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constraint satisfaction

3-SAT

3-SAT poly-time reduces
to INDEPENDENT-SET

INDEPENDENT-SET DIR-HAM-CYCLE 3-COLOR SUBSET-SUM
VERTEX-COVER HAM-CYCLE KNAPSACK
SET-COVER
packing and covering sequencing

partitioning

numerical
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Decision problem.

® Problem X is a set of strings
® Instance s is one string.

yes ifseX

e Algorithm A solves problem X: A(s) = { its ¢ X

no
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P
Decision problem.

SHANGHAI JIAO TONG
® Problem X is a set of strings.
® Instance s is one string.

UNIVERSITY

yes ifseX

ifs¢ X

e Algorithm A solves problem X: A(s) = {
Algorithm A runs in polynomial time if for every string s, A(s) terminates in < p(|s|) “steps”, where

no
p(+) is some polynomial function.
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Decision problem.

® Problem X is a set of strings.

® Instance s is one string.

yes ifseX

ifs¢ X

no
Algorithm A runs in polynomial time if for every string s, A(s) terminates in < p(|s|) “steps”, where

e Algorithm A solves problem X: A(s) = {

p(+) is some polynomial function.

P: set of decision problems for which there exists a poly-time algorithm.
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P
Decision problem.

® Problem X is a set of strings.

® Instance s is one string.

yes ifseX

ifs¢ X

no
Algorithm A runs in polynomial time if for every string s, A(s) terminates in < p(|s|) “steps”, where

e Algorithm A solves problem X: A(s) = {

p(+) is some polynomial function.

P: set of decision problems for which there exists a poly-time algorithm.

problem PRIMES: {2,3,5,7,11,13,17,19,23,29,31,...}
instance s: 592335744548702854681
algorithm:

Agrawal-Kayal-Saxena (2002)
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Some problems in P

' SHANGHAI JIAO TONG
y"‘ UNIVERSITY
P. Decision problems for which there exists a poly-time algorithm.
L poly-time
problem description yes no
algorithm
. grade-school
MULTIPLE Is = a multiple 51,17 51,16
of y? division
Are z and y Euclid’s
REL-PRIME 34, 39 34, 51
relatively prime? algorithm
X Agrawal-Kayal-
PRIMES Is = prime? 53 51
Saxena
Is the edit distance
. Needleman niether acgggt
EDIT-DISTANCE between = and —Wunsch neither ttttta
y less than 57
Is there a vector x that| Gauss—Edmonds 01 roopn
L-SOLVE : M L,
satisfies Az = b? elimination oL
Is an undirected graph
U-CONN grap depth-first search ngo o<2 2)0
G connected?
« 0O)»
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NP

f”‘ HANGHALI JIAO TONG
string ¢ such that C(s,t) = yes.

UNIVERSITY

Definition. Algorithm C(s, t) is a certifier for problem X if for every string s:s € X iff there exists a
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NP
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@®
string ¢ such that C(s,t) = yes.

1) SHANGHAI JIAO TONG
UNIVERSITY

Definition. Algorithm C(s, t) is a certifier for problem X if for every string s:s € X iff there exists a

NP: set of decision problems for which there exists a poly-time certifier.
® (C(s,t) is a poly-time algorithm.

e Certificate ¢ is of polynomial size: |t| < p(]s|) for some polynomial p(-).
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NP

)
SHANGHAI JIAO TONG
Eﬁ% = UNIVERSITY

Definition. Algorithm C(s, t) is a certifier for problem X if for every string s:s € X iff there exists a
string ¢ such that C(s,t) = yes.
NP: set of decision problems for which there exists a poly-time certifier.

® (C(s,t) is a poly-time algorithm.

¢ Certificate ¢ is of polynomial size: |t| < p(|s|) for some polynomial p(-).

problem COMPOSITES:
instance s:

certificate ¢:
certifier C(s, t) :

{4,6,8,9,10,12,14, 15,16, 18,20,...}
437669

541+— 437,669 = 541 x 809
grade school division
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Certifiers and certificates: satisfiability

f“‘ HANGHALI JIAO TONG
%NIVERSITY] B

SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals.
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Certifiers and certificates: satisfiability

(:i‘ HANGHALI JIAO TONG
% S| JIAO T
SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals.

