
Design and Analysis of Algorithms (XIX)
An Introduction to Approximation Algorithms

Guoqiang Li
School of Computer Science

1/54

Approximation Algorithms

2/54

NP-Hard and Optimization Problems

Combinatorial optimization is a topic that consists of finding an optimal object from a finite set of
objects.

Most natural optimization problems, including those arising in application areas, are NP-hard.
Exhaustive search is not feasible.

Under the widely believed conjecture that P ̸= NP, their exact solution is prohibitively time
consuming.

Approximability of these problems becomes a compelling subject of scientific inquiry in computer
science and mathematics.

3/54

NP-Hard and Optimization Problems

Combinatorial optimization is a topic that consists of finding an optimal object from a finite set of
objects.

Most natural optimization problems, including those arising in application areas, are NP-hard.
Exhaustive search is not feasible.

Under the widely believed conjecture that P ̸= NP, their exact solution is prohibitively time
consuming.

Approximability of these problems becomes a compelling subject of scientific inquiry in computer
science and mathematics.

3/54

NP-Hard and Optimization Problems

Combinatorial optimization is a topic that consists of finding an optimal object from a finite set of
objects.

Most natural optimization problems, including those arising in application areas, are NP-hard.
Exhaustive search is not feasible.

Under the widely believed conjecture that P ̸= NP, their exact solution is prohibitively time
consuming.

Approximability of these problems becomes a compelling subject of scientific inquiry in computer
science and mathematics.

3/54

NP-Hard and Optimization Problems

Combinatorial optimization is a topic that consists of finding an optimal object from a finite set of
objects.

Most natural optimization problems, including those arising in application areas, are NP-hard.
Exhaustive search is not feasible.

Under the widely believed conjecture that P ̸= NP, their exact solution is prohibitively time
consuming.

Approximability of these problems becomes a compelling subject of scientific inquiry in computer
science and mathematics.

3/54

VERTEX COVER

VERTEX COVER

Given an undirected graph G = (V,E), and a cost function on vertices
c : V → Q+, find a minimum cost vertex cover, i.e., a set V ′ ⊆ V such
that every edge has at least one endpoint incident at V ′.

The special case, in which all vertices are of unit cost, will be called the
cardinality vertex cover problem.

4/54

NP-Optimization Problem

An NP-optimization problem Π is either a minimization or a maximization problem.

Each valid instance I of Π comes with a nonempty set of feasible solutions, each of which is
assigned a nonnegative rational number called its objective function value.

There exist polynomial time algorithms for determining validity, feasibility, and the objective function
value.

A feasible solution that achieves the optimal objective function value is called an optimal solution.

5/54

NP-Optimization Problem

An NP-optimization problem Π is either a minimization or a maximization problem.

Each valid instance I of Π comes with a nonempty set of feasible solutions, each of which is
assigned a nonnegative rational number called its objective function value.

There exist polynomial time algorithms for determining validity, feasibility, and the objective function
value.

A feasible solution that achieves the optimal objective function value is called an optimal solution.

5/54

NP-Optimization Problem

An NP-optimization problem Π is either a minimization or a maximization problem.

Each valid instance I of Π comes with a nonempty set of feasible solutions, each of which is
assigned a nonnegative rational number called its objective function value.

There exist polynomial time algorithms for determining validity, feasibility, and the objective function
value.

A feasible solution that achieves the optimal objective function value is called an optimal solution.

5/54

NP-Optimization Problem

An NP-optimization problem Π is either a minimization or a maximization problem.

Each valid instance I of Π comes with a nonempty set of feasible solutions, each of which is
assigned a nonnegative rational number called its objective function value.

There exist polynomial time algorithms for determining validity, feasibility, and the objective function
value.

A feasible solution that achieves the optimal objective function value is called an optimal solution.

5/54

NP-Optimization Problem

OPTΠ(I) denotes the objective function value of an optimal solution to instance I. OPT is used
when there is no ambiguity.

An approximation algorithm, A, for Π is in polynomial time. A feasible solution of objective function
value is “close” to the optimal.

By “close” we mean within a guaranteed factor of the optimal.

6/54

NP-Optimization Problem

OPTΠ(I) denotes the objective function value of an optimal solution to instance I. OPT is used
when there is no ambiguity.

An approximation algorithm, A, for Π is in polynomial time. A feasible solution of objective function
value is “close” to the optimal.

By “close” we mean within a guaranteed factor of the optimal.

6/54

NP-Optimization Problem

OPTΠ(I) denotes the objective function value of an optimal solution to instance I. OPT is used
when there is no ambiguity.

An approximation algorithm, A, for Π is in polynomial time. A feasible solution of objective function
value is “close” to the optimal.

By “close” we mean within a guaranteed factor of the optimal.

6/54

A Dilemma

To establish the approximation guarantee, the cost of the solution produced by the algorithm needs
to compare with an optimal solution.

For such problems, not only is it NP-hard to find an optimal solution, but it is also NP-hard to
compute the cost of an optimal solution.

In fact, computing the cost of an optimal solution is precisely the difficult core of such problems.

How do we establish the approximation guarantee? The answer provides a key step in the design of
approximation algorithms.

7/54

A Dilemma

To establish the approximation guarantee, the cost of the solution produced by the algorithm needs
to compare with an optimal solution.

For such problems, not only is it NP-hard to find an optimal solution, but it is also NP-hard to
compute the cost of an optimal solution.

In fact, computing the cost of an optimal solution is precisely the difficult core of such problems.

How do we establish the approximation guarantee? The answer provides a key step in the design of
approximation algorithms.

7/54

A Dilemma

To establish the approximation guarantee, the cost of the solution produced by the algorithm needs
to compare with an optimal solution.

