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A cycle is a path with no repeated nodes or edges other than the starting and ending nodes.
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Cycles
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A path is a sequence of edges which connects a sequence of nodes.
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A cycle is a path with no repeated nodes or edges other than the starting and ending nodes.

path P = {(1,2), (2, 3),

2,3),(3,4),(4,5),(5,6)}
cycle C ={(1,2),(2,3),(3,4)

:(4,5),(5,6),(6,1)}

PAN G4



Cuts
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A cut is a partition of the nodes into two nonempty subsets S and V — S.
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Cuts

A cut is a partition of the nodes into two nonempty subsets S and V — S.
The cutset of a cut S is the set of edges with exactly one endpoint in S.
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Cuts

A cut is a partition of the nodes into two nonempty subsets S and V — S
The cutset of a cut S is the set of edges with exactly one endpoint in S.

cut S = {4,5,8}

cutset D = {(3,4),(3,5),(5,6),(5,7),(8,7)}
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Cycle-Cut Intersection
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Proposition

A cycle and a cutset intersect in an even number of edges.

cycle C' {(1,2),(2,3),(3,4), (4,5), (5,6),(6,1)}
cutset D {(3,4),(3,5), (5,6),(5,7),(8,7)}
intersection C N D {(3,4),(5,6)}
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Cycle-Cut Intersection

Proposition
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A cycle and a cutset intersect in an even number of edges
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Spanning Tree Definition
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both acyclic and connected.

Let H = (V,T) be a subgraph of an undirected graph G = (V, E). H is a spanning tree of G if H is
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Spanning Tree Properties SHANGHAL JIAO TONG
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Proposition

Let H = (V,T) be a subgraph of an undirected graph G = (V, E). Then, the following are equivalent:
® H is a spanning tree of G.
® [ is acyclic and connected.

® H is connected and has |V'| — 1 edges.

H is acyclic and has |V| — 1 edges.
H is minimally connected: removal of any edge disconnects it.

H is maximally acyclic: addition of any edge creates a cycle.
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Minimum Spanning Tree (MST)
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Given a connected, undirected graph G = (V, E) with edge costs ce, a minimum spanning tree (V,T')
is a spanning tree of GG such that the sum of the edge costs in T" is minimized.
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Minimum Spanning Tree (MST)
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Given a connected, undirected graph G = (V, E) with edge costs ce, a minimum spanning tree (V,T')
is a spanning tree of GG such that the sum of the edge costs in T" is minimized.

Cayley's theorem. The complete graph on n nodes has n™ 2 spanning trees.
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Applications SHANGHAI JIAO TONG

MST is fundamental problem with diverse applications.

® Dithering.

® Cluster analysis.

® Max bottleneck paths.

® Real-time face verification.

® LDPC codes for error correction.

® |mage registration with Renyi entropy.

® Find road networks in satellite and aerial imagery.

® Model locality of particle interactions in turbulent fluid flows.
® Reducing data storage in sequencing amino acids in a protein.
® Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
® Approximation algorithms for NP-hard problems.

® Network design (communication, electrical, hydraulic, computer, road).
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Fundamental Cycle
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Fundamental cycle. Let H = (V,T') be a spanning tree of G = (V, E).

® For any non tree-edge e € E : T'U {e} contains a unique cycle, say C.
® For any edge f € C: T U {e} — {f} is a spanning tree.

graph
spanning tree

TQ
I
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Fundamental Cycle
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Fundamental cycle. Let H = (V,T') be a spanning tree of G = (V, E).

® For any non tree-edge e € E : T'U {e} contains a unique cycle, say C.
® For any edge f € C: T U {e} — {f} is a spanning tree.

graph
spanning tree

TQ
I

Observation. If ce < ¢y, then (V,T) is not an MST.
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Fundamental Cutset
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Fundamental cutset. Let H = (V,T) be a spanning tree of G = (V, E).

® For any tree-edge f € T : T — {f} contains two connected components. Let D denote
corresponding cutset.

