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P VS. NP
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P

Decision problem.

• Problem X is a set of strings.
• Instance s is one string.

• Algorithm A solves problem X: A(s) =

{
yes if s ∈ X

no if s /∈ X

Algorithm A runs in polynomial time if for every string s, A(s) terminates in ≤ p(|s|) “steps”, where
p(·) is some polynomial function.

P: set of decision problems for which there exists a poly-time algorithm.

problem PRIMES: {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .}
instance s: 592335744548702854681

algorithm: Agrawal-Kayal-Saxena (2002)
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Some problems in P

P. Decision problems for which there exists a poly-time algorithm.

poly-time
yes noproblem description

algorithm
yes no

MULTIPLE Is x a multiple
grade-school

51, 17 51, 16
of y? division

REL-PRIME
Are x and y Euclid’s

34, 39 34, 51
relatively prime? algorithm

PRIMES Is x prime?
Agrawal-Kayal-

53 51
Saxena

EDIT-DISTANCE

Is the edit distance
Needleman
–Wunsch

niether
neither

acgggt
tttttabetween x and

y less than 5?

L-SOLVE
Is there a vector x that Gauss–Edmonds

satisfies Ax = b? elimination

U-CONN
Is an undirected graph

depth-first search
G connected?
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NP

Definition. Algorithm C(s, t) is a certifier for problem X if for every string s:s ∈ X iff there exists a
string t such that C(s, t) = yes.

NP: set of decision problems for which there exists a poly-time certifier.

• C(s, t) is a poly-time algorithm.
• Certificate t is of polynomial size: |t| ≤ p(|s|) for some polynomial p(·).

problem COMPOSITES: {4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, . . .}
instance s: 437669

certificate t: 541←− 437, 669 = 541× 809

certifier C(s, t) : grade school division
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Certifiers and certificates: satisfiability

SAT. Given a CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals.

Certificate. An assignment of truth values to the Boolean variables.

Certifier. Check that each clause in Φ has at least one true literal.

instance s Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4)

certificate t x1 = true , x2 = true , x3 = false , x4 = false

Conclusions. SAT∈ NP, 3-SAT ∈ NP
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Certifiers and certificates: Hamilton path

Hamilton Path. Given an undirected graph G = (V,E), does there exist a simple path P that visits
every node?

Certificate. A permutation π of the n nodes.

Certifier. Check that π contains each node in V exactly once, and that G contains an edge between
each pair of adjacent nodes.

instance s certificate t

Conclusion. Hamilton path ∈ NP.
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Some problems in NP

NP. Decision problems for which there exists a poly-time certifier.

poly-time
yes noproblem description

algorithm
yes no

L-solve

Is there a vector x Gauss–Edmonds

0 1 1

2 4 −2

0 3 15

 ,


4

2

36



1 0 0

1 1 1

0 1 1

 ,


1

1

1

that satisfies Ax = b? elimination

Composites Is x composite ?
Agrawal-Kayal-

51 53
Saxena

Factor
Does x have a nontrivial factor

(56159, 50) (55687, 50)
less than y ?

SAT
Given a CNF formula, does it have

a satisfying truth assignment?

Hamilton Is there a simple path between

path u and v that visits every node?
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Quiz

Which of the following graph problems are known to be in NP?

A. Is the length of the longest simple path ≤ k?

B. Is the length of the longest simple path ≥ k?

C. Is the length of the longest simple path = k?

D. Find the length of the longest simple path.

E. All of the above.
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Quiz

In complexity theory, the abbreviation NP stands for . . .

A. Nope.

B. No problem.

C. Not polynomial time.

D. Not polynomial space.

E. Nondeterministic polynomial time.
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Significance of NP

NP. Decision problems for which there exists a poly-time certifier.

“NP captures vast domains of computational, scientific, and mathematical endeavors, and seems to
roughly delimit what mathematicians and scientists have been aspiring to compute feasibly.”