UNIVERSITY

Certificate. An assignment of truth values to the Boolean variables.
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Certifiers and certificates: satisfiability

@®
SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals

SHANGHAI JIAO TONG
UNIVERSITY

Certificate. An assignment of truth values to the Boolean variables

Certifier. Check that each clause in ® has at least one true literal

instances &= (X7 Vx2Vx3)A(x1VXZVx3)A(XTVx2Vx4)
certificatet =1 = true ,x = true ,z3 = false ,z4 =

false J
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Certifiers and certificates: satisfiability

@®
SAT. Given a CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals

SHANGHAI JIAO TONG
UNIVERSITY

Certificate. An assignment of truth values to the Boolean variables

Certifier. Check that each clause in ® has at least one true literal

instances & = (X1
certificate t

(XTI Vx2Vx3)A(x1 VX Vx3)A (X7 Vx2Vxa)

false J

«0» «F»r» «

x1 = true ,zo = true ,x3 = false ,z4 =

Conclusions. SATe NP, 3-SAT € NP
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Certifiers and certificates: Hamilton path

f”' HANGHALI JIAO TONG
%NIVERSITY] B
Hamilton Path. Given an undirected graph G = (V, E), does there exist a simple path P that visits
every node?
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TH TH - (:i\ HANGHALI JIAO TONG
Certifiers and certificates: Hamilton path @) v

Hamilton Path. Given an undirected graph G = (V, E), does there exist a simple path P that visits
every node?

Certificate. A permutation 7 of the n nodes.

Certifier. Check that = contains each node in V' exactly once, and that G contains an edge between
each pair of adjacent nodes.

instance s certificate ¢
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TH TH - (:i\ HANGHALI JIAO TONG
Certifiers and certificates: Hamilton path @) v

Hamilton Path. Given an undirected graph G = (V, E), does there exist a simple path P that visits
every node?

Certificate. A permutation 7 of the n nodes.

Certifier. Check that = contains each node in V' exactly once, and that G contains an edge between
each pair of adjacent nodes.

instance s certificate ¢

Conclusion. Hamilton path € NP.
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Some problems in NP

NP. Decision problems for which there exists a poly-time certifier.

. poly-time
problem description yes. no
algorithm
Is there a vector « Gauss-Edmonds 1 1 4 1 0 0 1
L-solve that satisfies Az = b? elimination 4 -2 2 11 1 1
3 15 36 0 1 1 1
. i Agrawal-Kayal-
Composites Is = composite ? 51 53
Saxena
Does « have a nontrivial factor 99
Factor 227 (56159, 50) (55687, 50)
less than y ?
R . SXIV X2V R
SAT Given a CNF formula, does it have] ?9? VA Y MV e
a satisfying truth assignment? TXVTRVoX XV
Hamilton Is there a simple path between 299 O/X\O O/ii\o
path w and v that visits every node? e

SHANGHAI JIAO TONG

UNIVERSITY
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H SHANGHAI JIAO TONG
QUIZ {% =2/ UNIVERSITY

Which of the following graph problems are known to be in NP?

@ Is the length of the longest simple path < £?
® Is the length of the longest simple path > k?
@ Is the length of the longest simple path = £?

® Find the length of the longest simple path.
@ All of the above.
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H (7% SHANGHAI J1AO TONG
@)
QUIZ {% =4 UNIVERSITY

In complexity theory, the abbreviation NP stands for . ..

® Nope.

® No problem.

@ Not polynomial time.

® Not polynomial space.

® Nondeterministic polynomial time.
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Significance of NP

5

f ¥\ SHANGHALI JIAO TONG
S JIAO T
NP. Decision problems for which there exists a poly-time certifier.

UNIVERSITY
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Significance of NP

SHANGHAI JIAO TONG
NP. Decision problems for which there exists a poly-time certifier.

UNIVERSITY

“NP captures vast domains of computational, scientific, and mathematical endeavors, and seems to

roughly delimit what mathematicians and scientists have been aspiring to compute feasibly.”
—Christos Papadimitriou
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Significance of NP

SHANGHAI JIAO TONG

NP. Decision problems for which there exists a poly-time certifier.

“NP captures vast domains of computational, scientific, and mathematical endeavors, and seems to
—Christos Papadimitriou

roughly delimit what mathematicians and scientists have been aspiring to compute feasibly.”

“In an ideal world it would be renamed P vs VP. ”

—Clyde Kruskal
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P, NP, and EXP

)
SHANGHAI JIAO TONG
Eﬁ% = UNIVERSITY

P. Decision problems for which there exists a poly-time algorithm.

NP. Decision problems for which there exists a poly-time certifier.

EXP. Decision problems for which there exists an exponential-time algorithm
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P, NP, and EXP
Proposition. P C NP.

)
f SHANGHAI JIAO TONG

UNIVERSITY
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P, NP, and EXP
Proposition. P C NP.

Proof.

)
f SHANGHAI JIAO TONG

UNIVERSITY
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P, NP, and EXP
Proposition. P C NP.

f“‘ HANGHALI JIAO TONG
S JIAO Tt
Proof. Consider any problem X € P.

UNIVERSITY

® By definition, there exists a poly-time algorithm A(s) that solves X.
e Certificate ¢ = ¢, certifier C(s,t) = A(s)
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P, NP, and EXP
Proposition. P C NP.

f“‘ HANGHALI JIAO TONG
S JIAO Tt
Proof. Consider any problem X € P.

