FACtor. Given two integers x and y, does x have a nontrivial factor $<y$?

Theorem

FACTOR $\equiv{ }_{P}$ FACTORIZE
Proof.

Factoring is in NP \cap co-NP

FACTORIZE. Given an integer x, find its prime factorization.
FACtor. Given two integers x and y, does x have a nontrivial factor $<y$?

Theorem

FACTOR $\equiv{ }_{P}$ FACTORIZE
Proof.

- \leq_{P} trivial.
- \geq_{P} binary search to find a factor; divide out the factor and repeat.

Factoring is in NP \cap co-NP

FACtorize. Given an integer x, find its prime factorization.
FACtor. Given two integers x and y, does x have a nontrivial factor $<y$?

Theorem

FACTOR \equiv_{P} FACTORIZE
Proof.

- \leq_{P} trivial.
- \geq_{P} binary search to find a factor; divide out the factor and repeat.

Theorem

```
FACTOR \in NP\capCO-NP.
```


Factoring is in NP \cap co-NP

FACtorize. Given an integer x, find its prime factorization.
FACtor. Given two integers x and y, does x have a nontrivial factor $<y$?

Theorem

FACTOR \equiv_{P} FACTORIZE
Proof.

- \leq_{P} trivial.
- \geq_{P} binary search to find a factor; divide out the factor and repeat.

Theorem

FACTOR $\in \mathbf{N P} \cap \mathbf{C o} \mathbf{- N P}$.
Proof.

Factoring is in NP \cap co-NP

FACtorize. Given an integer x, find its prime factorization.
FACtor. Given two integers x and y, does x have a nontrivial factor $<y$?

Theorem

FACTOR $\equiv{ }_{P}$ FACTORIZE
Proof.

- \leq_{P} trivial.
- \geq_{P} binary search to find a factor; divide out the factor and repeat.

Theorem

FACTOR $\in \mathbf{N P} \cap \mathbf{C O}-\mathbf{N P}$.

Proof.

- Certificate: a factor p of x that is less than y.

Factoring is in NP \cap co-NP

FACtorize. Given an integer x, find its prime factorization.
FACtor. Given two integers x and y, does x have a nontrivial factor $<y$?

Theorem

FACTOR \equiv_{P} FACTORIZE
Proof.

- \leq_{P} trivial.
- \geq_{P} binary search to find a factor; divide out the factor and repeat.

Theorem

FACTOR $\in \mathbf{N P} \cap \mathbf{C O}-\mathbf{N P}$.

Proof.

- Certificate: a factor p of x that is less than y.
- Disqualifier: the prime factorization of x (where each prime factor is greater than y).

Is factoring in P ？

Fundamental question．Is FACTOR $\in \mathbf{P}$ ？

Is factoring in P ?

Fundamental question. Is FACTOR $\in \mathbf{P}$?
Challenge. Factor this number.

74037563479561712828046796097429573142593188889231289 08493623263897276503402826627689199641962511784399589 43305021275853701189680982867331732731089309005525051 16877063299072396380786710086096962537934650563796359 RSA-704
($\$ 30,000$ prize if you can factor)

Exploiting intractability

Modern cryptography.

- Example. Send your credit card to Amazon.
- Example. Digitally sign an e-document.
- Enables freedom of privacy, speech, press, political association.

Exploiting intractability

Modern cryptography.

- Example. Send your credit card to Amazon.
- Example. Digitally sign an e-document.
- Enables freedom of privacy, speech, press, political association.

RSA. Based on dichotomy between complexity of two problems.

- To use: generate two random n-bit primes and multiply.
- To break: suffices to factor a $2 n$-bit integer.

Factoring on a quantum computer

Theorem (Shor 1994)

Can factor an n-bit integer in $O\left(n^{3}\right)$ steps on a "quantum computer".

Factoring on a quantum computer

Theorem（Shor 1994）

Can factor an n－bit integer in $O\left(n^{3}\right)$ steps on a＂quantum computer＂．

2001．Factored $15=3 \times 5$（with high probability）on a quantum computer．
2012．Factored $21=3 \times 7$ ．

Factoring on a quantum computer

Theorem（Shor 1994）

Can factor an n－bit integer in $O\left(n^{3}\right)$ steps on a＂quantum computer＂．

2001．Factored $15=3 \times 5$（with high probability）on a quantum computer．
2012．Factored $21=3 \times 7$ ．

Fundamental question．Does $\mathbf{P}=\mathbf{B Q P}$ ？

A note on terminology: consensus

NP-complete. A problem in NP such that every problem in NP poly-time reduces to it.

A note on terminology: consensus

NP-complete. A problem in NP such that every problem in NP poly-time reduces to it.
NP-hard. [[Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni] A problem such that every problem in NP poly-time reduces to it.

[^0]: Aerospace engineering. Optimal mesh partitioning for finite elements.
 Biology. Phylogeny reconstruction.
 Chemical engineering. Heat exchanger network synthesis.
 Chemistry. Protein folding.
 Civil engineering. Equilibrium of urban traffic flow.
 Economics. Computation of arbitrage in financial markets with friction.
 Electrical engineering. VLSI layout.
 Environmental engineering. Optimal placement of contaminant sensors.
 Financial engineering. Minimum risk portfolio of given return.
 Game theory. Nash equilibrium that maximizes social welfare.
 Mathematics. Given integer a_{1}, \ldots, a_{n}, compute $\int_{0}^{2 \pi} \cos \left(a_{1} \theta\right) \times \cos \left(a_{2} \theta\right) \times \cdots \times \cos \left(a_{n} \theta\right) d \theta$
 Mechanical engineering. Structure of turbulence in sheared flows.
 Medicine. Reconstructing 3d shape from biplane angiocardiogram.
 Operations research. Traveling salesperson problem.
 Physics. Partition function of 3d Ising model.
 Politics. Shapley-Shubik voting power.
 Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik's Cube.
 Statistics. Optimal experimental design.