For such problems, not only is it NP-hard to find an optimal solution, but it is also NP-hard to
compute the cost of an optimal solution.

In fact, computing the cost of an optimal solution is precisely the difficult core of such problems.

How do we establish the approximation guarantee? The answer provides a key step in the design of
approximation algorithms.

7/54

A Dilemma

To establish the approximation guarantee, the cost of the solution produced by the algorithm needs
to compare with an optimal solution.

For such problems, not only is it NP-hard to find an optimal solution, but it is also NP-hard to
compute the cost of an optimal solution.

In fact, computing the cost of an optimal solution is precisely the difficult core of such problems.

How do we establish the approximation guarantee? The answer provides a key step in the design of
approximation algorithms.

7/54

Cardinality Vertex Cover

8/54

Matching

Given a graph G = (V,E), a subset of the edges M ⊆ E is said to be a matching if no two edges of
M share an endpoint.

A matching of maximum cardinality in G is called a maximum matching.

A matching that is maximal under inclusion is called a maximal matching.

(a) (b)

9/54

Matching

Given a graph G = (V,E), a subset of the edges M ⊆ E is said to be a matching if no two edges of
M share an endpoint.

A matching of maximum cardinality in G is called a maximum matching.

A matching that is maximal under inclusion is called a maximal matching.

(a) (b)

9/54

Matching

Given a graph G = (V,E), a subset of the edges M ⊆ E is said to be a matching if no two edges of
M share an endpoint.

A matching of maximum cardinality in G is called a maximum matching.

A matching that is maximal under inclusion is called a maximal matching.

(a) (b)

9/54

Matching

Given a graph G = (V,E), a subset of the edges M ⊆ E is said to be a matching if no two edges of
M share an endpoint.

A matching of maximum cardinality in G is called a maximum matching.

A matching that is maximal under inclusion is called a maximal matching.

A maximal matching can clearly be computed in polynomial time by simply greedily picking edges
and removing endpoints of picked edges. More sophisticated means lead to polynomial time
algorithms for finding a maximum matching as well.

10/54

Approximation for CARDINALITY VC

Algorithm

Find a maximal matching in G and output the set of matched vertices.

(b) (c)

11/54

Approximation Factor

The Algorithm is a factor 2 approximation algorithm for
the cardinality vertex cover problem.

Proof.
• No edge can be left uncovered by the set of vertices

picked.
• Let M be the matching picked. As argued above,

|M | ≤ OPT

• The approximation factor is at most 2 ·OPT .

(c)

12/54

Approximation Factor

The Algorithm is a factor 2 approximation algorithm for
the cardinality vertex cover problem.

Proof.
• No edge can be left uncovered by the set of vertices

picked.
• Let M be the matching picked. As argued above,

|M | ≤ OPT

• The approximation factor is at most 2 ·OPT .

(c)

12/54

Lower Bounding OPT

The approximation algorithm for vertex cover was very much related to, and followed naturally from,
the lower bounding scheme. This is in fact typical in the design of approximation algorithms.

13/54

Can the Guarantee be Improved?

Can the approximation guarantee of Algorithm be improved by a better analysis?

Can an approximation algorithm with a better guarantee be designed using the lower bounding
scheme of Algorithm?

Is there some other lower bounding method that can lead to an improved approximation guarantee
for VERTEX COVER?

14/54

Can the Guarantee be Improved?

Can the approximation guarantee of Algorithm be improved by a better analysis?

Can an approximation algorithm with a better guarantee be designed using the lower bounding
scheme of Algorithm?

Is there some other lower bounding method that can lead to an improved approximation guarantee
for VERTEX COVER?

14/54

Can the Guarantee be Improved?

Can the approximation guarantee of Algorithm be improved by a better analysis?

Can an approximation algorithm with a better guarantee be designed using the lower bounding
scheme of Algorithm?

Is there some other lower bounding method that can lead to an improved approximation guarantee
for VERTEX COVER?

14/54

A Better Analysis?

Consider the infinite family of instances given by the complete bipartite graphs Kn,n.rr r
rr r
rr r

rr r

PPPPPPPP

Q
Q
Q
Q
Q
Q
Q
Q

S
S
S
S
S
S
S
S
S
SS

��
��
��

��

PPPPPPPP

@
@
@
@
@
@
@
@

�
�
�
�
�
�
�
�

��
��
��

��

Q
Q
Q
Q
Q
Q
Q
Q�

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

...
...

When run on Kn,n, Algorithm will pick all 2n vertices, whereas picking one side of the bipartition
gives a cover of size n.

15/54

A Better Analysis?

Consider the infinite family of instances given by the complete bipartite graphs Kn,n.rr r
rr r
rr r

rr r

PPPPPPPP

Q
Q
Q
Q
Q
Q
Q
Q

S
S
S
S
S
S
S
S
S
SS

��
��

��
��

PPPPPPPP

@
@
@
@
@
@
@
@

�
�
�
�
�
�
�
�

��
��

��
��

Q
Q
Q
Q
Q
Q
Q
Q�

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

...
...

When run on Kn,n, Algorithm will pick all 2n vertices, whereas picking one side of the bipartition
gives a cover of size n.

15/54

Tight Example

Kn,n shows that the analysis is tight, by giving an infinite family of instances in which the solution is
twice the optimal.

An infinite family of instances showing that the analysis of an approximation algorithm is tight, is
referred to as a tight example.

Tight examples for an approximation algorithm give critical insight into the functioning of the
algorithm.

They have often led to ideas for obtaining algorithms with improved guarantees.

16/54

Tight Example

Kn,n shows that the analysis is tight, by giving an infinite family of instances in which the solution is
twice the optimal.

An infinite family of instances showing that the analysis of an approximation algorithm is tight, is
referred to as a tight example.