UNIVERSITY
® By definition, there exists a poly-time algorithm A(s) that solves X.
e Certificate ¢ = ¢, certifier C(s,t) = A(s)

Proposition. NP C EXP.
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P, NP, and EXP
Proposition. P C NP.

f“‘ HANGHALI JIAO TONG
S JIAO Tt
Proof. Consider any problem X € P.

UNIVERSITY

® By definition, there exists a poly-time algorithm A(s) that solves X.
e Certificate ¢ = ¢, certifier C(s,t) = A(s)

Proposition. NP C EXP.

Proof. Consider any problem X € NP.
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P, NP, and EXP
Proposition. P C NP.

Proof. Consider any problem X € P.

® By definition, there exists a poly-time algorithm A(s) that solves X.
e Certificate ¢ = ¢, certifier C(s,t) = A(s)

Proposition. NP C EXP.

Proof. Consider any problem X € NP.

® By definition, there exists a poly-time certifier C(s, ¢) for X, where certificate ¢ satisfies
[t| < p(]s|) for some polynomial p(-).

® To solve instance s, run C(s, t) on all strings ¢ with |¢| < p(|s]).

® Return yes iff C'(s,t) returns yes for any of these potential certificates.
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P, NP, and EXP
Proposition. P C NP.

ez
&

®

SHANGHAI JIAO TONG
/’ UNIVERSITY
Proof. Consider any problem X € P.
® By definition, there exists a poly-time algorithm A(s) that solves X.
e Certificate ¢ = ¢, certifier C(s,t) = A(s)

Proposition. NP C EXP.

Proof. Consider any problem X € NP.

® By definition, there exists a poly-time certifier C(s, ¢) for X, where certificate ¢ satisfies
[t| < p(]s|) for some polynomial p(-).

® To solve instance s, run C(s, t) on all strings ¢ with |¢| < p(|s]).

® Return yes iff C'(s,t) returns yes for any of these potential certificates

Fact. P # EXP =- either P # NP, or NP =£ EXP, or both.
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The main question: P vs. NP

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Q. How to solve an instance of 3-SAT with n variables?
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The main question: P vs. NP

SHANGHAI JIAO TONG

UNIVERSITY

Q. How to solve an instance of 3-SAT with n variables?

A. Exhaustive search: try all 2" truth assignments.

«0O0>» «F» « =>»
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The main question: P vs. NP

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Q. How to solve an instance of 3-SAT with n variables?

A. Exhaustive search: try all 2" truth assignments.

Q. Can we do anything substantially more clever?
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The main question: P vs. NP

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Q. How to solve an instance of 3-SAT with n variables?

A. Exhaustive search: try all 2" truth assignments.

Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for 3-SAT.

“intractable”
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The main question: P vs. NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Godel]

5
\‘ SHANGHAI JIAO TONG

o

y UNIVERSITY

&
@
Is the decision problem as easy as the certification problem?

if P = NP

if P~ NP
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The main question: P vs. NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Godel]

R
Is the decision problem as easy as the certification problem?

SHANGHAI JIAO TONG
UNIVERSITY

if P = NP

if P~ NP

If yes. .. Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR. ..
If no... No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER. ..
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The main question: P vs. NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Godel]

R
Is the decision problem as easy as the certification problem?

SHANGHAI JIAO TONG
UNIVERSITY

if P = NP

if P~ NP

If yes. .. Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR. ..
If no... No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER. ..

Probably no.
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Millennium prize

Millennium prize. $1 million for resolution of P # NP problem.

S

/ Dedicated to increasing and disseminating mathematical knowledge

L

_—Clay Mathematics Institute

HOME | ASOUTCMI | PROGRAMS | NEWS & EVENTS & AWARDS

Millennium Problems

In order to celebrate mathematics in the new millennium, The Clay
Mathematics Institute of Cambridge, Massachusetts (CMI) has named seven

vize Problems. The Scientific Advisory Board of CMI selected these problems,
focusing on important c assic questions that have resisted solution over the
vears. The Board of Dirzctors of CMI designated a $7 million prize fund for the
solution to these problems, with $1 million allocated to each. During the
Millennium Meeting held on May 24, 2000 at the Collége de France, Timothy
Gowers presented a lecture entitled The Importance of Mathematics, aimed for
the general public, while John Tate and Michael Atiyah spake on the problems
The CMI invited specialists to formulate each prablem.

)

SCHOLARS | PUBLICATIONS
+ Birch and Swinnerton-Dyer
Coriecture
» Hotge Conjecture
+ Navier-Stokes Equations
" Pyshp

» Poincaré Conjecture
+ Riemann Hypothesis

» Yana-Mills Theory.

