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Algorithm design patterns and antipatterns
Algorithm design patterns.
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Algorithm design patterns and antipatterns

Algorithm design patterns.

® Divide and conquer.

® Dynamic programming.
® Greedy.

® Duality.

® Reductions.

® | ocal search.

® Approximation.

® Randomization.
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Algorithm design patterns and antipatterns

Algorithm design patterns.

® Divide and conquer.

® Dynamic programming.
® Greedy.

® Duality.

® Reductions.

® | ocal search.

® Approximation.

® Randomization.

Algorithm design antipatterns.

® NP-completeness.
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Algorithm design patterns and antipatterns

Algorithm design patterns.

® Divide and conquer.

® Dynamic programming.
® Greedy.

® Duality.

Reductions.

® | ocal search.

Approximation.

Randomization.

Algorithm design antipatterns.

® NP-completeness.

O(n") algorithm unlikely.
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Algorithm design patterns and antipatterns

Algorithm design patterns.

® Divide and conquer.

® Dynamic programming.
® Greedy.

® Duality.

Reductions.

® | ocal search.

Approximation.

Randomization.

Algorithm design antipatterns.

® NP-completeness.
® PSPACE-completeness

O(n") algorithm unlikely.
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Algorithm design patterns and antipatterns

Algorithm design patterns.

® Divide and conquer.

® Dynamic programming.
® Greedy.

® Duality.

Reductions.

® | ocal search.

Approximation.

Randomization.

Algorithm design antipatterns.

® NP-completeness.
® PSPACE-completeness

O(n") algorithm unlikely.
O(n*) certification algorithm unlikely.
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Algorithm design patterns and antipatterns
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Algorithm design patterns.

® Divide and conquer.

® Dynamic programming.
® Greedy.

® Duality.

Reductions.

® | ocal search.

Approximation.

Randomization.

Algorithm design antipatterns.

® NP-completeness. O(n") algorithm unlikely.
® PSPACE-completeness ()(nk) certification algorithm unlikely.
® Undecidability
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Algorithm design patterns and antipatterns
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Algorithm design patterns.

® Divide and conquer.

® Dynamic programming.
® Greedy.

® Duality.

Reductions.

® | ocal search.

Approximation.

Randomization.

Algorithm design antipatterns.

® NP-completeness. O(n") algorithm unlikely.
® PSPACE-completeness ()(nk) certification algorithm unlikely.
® Undecidability No algorithm possible.
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Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?
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Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition.
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Those with poly-time algorithms.

'Y §
Nash
(1953) (1955)

von Neumann

Cobham
(1964)
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Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition.
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Those with poly-time algorithms.

A
Nash
(1955)

von Neumann
(1953)

Cobham
(1964)

Theory. Definition is broad and robust.

® Turing machine, word RAM, uniform circuits,
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Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition.
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Those with poly-time algorithms.

A
Nash
(1955)

von Neumann
(1953)

Cobham
(1964)

Theory. Definition is broad and robust.

® Turing machine, word RAM, uniform circuits,

Practice. Poly-time algorithms scale to huge problems.
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Classify problems according to computational requirements

SHANGHAI JIAO TONG
Q. Which problems will we be able to solve in practice?
A working definition.

UNIVERSITY

Those with poly-time algorithms.

yes probably no
shortest path longest path
min cut max cut
2-satisfiability 3-satisfiability
planar 4-colorability planar 3-colorability
bipartite vertex cover vertex cover
2D-matching 3D-matching
primality testing factoring
linear programming integer linear programming
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Classify problems
that cannot.

G
Requirement. Classify problems according to those that can be solved in polynomial time and those
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Classify problems
that cannot.

Requirement. Classify problems according to those that can be solved in polynomial time and those
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Provably requires exponential time.

® Given a constant-size program, does it halt in at most k steps?

® Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Alan designed the perfect computer

A



Classify problems
that cannot.

Requirement. Classify problems according to those that can be solved in polynomial time and those

SHANGHAI JIAO TONG

UNIVERSITY
Provably requires exponential time.

® Given a constant-size program, does it halt in at most k steps?

® Given a board position in an n-by-n generalization of checkers, can black guarantee a win?

Alan designed the perfect computer

Frustrating news. Huge number of fundamental problems have defied classification for decades.
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Poly-time reductions
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Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?
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Poly-time reductions

SHANGHAI JIAO TONG
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Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?
Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem
X can be solved using:

® Polynomial number of standard computational steps, plus

® Polynomial number of calls to oracle that solves problem Y.

instance |

—>  Algorithm —
—>
(of X)

—

forY

—_—

i——— solution Sto |

Algorithm for X
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Poly-time reductions
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Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?
X can be solved using:

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem

® Polynomial number of standard computational steps, plus

® Polynomial number of calls to oracle that solves problem Y.

Notation. X <p Y.

polynomial size.

Note. We pay for time to write down instances of Y sent to oracle = instances of Y must be of
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Poly-time reductions

Suppose we could solve problem Y in polynomial time. What else could we solve in polynomial time?
Reduction. Problem X polynomial-time (Cook) reduces to problem Y if arbitrary instances of problem
X can be solved using:

® Polynomial number of standard computational steps, plus

® Polynomial number of calls to oracle that solves problem Y.

Notation. X <p Y.

polynomial size.

Note. We pay for time to write down instances of Y sent to oracle = instances of Y must be of
Novice mistake. Confusing X <p Y with Y <p X.
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Suppose that X <p Y. Which of the following can we infer?

™ If X can be solved in polynomial time, then so can Y.
® X can be solved in poly time iff Y can be solved in poly time.
@ If X cannot be solved in polynomial time, then neither can Y.

® If Y cannot be solved in polynomial time, then neither can X.
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Quiz
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Which of the following poly-time reductions are known?