Tight examples for an approximation algorithm give critical insight into the functioning of the
algorithm.

They have often led to ideas for obtaining algorithms with improved guarantees.

16/54

Tight Example

Kn,n shows that the analysis is tight, by giving an infinite family of instances in which the solution is
twice the optimal.

An infinite family of instances showing that the analysis of an approximation algorithm is tight, is
referred to as a tight example.

Tight examples for an approximation algorithm give critical insight into the functioning of the
algorithm.

They have often led to ideas for obtaining algorithms with improved guarantees.

16/54

Tight Example

Kn,n shows that the analysis is tight, by giving an infinite family of instances in which the solution is
twice the optimal.

An infinite family of instances showing that the analysis of an approximation algorithm is tight, is
referred to as a tight example.

Tight examples for an approximation algorithm give critical insight into the functioning of the
algorithm.

They have often led to ideas for obtaining algorithms with improved guarantees.

16/54

A Better Guarantee?

The lower bound, of size of a maximal matching, is half the size of an optimal vertex cover for the
following infinite family of instances. Consider the complete graph Kn, where n is odd. The size of
any maximal matching is (n− 1)/2, whereas the size of an optimal cover is n− 1.

17/54

A Better Guarantee?

The lower bound, of size of a maximal matching, is half the size of an optimal vertex cover for the
following infinite family of instances. Consider the complete graph Kn, where n is odd. The size of
any maximal matching is (n− 1)/2, whereas the size of an optimal cover is n− 1.

17/54

A Better Algorithm?

Still Open!

18/54

A Better Algorithm?

Still Open!

18/54

Set cover

19/54

SET COVER

SET COVER

Given a universe U of n elements, a collection of subsets of U , S = {S1, . . . , Sk}, and a cost
function c : S → Q+, find a minimum cost sub-collection of S that covers all elements of U .
The special case, in which all subsets are of unit cost, will be called the cardinality set cover problem.

20/54

Some Remarks

Define the frequency f of an element to be the number of sets it is in.

The various approximation algorithms for set cover achieve one of two factors: O(logn) or f .

Clearly, neither dominates the other in all instances.

The special case of set cover with f = 2 is essentially the vertex cover problem, for which we gave a
factor 2 approximation algorithm.

21/54

Some Remarks

Define the frequency f of an element to be the number of sets it is in.

The various approximation algorithms for set cover achieve one of two factors: O(logn) or f .

Clearly, neither dominates the other in all instances.

The special case of set cover with f = 2 is essentially the vertex cover problem, for which we gave a
factor 2 approximation algorithm.

21/54

Some Remarks

Define the frequency f of an element to be the number of sets it is in.

The various approximation algorithms for set cover achieve one of two factors: O(logn) or f .

Clearly, neither dominates the other in all instances.

The special case of set cover with f = 2 is essentially the vertex cover problem, for which we gave a
factor 2 approximation algorithm.

21/54

Some Remarks

Define the frequency f of an element to be the number of sets it is in.

The various approximation algorithms for set cover achieve one of two factors: O(logn) or f .

Clearly, neither dominates the other in all instances.

The special case of set cover with f = 2 is essentially the vertex cover problem, for which we gave a
factor 2 approximation algorithm.

21/54

Set cover

Cardinality Set Cover

22/54

The Problem

A county is in its early stages of planning and is deciding where to put schools.

There are only two constraints:

• each school should be in a town,
• and no one should have to travel more than 30 miles to reach one of them.

Q: What is the minimum number of schools needed?
(a)

h

b

k

j

i

g

f
ea

c

d

(b)

h

b

k

j

i

g

f
ea

c

d

23/54

The Problem

A county is in its early stages of planning and is deciding where to put schools.

There are only two constraints:

• each school should be in a town,
• and no one should have to travel more than 30 miles to reach one of them.

Q: What is the minimum number of schools needed?
(a)

h

b

k

j

i

g

f
ea

c

d

(b)

h

b

k

j

i

g

f
ea

c

d

23/54

The Problem

A county is in its early stages of planning and is deciding where to put schools.

There are only two constraints:

• each school should be in a town,

• and no one should have to travel more than 30 miles to reach one of them.

Q: What is the minimum number of schools needed?
(a)

h

b

k

j

i

g

f
ea

c

d

(b)

h

b

k

j

i

g

f
ea

c

d

23/54

The Problem

A county is in its early stages of planning and is deciding where to put schools.

There are only two constraints:

• each school should be in a town,
• and no one should have to travel more than 30 miles to reach one of them.

Q: What is the minimum number of schools needed?
(a)

h

b

k

j

i

g

f
ea

c

d

(b)

h

b

k

j

i

g

f
ea

c

d

23/54

The Problem

A county is in its early stages of planning and is deciding where to put schools.

There are only two constraints:

• each school should be in a town,
• and no one should have to travel more than 30 miles to reach one of them.

Q: What is the minimum number of schools needed?
(a)

h

b

k

j

i

g

f
ea

c

d

(b)

h

b

k

j

i

g

f
ea

c

d

23/54

The Problem

This is a typical (cardinality) set cover problem.

• For each town x, let Sx be the set of towns within 30 miles of it.
• A school at x will essentially “cover” these other towns.
• The question is then, how many sets Sx must be picked in order to cover all the towns in the

county?

24/54

The Problem

This is a typical (cardinality) set cover problem.

• For each town x, let Sx be the set of towns within 30 miles of it.

• A school at x will essentially “cover” these other towns.
• The question is then, how many sets Sx must be picked in order to cover all the towns in the

county?

24/54

The Problem

This is a typical (cardinality) set cover problem.

• For each town x, let Sx be the set of towns within 30 miles of it.
• A school at x will essentially “cover” these other towns.

• The question is then, how many sets Sx must be picked in order to cover all the towns in the
county?