» Rules

+ Millennium Meeting Videos

®

SHANGHAI JIAO TONG
UNIVERSITY
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Polynomial transformations
Definition

solved using:

® polynomial number of standard computational steps, and

Problem X polynomial (Cook) reduces to problem Y if arbitrary instances of problem X can be

® Polynomial number of calls to oracle that solves problem Y.

«0O0>» «F» « =>»

i
v

DA



Polynomial transformations
Definition

solved using:

® polynomial number of standard computational steps, and

Problem X polynomial (Cook) reduces to problem Y if arbitrary instances of problem X can be
Definition

® Polynomial number of calls to oracle that solves problem Y.

V.
Problem X polynomial (Karp) transforms to problem Y if given any instance z of X, we can
construct an instance y of Y such that z is a yes instance of X iff y is a yes instance of Y.

«0O0>» «F» « =>»
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Polynomial transformations
Definition

&
solved using:

5
\‘ SHANGHAI JIAO TONG

o

= y UNIVERSITY
Problem X polynomial (Cook) reduces to problem Y if arbitrary instances of problem X can be
® polynomial number of standard computational steps, and

® Polynomial number of calls to oracle that solves problem Y.
Definition

V.
Problem X polynomial (Karp) transforms to problem Y if given any instance z of X, we can
construct an instance y of Y such that z is a yes instance of X iff y is a yes instance of Y.

Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at
the end of the algorithm for X. Almost all previous reductions were of this form.
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Polynomial transformations
Definition

&
solved using:

5
\‘ SHANGHAI JIAO TONG

o

= y UNIVERSITY
Problem X polynomial (Cook) reduces to problem Y if arbitrary instances of problem X can be
® polynomial number of standard computational steps, and

® Polynomial number of calls to oracle that solves problem Y.
Definition

V.
Problem X polynomial (Karp) transforms to problem Y if given any instance z of X, we can
construct an instance y of Y such that z is a yes instance of X iff y is a yes instance of Y.

Polynomial transformation is polynomial reduction with just one call to oracle for Y, exactly at
the end of the algorithm for X. Almost all previous reductions were of this form.

Are these two concepts the same with respect to NP?

«0O0>» «F» « =>»
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NP-complete

f”' HANGHALI JIAO TONG
S JIAO Tt
NP-complete. A problem Y € NP with the property that for every problem X € NP, X <p Y.

UNIVERSITY
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NP-complete

f”‘ HANGHALI JIAO TONG
s JIAO T
NP-complete. A problem Y € NP with the property that for every problem X € NP, X <p Y.
Proposition

UNIVERSITY

Suppose Y € NP-complete. Then, Y € P iff P= NP.
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NP-complete

f”‘ HANGHALI JIAO TONG
s JIAO T
NP-complete. A problem Y € NP with the property that for every problem X € NP, X <p Y.
Proposition

UNIVERSITY

Suppose Y € NP-complete. Then, Y € P iff P= NP.

Proof.
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NP-complete

f”‘ HANGHALI JIAO TONG
s JIAO T
NP-complete. A problem Y € NP with the property that for every problem X € NP, X <p Y.
Proposition

UNIVERSITY

Suppose Y € NP-complete. Then, Y € P iff P= NP.

Proof.

<~

If P=NP,thenY €P.
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NP-complete

f“‘ HANGHALI JIAO TONG
s JIAO T
NP-complete. A problem Y € NP with the property that for every problem X € NP, X <p Y.
Proposition

UNIVERSITY

Suppose Y € NP-complete. Then, Y € P iff P= NP.

Proof.

<~

If P=NP,thenY cP.
=

Suppose Y € P.

e Consider any problem X € NP. Since X <p Y, we have X € P
e This implies NP C P.

® We already know P C NP. Thus P= NP.

«0O0>» «F» « >
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NP-complete

f“‘ HANGHALI JIAO TONG
s JIAO T
NP-complete. A problem Y € NP with the property that for every problem X € NP, X <p Y
Proposition

UNIVERSITY

Suppose Y € NP-complete. Then, Y € P iff P= NP.

Proof.

<~

If P=NP,thenY cP.
=

Suppose Y € P.
e Consider any problem X € NP. Since X <p Y, we have X € P.
e This implies NP C P.

® We already know P C NP. Thus P= NP.

Fundamental question. Are there any “natural” NP-complete problems?

«0>» «F» «=)» <
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The “first” NP-complete problem

SHANGHAI JIAO TONG
UNIVERSITY

SAT € NP-complete.

HPOBAEMBI NEPEAAYM HUGOPMALNI
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Establishing NP-completeness

f"‘ HANGHALI JIAO TONG
Remark. Once we establish first “natural” NP-complete problem, others fall like dominoes.

UNIVERSITY
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Establishing NP-completeness

f“‘ HANGHALI JIAO TONG

%NIVERSIT\[] B

Remark. Once we establish first “natural” NP-complete problem, others fall like dominoes.
Recipe. To prove that Y € NP-complete:
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Establishing NP-completeness

)
@®
Remark. Once we establish first “natural” NP-complete problem, others fall like dominoes.