® FIND-MAX-FLOW <p FIND-MIN-CUT.

® FIND-MIN-CUT <p FIND-MAX-FLOW.
@ Both A and B.

® Neither A nor B.

«0» «F»r» « =

> <

v
it

PAN G4



Poly-time reductions
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polynomial time.
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Design algorithms. If X <p Y and Y can be solved in polynomial time, then X can be solved in
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Poly-time reductions SHANGHAI JIAOTONG
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Design algorithms. If X <p Y and Y can be solved in polynomial time, then X can be solved in
polynomial time.

Establish intractability. If X <p Y and X cannot be solved in polynomial time, then Y cannot be
solved in polynomial time.

Establish equivalence. If both X <p Y and Y <p X, we use notation X =p Y. In this case, X can
be solved in polynomial time iff Y can be.
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Poly-time reductions SHANGHAL 1A TONG

Design algorithms. If X <p Y and Y can be solved in polynomial time, then X can be solved in
polynomial time.

Establish intractability. If X <p Y and X cannot be solved in polynomial time, then Y cannot be
solved in polynomial time.

Establish equivalence. If both X <p Y and Y <p X, we use notation X =p Y. In this case, X can
be solved in polynomial time iff Y can be.

Evaluate (unknown) problems To evaluate the complexity of an unknown problem.

«40>» «F»r» «E» <

it
v
it

PAN G4



Poly-time reductions SHANGHAL 1A TONG

Design algorithms. If X <p Y and Y can be solved in polynomial time, then X can be solved in
polynomial time.

Establish intractability. If X <p Y and X cannot be solved in polynomial time, then Y cannot be
solved in polynomial time.

Establish equivalence. If both X <p Y and Y <p X, we use notation X =p Y. In this case, X can
be solved in polynomial time iff Y can be.

Evaluate (unknown) problems To evaluate the complexity of an unknown problem.

Bottom line. Reductions classify problems according to relative difficulty.
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Packing and Covering Problems
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Independent set

INDEPENDENT SET. Given a graph G = (V, E) and an integer k, is there a subset of k (or more)
vertices such that no two are adjacent?
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Independent set SHANGHAI JIAO TONG
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INDEPENDENT SET. Given a graph G = (V, E) and an integer k, is there a subset of k (or more)
vertices such that no two are adjacent?

Example. Is there an independent set of size > 67
Example. Is there an independent set of size > 77

e o o
|
e @00
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Vertex cover

Vertex Cover. Given a graph G = (V, E) and an integer k, is there a subset of k (or fewer) vertices
such that each edge is incident to at least one vertex in the subset?

«0» «F»

it
v
a
it
v

PAN G4



Vertex cover SHANGHAI JIAO TONG
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Vertex Cover. Given a graph G = (V, E) and an integer k, is there a subset of k (or fewer) vertices
such that each edge is incident to at least one vertex in the subset?

Example. Is there a vertex cover of size < 47
Example. Is there a vertex cover of size < 37

e o o
|
e @00
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Quiz

)
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Consider the following graph GG. Which are true?

™ The white vertices are a vertex cover of size 7.

® The black vertices are an independent set of size 3
@ Both A and B.

® Neither A nor B.

O ® O
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Vertex cover and independent set reduce to one another

Independent Set =p Vertex Cover.
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Vertex cover and independent set reduce to one another

Independent Set =p Vertex Cover.

Proof. We show S is an independent set of size k iff V' — S is a vertex cover of size n — k.

e o o0
o o0 0
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Vertex cover and independent set reduce to one another

Independent Set =p Vertex Cover.
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Proof. We show S is an independent set of size k iff V' — S is a vertex cover of size n — k.
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Vertex cover and independent set reduce to one another

Independent Set =p Vertex Cover.
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Proof. We show S is an independent set of size k iff V' — S is a vertex cover of size n — k.

® | et S be any independent set of size k.
o V —§Sisof sizen—k.

® Consider an arbitrary edge (u,v) € E
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Vertex cover and independent set reduce to one another

Independent Set =p Vertex Cover.
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Proof. We show S is an independent set of size k iff V' — S is a vertex cover of size n — k.

® | et S be any independent set of size k.
o V —§Sisof sizen—k.

® Consider an arbitrary edge (u,v) € E
[ ]

S independent = either u ¢ S, or v ¢ S, or both.

= eitheru eV — 5, orveV — 5, or both.
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Vertex cover and independent set reduce to one another

Independent Set =p Vertex Cover.
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Proof. We show S is an independent set of size k iff V' — S is a vertex cover of size n — k.
® | et S be any independent set of size k.
o V —§Sisof sizen—k.

® Consider an arbitrary edge (u,v) € E
[ ]

S independent = either u ¢ S, or v ¢ S, or both.

= eitheru eV — 5, orveV — 5, or both.
® Thus, V — S covers (u,v).
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Vertex cover and independent set reduce to one another

Independent Set =p Vertex Cover.
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Proof. We show S is an independent set of size k iff V' — S is a vertex cover of size n — k.
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Vertex cover and independent set reduce to one another

Independent Set =p Vertex Cover.
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Proof. We show S is an independent set of size k iff V' — S is a vertex cover of size n — k.

® |let V — S be any independent set of size n — k.
® S is of size k.

® Consider an arbitrary edge (u,v) € E
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Vertex cover and independent set reduce to one another

Independent Set =p Vertex Cover.
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Proof. We show S is an independent set of size k iff V' — S is a vertex cover of size n — k.

® |let V — S be any independent set of size n — k.
® S is of size k.

® Consider an arbitrary edge (u,v) € E
[ ]

V — S is a vertex cover = eitheru e V — S, orv e V — S, or both

= either u ¢ S, or v ¢ S, or both.
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Independent Set =p Vertex Cover.