24/54

The Problem

This is a typical (cardinality) set cover problem.

• For each town x, let Sx be the set of towns within 30 miles of it.
• A school at x will essentially “cover” these other towns.
• The question is then, how many sets Sx must be picked in order to cover all the towns in the

county?

24/54

Set Cover Problem

SET COVER

• Input: A set of elements B, sets S1, . . . , Sm ⊆ B

• Output: A selection of the Si whose union is B.
• Cost: Number of sets picked.

25/54

The Example

(b)

h

b

k

j

i

g

f
ea

c

d

26/54

Performance Ratio

Lemma

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at most lnn ·OPT sets.

Proof.
Let nt be the number of elements still not covered after t iterations of the greedy algorithm (so
n0 = n).

Since these remaining elements are covered by the optimal OPT sets, there must be some set with
at least nt/OPT of them.

Therefore, the greedy strategy will ensure that

nt+1 ≤ nt −
nt

OPT
= nt(1−

1

OPT
)

which by repeated application implies

nt ≤ n0(1−
1

OPT
)t

27/54

Performance Ratio

Lemma

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at most lnn ·OPT sets.

Proof.
Let nt be the number of elements still not covered after t iterations of the greedy algorithm (so
n0 = n).

Since these remaining elements are covered by the optimal OPT sets, there must be some set with
at least nt/OPT of them.

Therefore, the greedy strategy will ensure that

nt+1 ≤ nt −
nt

OPT
= nt(1−

1

OPT
)

which by repeated application implies

nt ≤ n0(1−
1

OPT
)t

27/54

Performance Ratio

Lemma

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at most lnn ·OPT sets.

Proof.

Let nt be the number of elements still not covered after t iterations of the greedy algorithm (so
n0 = n).

Since these remaining elements are covered by the optimal OPT sets, there must be some set with
at least nt/OPT of them.

Therefore, the greedy strategy will ensure that

nt+1 ≤ nt −
nt

OPT
= nt(1−

1

OPT
)

which by repeated application implies

nt ≤ n0(1−
1

OPT
)t

27/54

Performance Ratio

Lemma

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at most lnn ·OPT sets.

Proof.
Let nt be the number of elements still not covered after t iterations of the greedy algorithm (so
n0 = n).

Since these remaining elements are covered by the optimal OPT sets, there must be some set with
at least nt/OPT of them.

Therefore, the greedy strategy will ensure that

nt+1 ≤ nt −
nt

OPT
= nt(1−

1

OPT
)

which by repeated application implies

nt ≤ n0(1−
1

OPT
)t

27/54

Performance Ratio

Lemma

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at most lnn ·OPT sets.

Proof.
Let nt be the number of elements still not covered after t iterations of the greedy algorithm (so
n0 = n).

Since these remaining elements are covered by the optimal OPT sets, there must be some set with
at least nt/OPT of them.

Therefore, the greedy strategy will ensure that

nt+1 ≤ nt −
nt

OPT
= nt(1−

1

OPT
)

which by repeated application implies

nt ≤ n0(1−
1

OPT
)t

27/54

Performance Ratio

Lemma

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at most lnn ·OPT sets.

Proof.
Let nt be the number of elements still not covered after t iterations of the greedy algorithm (so
n0 = n).

Since these remaining elements are covered by the optimal OPT sets, there must be some set with
at least nt/OPT of them.

Therefore, the greedy strategy will ensure that

nt+1 ≤ nt −
nt

OPT
= nt(1−

1

OPT
)

which by repeated application implies

nt ≤ n0(1−
1

OPT
)t

27/54

Performance Ratio

Lemma

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at most lnn ·OPT sets.

Proof.
Let nt be the number of elements still not covered after t iterations of the greedy algorithm (so
n0 = n).

Since these remaining elements are covered by the optimal OPT sets, there must be some set with
at least nt/OPT of them.

Therefore, the greedy strategy will ensure that

nt+1 ≤ nt −
nt

OPT
= nt(1−

1

OPT
)

which by repeated application implies

nt ≤ n0(1−
1

OPT
)t

27/54

Performance Ratio

A more convenient bound can be obtained from the useful inequality

1− x ≤ e−x for all x

with equality if and only if x = 0,

Thus
nt ≤ n0(1−

1

OPT
)t < n0(e

− 1
OPT)t = ne−

t
OPT

At t = lnn ·OPT , therefore, nt is strictly less than ne− lnn = 1, which means no elements remain to
be covered.

28/54

Performance Ratio

A more convenient bound can be obtained from the useful inequality

1− x ≤ e−x for all x

with equality if and only if x = 0,

Thus
nt ≤ n0(1−

1

OPT
)t < n0(e

− 1
OPT)t = ne−

t
OPT

At t = lnn ·OPT , therefore, nt is strictly less than ne− lnn = 1, which means no elements remain to
be covered.

28/54

Performance Ratio

A more convenient bound can be obtained from the useful inequality

1− x ≤ e−x for all x

with equality if and only if x = 0,

Thus
nt ≤ n0(1−

1

OPT
)t < n0(e

− 1
OPT)t = ne−

t
OPT

At t = lnn ·OPT , therefore, nt is strictly less than ne− lnn = 1, which means no elements remain to
be covered.

28/54

Performance Ratio

A more convenient bound can be obtained from the useful inequality

1− x ≤ e−x for all x

with equality if and only if x = 0,

Thus
nt ≤ n0(1−

1

OPT
)t < n0(e

− 1
OPT)t = ne−

t
OPT

At t = lnn ·OPT , therefore, nt is strictly less than ne− lnn = 1, which means no elements remain to
be covered.