UNIVERSITY

1) SHANGHAI JIAO TONG
Recipe. To prove that Y € NP-complete:

e Step 1. Show that Y € NP.

® Step 2. Choose an NP-complete problem X.
e Step 3. Prove that X <p Y.

«0O0>» «F» « =>»
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Establishing NP-completeness

f“‘ HANGHALI JIAO TONG

%NIVERSIT\[] B

Remark. Once we establish first “natural” NP-complete problem, others fall like dominoes.
Recipe. To prove that Y € NP-complete:

e Step 1. Show that Y € NP.

® Step 2. Choose an NP-complete problem X.
e Step 3. Prove that X <p Y.

Proposition
If X € NP-complete, Y eNP, and X <p Y, thenY €NP-complete.

«0O0>» «F» « >
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Establishing NP-completeness

)
@®
Remark. Once we establish first “natural” NP-complete problem, others fall like dominoes.

UNIVERSITY

1) SHANGHAI JIAO TONG
Recipe. To prove that Y € NP-complete:

e Step 1. Show that Y € NP.

® Step 2. Choose an NP-complete problem X.
e Step 3. Prove that X <p Y.

Proposition
If X € NP-complete, Y eNP, and X <p Y, thenY €NP-complete.

Proof. Consider any problem W & NP. Then, both W <p X and X <p Y.
e By transitivity, W <p Y.

® Hence Y € NP-complete.

«0O0>» «F» « >
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Quiz

53
SHANGHAI JIAO TONG
& =) UNIVERSITY

Suppose that X € NP-Complete, Y € NP, and X <p Y. Which can you infer?

® Y is NP-complete.
@ If Y ¢ P, then P#£ NP.

@ If P#£NP, then neither X nor Yis in P.
® All of the above.
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Implications of Karp

\ SHANGHAI JIAO TONG
) UNIVERSITY

Independent set Dir. Ham. cycle 3-color Subset sum
Vertex cover Ham. cycle Knapsack
Set cover

SAT poly-time reduces to all of
these problems (and many, many more)

<CO>» «F» <«



Implications of Cook—Levin

SHANGHAI JIAO TONG
UNIVERSITY

Independent set

3-color

Vertex cover

Subset sum

Ham. cycle

Set cover

Knapsack

All of these problems (and many, many more)
poly-time reduce to SAT .

«0O>» «F» « >



Implications of Karp + Cook—Levin

A

\ SHANGHAI JIAO TONG
3 UNIVERSITY

3- SAT

Independent set

Dir. Ham. circle

3-color Subset sum
Vertex cover

Ham. circle

Set cover

Knapsack

All of these problems are NP-complete; they are

manifestations of the same really hard problem



Some NP-complete problems

SHANGHAI JIAO TONG
= UNIVERSITY

Basic genres of NP-complete problems and paradigmatic examples.
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Some NP-complete problems

SHANGHAI JIAO TONG
<7 UNIVERSITY

Basic genres of NP-complete problems and paradigmatic examples.

e Packing/covering problems: Set cover, Vertex cover Independent set.
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e Packing/covering problems: Set cover, Vertex cover Independent set
e Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.
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e Packing/covering problems: Set cover, Vertex cover Independent set

e Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.
® Sequencing problems: Hamilton circle, TSP.
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Basic genres of NP-complete problems and paradigmatic examples.

e Packing/covering problems: Set cover, Vertex cover Independent set.
e Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.

® Sequencing problems: Hamilton circle, TSP.

e Partitioning problems: 3D-matching, 3-color.
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Some NP-complete problems S e

Basic genres of NP-complete problems and paradigmatic examples.

e Packing/covering problems: Set cover, Vertex cover Independent set.
e Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.

® Sequencing problems: Hamilton circle, TSP.

e Partitioning problems: 3D-matching, 3-color.

® Numerical problems: Subset sum, Knapsack.
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Basic genres of NP-complete problems and paradigmatic examples.

e Packing/covering problems: Set cover, Vertex cover Independent set.
e Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.

® Sequencing problems: Hamilton circle, TSP.

e Partitioning problems: 3D-matching, 3-color.

® Numerical problems: Subset sum, Knapsack.

Practice. Most NP problems are known to be in either P or NP-complete.
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Basic genres of NP-complete problems and paradigmatic examples.

e Packing/covering problems: Set cover, Vertex cover Independent set.
e Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.

® Sequencing problems: Hamilton circle, TSP.

e Partitioning problems: 3D-matching, 3-color.

® Numerical problems: Subset sum, Knapsack.

Practice. Most NP problems are known to be in either P or NP-complete.

NP-intermediate? Factor, Discrete log, Graph isomorphism, ...
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Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

e Packing/covering problems: Set cover, Vertex cover Independent set.

e Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.
® Sequencing problems: Hamilton circle, TSP.

e Partitioning problems: 3D-matching, 3-color.