=

® |let V — S be any independent set of size n — k.
® S is of size k.

® Consider an arbitrary edge (u,v) € E
[ ]

V — S is a vertex cover = eitheru e V — S, orv e V — S, or both

= either u ¢ S, or v ¢ S, or both.
® Thus, S is an independent set.
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Proof. We show S is an independent set of size k iff V' — S is a vertex cover of size n — k.
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that each of two are adjacent?

CLIQUE. Given a graph G = (V, E) and an integer k, is there a subset of k (or more) vertices such
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Set cover
SET COVER.

Given a set U of elements, a collection S of subsets of U, and an integer k, are there
< k of these subsets whose union is equal to U?
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Set cover

SHANGHAI JIAO TONG
UNIVERSITY

SET COVER. Given a set U of elements, a collection S of subsets of U, and an integer k, are there
< k of these subsets whose union is equal to U?

Sample application.

® m available pieces of software.

® Set U of n capabilities that we would like our system to have.
® The i'" piece of software provides the set S; C U of capabilities.

® Goal: achieve all n capabilities using fewest pieces of software.

U={1,2,3,4,5,6,7}
S, ={3,7}

Sy =1{2,4}
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Given the universe U = {1,2,3,4,5,6, 7} and the following sets, which is the minimum size of a set
cover?

®1 U=1{1,2,3,4,5,6,7}

D 2 Sa = {1,4,6} Sy ={1,6,7}

@3 Se=11,2,3,6} Sa={1,3,5,7}
Se ={2,6,7} Sy =1{3,4,5}

® None of the above.

«O>» «F>» «=>» «=>»



Vertex cover reduces to set cover

VERTEX COVER <p SET COVER.
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Vertex cover reduces to set cover

VERTEX COVER <p SET COVER.

Proof.

SHANGHAI JIAO TONG
UNIVERSITY
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Vertex cover reduces to set cover

VERTEX COVER <p SET COVER.

Proof.

SHANGHAI JIAO TONG
UNIVERSITY

Given a VERTEX COVER instance G = (V| E) and k, we construct a SET COVER instance
(U, S, k) that has a set cover of size k iff G has a vertex cover of size k.
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Vertex cover reduces to set cover

SHANGHAI JIAO TONG

& } UNIVERSITY

VERTEX COVER <p SET COVER.

Proof.

Given a VERTEX COVER instance G = (V| E) and k, we construct a SET COVER instance
(U, S, k) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

® Universe U = F.

® Include one subset for each node v € V : S, = {e € E': e incident to v }.

@ @

er e e O U=1{1,2,3,4,5,6,7}

@ “ ©

Sa = {3,7} Sy = {2,4}
. . S. = {3,4,5,6} Sa = {5}
@ @ Se = {1} Sf = {1)2767 7}




Vertex cover reduces to set cover

SHANGHAI JIAO TONG
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G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.
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Vertex cover reduces to set cover

SHANGHAI JIAO TONG
UNIVERSITY

=

G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.
Proof.

@
e7 €3 e € U = {172,3,4,5,6, 7}
0 eﬁ [ ] =
e; e
© @

Let X C V be a vertex cover of size k in G, then Y = {S, : v € X} is a set cover of size k.

Sy = {2,4}

Sq = {5}
Se = {1}
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Vertex cover reduces to set cover

SHANGHAI JIAO TONG
UNIVERSITY

=

G = (V, E) contains a vertex cover of size k iff (U, S, k) contains a set cover of size k.
Proof.

@
e7 €3 e € U = {172,3,4,5,6, 7}
0 eﬁ [ ] =
e; e
© @

Let Y C S be a set cover of size k in (U, S, k), then X = {v: S, € Y} is a vertex cover of size k in G

Sy = {2,4}

Sq = {5}
Se = {1}
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Satisfiability
Literal. A Boolean variable or its negation: z; or ;.
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Satisfiability

Literal. A Boolean variable or its negation: z; or T;

D

) UNIVERSITY

SHANGHAI JIAO TONG
Clause. A disjunction of literals: C; =z V72 V 23

«40» «F»r» « >

it
v

PAN G4



Satisfiability
Literal. A Boolean variable or its negation: z; or ;.

SHANGHAI JIAO TONG
Clause. A disjunction of literals: C; =z V72 V 23

) UNIVERSITY

Conjunctive normal form (CNF): ® = Cy AC2 AC3 A Cy
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Satisfiability
Literal. A Boolean variable or its negation: z; or ;.

(@
Clause. A disjunction of literals: C; =z V72 V 23

D

) UNIVERSITY

SHANGHAI JIAO TONG
&

Conjunctive normal form (CNF): ® = Cy AC2 AC3 A Cy

SAT. Given a CNF formula ®, does it have a satisfying truth assignment?
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Satisfiability
Literal. A Boolean variable or its negation: z; or ;.

(@
Clause. A disjunction of literals: C; =z V72 V 23

D
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K SHANGHAI JIAO TONG
&

Conjunctive normal form (CNF): ® = Cy AC2 AC3 A Cy

SAT. Given a CNF formula ®, does it have a satisfying truth assignment?
variable).

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different
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Satisfiability
Literal. A Boolean variable or its negation: z; or ;.

(@
Clause. A disjunction of literals: C; =z V72 V 23

D

) UNIVERSITY

SHANGHAI JIAO TONG
&

Conjunctive normal form (CNF): ® = Cy AC2 AC3 A Cy

SAT. Given a CNF formula ®, does it have a satisfying truth assignment?
variable).

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different

&= (T1Vao2Vas)A(@iVITzVaes)A(@T1V a2V
yes instance:

xr1= true,

o= true,

Ir3=
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Satisfiability
Literal. A Boolean variable or its negation: z; or ;.