28/54

Set cover

Generalized Set Cover

29/54

The Greedy Algorithm

30/54

The Greedy Strategies

Iteratively pick the most cost-effective set and remove the covered elements, until all elements are
covered.

Let C be the set of elements already covered at the beginning of an iteration.

During this iteration, define the cost-effectiveness of a set S to be the average cost at which it covers

new elements, i.e.,
c(S)

|S − C| .

Define the price of an element to be the average cost at which it is covered.

When a set S is picked, we can think of its cost being distributed equally among the new elements
covered, to set their prices.

31/54

The Greedy Strategies

Iteratively pick the most cost-effective set and remove the covered elements, until all elements are
covered.

Let C be the set of elements already covered at the beginning of an iteration.

During this iteration, define the cost-effectiveness of a set S to be the average cost at which it covers

new elements, i.e.,
c(S)

|S − C| .

Define the price of an element to be the average cost at which it is covered.

When a set S is picked, we can think of its cost being distributed equally among the new elements
covered, to set their prices.

31/54

The Greedy Strategies

Iteratively pick the most cost-effective set and remove the covered elements, until all elements are
covered.

Let C be the set of elements already covered at the beginning of an iteration.

During this iteration, define the cost-effectiveness of a set S to be the average cost at which it covers

new elements, i.e.,
c(S)

|S − C| .

Define the price of an element to be the average cost at which it is covered.

When a set S is picked, we can think of its cost being distributed equally among the new elements
covered, to set their prices.

31/54

The Greedy Strategies

Iteratively pick the most cost-effective set and remove the covered elements, until all elements are
covered.

Let C be the set of elements already covered at the beginning of an iteration.

During this iteration, define the cost-effectiveness of a set S to be the average cost at which it covers

new elements, i.e.,
c(S)

|S − C| .

Define the price of an element to be the average cost at which it is covered.

When a set S is picked, we can think of its cost being distributed equally among the new elements
covered, to set their prices.

31/54

The Greedy Strategies

Iteratively pick the most cost-effective set and remove the covered elements, until all elements are
covered.

Let C be the set of elements already covered at the beginning of an iteration.

During this iteration, define the cost-effectiveness of a set S to be the average cost at which it covers

new elements, i.e.,
c(S)

|S − C| .

Define the price of an element to be the average cost at which it is covered.

When a set S is picked, we can think of its cost being distributed equally among the new elements
covered, to set their prices.

31/54

The Greedy Algorithm

Greedy Algorithm

1 C ← ∅.
2 While C ̸= U do

• Find the most cost-effective set in the current iteration, say S.
• Let α =

c(S)
|S−C| , i.e., the cost-effectiveness of S.

• Pick S, and for each e ∈ S − C, set price(e) = α.
• C ← C ∪ S.

3 Output the picked sets.

32/54

The Lemma

Lemma

Number the elements of U in the order in which they were covered by the algorithm, resolving ties
arbitrarily. Let e1, . . . , en be this numbering.
For each k ∈ {1, . . . , n},

price(ek) ≤ OPT/(n− k + 1)

33/54

The Lemma

Proof.

In any iteration, the leftover sets of the optimal solution can cover the remaining elements at a cost
of at most OPT .

Therefore, among these sets, there must be one having cost-effectiveness of at most OPT/|C|.

price(ek) ≤
OPT

|C|

In the iteration in which element ek was covered, C contained at least n− k + 1 elements.

price(ek) ≤
OPT

|C|
≤ OPT

n− k + 1

34/54

The Lemma

Proof.

In any iteration, the leftover sets of the optimal solution can cover the remaining elements at a cost
of at most OPT .

Therefore, among these sets, there must be one having cost-effectiveness of at most OPT/|C|.

price(ek) ≤
OPT

|C|

In the iteration in which element ek was covered, C contained at least n− k + 1 elements.

price(ek) ≤
OPT

|C|
≤ OPT

n− k + 1

34/54

The Lemma

Proof.

In any iteration, the leftover sets of the optimal solution can cover the remaining elements at a cost
of at most OPT .

Therefore, among these sets, there must be one having cost-effectiveness of at most OPT/|C|.

price(ek) ≤
OPT

|C|

In the iteration in which element ek was covered, C contained at least n− k + 1 elements.

price(ek) ≤
OPT

|C|
≤ OPT

n− k + 1

34/54

The Lemma

Proof.

In any iteration, the leftover sets of the optimal solution can cover the remaining elements at a cost
of at most OPT .

Therefore, among these sets, there must be one having cost-effectiveness of at most OPT/|C|.

price(ek) ≤
OPT

|C|

In the iteration in which element ek was covered, C contained at least n− k + 1 elements.

price(ek) ≤
OPT

|C|
≤ OPT

n− k + 1

34/54

The Approximation Factor

Theorem

The greedy algorithm is an Hn factor approximation algorithm for the minimum set cover problem,
where

Hn = 1 +
1

2
+ . . .+

1

n

35/54

A Tight Example

The following is a tight example

 ! Set cover and its application to shortest superstring

Algorithm)*) +Greedy set cover algorithm4

 ! C !
"! while C "" U do

Find the most cost0e1ective set in the current iteration6 say S!

Let # " cost S!

jS!Cj
6 i!e!6 the cost0e1ectiveness of S!

Pick S6 and for each e # S $ C6 price+e, #!

<! Output the picked sets!