–Christos Papadimitriou

“In an ideal world it would be renamed P vs VP. ”

–Clyde Kruskal
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P, NP, and EXP

P. Decision problems for which there exists a poly-time algorithm.

NP. Decision problems for which there exists a poly-time certifier.

EXP. Decision problems for which there exists an exponential-time algorithm.
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P, NP, and EXP

Proposition. P ⊆ NP.

Proof. Consider any problem X ∈ P.

• By definition, there exists a poly-time algorithm A(s) that solves X.
• Certificate t = ε, certifier C(s, t) = A(s).

Proposition. NP ⊆ EXP.

Proof. Consider any problem X ∈ NP.

• By definition, there exists a poly-time certifier C(s, t) for X, where certificate t satisfies
|t| ≤ p(|s|) for some polynomial p(·).

• To solve instance s, run C(s, t) on all strings t with |t| ≤ p(|s|).
• Return yes iff C(s, t) returns yes for any of these potential certificates.

Fact. P ̸= EXP⇒ either P ̸= NP, or NP ̸= EXP, or both.
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The main question: P vs. NP

Q. How to solve an instance of 3-SAT with n variables?

A. Exhaustive search: try all 2n truth assignments.

Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm︸ ︷︷ ︸
”intractable”

for 3-SAT.
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The main question: P vs. NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]
Is the decision problem as easy as the certification problem?

if P = NP if P ̸= NP

If yes. . . Efficient algorithms for 3-SAT, TSP, VERTEX-COVER, FACTOR. . .

If no. . . No efficient algorithms possible for 3-SAT, TSP, VERTEX-COVER. . .

Consensus opinion. Probably no.
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Millennium prize

Millennium prize. $1 million for resolution of P ̸= NP problem.
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NP-complete
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Polynomial transformations

Definition

Problem X polynomial (Cook) reduces to problem Y if arbitrary instances of problem X can be
solved using:
• polynomial number of standard computational steps, and
• Polynomial number of calls to oracle that solves problem Y .

Definition

Problem X polynomial (Karp) transforms to problem Y if given any instance x of X, we can
construct an instance y of Y such that x is a yes instance of X iff y is a yes instance of Y .

Note. Polynomial transformation is polynomial reduction with just one call to oracle for Y , exactly at
the end of the algorithm for X. Almost all previous reductions were of this form.

Open question. Are these two concepts the same with respect to NP?
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NP-complete

NP-complete. A problem Y ∈ NP with the property that for every problem X ∈ NP, X ≤P Y .

Proposition

Suppose Y ∈ NP-complete. Then, Y ∈ P iff P = NP.

Proof.

⇐ If P = NP, then Y ∈ P.

⇒ Suppose Y ∈ P.

• Consider any problem X ∈ NP. Since X ≤P Y , we have X ∈ P.
• This implies NP ⊆ P.
• We already know P ⊆ NP. Thus P= NP.

Fundamental question. Are there any “natural” NP-complete problems?
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The “first” NP-complete problem

Theorem (Cook 1971, Levin 1973 )

SAT ∈ NP-complete.
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Establishing NP-completeness

Remark. Once we establish first “natural” NP-complete problem, others fall like dominoes.

Recipe. To prove that Y ∈ NP-complete:

• Step 1. Show that Y ∈ NP.
• Step 2. Choose an NP-complete problem X.
• Step 3. Prove that X ≤P Y .

Proposition

If X ∈ NP-complete, Y ∈NP, and X ≤P Y , then Y ∈NP-complete.

Proof. Consider any problem W ∈ NP. Then, both W ≤P X and X ≤P Y .

• By transitivity, W ≤P Y .
• Hence Y ∈ NP-complete.
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Quiz

Suppose that X ∈ NP-Complete, Y ∈ NP, and X ≤P Y . Which can you infer?