® Forany edge e € D : T — {f} U{e} is a spanning tree.

graph G = (V,E)
spanning tree H = (V,T)
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Fundamental Cutset

%
Fundamental cutset. Let H = (V,T) be a spanning tree of G = (V, E).

® For any tree-edge f € T : T — {f} contains two connected components. Let D denote
corresponding cutset.

® Forany edge e € D : T — {f} U{e} is a spanning tree.

graph G = (V,E)
spanning tree H = (V,T)

Observation. If ce < ¢y, then (V,T) is not an MST.
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The Greedy Algorithm
Red rule.

P
SHANGHALI JIAO TONG

e

) UNIVERSITY

® Let C be a cycle with no red edges.

® Select an uncolored edge of C' of max cost and color it red.
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The Greedy Algorithm
Red rule.
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® Let C be a cycle with no red edges.

® Select an uncolored edge of C of max cost and color it red
Blue rule.

® let D be a cutset with no blue edges.

® Select an uncolored edge in D of min cost and color it blue.
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The Greedy Algorithm
Red rule.
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® Let C be a cycle with no red edges.

® Select an uncolored edge of C' of max cost and color it red.
Blue rule.

® let D be a cutset with no blue edges.

® Select an uncolored edge in D of min cost and color it blue.
Greedy algorithm.

form an MST.

® Apply the red and blue rules (nondeterministically!) until all edges are colored. The blue edges
® Note: can stop once |V| — 1 edges colored blue.
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Proof of Correctness
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.
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Proof of Correctness
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red
Proof. [by induction on number of iterations]

edge.
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Proof of Correctness
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red
Proof. [by induction on number of iterations]

edge.
Base case. No edges colored = every MST satisfies invariant.
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Proof of Correctness
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.
Proof. [by induction on number of iterations]
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Induction step (blue rule). Suppose color invariant true before blue rule.
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Proof of Correctness
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Color invariant. There exists an M.ST(V,T") containing every blue edge and no red edge
Proof. [by induction on number of iterations]
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Induction step (blue rule). Suppose color invariant true before blue rule

® let D be chosen cutset, and let f be edge colored blue.
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Proof of Correctness

SHANGHAI JIAO TONG
Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.
Proof. [by induction on number of iterations]
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Induction step (blue rule). Suppose color invariant true before blue rule

® let D be chosen cutset, and let f be edge colored blue.
e if f €T, then T still satisfies invariant.
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Proof of Correctness
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.
Proof. [by induction on number of iterations]
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Induction step (blue rule). Suppose color invariant true before blue rule

® let D be chosen cutset, and let f be edge colored blue.
e if f €T, then T still satisfies invariant.

® Otherwise, consider fundamental cycle C' by adding f to 7.
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Proof of Correctness

Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.
Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule

® let D be chosen cutset, and let f be edge colored blue.
e if f €T, then T still satisfies invariant.

® Otherwise, consider fundamental cycle C' by adding f to 7.
® et e € C be another edge in D.
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Proof of Correctness SHANGHAL A0 TONG

Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

® let D be chosen cutset, and let f be edge colored blue.

e if f €T, then T still satisfies invariant.

® Otherwise, consider fundamental cycle C' by adding f to 7.

® et e € C be another edge in D.

e is uncolored and c. > ¢y since
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Proof of Correctness SHANGHAL A0 TONG

Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

® let D be chosen cutset, and let f be edge colored blue.

e if f €T, then T still satisfies invariant.

® Otherwise, consider fundamental cycle C' by adding f to 7.

® et e € C be another edge in D.
e is uncolored and c. > ¢y since
@ ceT* = not red
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Proof of Correctness SHANGHAL A0 TONG

Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

® let D be chosen cutset, and let f be edge colored blue.

e if f €T, then T still satisfies invariant.

® Otherwise, consider fundamental cycle C' by adding f to 7.