(@
Clause. A disjunction of literals: C; =z V72 V 23

D

) UNIVERSITY

SHANGHAI JIAO TONG
&

Conjunctive normal form (CNF): ® = Cy AC2 AC3 A Cy

SAT. Given a CNF formula ®, does it have a satisfying truth assignment?
variable).

3-SAT. SAT where each clause contains exactly 3 literals (and each literal corresponds to a different

&= (T1Vao2Vas)A(@iVITzVaes)A(@T1V a2V
yes instance:

xr1= true,

o= true,

Ir3=

Key application. Electronic design automation (EDA).
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Satisfiability is hard

SHANGHAI JIAO TONG
Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.

s UNIVERSITY
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Satisfiability is hard

SHANGHAI JIAO TONG
Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.

&84) UNIVERSITY

P vs. NP This hypothesis is equivalent to P # NP conjecture.
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Satisfiability is hard

Scientific hypothesis. There does not exists a poly-time algorithm for 3-SAT.

P vs. NP This hypothesis is equivalent to P # NP conjecture.

Donald J. Trump &
E @realDonaldTrump
Computer Scientists have so much funding and
time and can't even figure out the boolean
satisfiability problem. SAT!
RETWEETS LIKES v D
1693 50105 EBE2PEE2 2

6:31 AM - 17 Apr 2017

https://www.facebook.com/pg/npcompleteteens
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SAT reduces to 3SAT

SHANGHAI JIAO TONG

D

) UNIVERSITY

This is an interesting and common kind of reduction, from a problem to a special case of itself.
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SAT reduces to 3SAT

SHANGHAI JIAO TONG

D

) UNIVERSITY

This is an interesting and common kind of reduction, from a problem to a special case of itself.

Given an instance I of SAT, use exactly the same instance for 3SAT,
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SAT reduces to 3SAT

(@

K SHANGHAI JIAO TONG
&

D

) UNIVERSITY

This is an interesting and common kind of reduction, from a problem to a special case of itself.
more than three literals,

is replaced by a set of clauses,

Given an instance [ of SAT, use exactly the same instance for 3SAT, except that any clause with
(a1 \/ag\/...\/ak)

(a1 Vas V yﬂ(m\/ as V yg)(yiz\/ aq V yg) .. (yk_g Vagr—1V ak)
where the y;'s are new variables.
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SAT reduces to 3SAT

T
SHANGHAI JIAO TONG
& =) UNIVERSITY

This is an interesting and common kind of reduction, from a problem to a special case of itself.
more than three literals,

is replaced by a set of clauses,

Given an instance [ of SAT, use exactly the same instance for 3SAT, except that any clause with
(a1 \/ag\/...\/ak)

(a1 Vas V yﬂ(m\/ as V yg)(yiz\/ aq V yg) .. (yk_g Vagr—1V ak)
where the y;'s are new variables.

The reduction is in polynomial and I’ is equivalent to I in terms of satisfiability.
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SAT reduces to 3SAT

SHANGHAI JIAO TONG
UNIVERSITY

{ (a1 Vas V- Va)

there is a setting of the y;’s for which
is satisfied } =

a1 VazVyr) (1 VagVys) - (YesVar—1Vag)

are all satisfied
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SAT reduces to 3SAT

(a1VazV---Vay) there is a setting of the y;’s for which

a1Va2Vy1) (@1\/(13\/yg)

(Yr—s V ar—1 V ay)
are all satisfied

Suppose that the clauses on the right are all satisfied. Then at least one of the literals a1,

Otherwise y1 would have to be true, which would in turn force y2 to be true, and so on.

Conversely, if (a1 Va2 V...V ay) is satisfied, then some a; must be true. Set y1,
and the rest to false.

«40>» «F»r» «E» <
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3SAT reduces to independent set

3SAT <p INDEPENDENT SET.

SHANGHAI JIAO TONG
UNIVERSITY
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3SAT reduces to independent set

3SAT <p INDEPENDENT SET.

Proof.

SHANGHAI JIAO TONG
UNIVERSITY
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3SAT reduces to independent set

3SAT <p INDEPENDENT SET.

Proof.

SHANGHAI JIAO TONG
UNIVERSITY

Given an instance ® of 3-SAT, we construct an instance (G, k) of INDEPENDENT SET that
has an independent set of size k = |®| iff ® is satisfiable.
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3SAT reduces to independent set

3SAT <p INDEPENDENT SET.

Proof.

SHANGHAI JIAO TONG
UNIVERSITY

has an independent set of size k = |®| iff ® is satisfiable.
Construction.

Given an instance ® of 3-SAT, we construct an instance (G, k) of INDEPENDENT SET that

® (7 contains 3 nodes for each clause, one for each literal.
® Connect 3 literals in a clause in a triangle.

® Connect literal to each of its negations.

X

Xy X3 X X3 X
o = (Jﬁ\/mg\/xg)/\(lj \/TQ\/xg)/\(ﬁ\/xg\/m)

Xq
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3SAT reduces to independent set

3SAT <p INDEPENDENT SET.

Proof.

SHANGHAI JIAO TONG
UNIVERSITY
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3SAT reduces to independent set

3SAT <p INDEPENDENT SET.

SHANGHAI JIAO TONG
Proof.

UNIVERSITY
=

Consider any satisfying assignment for .

® Select one true literal from each clause/triangle.
® This is an independent set of size k = |P|.

X

X, X, X, X, X, X,
o = (ﬂ\/mg \/333)/\ (501 \/@\/1}3)/\ (ﬂ\/mg \/174)
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3SAT reduces to independent set

3SAT <p INDEPENDENT SET.

Proof.