® Numerical problems: Subset sum, Knapsack.

Practice. Most NP problems are known to be in either P or NP-complete.

NP-intermediate? Factor, Discrete log, Graph isomorphism, ...

Theorem (Ladner 1975)

Unless P = NP, there exist problems in NP that are in neither P nor NP-complete.
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More hard computational problems

Garey and Johnson. Computers and Intractability.

® Appendix includes over 300 NP-complete problems.
® Most cited reference in computer science literature.

~

. CE Shannon

Most Cited Computer Science Citations

‘This st s generated from documents In the ClieSeer* database as of January 17, 2013, This Istis automatically generated and may contain errors, The list is generated n batch

mode and citation counts may differ from those currently in the GiteSeer* database, since the database is continucusly updated.

Al Years | 1890 | 1281 | 1892 | 1933 | 1994 | 1985 | 1996 | 1997 | 1998 | 1898 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2008 | 2010 | 2011 | 2012 | 2013

M R Garey, D'S Jonson
Computers ana Intractaniity. A Gulde 1 the Theory of NP-Completenees 1979
8665

. T Cormen, C E Leiserson, R Rivest

Introducion to Algorithms 1990

7210

VN Vapnik

The nature of statisical lsarning theory 1888

6580

AP Dempster, N M Lairg, DB Rubin

Maximum liseihoed from incomplete data via

6082

T Gover, J Thamas

Elements of Informaton Theory 1991

6075

DE Goldberg

Genalc AIGOrIMS In Search, OpNIMIZaton, anc Machine Learning, 1988
08

14 algorithm. Journal of the Reyal Statistical Seciety, 1977

J Pear!
Probabilistc Reasoning in Inteligent Systems: Networks of Plausible Inferenca 1888

E Gamma, R Helm, R Jofr
Design Patterns: Elements
ap1a

sices
le Object-Criented Software 1995

A mathematical theory of communication Bel Syst. Tech. J, 1848
4118

JR Quinlan

645 Programs for Machine Learning 1993

018
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Aerospace engineering. Optimal mesh partitioning for finite elements.

Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.

Mathematics. Given integer a1, ..., an, COMpUte (27 cos (a1 6) x cos (a8) X - - - X cos (an8) d6
Mechanical engineering. Structure of turbulence in sheared flows.

Medicine. Reconstructing 3d shape from biplane angiocardiogram.

Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley—Shubik voting power.

Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.
Statistics. Optimal experimental design.
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Asymmetry of NP
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Asymmetry of NP. We need short certificates only for yes instances.
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Asymmetry of NP. We need short certificates only for yes instances.
Example 1. SAT vs. Un-SAT.

e Can prove a CNF formula is satisfiable by specifying an assignment.
® How could we prove that a formula is not satisfiable?
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Asymmetry of NP. We need short certificates only for yes instances.
Example 1. SAT vs. Un-SAT.

e Can prove a CNF formula is satisfiable by specifying an assignment.
® How could we prove that a formula is not satisfiable?

SAT. Given a CNF formula @, is there a satisfying truth assignment?

Un-SAT. Given a CNF formula @, is there no satisfying truth
assignment?
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Asymmetry of NP. We need short certificates only for yes instances.
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Asymmetry of NP
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Asymmetry of NP. We need short certificates only for yes instances

Example 2. Hamilton cycle vs. No Hamilton cycle.

e Can prove a graph is Hamiltonian by specifying a permutation.
® How could we prove that a graph is not Hamiltonian?
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Asymmetry of NP. We need short certificates only for yes instances

Example 2. Hamilton cycle vs. No Hamilton cycle.

e Can prove a graph is Hamiltonian by specifying a permutation.
® How could we prove that a graph is not Hamiltonian?

HAMILTON CYCLE. Given a graph G = (V, E), is there a simple cycle "
that contains every node in V?

NO HAMILTON CYCLE. Given a graph G = (V, E), is there no simple
cycle T that contains every node in V'?

)
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Asymmetry of NP
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Asymmetry of NP. We need short certificates only for yes instances.

Q. How to classify Un-SAT and No Hamilton cycle?
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Asymmetry of NP
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Asymmetry of NP. We need short certificates only for yes instances.
Q. How to classify Un-SAT and No Hamilton cycle?

e SAT € NP-complete and SAT=p Un-SAT.

e Hamilton circle € NP-complete and Hamilton circle =p No Hamilton circle
® But neither Un-SAT nor No Hamilton circle are known to be in NP.
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NP and co-NP
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NP. Decision problems for which there is a poly-time certifier.
Example. SAT, Hamilton cycle, and Composites.
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NP and co-NP
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NP. Decision problems for which there is a poly-time certifier.
Example. SAT, Hamilton cycle, and Composites.