® et e € C be another edge in D.
e is uncolored and c. > ¢y since

@ ceT* = not red
@ blue rule = e not blue and ¢, > cy
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Proof of Correctness

SHANGHAI JIAO TONG
Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.
Proof. [by induction on number of iterations]
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Induction step (blue rule). Suppose color invariant true before blue rule
[ ]

® let D be chosen cutset, and let f be edge colored blue.
[ ]

if f €T, then T™ still satisfies invariant.

let e € C' be another edge in D.

e is uncolored and c. > ¢y since

Otherwise, consider fundamental cycle C' by adding f to T™.
@ ceT* = not red

@ blue rule = e not blue and ¢, > cy

Thus, T* U {f} — {e} satisfies invariant.
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Proof of Correctness
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.
Proof. [by induction on number of iterations]
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Induction step (red rule). Suppose color invariant true before red rule.
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Proof of Correctness
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.
Proof. [by induction on number of iterations]
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Induction step (red rule). Suppose color invariant true before red rule

® let C be chosen cycle, and let e be edge colored red.
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Proof of Correctness
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.
Proof. [by induction on number of iterations]
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Induction step (red rule). Suppose color invariant true before red rule

® let C be chosen cycle, and let e be edge colored red.
® if e ¢ T, then T still satisfies invariant.
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Proof of Correctness
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.
Proof. [by induction on number of iterations]
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Induction step (red rule). Suppose color invariant true before red rule

® let C be chosen cycle, and let e be edge colored red.
® if e ¢ T, then T still satisfies invariant.

® Otherwise, consider fundamental cutset D by deleting e from T,
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Proof of Correctness
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.
Proof. [by induction on number of iterations]
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Induction step (red rule). Suppose color invariant true before red rule

® let C be chosen cycle, and let e be edge colored red.
® if e ¢ T, then T still satisfies invariant.

® Otherwise, consider fundamental cutset D by deleting e from T
® let f € D be another edge in C.

«O0>» «F» «E» «

it
v

DA



Proof of Correctness SHANGHAL JIAO TONG
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule

® let C be chosen cycle, and let e be edge colored red.

® if e ¢ T, then T still satisfies invariant.

® Otherwise, consider fundamental cutset D by deleting e from T
® let f € D be another edge in C.
® fis uncolored and c. > ¢y since
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule

® let C be chosen cycle, and let e be edge colored red.

® if e ¢ T, then T still satisfies invariant.

® Otherwise, consider fundamental cutset D by deleting e from T
® let f € D be another edge in C.

® fis uncolored and c. > ¢y since
® f¢T" = f not blue
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule

® let C be chosen cycle, and let e be edge colored red.

® if e ¢ T, then T still satisfies invariant.

® Otherwise, consider fundamental cutset D by deleting e from T
® let f € D be another edge in C.
® fis uncolored and c. > ¢y since

® f¢T* = f not blue
@ red rule = f not red and c. > cy
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Proof of Correctness
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Color invariant. There exists an M ST (V,T") containing every blue edge and no red edge.
Proof. [by induction on number of iterations]
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Induction step (red rule). Suppose color invariant true before red rule

® let C be chosen cycle, and let e be edge colored red.
® if e ¢ T, then T still satisfies invariant.

® Otherwise, consider fundamental cutset D by deleting e from T
® let f € D be another edge in C.

® fis uncolored and c. > ¢y since
® f¢T* = f not blue

@ red rule = f not red and c. > cy

® Thus, T" U {f} — {e} satisfies invariant.
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Proof of Correctness

The greedy algorithm terminates. Blue edges form an MST.
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Proof of Correctness
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The greedy algorithm terminates. Blue edges form an MST.

Proof. We need to show that either the red or blue rule (or both) applies

® Suppose edge e is left uncolored.

® Blue edges form a forest.

® (Case 1: both endpoints of e are in same blue tree.

= apply red rule to cycle formed by adding e to blue forest.
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Proof of Correctness
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The greedy algorithm terminates. Blue edges form an MST.

Proof. We need to show that either the red or blue rule (or both) applies.

® Suppose edge e is left uncolored.
® Blue edges form a forest.

® Case 1: both endpoints of e are in same blue tree.