SHANGHAI JIAO TONG
UNIVERSITY
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3SAT reduces to independent set
3SAT <p INDEPENDENT SET.

Proof.

<~

SHANGHAI JIAO TONG
UNIVERSITY

Let S be independent set of size k.

® S must contain exactly one node in each triangle.

® Set these literals to true and remaining literals consistently.
® All clauses in ® are satisfied.

X

x, X, X, X, X, X,
O = (T Va2 Vas)A(x1 \/aTg\/91:3)/\(ﬂ\/‘a@’\/‘aséj)> )

=»r 4«

»
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Review

G
Basic reduction strategies.

SHANGHAI JIAO TONG
&

D

) UNIVERSITY

® Simple equivalence: Independent Set =p Vertex Cover

® Special case to general case: Vertex Cover <p Set Cover

® Encoding with gadgets: 3-SAT <p Independent Set.
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Review

G
Basic reduction strategies.

SHANGHAI JIAO TONG
&

D

) UNIVERSITY

® Simple equivalence: Independent Set =p Vertex Cover

® Special case to general case: Vertex Cover <p Set Cover

® Encoding with gadgets: 3-SAT <p Independent Set.

Transitivity. If X <p Y and Y <p Z, then X <p Z.
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Review

=
Basic reduction strategies.

A

K SHANGHAI JIAO TONG
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) UNIVERSITY

® Simple equivalence: Independent Set =p Vertex Cover

® Special case to general case: Vertex Cover <p Set Cover

® Encoding with gadgets: 3-SAT <p Independent Set.
Transitivity. If X <p Y and Y <p Z, then X <p Z.

Proof idea. Compose the two algorithms.
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Review

=
Basic reduction strategies.

A

K SHANGHAI JIAO TONG
&

D

) UNIVERSITY

® Simple equivalence: Independent Set =p Vertex Cover

® Special case to general case: Vertex Cover <p Set Cover

® Encoding with gadgets: 3-SAT <p Independent Set.
Transitivity. If X <p Y and Y <p Z, then X <p Z.

Proof idea. Compose the two algorithms.

Example.

SAT <p 3SAT <p Independent Set <p Vertex Cover <p Set Cover
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Decision, Search and Optimization

«O0» «F»

it
v
a
it
v

PAN G4



Decision, search and optimization problems

SHANGHAI JIAO TONG

D

) UNIVERSITY

Decision problem. Does there exist a vertex cover of size < k7
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Decision, search and optimization problems

SHANGHAI JIAO TONG

D

) UNIVERSITY

Decision problem. Does there exist a vertex cover of size < k7

Search problem. Find a vertex cover of size < k.
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Decision, search and optimization problems

SHANGHAI JIAO TONG

D

) UNIVERSITY

Decision problem. Does there exist a vertex cover of size < k7

Search problem. Find a vertex cover of size < k.

Optimization problem. Find a vertex cover of minimum size.
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Decision, search and optimization problems

SHANGHAI JIAO TONG

D

) UNIVERSITY

Decision problem. Does there exist a vertex cover of size < k7
Search problem. Find a vertex cover of size < k.

Optimization problem. Find a vertex cover of minimum size.

Goal. Show that all three problems poly-time reduce to one another

«0» «F»

it
v
a
it
v

PAN G4



Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size < k?

)
FIND VERTEX COVER. Find a vertex cover of size < k.

SHANGHAI JIAO TONG
UNIVERSITY
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Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size < k?

)
FIND VERTEX COVER. Find a vertex cover of size < k.

SHANGHAI JIAO TONG
UNIVERSITY

Theorem. Vertex cover =p Find vertex cover.
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Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size < k?

)
FIND VERTEX COVER. Find a vertex cover of size < k.

SHANGHAI JIAO TONG
UNIVERSITY

Theorem. Vertex cover =p Find vertex cover.
Proof.
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Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size < k?

)
FIND VERTEX COVER. Find a vertex cover of size < k.

SHANGHAI JIAO TONG
UNIVERSITY

Theorem. Vertex cover =p Find vertex cover.
Proof.

< p. Decision problem is a special case of search problem.
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Search problems VS. Decision problems

VERTEX COVER. Does there exist a vertex cover of size < k?

)
FIND VERTEX COVER. Find a vertex cover of size < k.

SHANGHAI JIAO TONG
UNIVERSITY

Theorem. Vertex cover =p Find vertex cover.
Proof.

< p. Decision problem is a special case of search problem.

>p. To find a vertex cover of size < k:

«0» «F»r «

it
v
a
it
v

PAN G4



Search problems VS. Decision problems S“ANG“"”"“’“’NG

UNIVERSITY

VERTEX COVER. Does there exist a vertex cover of size < k?

FIND VERTEX COVER. Find a vertex cover of size < k.

Theorem. Vertex cover =p Find vertex cover.

Proof.

< p. Decision problem is a special case of search problem.

>p. To find a vertex cover of size < k:

® Determine if there exists a vertex cover of size < k.

Find a vertex v such that G — {v} has a vertex cover of size < k — 1. (any vertex in any vertex
cover of size < k will have this property)

® |nclude v in the vertex cover.

® Recursively find a vertex cover of size <k —1in G — {v}.
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Optimization problems VS. Search problems VS. Decision problems

(@
FIND VERTEX COVER. Find a vertex cover of size < k.

SHANGHAI JIAO TONG
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) UNIVERSITY

FIND MIN VERTEX COVER. Find a vertex cover of minimum size.
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Optimization problems VS. Search problems VS. Decision problems

(@
FIND VERTEX COVER. Find a vertex cover of size < k.

SHANGHAI JIAO TONG
&

D

) UNIVERSITY

FIND MIN VERTEX COVER. Find a vertex cover of minimum size.