A. Y is NP-complete.

B. If Y /∈ P, then P̸= NP.

C. If P̸=NP, then neither X nor Y is in P.

D. All of the above.
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Implications of Karp

3-SAT

SAT

Independent set Subset sumDir. Ham. cycle 3-color

Vertex cover KnapsackHam. cycle

Set cover SAT poly-time reduces to all of
these problems (and many, many more)
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Implications of Cook–Levin

3-SAT

SAT

Independent set Subset sumDir. Ham. cycle 3-color

Vertex cover KnapsackHam. cycle

Set cover All of these problems (and many, many more)
poly-time reduce to SAT .
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Implications of Karp + Cook–Levin

3-SAT

SAT

Independent set Subset sumDir. Ham. circle 3-color

Vertex cover KnapsackHam. circle

Set cover All of these problems are NP-complete; they are
manifestations of the same really hard problem.
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Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

• Packing/covering problems: Set cover, Vertex cover Independent set.
• Constraint satisfaction problems: Circuit SAT, SAT, 3-SAT.
• Sequencing problems: Hamilton circle, TSP.
• Partitioning problems: 3D-matching, 3-color.
• Numerical problems: Subset sum, Knapsack.

Practice. Most NP problems are known to be in either P or NP-complete.

NP-intermediate? Factor, Discrete log, Graph isomorphism, . . .

Theorem (Ladner 1975)

Unless P = NP, there exist problems in NP that are in neither P nor NP-complete.
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More hard computational problems

Garey and Johnson. Computers and Intractability.

• Appendix includes over 300 NP-complete problems.
• Most cited reference in computer science literature.
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More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.
Chemical engineering. Heat exchanger network synthesis.
Chemistry. Protein folding.
Civil engineering. Equilibrium of urban traffic flow.
Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.
Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.
Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer a1, . . . , an, compute ∫ 2π

0 cos (a1θ) × cos (a2θ) × · · · × cos (anθ) dθ

Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.
Physics. Partition function of 3d Ising model.
Politics. Shapley–Shubik voting power.
Recreation. Versions of Sudoku, Checkers, Minesweeper, Tetris, Rubik’s Cube.
Statistics. Optimal experimental design.
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co-NP
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Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Example 1. SAT vs. Un-SAT.

• Can prove a CNF formula is satisfiable by specifying an assignment.
• How could we prove that a formula is not satisfiable?

SAT. Given a CNF formula Φ, is there a satisfying truth assignment?

Un-SAT. Given a CNF formula Φ, is there no satisfying truth
assignment?
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Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Example 2. Hamilton cycle vs. No Hamilton cycle.

• Can prove a graph is Hamiltonian by specifying a permutation.
• How could we prove that a graph is not Hamiltonian?

HAMILTON CYCLE. Given a graph G = (V,E), is there a simple cycle Γ

that contains every node in V ?

NO HAMILTON CYCLE. Given a graph G = (V,E), is there no simple
cycle Γ that contains every node in V ?
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Asymmetry of NP

Asymmetry of NP. We need short certificates only for yes instances.

Q. How to classify Un-SAT and No Hamilton cycle?

• SAT ∈ NP-complete and SAT≡P Un-SAT.
• Hamilton circle ∈ NP-complete and Hamilton circle ≡P No Hamilton circle.
• But neither Un-SAT nor No Hamilton circle are known to be in NP.
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NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Example. SAT, Hamilton cycle, and Composites.

Definition

Given a decision problem X, its complement X is the same problem with the yes and no answers
reversed.

Example X = {4, 6, 8, 9, 10, 12, 14, 15, . . .}
X = {2, 3, 5, 7, 11, 13, 17, 23, 29, . . .}

co-NP. Complements of decision problems in NP.
Example. Un-SAT, No Hamilton cycle, and Primes.
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NP = co-NP?

Fundamental open question. Does NP = co-NP?

• Do yes instances have succinct certificates iff no instances do?
• Consensus opinion: no.

Theorem

If NP ̸= co-NP, then P ̸=NP.

Proof idea.