= apply red rule to cycle formed by adding e to blue forest.
® Case 2: both endpoints of e are in different blue trees.
= apply blue rule to cutset induced by either of two blue trees.
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Prim, Kruskal, Boriavka
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Prim’s Algorithm
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Prim’s Algorithm

Initialize S = any node, T' = @.
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Prim’s Algorithm

Initialize S = any node, T' = @.
Repeat |V| — 1 times:
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Prim’s Algorithm

Initialize S = any node, T' = @
Repeat |V| — 1 times:
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® Add to 7" a min-cost edge with one endpoint in S.
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Prim’s Algorithm

Initialize S = any node, T' = @.
Repeat |V| — 1 times:
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® Add to 7" a min-cost edge with one endpoint in S
® Add new node to S.
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Prim’s Algorithm

Initialize S = any node, T' = @.
Repeat |V| — 1 times:
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® Add to 7" a min-cost edge with one endpoint in S.
® Add new node to S.

Prim’s algorithm computes an MST.
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Prim’s Algorithm

Initialize S = any node, T' = @.
Repeat |V| — 1 times:
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® Add to 7" a min-cost edge with one endpoint in S
® Add new node to S.

Prim’s algorithm computes an MST.

Proof. Special case of greedy algorithm
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Prim’s Algorithm

Initialize S = any node, T' = @.
Repeat |V| — 1 times:

) SHANGHAI JIAO TONG
) UNIVERSITY

® Add to 7" a min-cost edge with one endpoint in S.
® Add new node to S.

Prim’s algorithm computes an MST.

s).

Proof. Special case of greedy algorithm (blue rule repeatedly applied to
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Prim’s Algorithm: Implementation (@) smorm oo
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PRIM(G, w)
input : A connected undirected graph G = (V, E), with edge weights w,
output: A minimum spanning tree defined by the array prev
for all w € V do
cost(u) = oo;
prev(u) = nil;

end
pick any initial node wg;
cost(ug) = 0;

H =makequeue (V) \\ using cost-values as keys;
while H is not empty do
v=deletemin(F);
for each (v, z) € E do
if cost(z) > w(v, z) then
cost(v) = w(v, z); prev(z) = v;
decreasekey (H,z);
end
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Prim’s Algorithm: Analysis
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Prim'’s algorithm can be implemented to run in O(|E|log |V|) time.
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Prim’s Algorithm: Analysis
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Prim'’s algorithm can be implemented to run in O(|E|log |V|) time.

Proof.
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Prim’s Algorithm: Analysis

SHANGHAI JIAO TONG
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Prim'’s algorithm can be implemented to run in O(|E|log |V|) time

Proof.

By priority queue implementation.
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Kruskal’s Algorithm
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Kruskal’s Algorithm

Consider edges in ascending order of cost:
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Kruskal’s Algorithm

Consider edges in ascending order of cost:
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® Add to tree unless it would create a cycle.
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Kruskal’s Algorithm

Consider edges in ascending order of cost:
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® Add to tree unless it would create a cycle

Kruskal's algorithm computes an MST.
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Kruskal’s Algorithm

Consider edges in ascending order of cost:
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® Add to tree unless it would create a cycle

Kruskal's algorithm computes an MST.

Proof. Special case of greedy algorithm.
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Kruskal’s Algorithm

Consider edges in ascending order of cost:
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® Add to tree unless it would create a cycle

Kruskal's algorithm computes an MST.

Proof. Special case of greedy algorithm.

® Case 1: both endpoints of e in same blue tree.
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Kruskal’s Algorithm

Consider edges in ascending order of cost:
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® Add to tree unless it would create a cycle.

Kruskal's algorithm computes an MST.

Proof. Special case of greedy algorithm.

® Case 1: both endpoints of e in same blue tree.

= color e red by applying red rule to unique cycle
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Kruskal’s Algorithm

Consider edges in ascending order of cost:
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® Add to tree unless it would create a cycle.

Kruskal's algorithm computes an MST.

Proof. Special case of greedy algorithm.