Definition

Given a decision problem X, its complement X is the same problem with the yes and no answers
reversed.
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NP. Decision problems for which there is a poly-time certifier.
Example. SAT, Hamilton cycle, and Composites.

Definition

Given a decision problem X, its complement X is the same problem with the yes and no answers
reversed.

Example X = {4,6,8,9,10,12,14,15,...}
X =1{2,3,5,7,11,13,17,23,29,...}
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NP. Decision problems for which there is a poly-time certifier.
Example. SAT, Hamilton cycle, and Composites.

Definition

Given a decision problem X, its complement X is the same problem with the yes and no answers
reversed.

Example X = {4,6,8,9,10,12,14,15,...}
X =1{2,3,5,7,11,13,17,23,29,...}

co-NP. Complements of decision problems in NP.
Example. Un-SAT, No Hamilton cycle, and Primes.
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NP = co-NP?

e
Fundamental open question. Does NP = co-NP?
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Fundamental open question. Does NP = co-NP?
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® Do yes instances have succinct certificates iff no instances do?
e Consensus opinion: no.
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Fundamental open question. Does NP = co-NP?

® Do yes instances have succinct certificates iff no instances do?
e Consensus opinion: no.

If NP + co-NP, then P NP, |
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NP = co-NP?
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Fundamental open question. Does NP = co-NP?

® Do yes instances have succinct certificates iff no instances do?
e Consensus opinion: no.

If NP # co-NP, then P #NP. I
Proof idea.
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Fundamental open question. Does NP = co-NP?

® Do yes instances have succinct certificates iff no instances do?
e Consensus opinion: no.

If NP + co-NP, then P NP, l

Proof idea.

® P s closed under complementation.

e |f P = NP, then NP is closed under complementation.
® |n other words, NP = co-NP.

® This is the contrapositive of the theorem.
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Good characterizations

)
f SHANGHAI JIAO TONG

UNIVERSITY

Good characterization.[Edmonds 1965] NP N co-NP.
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Good characterizations
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Good characterization.[Edmonds 1965] NP N co-NP.
e [f problem X is in both NP and co-NP, then:
@ for yes instance, there is a succinct certificate

@ for no instance, there is a succinct disqualifier

® Provides conceptual leverage for reasoning about a problem
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Good characterization.[Edmonds 1965] NP N co-NP.
e |f problem X is in both NP and co-NP, then:

@ for yes instance, there is a succinct certificate
@ for no instance, there is a succinct disqualifier

® Provides conceptual leverage for reasoning about a problem

Example. Given a bipartite graph, is there a perfect matching?
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Good characterization.[Edmonds 1965] NP N co-NP.
e |f problem X is in both NP and co-NP, then:

@ for yes instance, there is a succinct certificate
@ for no instance, there is a succinct disqualifier

® Provides conceptual leverage for reasoning about a problem

Example. Given a bipartite graph, is there a perfect matching?
® |f yes, can exhibit a perfect matching.

* |f no, can exhibit a set of nodes S such that | N(S)| < |S].
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Good characterizations
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Observation. P C NP N co-NP.
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Observation. P C NP N co-NP.

® Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in P.

® Sometimes finding a good characterization seems easier than finding an efficient algorithm.

«0O0>» «F» « >

i
v

DA



Good characterizations

53
SHANGHAI JIAO TONG
& =) UNIVERSITY

Observation. P C NP N co-NP.

Fundamental open question. Does P = NP N co-NP?

® Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in P.
® Sometimes finding a good characterization seems easier than finding an efficient algorithm.
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Good characterizations
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Observation. P C NP N co-NP.

® Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in P.
® Mixed opinions.

® Sometimes finding a good characterization seems easier than finding an efficient algorithm.
Fundamental open question. Does P = NP N co-NP?

® Many examples where problem found to have a nontrivial good characterization, but only years
later discovered to be in P.
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Factoring is in NP N co-NP
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Linear programming. Given A € R™*" b € R™,c € R", and a € R, does there exist z € R" such
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Factoring is in NP N co-NP

UNIVERSITY

*ﬂ N SHANGHALI JIAO TONG
]
that Az < b,z > 0and ¢’z > a?

Linear programming. Given A € R™*" b € R™,c € R", and a € R, does there exist z € R" such

LINEAR PROGRAMMING € NP N Co-NP . I
Proof sketch. If (P) and (D) are nonempty, then max = min.
(P) max "z (D) miny”™'b
st. Ax <b
x>0

st. ATy >¢
y=>0
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such that Az < b,z > 0and ¢’z > a?

LINEAR PROGRAMMING. Given A € R™*", b€ R™,c € R", and a € R, does there exist z € R"
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Factoring is in NP N co-NP
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such that Az < b,z > 0and ¢’z > a?