Number the elements of U in the order in which they were covered by the algorithm; resolving
ties arbitrarily< Let e"% & & &en be this numbering<

Lemma)*6 For each k # f % & & & % ng' price+ek, ' OPT
n"k#" (

Proof 9 In any iteration; the left over sets of the optimal solution can cover the remaining
elements at a cost of at most OPT< Therefore; there must be a set having costBeCectiveness at most
OPT

jCj
< In the iteration in which element ek was covered; C contained at least n $ k D elements<

Since ek was covered by the most costBeCective set in this iteration; it follows that

price+ek, ' OPT

jCj '
OPT

n$ k D
&

From Lemma !<G; we immediately obtainH

Theorem)*; The greedy algorithm is an Hn factor approximation algorithm for the minimum set
cover problem' where Hn " D "

$ D)))D "
n (

Proof 9 Since the cost of each set picked is distributed among the new elements covered; the
total cost of the set cover picked is equal to

Pn
k%" price+ek,< By Lemma !<G; this is at most!

 D "
$ D)))D "

n

"
)OPT<

Example)*? Following is a tight exampleH

1/n 1/(n-1) 1

!"#

The greedy algorithm outputs the cover consisting of the n singleton sets; since in each iteration
some singleton is the most costBeCective set< So; the algorithm outputs a cover of cost

n
D

n $
D)))D " Hn&

On the other hand; the optimal cover has a cost of D *<

When run on this instance the greedy algorithm outputs the cover consisting of the n singleton sets,
since in each iteration some singleton is the most cost-effective set. Thus, the algorithm outputs a
cover of cost

=
1

n
+

1

n− 1
+ . . .+ 1 = Hn

On the other hand, the optimal cover has a cost of 1 + ε.

36/54

Layering

37/54

Layering

The algorithm design technique of layering is also best introduced via set cover. However, that this is
not a very widely applicable technique.

We will give a factor 2 approximation algorithm for vertex cover, assuming arbitrary weights.

The idea in layering is to decompose the given weight function on vertices into convenient functions,
called degree-weighted, on a nested sequence of subgraphs of G.

38/54

Layering

The algorithm design technique of layering is also best introduced via set cover. However, that this is
not a very widely applicable technique.

We will give a factor 2 approximation algorithm for vertex cover, assuming arbitrary weights.

The idea in layering is to decompose the given weight function on vertices into convenient functions,
called degree-weighted, on a nested sequence of subgraphs of G.

38/54

Layering

The algorithm design technique of layering is also best introduced via set cover. However, that this is
not a very widely applicable technique.

We will give a factor 2 approximation algorithm for vertex cover, assuming arbitrary weights.

The idea in layering is to decompose the given weight function on vertices into convenient functions,
called degree-weighted, on a nested sequence of subgraphs of G.

38/54

The Lemma

Let ω : V → Q+ be the function assigning weights to the vertices of the given graph G = (V,E).

A function assigning vertex weights is degree-weighted if there is a constant c > 0 such that the
weight of each vertex v ∈ V is c · deg(v).

Lemma

In VERTEX COVER, let ω : V → Q+ be a degree-weighted function. Then

ω(V) ≤ 2 ·OPT

39/54

The Lemma

Let ω : V → Q+ be the function assigning weights to the vertices of the given graph G = (V,E).

A function assigning vertex weights is degree-weighted if there is a constant c > 0 such that the
weight of each vertex v ∈ V is c · deg(v).

Lemma

In VERTEX COVER, let ω : V → Q+ be a degree-weighted function. Then

ω(V) ≤ 2 ·OPT

39/54

The Lemma

Let ω : V → Q+ be the function assigning weights to the vertices of the given graph G = (V,E).

A function assigning vertex weights is degree-weighted if there is a constant c > 0 such that the
weight of each vertex v ∈ V is c · deg(v).

Lemma

In VERTEX COVER, let ω : V → Q+ be a degree-weighted function. Then

ω(V) ≤ 2 ·OPT

39/54

The Lemma

Lemma

In VERTEX COVER, let ω : V → Q+ be a degree-weighted function. Then

ω(V) ≤ 2 ·OPT

Proof.

Let c be the constant such that ω(v) = c · deg(v), and let U be an optimal vertex cover in G.

Since U covers all the edges,
∑
v∈U

deg(v) ≥ |E|.

Therefore, ω(U) ≥ c|E|. Since
∑
v∈V

deg(v) = 2|E|, ω(V) = 2c|E|. The lemma follows.

40/54

The Lemma

Lemma

In VERTEX COVER, let ω : V → Q+ be a degree-weighted function. Then

ω(V) ≤ 2 ·OPT

Proof.

Let c be the constant such that ω(v) = c · deg(v), and let U be an optimal vertex cover in G.

Since U covers all the edges,
∑
v∈U

deg(v) ≥ |E|.

Therefore, ω(U) ≥ c|E|. Since
∑
v∈V

deg(v) = 2|E|, ω(V) = 2c|E|. The lemma follows.

40/54

The Lemma

Lemma

In VERTEX COVER, let ω : V → Q+ be a degree-weighted function. Then

ω(V) ≤ 2 ·OPT

Proof.

Let c be the constant such that ω(v) = c · deg(v), and let U be an optimal vertex cover in G.

Since U covers all the edges,
∑
v∈U

deg(v) ≥ |E|.

Therefore, ω(U) ≥ c|E|. Since
∑
v∈V

deg(v) = 2|E|, ω(V) = 2c|E|. The lemma follows.

40/54

The Lemma

Lemma

In VERTEX COVER, let ω : V → Q+ be a degree-weighted function. Then

ω(V) ≤ 2 ·OPT

Proof.

Let c be the constant such that ω(v) = c · deg(v), and let U be an optimal vertex cover in G.

Since U covers all the edges,
∑
v∈U

deg(v) ≥ |E|.

Therefore, ω(U) ≥ c|E|. Since
∑
v∈V

deg(v) = 2|E|, ω(V) = 2c|E|. The lemma follows.

40/54

The Lemma

Lemma

In VERTEX COVER, let ω : V → Q+ be a degree-weighted function. Then

ω(V) ≤ 2 ·OPT

Proof.