® Case 1: both endpoints of e in same blue tree.
= color e red by applying red rule to unique cycle

® Case 2: both endpoints of e in different blue trees.
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Kruskal’s Algorithm
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Consider edges in ascending order of cost:

® Add to tree unless it would create a cycle.

Kruskal's algorithm computes an MST.

Proof. Special case of greedy algorithm.

® Case 1: both endpoints of e in same blue tree.
= color e red by applying red rule to unique cycle.
® Case 2: both endpoints of e in different blue trees.

= color e blue by applying blue rule to cutset defined by either tree
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y . BR
Kruskal’s Algorithm %wg;#ymomm

KRUSKAL(V, E, ¢)

SORT m edges by cost and renumber so that
cler) <cle2) <...<c(em);
T« &;
for each v € V do MAKESET(v);
for i = 1 T0 m do
(u,v) + e;;
if FINDSET (u) # FINDSET(v) then
T+ TU{ei};
UNION (u,v);
end

end
RETURN T;
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Kruskal’s Algorithm: Analysis
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Kruskal's algorithm can be implemented to run in O(|E|log|E|) time.
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Kruskal’s Algorithm: Analysis
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Kruskal'’s algorithm can be implemented to run in O(|E|log |E|) time

® Sort edges by cost.
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Kruskal’s Algorithm: Analysis
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Kruskal's algorithm can be implemented to run in O(|E|log|E|) time.

® Sort edges by cost.

® Use disjoint set data structure to dynamically maintain connected components.
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Reverse-Delete Algorithm
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Start with all edges in T" and consider them in descending order of cost:
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Reverse-Delete Algorithm
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Start with all edges in T" and consider them in descending order of cost:
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® Delete edge from T unless it would disconnect T'.
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Reverse-Delete Algorithm

Start with all edges in T" and consider them in descending order of cost
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® Delete edge from T unless it would disconnect T'.

The reverse-delete algorithm computes an MST.
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Reverse-Delete Algorithm

Start with all edges in T" and consider them in descending order of cost:

SHANGHAI JIAO TONG
UNIVERSITY

® Delete edge from T unless it would disconnect T'

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

® Case 1. [deleting edge e does not disconnect T]

«0O)>» «F»
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Reverse-Delete Algorithm

Start with all edges in T" and consider them in descending order of cost

SHANGHAI JIAO TONG
UNIVERSITY
® Delete edge from T unless it would disconnect T'.

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

® Case 1. [deleting edge e does not disconnect T]

= apply red rule to cycle C' formed by adding e to another path in T between

its two endpoints

«O0>» «F» «=» «
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Reverse-Delete Algorithm

Start with all edges in T" and consider them in descending order of cost

SHANGHAI JIAO TONG
UNIVERSITY

® Delete edge from T unless it would disconnect T'.

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

® Case 1. [deleting edge e does not disconnect T]

= apply red rule to cycle C' formed by adding e to another path in T between
® Case 2. [deleting edge e disconnects T

its two endpoints
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Reverse-Delete Algorithm

Start with all edges in T" and consider them in descending order of cost:

® Delete edge from T unless it would disconnect T'.

SHANGHAI JIAO TONG
UNIVERSITY

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

® Case 1. [deleting edge e does not disconnect T]

= apply red rule to cycle C' formed by adding e to another path in T" between its two endpoints

® Case 2. [deleting edge e disconnects T

= apply blue rule to cutset D induced by either component

«O0>» «F» «=» «
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Reverse-Delete Algorithm

535
f{ SHANGHAI JIAO TONG
5 J UNIVERSITY

Start with all edges in T" and consider them in descending order of cost:

® Delete edge from T unless it would disconnect T'.

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

® Case 1. [deleting edge e does not disconnect T]

= apply red rule to cycle C' formed by adding e to another path in T" between its two endpoints
® Case 2. [deleting edge e disconnects T

= apply blue rule to cutset D induced by either component

Fact. [Thorup 2000] Can be implemented to run in O(|E|log |V |(loglog [V])?) time.