Theorem. Find vertex cover =p Find min vertex cover.
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Optimization problems VS. Search problems VS. Decision problems

(@
FIND VERTEX COVER. Find a vertex cover of size < k.

SHANGHAI JIAO TONG
&

D

) UNIVERSITY

FIND MIN VERTEX COVER. Find a vertex cover of minimum size.

Theorem. Find vertex cover =p Find min vertex cover.
Proof.
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Optimization problems VS. Search problems VS. Decision problems

S
Urivensiy O TONG
FIND VERTEX COVER. Find a vertex cover of size < k.

FIND MIN VERTEX COVER. Find a vertex cover of minimum size

Theorem. Find vertex cover =p Find min vertex cover.
Proof.

<p. Search problem is a special case of optimization problem.
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Optimization problems VS. Search problems VS. Decision problems

=
FIND VERTEX COVER. Find a vertex cover of size < k.

53
, SHANGHAI JIAO TONG
& =) UNIVERSITY

FIND MIN VERTEX COVER. Find a vertex cover of minimum size

Theorem. Find vertex cover =p Find min vertex cover.
Proof.

<p. Search problem is a special case of optimization problem.

>p. To find vertex cover of minimum size:
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Optimization problems VS. Search problems VS. Decision problems

=
FIND VERTEX COVER. Find a vertex cover of size < k.

53
, SHANGHAI JIAO TONG
& =) UNIVERSITY

FIND MIN VERTEX COVER. Find a vertex cover of minimum size

Theorem. Find vertex cover =p Find min vertex cover.
Proof.

<p. Search problem is a special case of optimization problem.

>p. To find vertex cover of minimum size:

® Binary search (or linear search) for size k* of min vertex cover.
® Solve search problem for given k*.
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Hamilton cycle

7\ SHANGHAI JIAO TONG
UNIVERSITY

HAMILTON CYCLE. Given an undirected graph G = (V, E), does there exist a cycle I" that visits every
node exactly once?

® ® e

@ & @ © ©

no
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Directed Hamilton cycle reduces to Hamilton cycle

that visits every node exactly once?

SHANGHAI JIAO TONG
UNIVERSITY
DIRECTED HAMILTON CYCLE. Given a directed graph G = (V, E), does there exist a directed cycle I'

DIRECTED HAMILTON CYCLE <p HAMILTON CYCLE.
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Directed Hamilton cycle reduces to Hamilton cycle

SHANGHAI JIAO TONG

N UNIVERSITY
DIRECTED HAMILTON CYCLE. Given a directed graph G = (V, E), does there exist a directed cycle I
that visits every node exactly once?

DIRECTED HAMILTON CYCLE <p HAMILTON CYCLE.

Proof. Given a directed graph G = (V, E), construct a graph G’ with 3n nodes.

Vour,

PAN G4



Directed Hamilton cycle reduces to Hamilton cycle

G has a directed Hamilton cycle iff G’ has a Hamilton cycle.

SHANGHAI JIAO TONG
UNIVERSITY
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Directed Hamilton cycle reduces to Hamilton cycle

G has a directed Hamilton cycle iff G’ has a Hamilton cycle.

Proof.

SHANGHAI JIAO TONG
UNIVERSITY
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Directed Hamilton cycle reduces to Hamilton cycle

G has a directed Hamilton cycle iff G’ has a Hamilton cycle.

Proof.

SHANGHAI JIAO TONG
UNIVERSITY

=

® Suppose G has a directed Hamilton cycle T.

® Then G’ has an undirected Hamilton cycle (same order).
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Directed Hamilton cycle reduces to Hamilton cycle

G has a directed Hamilton cycle iff G’ has a Hamilton cycle.

Proof.

SHANGHAI JIAO TONG
UNIVERSITY

=

® Suppose G has a directed Hamilton cycle T.

® Then G’ has an undirected Hamilton cycle (same order).
<~

® Suppose G’ has an undirected Hamilton cycle I"'.

e I must visit nodes in G’ using one of following two orders:
..., black,white, blue, black, white, blue, black, white, blue, . . .
..., black, blue, white, black, blue, white, black, blue, white, . . .

® Black nodes in I'" comprise either a directed Hamilton cycle ' in G, or reverse of one.

«40» «F»r» « >

<

»

PAN G4



3-satisfiability reduces to directed Hamilton cycle

SHANGHAI JIAO TONG
UNIVERSITY

3-SAT <p DIRECTED HAMILTON CYCLE.
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3-satisfiability reduces to directed Hamilton cycle

SHANGHAI JIAO TONG
UNIVERSITY

3-SAT <p DIRECTED HAMILTON CYCLE.

Proof.
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3-satisfiability reduces to directed Hamilton cycle

SHANGHAI JIAO TONG
UNIVERSITY

3-SAT <p DIRECTED HAMILTON CYCLE.

Proof.

Given an instance ® of 3-SAT, we construct an instance GG of Directed Hamilton cycle that has a
Hamilton cycle iff ® is satisfiable.
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3-satisfiability reduces to directed Hamilton cycle SHANGHAL JIAO TONG

3-SAT <p DIRECTED HAMILTON CYCLE.

Proof.

Given an instance ® of 3-SAT, we construct an instance GG of Directed Hamilton cycle that has a
Hamilton cycle iff ® is satisfiable.

Construction overview. Let n denote the number of variables in ®. We will construct a graph G that
has 2" Hamilton cycles, with each cycle corresponding to one of the 2" possible truth assignments.
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3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance ® with n variables x; and k clauses.

SHANGHAI JIAO TONG
UNIVERSITY

® Construct G to have 2" Hamilton cycles.