LINEAR PROGRAMMING. Given A € R™*", b€ R™,c € R", and a € R, does there exist z € R"

LINEAR PROGRAMMING € P. l
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Factoring is in NP N co-NP
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PRIMES € NP N co-NP. I
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Factoring is in NP N co-NP

)
f SHANGHAI JIAO TONG

UNIVERSITY
PRIMES € NP N co-NP. I
Proof sketch. An odd integer s is prime iff there exists an integer 1 < t < s s.t.
=1

(mods)

te=/P £ 1 (mods)
for all prime divisors p of s — 1.
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Primality testing is in P
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Factoring is in NP N co-NP

FACTORIZE. Given an integer z, find its prime factorization.
FACTOR. Given two integers = and y, does z have a nontrivial factor < y?
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Factoring is in NP N co-NP

FACTORIZE. Given an integer z, find its prime factorization.
FACTOR. Given two integers = and y, does z have a nontrivial factor < y?

FACTOR =p FACTORIZE I
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Factoring is in NP N co-NP

FACTORIZE. Given an integer z, find its prime factorization.
FACTOR. Given two integers = and y, does z have a nontrivial factor < y?

FACTOR =p FACTORIZE I
Proof.
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Factoring is in NP N co-NP

FACTORIZE. Given an integer z, find its prime factorization.
FACTOR. Given two integers = and y, does z have a nontrivial factor < y?

FACTOR =p FACTORIZE
Proof.
° <p trivial.

® >p binary search to find a factor; divide out the factor and repeat.
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Factoring is in NP N co-NP

FACTORIZE. Given an integer z, find its prime factorization.
FACTOR. Given two integers = and y, does z have a nontrivial factor < y?

FACTOR =p FACTORIZE
Proof.
° <p trivial.

® >p binary search to find a factor; divide out the factor and repeat.

FACTOR € NP N co-NP.
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Factoring is in NP N co-NP

FACTORIZE. Given an integer z, find its prime factorization.
FACTOR. Given two integers = and y, does z have a nontrivial factor < y?

FACTOR =p FACTORIZE
Proof.
° <p trivial.

® >p binary search to find a factor; divide out the factor and repeat.

FACTOR € NP N co-NP.
Proof.
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Factoring is in NP N co-NP

FACTORIZE. Given an integer z, find its prime factorization.
FACTOR. Given two integers = and y, does z have a nontrivial factor < y?

FACTOR =p FACTORIZE
Proof.
° <p trivial.

® >p binary search to find a factor; divide out the factor and repeat.

FACTOR € NP co-NP.
Proof.
e Certificate: a factor p of x that is less than y.
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Factoring is in NP N co-NP

P
@®
FACTORIZE. Given an integer z, find its prime factorization.
FACTOR. Given two integers = and y, does z have a nontrivial factor < y?

1) SHANGHAI JIAO TONG
UNIVERSITY

FACTOR =p FACTORIZE
Proof.
° <p trivial.

® >p binary search to find a factor; divide out the factor and repeat.

FACTOR € NP co-NP.
Proof.
e Certificate: a factor p of x that is less than y.

e Disqualifier: the prime factorization of « (where each prime factor is greater than y

«0O0>» «F» « =>»
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Is factoring in P?
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Fundamental question. Is FACTOR € P?
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Is factoring in P? g SHANGHALJ1A0 ToNG

Fundamental question. Is FACTOR € P?

Challenge. Factor this number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359
RSA-704
($30,000 prize if you can factor)
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Exploiting intractability

P
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Modern cryptography.

e Example. Send your credit card to Amazon.
e Example. Digitally sign an e-document.

® Enables freedom of privacy, speech, press, political association.
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Modern cryptography.

e Example. Send your credit card to Amazon.
e Example. Digitally sign an e-document.

® Enables freedom of privacy, speech, press, political association
RSA. Based on dichotomy between complexity of two problems.

* To use: generate two random n-bit primes and multiply.
* To break: suffices to factor a 2n-bit integer.
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Factoring on a quantum computer
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Can factor an n-bit integer in O(n®) steps on a “quantum computer”.
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Factoring on a quantum computer
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Can factor an n-bit integer in O(n®) steps on a “quantum computer”.

2001. Factored 15 = 3 x 5 (with high probability) on a quantum computer.
2012. Factored 21 =3 x 7.
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Factoring on a quantum computer

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Can factor an n-bit integer in O(n®) steps on a “quantum computer”.

2001. Factored 15 = 3 x 5 (with high probability) on a quantum computer.
2012. Factored 21 =3 x 7.

Fundamental question. Does P = BQP?
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A note on terminology: consensus
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NP-complete. A problem in NP such that every problem in NP poly-time reduces to it.
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A note on terminology: consensus

P

\ SHANGHAI JIAO TONG
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NP-complete. A problem in NP such that every problem in NP poly-time reduces to it.
NP poly-time reduces to it.

NP-hard. [[Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni] A problem such that every problem in
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