«O0>» «F» «E» «
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Review: the Greedy MST Algorithm
Red rule.

(:i\ SHANGHAI JIAO TONG
E," UNIVERSITY
® Let C be a cycle with no red edges.

® Select an uncolored edge of C of max cost and color it red
Blue rule.

® let D be a cutset with no blue edges.

® Select an uncolored edge in D of min cost and color it blue.
Greedy algorithm.

form an MST.

® Apply the red and blue rules (nondeterministically!) until all edges are colored. The blue edges
® Note: can stop once |V| — 1 edges colored blue.

DA



Review: the Greedy MST Algorithm

SHANGHAI JIAO TONG
UNIVERSITY

The greedy algorithm is correct.

«0O)>» «F»
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Review: the Greedy MST Algorithm

SHANGHAI JIAO TONG
UNIVERSITY

The greedy algorithm is correct.

Special cases. Prim, Kruskal, reverse-delete,

«0O)>» «F»
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Bortivka's Algorithm
Repeat until only one tree.

® Apply blue rule to cutset corresponding to each blue tree.
® Color all selected edges blue.

«0O)>» «F»
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Bortivka's Algorithm

SHANGHAI JIAO TONG

UNIVERSITY
Repeat until only one tree.

® Apply blue rule to cutset corresponding to each blue tree
® Color all selected edges blue.

o ’ . assume edge
Boriivka's algorithm computes the MST. — <— ="

«O>» «F» « =
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Bortivka's Algorithm

SHANGHAI JIAO TONG
5 J UNIVERSITY
Repeat until only one tree.

® Apply blue rule to cutset corresponding to each blue tree.
® Color all selected edges blue.

o ’ . assume edge
Boriivka's algorithm computes the MST. — <— ="

Proof. Special case of greedy algorithm (repeatedly apply blue rule)
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Bortivka's Algorithm

Boriivka’s algorithm can be implemented to run in O(|E|log |V|) time.

SHANGHAI JIAO TONG
UNIVERSITY
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Bortivka's Algorithm

Boriivka’s algorithm can be implemented to run in O(|E|log |V|) time.

SHANGHAI JIAO TONG
UNIVERSITY
Proof.
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Bortivka's Algorithm

A7 N SHANGHAI JIAO TONG
’
Boriivka’s algorithm can be implemented to run in O(|E|log |V|) time.
Proof.

= UNIVERSITY

To implement a phase in O(|E|) time:
® compute connected components of blue edges

® for each edge (u,v) € E, check if u and v are in different components; if so, update each
component’s best edge in cutset

«0O)>» «F»
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Bortivka's Algorithm

oy
Boriivka’s algorithm can be implemented to run in O(|E|log |V|) time
Proof.

SHANGHAI JIAO TONG
47 UNIVERSITY

To implement a phase in O(|E|) time:
® compute connected components of blue edges

® for each edge (u,v) € E, check if u and v are in different components; if so, update each
component’s best edge in cutset

< log, |V'| phases since each phase (at least) halves total # components

DA



Boriivka’'s Algorithm
Contraction version.

‘\ SHANGHALI JIAO TONG
UNIVERSITY

® After each phase, contract each blue tree to a single supernode

® Delete self-loops and parallel edges (keeping only cheapest one)

® Borlivka phase becomes: take cheapest edge incident to each node
graph G

contract edge 2-5
6
3

Q@ -0 ’@“9\
P R
o
\\,_/@)

&—~—@

delete self-loops and parallel edges

v
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A Question

==
f SHANGHAI JIAO TONG
i“_/

= UNIVERSITY

Q. How to contract a set of edges?

«0O)>» «F»
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Contract a Set of Edges

SHANGHAI JIAO TONG
Problem. Given a graph G = (V, E) and a set of edges F', contract all edges in F, removing any
self-loops or parallel edges.