® [ntuition: traverse path ¢ from left to right <> set variables x; =true
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S —
Quiz

Which is truth assignment corresponding to Hamilton cycle below?
» x1 = true,x2 = true, r3 = true

® 1 = true, x2 = true,x3 = false

@ x1 = false,x2 = false,x3 = true

@ x1 = false,x2 = false,xs = false

a

it
a
it

PAN G4
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3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance ® with n variables x; and k clauses.
® For each clause: add a node and 2 edges per literal.

node for clause j

connect in this way

node for clause k
if x; appears in clause C:,\

connect in this way
/ if i appears in clause Cx
e = Y o M Y ~\ Y
‘\/\/ \/{\/ {\/\/U/\/ \/‘/ i
Xi = ttug ——m—>

«——— xi = false
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3-satisfiability reduces to directed Hamilton cycle

Construction. Given 3-SAT instance ® with n variables z; and k clauses.

® For each clause: add a node and 2 edges per literal.

clause node 1

clause node 2

Cy = T1 V

51
8
<
5
8

) X1

| O

X2
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3-satisfiability reduces to directed Hamilton cycle

SHANGHAI JIAO TONG
UNIVERSITY

® s satisfiable iff G has a Hamilton cycle.
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3-satisfiability reduces to directed Hamilton cycle

SHANGHAI JIAO TONG
UNIVERSITY

® s satisfiable iff G has a Hamilton cycle.

Proof.
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3-satisfiability reduces to directed Hamilton cycle

SHANGHAI JIAO TONG

D

) UNIVERSITY

® js satisfiable iff G has a Hamilton cycle.

Proof. =

® Suppose 3-SAT instance ® has satisfying assignment x*.
® Then, define Hamilton cycle I' in G as follows:

@® if 7 = true, traverse row i from left to right.
@ if 7 = false, traverse row i from right to left.

@ for each clause C}, there will be at least one row ¢ in which we are going in “correct” direction to
splice clause node C; into cycle (and we splice in C; exactly once)
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3-satisfiability reduces to directed Hamilton cycle

® s satisfiable iff G has a Hamilton cycle.

SHANGHAI JIAO TONG
UNIVERSITY

Proof.
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3-satisfiability reduces to directed Hamilton cycle

SHANGHAI ]lAO TONG
® js satisfiable iff G has a Hamilton cycle.

D

) UNIVERSITY

Proof. =

® Suppose G has a Hamilton cycle T'.

® |f [" enters clause node (), it must depart on mate edge.
[ ]

@ nodes immediately before and after C'; are connected by an edge e € E.

@ removing C; from cycle, and replacing it with edge e yields Hamilton cycle on G — {C}}.
Continuing in this way, we are left with a Hamilton cycle IV in G — {C1, C2,

oo, Cr e
® Set z] = true if IV traverses row i left-to-right; otherwise, set z} = false.

® traversed in “correct” direction, and each clause is satisfied.
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Numerical Problems
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Subset sum

f“ SHANGHALI JIAO TONG
UNIVERSIT\Z
SUBSET SUM. Given n natural numbers w1,
to exactly W7

,wy, and an integer W, is there a subset that adds up
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Subset sum

f“ SHANGHALI JIAO TONG
UNIVERSIT\Z
SUBSET SUM. Given n natural numbers w1,
to exactly W7

,wy, and an integer W, is there a subset that adds up

Example. { 215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655 }, W = 1505.
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Subset sum

f“ SHANGHALI JIAO TONG
UNIVERSIT\Z
SUBSET SUM. Given n natural numbers w1,
to exactly W7

,wy, and an integer W, is there a subset that adds up

Example. { 215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655 }, W = 1505.
Yes. 215 + 355 + 355 + 580 = 1505.
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Subset sum

f“ SHANGHALI JIAO TONG
E‘, UNIVERSITY]
SUBSET SUM. Given n natural numbers w1,
to exactly W7

,wy, and an integer W, is there a subset that adds up

Example. { 215, 215, 275, 275, 355, 355, 420, 420, 580, 580, 655, 655 }, W = 1505.
Yes. 215 + 355 + 355 + 580 = 1505.

Remark. With arithmetic problems, input integers are encoded in binary. Poly-time
polynomial in binary encoding.

reduction must be
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Subset sum

7\ SHANGHAI JIAO TONG
UNIVERSITY

3-SAT <p SUBSET SUM.
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Subset sum

SHANGHAI JIAO TONG
UNIVERSITY

3-SAT <p SUBSET SUM.

satisfiable.

Proof. Given an instance ® of 3-SAT, we construct an instance of Subset sum that has solution iff ® is
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3-satisfiability reduces to subset sum

P
g SHANGHALI JIAO TONG

D

) UNIVERSITY

each having n + k digits:

Construction. Given 3-SAT instance ® with n variables and k clauses, form 2n + 2k decimal integers,

e Include one digit for each variable z; and one digit for each clause C}
e Include two numbers for each variable z;.

e Include two numbers for each clause Cj.
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3-satisfiability reduces to subset sum S“"NG““ JusoTong

& } UNIVERSITY

o nlnlolalo]
1 0 0 0 1 0

X1 100,010

o 1
Sum of each z; digit is 1; e 1 0 0 1 0 1 100,101
® Sum of each C; digit is 4. 2 0 1 0 1 0 0 10,100
42 0O 1 0 0 1 1 10,011
Key property. No carries possible = each digit w 0 0 1T 1T 1 0 1,110
yields one equation. nm 00 T 0 0 11,000
o 0 0 1 0 0 100
0 0 0 2 0 0 200
Ci= -x Vv x2 vV A3 dummies to get clause o o0 o0 o0 1 0 10
C = XV oan v X columns to sum to 4 0 0 0 0 2 0 20
, 0 0 0 0 0 1 1

C}: Xy Vo ox Voaxs

2

0 0 0 0 0 2
v IEEENENENEY

a
v
a
v
a
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3-satisfiability reduces to subset sum

d s satisfiable iff there exists a subset that sums to W.