Let c be the constant such that ω(v) = c · deg(v), and let U be an optimal vertex cover in G.

Since U covers all the edges,
∑
v∈U

deg(v) ≥ |E|.

Therefore, ω(U) ≥ c|E|. Since
∑
v∈V

deg(v) = 2|E|, ω(V) = 2c|E|. The lemma follows.

40/54

The Layer Algorithm

1 G0 = G, C = ∅, i = 0.

2 Remove degree zero vertices from Gi, say this set is Di.

3 Compute c = min{w(v)/deg(v)} for all v ∈ Gi.

4 Let ti(v) = c · deg(v) and w(v) = w(v)− ti(v) for all v ∈ Gi.

5 Let Wi = {v ∈ Gi | w(v) = 0}, C = C ∪Wi.

6 Let Gi+1 be the graph induced by Vi − (Di ∪Wi). Increase i by 1 and goto step 2 until Gi is
empty graph.

41/54

The Layer Algorithm

1 G0 = G, C = ∅, i = 0.

2 Remove degree zero vertices from Gi, say this set is Di.

3 Compute c = min{w(v)/deg(v)} for all v ∈ Gi.

4 Let ti(v) = c · deg(v) and w(v) = w(v)− ti(v) for all v ∈ Gi.

5 Let Wi = {v ∈ Gi | w(v) = 0}, C = C ∪Wi.

6 Let Gi+1 be the graph induced by Vi − (Di ∪Wi). Increase i by 1 and goto step 2 until Gi is
empty graph.

41/54

The Layer Algorithm

1 G0 = G, C = ∅, i = 0.

2 Remove degree zero vertices from Gi, say this set is Di.

3 Compute c = min{w(v)/deg(v)} for all v ∈ Gi.

4 Let ti(v) = c · deg(v) and w(v) = w(v)− ti(v) for all v ∈ Gi.

5 Let Wi = {v ∈ Gi | w(v) = 0}, C = C ∪Wi.

6 Let Gi+1 be the graph induced by Vi − (Di ∪Wi). Increase i by 1 and goto step 2 until Gi is
empty graph.

41/54

The Layer Algorithm

1 G0 = G, C = ∅, i = 0.

2 Remove degree zero vertices from Gi, say this set is Di.

3 Compute c = min{w(v)/deg(v)} for all v ∈ Gi.

4 Let ti(v) = c · deg(v) and w(v) = w(v)− ti(v) for all v ∈ Gi.

5 Let Wi = {v ∈ Gi | w(v) = 0}, C = C ∪Wi.

6 Let Gi+1 be the graph induced by Vi − (Di ∪Wi). Increase i by 1 and goto step 2 until Gi is
empty graph.

41/54

The Layer Algorithm

1 G0 = G, C = ∅, i = 0.

2 Remove degree zero vertices from Gi, say this set is Di.

3 Compute c = min{w(v)/deg(v)} for all v ∈ Gi.

4 Let ti(v) = c · deg(v) and w(v) = w(v)− ti(v) for all v ∈ Gi.

5 Let Wi = {v ∈ Gi | w(v) = 0}, C = C ∪Wi.

6 Let Gi+1 be the graph induced by Vi − (Di ∪Wi). Increase i by 1 and goto step 2 until Gi is
empty graph.

41/54

The Layer Algorithm

1 G0 = G, C = ∅, i = 0.

2 Remove degree zero vertices from Gi, say this set is Di.

3 Compute c = min{w(v)/deg(v)} for all v ∈ Gi.

4 Let ti(v) = c · deg(v) and w(v) = w(v)− ti(v) for all v ∈ Gi.

5 Let Wi = {v ∈ Gi | w(v) = 0}, C = C ∪Wi.

6 Let Gi+1 be the graph induced by Vi − (Di ∪Wi). Increase i by 1 and goto step 2 until Gi is
empty graph.

41/54

The Layer Algorithm

1 G0 = G, C = ∅, i = 0.

2 Remove degree zero vertices from Gi, say this set is Di.

3 Compute c = min{w(v)/deg(v)} for all v ∈ Gi.

4 Let ti(v) = c · deg(v) and w(v) = w(v)− ti(v) for all v ∈ Gi.

5 Let Wi = {v ∈ Gi | w(v) = 0}, C = C ∪Wi.

6 Let Gi+1 be the graph induced by Vi − (Di ∪Wi). Increase i by 1 and goto step 2 until Gi is
empty graph.

41/54

The Layer Algorithm

D
k

G
0

W
0

D
0

G
1

W
1

D
k-1

W
k-1

G
k-1

G
k

D
1

.

.

.

42/54

An Example

43/54

An Example

44/54

An Example

45/54

An Example

46/54

An Example

47/54

An Example

48/54

Analysis

Theorem

The layer algorithm achieves an approximation guarantee of factor 2 for the vertex cover problem,
assuming arbitrary vertex weights.

Proof.

Firstly, C is a vertex cover for G.

Otherwise, there must be some (u, v) ∈ E with u ∈ Di and v ∈ Dj .

Assume i ≤ j, then (u, v) is in Gi contradicting the fact that u is of degree zero.

49/54

Analysis

Theorem

The layer algorithm achieves an approximation guarantee of factor 2 for the vertex cover problem,
assuming arbitrary vertex weights.

Proof.

Firstly, C is a vertex cover for G.

Otherwise, there must be some (u, v) ∈ E with u ∈ Di and v ∈ Dj .

Assume i ≤ j, then (u, v) is in Gi contradicting the fact that u is of degree zero.

49/54

Analysis

Theorem

The layer algorithm achieves an approximation guarantee of factor 2 for the vertex cover problem,
assuming arbitrary vertex weights.

Proof.

Firstly, C is a vertex cover for G.