&84) UNIVERSITY
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Contract a Set of Edges

Problem. Given a graph G = (V, E) and a set of edges F', contract all edges in F, removing any
self-loops or parallel edges.
Goal. O(|V] + |E|) time.

graph G

contracted graph G* C/
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Contract a Set of Edges

SHANGHAI JIAO TONG

&84) UNIVERSITY

@ mark the edges to be contracted;

® determine the connected components formed by the marked edges;

© replace each connected component by a single vertex;

O finally, eliminate the self-loops and multiple edges created by these contractions.

«O0>» «F» «=» «
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Contract a Set of Edges

)
SHANGHAI JIAO TONG
Eﬁ% = UNIVERSITY

@ mark the edges to be contracted;

® To find the minimum weight edge incident on each node, takes O(|E| + |V]) time;
@® determine the connected components formed by the marked edges;

© replace each connected component by a single vertex;

O finally, eliminate the self-loops and multiple edges created by these contractions.

«0O)>» «F»
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Contract a Set of Edges

)
SHANGHAI JIAO TONG
Eﬁ% = UNIVERSITY

@ mark the edges to be contracted;

® To find the minimum weight edge incident on each node, takes O(|E| + |V]) time;
® determine the connected components formed by the marked edges;

® Use DFS to find the connected components, take O(|E| + |V]) time;
© replace each connected component by a single vertex;

O finally, eliminate the self-loops and multiple edges created by these contractions.
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Contract a Set of Edges

)
SHANGHAI JIAO TONG
Eﬁ% = UNIVERSITY

@ mark the edges to be contracted;

® To find the minimum weight edge incident on each node, takes O(|E| + |V]) time;
® determine the connected components formed by the marked edges;

® Use DFS to find the connected components, take O(|E| + |V]) time;
loop);

© replace each connected component by a single vertex;

® Associate each connected component with that new vertex, take O(|E| + |V]) time (in the above

O finally, eliminate the self-loops and multiple edges created by these contractions.
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Contract a Set of Edges

)
SHANGHAI JIAO TONG
Eﬁ% = UNIVERSITY

@® mark the edges to be contracted;

® To find the minimum weight edge incident on each node, takes O(|E| + |V]) time;
® determine the connected components formed by the marked edges;

® Use DFS to find the connected components, take O(|E| + |V]) time;
©® replace each connected component by a single vertex;
loop);

® Associate each connected component with that new vertex, take O(|E| + |V]) time (in the above
O finally, eliminate the self-loops and multiple edges created by these contractions.
® To eliminate edges, takes O(|E|) time.

«0O)>» «F»
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Boriivka’s on Planar Graphs

SHANGHAI JIAO TONG
UNIVERSITY

Boriivka’s algorithm (contraction version) can be implemented to run in O(|V|) time on planar graphs.

planar

Kzz not planar
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Boriivka’s on Planar Graphs

SHANGHAI JIAO TONG
UNIVERSITY

Boriivka’s algorithm (contraction version) can be implemented to run in O(|V|) time on planar graphs.
Proof.
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Boriivka’s on Planar Graphs

SHANGHAI JIAO TONG
UNIVERSITY

Boriivka’s algorithm (contraction version) can be implemented to run in O(|V|) time on planar graphs.
Proof.

Each Bortiivka phase takes O(|V]) time:
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Boriivka’s on Planar Graphs

SHANGHAI JIAO TONG
UNIVERSITY

Boriivka’s algorithm (contraction version) can be implemented to run in O(|V|) time on planar graphs.
Proof.

Each Bortiivka phase takes O(|V]) time:

® Fact 1: |E| < 3|V| for simple planar graphs.
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Boriivka’s on Planar Graphs

SHANGHAI JIAO TONG
UNIVERSITY

Boriivka’s algorithm (contraction version) can be implemented to run in O(|V|) time on planar graphs.
Proof.

Each Bortiivka phase takes O(|V]) time:
® Fact 1: |E| < 3|V| for simple planar graphs.

® Fact 2: planar graphs remains planar after edge contractions/deletions
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Boriivka’s on Planar Graphs

)
f SHANGHAI JIAO TONG

UNIVERSITY

Boriivka’s algorithm (contraction version) can be implemented to run in O(|V|) time on planar graphs.
Proof.