SHANGHAI JIAO TONG
UNIVERSITY
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3-satisfiability reduces to subset sum

d s satisfiable iff there exists a subset that sums to W.
Proof.

SHANGHAI JIAO TONG
UNIVERSITY
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3-satisfiability reduces to subset sum (@) smsrm wo o

& } UNIVERSITY

d s satisfiable iff there exists a subset that sums to W.

Proof. = Suppose 3-SAT instance ® has satisfying assignment x*. If xj = true, select integer in
row x;, otherwise, select integer in row —z;.

® Each z; digit sums to 1.

X1 0 100,010
® Since  is satisfiable, each C; digit sums to at m 10 0 1 0 1 100,101
least 1 from x; and —x; rows. = 0 1 0 1 0 0 10,100
4% O 1 0 0 1 1 10,011
® Select dummy integers to make C; digits sum 5 0 0 1 1 1 o0 1,110
to 4. ;s 00 1 0 0 1 1,001
0 0 0 1 0 0 100
0 0 0 2 0 0 200
0 0 0 0 1 0 10

Ci= -x1 Vv X2 vV X3 i
2 3 dummies to get clause o 0 o o0 2 o 20

columns to sum to 4

C = XtV oox VvV X3 0 0 0 0 0 1 1

0 0 0 0 0 2 2
Ci= —x1 V nx2 V o3 W--nnn 111,444
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3-satisfiability reduces to subset sum (@) smsrm wo o

& } UNIVERSITY

® js satisfiable iff there exists a subset that sums to W.

Proof. <  Suppose there exists a subset S* that sums to W. Digit x; forces subset S* to select
either row z; or row —z; (but not both). If row x; selected, assign x] = true; otherwise, assign

x; = false.

BB By
1 0 0 0 1 0

100,010

Digit C; forces subset S™ to select at least one ~m 110101 911 10010
. . n 0 1 0 1 0 0 10,100
literal in clause. o T oo 11| won
Y 0 1 1 1 0 1,110

2n 00 1 0 0 1 ,
Ci= -x1 V X2 Vv X3 dummies to get clause " o T oo oo 122;
C = X1 V —x VvV X3 columns to sum to 4 0o 0o 0 2 0 0 200
0 0 0 0 1 0 10
G=~xV ~xnV x 0 0 0 0 2 0 20
0 0 0 0 0 1 1

0 0 0 0 0 2 2
» ENEENENERE

«0» «F»r «

> <

»

it
N)
ye)
0



Subset sum reduces to knapsack

SHANGHAI JIAO TONG

&84) UNIVERSITY

Subset sum. Given n natural numbers w1,

,wy, and an integer W, is there a subset that adds up to
exactly W7

Knapsack. Given a set of items X, weights u; > 0, values v; > 0, a weight limit U, and a target value
V', is there a subset S C X such that:

ZWSU7 Zvizv

i€S €S
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Subset sum reduces to knapsack

&

& } UNIVERSITY

SHANGHAI JIAO TONG

Subset sum. Given n natural numbers wi,...,w, and an integer W, is there a subset that adds up to
exactly W7

Knapsack. Given a set of items X, weights u; > 0, values v; > 0, a weight limit U, and a target value
V', is there a subset S C X such that:

ZWSU7 Zvizv

i€S €S

Recall. O(nU) dynamic programming algorithm for knapsack.
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Subset sum reduces to knapsack %P:}gg;mmmNG

Subset sum. Given n natural numbers w1,

.,wy, and an integer W, is there a subset that adds up to
exactly W7

Knapsack. Given a set of items X, weights u; > 0, values v; > 0, a weight limit U, and a target value
V', is there a subset S C X such that:

Zui <U, Zvi >V
€S €S

Recall. O(nU) dynamic programming algorithm for knapsack.

Challenge. Prove subset sum <p Knapsack.

«40>» «F»r» «E» <

it
v
it

PAN G4



S —
Quiz

SHANGHAI JIAO TONG

) UNIVERSITY

Can you prove ILP is a difficult problem?

PAN G4



Poly-time reductions

(\77“\ SHANGHAI JIAO TONG
E‘, UNIVERSITY
constraint satisfaction

3-SAT poly-time reduces
to INDEPENDENT-SET
INDEPENDENT-SET DIR-HAM-CYCLE 3-COLOR SUBSET-SUM
VERTEX-COVER HAM-CYCLE KNAPSACK
SET-COVER
packing and covering

sequencing partitioning

numerical



Karp’s 20 poly-time reductions from satisfiability i}:}:’;‘;‘;}“"“’m

2
&
SATISFIABILITY
CLIQUE 0-1 INTEGER SATISFIABILITY WITH AT
' \ PROGRAMMING MOST 3 LITERALS PER CLAUSE
NODE SET ’
COVER PACKING CHROMATIC NUMBER
FEEDBACK FEEDBACK DIRECTED SET EXACT CLIQUE
NODE SET ARC SET  HAMILTON COVERING COVER, COVER
CIRCUIT
3-DIMENSIONAL HITTING STEINER
KNAPSACK
UNDIRECTED MATCHING SET TREE
HAMILTON
CIRCUIT
SEQUENCING ~PARTITION
=
2
MAX CUT E3
=
g
. x
FIGURE 1 - Complete Problems x
H
Dick Karp (1972)
1985 Turing Award
«O» «F» <« > « = = Q>
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Referred Materials

SHANGHAI JIAO TONG

D

) UNIVERSITY

® Content of this lecture comes from Chapter 8 in [KTO05].
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