Otherwise, there must be some (u, v) ∈ E with u ∈ Di and v ∈ Dj .

Assume i ≤ j, then (u, v) is in Gi contradicting the fact that u is of degree zero.

49/54

Analysis

Theorem

The layer algorithm achieves an approximation guarantee of factor 2 for the vertex cover problem,
assuming arbitrary vertex weights.

Proof.

Firstly, C is a vertex cover for G.

Otherwise, there must be some (u, v) ∈ E with u ∈ Di and v ∈ Dj .

Assume i ≤ j, then (u, v) is in Gi contradicting the fact that u is of degree zero.

49/54

Analysis

Theorem

The layer algorithm achieves an approximation guarantee of factor 2 for the vertex cover problem,
assuming arbitrary vertex weights.

Proof.

Firstly, C is a vertex cover for G.

Otherwise, there must be some (u, v) ∈ E with u ∈ Di and v ∈ Dj .

Assume i ≤ j, then (u, v) is in Gi contradicting the fact that u is of degree zero.

49/54

Analysis

Theorem

The layer algorithm achieves an approximation guarantee of factor 2 for the vertex cover problem,
assuming arbitrary vertex weights.

Proof.

Firstly, C is a vertex cover for G.

Otherwise, there must be some (u, v) ∈ E with u ∈ Di and v ∈ Dj .

Assume i ≤ j, then (u, v) is in Gi contradicting the fact that u is of degree zero.

49/54

Analysis (cont’d)

Then we show ω(c) ≤ 2 ·OPT. Let C∗ be an optimal vertex cover.

For v ∈ C, if v ∈Wj ,

ω(v) =
∑
i≤j

ti(v)

For v ∈ V − C, if v ∈ Dj , then

ω(v) ≥
∑
i<j

ti(v)

50/54

Analysis (cont’d)

Then we show ω(c) ≤ 2 ·OPT. Let C∗ be an optimal vertex cover.

For v ∈ C, if v ∈Wj ,

ω(v) =
∑
i≤j

ti(v)

For v ∈ V − C, if v ∈ Dj , then

ω(v) ≥
∑
i<j

ti(v)

50/54

Analysis (cont’d)

Then we show ω(c) ≤ 2 ·OPT. Let C∗ be an optimal vertex cover.

For v ∈ C, if v ∈Wj ,

ω(v) =
∑
i≤j

ti(v)

For v ∈ V − C, if v ∈ Dj , then

ω(v) ≥
∑
i<j

ti(v)

50/54

Analysis (cont’d)

Then we show ω(c) ≤ 2 ·OPT. Let C∗ be an optimal vertex cover.

For v ∈ C, if v ∈Wj ,

ω(v) =
∑
i≤j

ti(v)

For v ∈ V − C, if v ∈ Dj , then

ω(v) ≥
∑
i<j

ti(v)

50/54

Analysis (cont’d)

Then we show ω(c) ≤ 2 ·OPT. Let C∗ be an optimal vertex cover.

For v ∈ C, if v ∈Wj ,

ω(v) =
∑
i≤j

ti(v)

For v ∈ V − C, if v ∈ Dj , then

ω(v) ≥
∑
i<j

ti(v)

50/54

Analysis (cont’d)

Then we show ω(c) ≤ 2 ·OPT. Let C∗ be an optimal vertex cover.

For v ∈ C, if v ∈Wj ,

ω(v) =
∑
i≤j

ti(v)

For v ∈ V − C, if v ∈ Dj , then

ω(v) ≥
∑
i<j

ti(v)

50/54

Analysis (cont’d)

In each layer i, C∗ ∩Gi is a vertex cover for Gi.

Thus by previous lemma, ti(C ∩Gi) ≤ 2 · ti(C∗ ∩Gi).

Therefore,

ω(C) =

k−1∑
i=0

ti(C ∩Gi) ≤ 2

k−1∑
0

ti(C
∗ ∩Gi) ≤ 2 · ω(C∗)

51/54

Analysis (cont’d)

In each layer i, C∗ ∩Gi is a vertex cover for Gi.

Thus by previous lemma, ti(C ∩Gi) ≤ 2 · ti(C∗ ∩Gi).

Therefore,

ω(C) =

k−1∑
i=0

ti(C ∩Gi) ≤ 2

k−1∑
0

ti(C
∗ ∩Gi) ≤ 2 · ω(C∗)

51/54

Analysis (cont’d)

In each layer i, C∗ ∩Gi is a vertex cover for Gi.

Thus by previous lemma, ti(C ∩Gi) ≤ 2 · ti(C∗ ∩Gi).

Therefore,

ω(C) =

k−1∑
i=0

ti(C ∩Gi) ≤ 2

k−1∑
0

ti(C
∗ ∩Gi) ≤ 2 · ω(C∗)

51/54

A Tight Example

A tight example is provided by the family of complete bipartite graphs, Kn,n, with all vertices of unit
weight. The layering algorithm will pick all 2n vertices of Kn,n in the cover, whereas the optimal
cover picks only one side of the bipartition.rr r

rr r
rr r

rr r

PPPPPPPP

Q
Q
Q
Q
Q
Q
Q
Q

S
S
S
S
S
S
S
S
S
SS

��
��

��
��

PPPPPPPP

@
@
@
@
@
@
@
@

�
�
�
�
�
�
�
�

��
��

��
��

Q
Q
Q
Q
Q
Q
Q
Q�

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�

...
...

52/54

Referred Materials

53/54

Referred Materials

Content of this lecture comes from Chapter 1 and 2 in [Vaz04].

Suggest to read the rest part of Chapter 1 and 2 in [Vaz04].

54/54

	Approximation Algorithms
	Cardinality Vertex Cover
	Set cover
	Cardinality Set Cover
	Generalized Set Cover

	Referred Materials