• P is closed under complementation.
• If P = NP, then NP is closed under complementation.
• In other words, NP = co-NP.
• This is the contrapositive of the theorem.
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Good characterizations

Good characterization.[Edmonds 1965] NP ∩ co-NP.

• If problem X is in both NP and co-NP, then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier

• Provides conceptual leverage for reasoning about a problem.

Example. Given a bipartite graph, is there a perfect matching?

• If yes, can exhibit a perfect matching.
• If no, can exhibit a set of nodes S such that |N(S)| < |S|.
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Good characterizations

Observation. P ⊆ NP ∩ co-NP.

• Proof of max-flow min-cut theorem led to stronger result that max-flow and min-cut are in P.
• Sometimes finding a good characterization seems easier than finding an efficient algorithm.

Fundamental open question. Does P = NP ∩ co-NP?

• Mixed opinions.
• Many examples where problem found to have a nontrivial good characterization, but only years

later discovered to be in P.
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Factoring is in NP ∩ co-NP

Linear programming. Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and α ∈ R, does there exist x ∈ Rn such
that Ax ≤ b, x ≥ 0 and cTx ≥ α?

Theorem (Gale–Kuhn–Tucker 1948)

LINEAR PROGRAMMING ∈ NP ∩ Co-NP .

Proof sketch. If (P) and (D) are nonempty, then max = min.

(P)max cTx

s.t. Ax ≤ b

x ≥ 0

(D)min yT b

s.t. AT y ≥ c

y ≥ 0
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Factoring is in NP ∩ co-NP

LINEAR PROGRAMMING. Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and α ∈ R, does there exist x ∈ Rn

such that Ax ≤ b, x ≥ 0 and cTx ≥ α?

Theorem (Khachiyan 1979)

LINEAR PROGRAMMING ∈ P.
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Factoring is in NP ∩ co-NP

Theorem (Pratt 1975)

PRIMES ∈ NP ∩ co-NP.

Proof sketch. An odd integer s is prime iff there exists an integer 1 < t < s s.t.

ts−1 ≡ 1 (mods)

t(s−1)/p ̸= 1 (mods)

for all prime divisors p of s− 1.
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Primality testing is in P

Theorem (Agrawal–Kayal–Saxena 2004)

PRIMES ∈ P.

41/47



Factoring is in NP ∩ co-NP

FACTORIZE. Given an integer x, find its prime factorization.
FACTOR. Given two integers x and y, does x have a nontrivial factor < y?

Theorem

FACTOR ≡P FACTORIZE

Proof.

• ≤P trivial.
• ≥P binary search to find a factor; divide out the factor and repeat.

Theorem

FACTOR ∈ NP ∩ co-NP.

Proof.

• Certificate: a factor p of x that is less than y.
• Disqualifier: the prime factorization of x (where each prime factor is greater than y).
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Is factoring in P?

Fundamental question. Is FACTOR ∈ P?

Challenge. Factor this number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

RSA-704
($30,000 prize if you can factor)
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Challenge. Factor this number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

RSA-704
($30,000 prize if you can factor)

43/47



Exploiting intractability

Modern cryptography.

• Example. Send your credit card to Amazon.
• Example. Digitally sign an e-document.
• Enables freedom of privacy, speech, press, political association.

RSA. Based on dichotomy between complexity of two problems.

• To use: generate two random n-bit primes and multiply.
• To break: suffices to factor a 2n-bit integer.
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Factoring on a quantum computer

Theorem (Shor 1994)

Can factor an n-bit integer in O(n3) steps on a “quantum computer”.

2001. Factored 15 = 3× 5 (with high probability) on a quantum computer.
2012. Factored 21 = 3× 7.

Fundamental question. Does P = BQP?
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NP-hard
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A note on terminology: consensus

NP-complete. A problem in NP such that every problem in NP poly-time reduces to it.

NP-hard. [[Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni] A problem such that every problem in
NP poly-time reduces to it.
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