Each Bortiivka phase takes O(|V]) time:
® Fact 1: |E| < 3|V| for simple planar graphs.

® Fact 2: planar graphs remains planar after edge contractions/deletions
Number of nodes (at least) halves in each phase.
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Boriivka’s on Planar Graphs

)
f SHANGHAI JIAO TONG

UNIVERSITY

Boriivka’s algorithm (contraction version) can be implemented to run in O(|V|) time on planar graphs.
Proof.

Each Bortiivka phase takes O(|V]) time:
® Fact 1: |E| < 3|V| for simple planar graphs.

® Fact 2: planar graphs remains planar after edge contractions/deletions
Number of nodes (at least) halves in each phase.

Thus, overall running time < c-|V|4+c¢-|V|/2+c-|V|/4d4+c-|V]|/8+ - =O0(]V])
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A Hybrid Algorithm

SHANGHAI JIAO TONG
Boriivka-Prim algorithm.

e

) UNIVERSITY

® Run Borivka (contraction version) for log, log, |V'| phases
® Run Prim on resulting, contracted graph.

«0O)>» «F»
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A Hybrid Algorithm

Boriivka-Prim algorithm.

SHANGHAI JIAO TONG
UNIVERSITY

® Run Borivka (contraction version) for log, log, |V'| phases
® Run Prim on resulting, contracted graph.

Boriivka-Prim computes an MST.

«0O)>» «F»
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A Hybrid Algorithm

Boriivka-Prim algorithm.

SHANGHAI JIAO TONG
UNIVERSITY

® Run Borivka (contraction version) for log, log, |V'| phases
® Run Prim on resulting, contracted graph.

Boriivka-Prim computes an MST.

Proof. Special case of the greedy algorithm.
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A Hybrid Algorithm

SHANGHAI JIAO TONG
UNIVERSITY

Boriivka-Prim can be implemented to run in O(|E|loglog |V|) time.

«0O)>» «F»
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A Hybrid Algorithm

SHANGHAI JIAO TONG
UNIVERSITY

Boriivka-Prim can be implemented to run in O(|E|loglog |V|) time.
Proof.
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A Hybrid Algorithm

% N
f{ SHANGHAI JIAO TONG
5 J UNIVERSITY

Boriivka-Prim can be implemented to run in O(|E|loglog |V|) time.

Proof.

® The log, log, |V| phases of Boriivka's algorithm take O(|E|loglog|V|) time; resulting graph has
< |V|/log, |V] nodes and < |E| edges.

® Prim's algorithm (using Fibonacci heaps) takes O(|E| + |V]) time on a graph with [V|/log, |V
nodes and |E| edges.

«O0>» «F» «=» «
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Linear-Time Algorithm?

year worst case discoverec by

1975 O (|E|loglog |V]) Yao

1976 O (|E|loglog|V]) Cheriton-Tarjan

1984 | O (|E|log" |V]),O (|E| + |V ]log |V]) Fredman-Tarjan

1986 (|E]log(log™ |V])) Gabow-Galil-Spencer-Tarjan
1997 O (|Ela(|V]) log a(]V])) Chazelle

2000 O (|E|a(|V])) Chazelle

2002 asymptotically optimal Pettie-Ramachandran
20xx O (|E|) 77

deterministic compare-based MST algorithms

«O0>» «F» «=» «

=3
(‘\ SHANGHALI JIAO TONG
Em +/) UNIVERSITY

iterated logarithm function

1g*n={ 0 ifn <1
1+ 1g*(lgn) ifn>1
n lg*n
(=00, 1] 0
(1,2] 1
(2,4] 2
(4,16] 3
(16, 216] 4
(216Y265536] 5
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Minimum Bottleneck Spanning Tree

(P8 SHANGHAI JIAO TONG
UNIVERSITY
most expensive edge

Problem. Given a connected graph G with positive edge costs, find a spanning tree that minimizes the
Goal. O

(|F|log |E|) time or better
VARWAN
L~ # %

«0O)>» «F»
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