
Design and Analysis of Algorithms III
Minimum Spanning Trees

Guoqiang Li
School of Software

1/40

Minimum Spanning Trees

2/40

Cycles

A path is a sequence of edges which connects a sequence of nodes.

A cycle is a path with no repeated nodes or edges other than the starting and ending nodes.

path P = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}
cycle C = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)}

3/40

Cycles

A path is a sequence of edges which connects a sequence of nodes.

A cycle is a path with no repeated nodes or edges other than the starting and ending nodes.

path P = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}
cycle C = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)}

3/40

Cycles

A path is a sequence of edges which connects a sequence of nodes.

A cycle is a path with no repeated nodes or edges other than the starting and ending nodes.

path P = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}
cycle C = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)}

3/40

Cuts

A cut is a partition of the nodes into two nonempty subsets S and V − S.

The cutset of a cut S is the set of edges with exactly one endpoint in S.

cut S = {4, 5, 8}
cutset D = {(3, 4), (3, 5), (5, 6), (5, 7), (8, 7)}

4/40

Cuts

A cut is a partition of the nodes into two nonempty subsets S and V − S.

The cutset of a cut S is the set of edges with exactly one endpoint in S.

cut S = {4, 5, 8}
cutset D = {(3, 4), (3, 5), (5, 6), (5, 7), (8, 7)}

4/40

Cuts

A cut is a partition of the nodes into two nonempty subsets S and V − S.

The cutset of a cut S is the set of edges with exactly one endpoint in S.

cut S = {4, 5, 8}
cutset D = {(3, 4), (3, 5), (5, 6), (5, 7), (8, 7)}

4/40

Cycle-Cut Intersection

Proposition

A cycle and a cutset intersect in an even number of edges.

cycle C = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1)}
cutset D = {(3, 4), (3, 5), (5, 6), (5, 7), (8, 7)}

intersection C ∩D = {(3, 4), (5, 6)}

5/40

Cycle-Cut Intersection

Proposition

A cycle and a cutset intersect in an even number of edges.

6/40

Spanning Tree Definition

Let H = (V, T) be a subgraph of an undirected graph G = (V,E). H is a spanning tree of G if H is

both acyclic and connected.

7/40

Spanning Tree Properties

Proposition

Let H = (V, T) be a subgraph of an undirected graph G = (V,E). Then, the following are equivalent:

• H is a spanning tree of G.

• H is acyclic and connected.

• H is connected and has |V | − 1 edges.

• H is acyclic and has |V | − 1 edges.

• H is minimally connected: removal of any edge disconnects it.

• H is maximally acyclic: addition of any edge creates a cycle.

8/40

Minimum Spanning Tree (MST)

Given a connected, undirected graph G = (V,E) with edge costs ce, a minimum spanning tree (V, T)

is a spanning tree of G such that the sum of the edge costs in T is minimized.

Cayley’s theorem. The complete graph on n nodes has nn−2 spanning trees.

9/40

Minimum Spanning Tree (MST)

Given a connected, undirected graph G = (V,E) with edge costs ce, a minimum spanning tree (V, T)

is a spanning tree of G such that the sum of the edge costs in T is minimized.

Cayley’s theorem. The complete graph on n nodes has nn−2 spanning trees.

9/40

Applications

MST is fundamental problem with diverse applications.

• Dithering.

• Cluster analysis.

• Max bottleneck paths.

• Real-time face verification.

• LDPC codes for error correction.

• Image registration with Renyi entropy.

• Find road networks in satellite and aerial imagery.

• Model locality of particle interactions in turbulent fluid flows.

• Reducing data storage in sequencing amino acids in a protein.

• Autoconfig protocol for Ethernet bridging to avoid cycles in a network.

• Approximation algorithms for NP-hard problems.

• Network design (communication, electrical, hydraulic, computer, road).

10/40

Fundamental Cycle

Fundamental cycle. Let H = (V, T) be a spanning tree of G = (V,E).

• For any non tree-edge e ∈ E : T ∪ {e} contains a unique cycle, say C.

• For any edge f ∈ C : T ∪ {e} − {f} is a spanning tree.

graph G = (V,E)

spanning tree H = (V, T)

Observation. If ce < cf , then (V, T) is not an MST.

11/40

Fundamental Cycle

Fundamental cycle. Let H = (V, T) be a spanning tree of G = (V,E).

• For any non tree-edge e ∈ E : T ∪ {e} contains a unique cycle, say C.

• For any edge f ∈ C : T ∪ {e} − {f} is a spanning tree.

graph G = (V,E)

spanning tree H = (V, T)

Observation. If ce < cf , then (V, T) is not an MST.

11/40

Fundamental Cutset

Fundamental cutset. Let H = (V, T) be a spanning tree of G = (V,E).

• For any tree-edge f ∈ T : T − {f} contains two connected components. Let D denote

corresponding cutset.

• For any edge e ∈ D : T − {f} ∪ {e} is a spanning tree.

graph G = (V,E)

spanning tree H = (V, T)

Observation. If ce < cf , then (V, T) is not an MST.

12/40

Fundamental Cutset

Fundamental cutset. Let H = (V, T) be a spanning tree of G = (V,E).

• For any tree-edge f ∈ T : T − {f} contains two connected components. Let D denote

corresponding cutset.

• For any edge e ∈ D : T − {f} ∪ {e} is a spanning tree.

graph G = (V,E)

spanning tree H = (V, T)

Observation. If ce < cf , then (V, T) is not an MST.

12/40

The Greedy Algorithm

Red rule.

• Let C be a cycle with no red edges.

• Select an uncolored edge of C of max cost and color it red.

Blue rule.

• Let D be a cutset with no blue edges.

• Select an uncolored edge in D of min cost and color it blue.

Greedy algorithm.

• Apply the red and blue rules (nondeterministically!) until all edges are colored. The blue edges

form an MST.

• Note: can stop once |V | − 1 edges colored blue.

13/40

The Greedy Algorithm

Red rule.

• Let C be a cycle with no red edges.

• Select an uncolored edge of C of max cost and color it red.

Blue rule.

• Let D be a cutset with no blue edges.

• Select an uncolored edge in D of min cost and color it blue.

Greedy algorithm.

• Apply the red and blue rules (nondeterministically!) until all edges are colored. The blue edges

form an MST.

• Note: can stop once |V | − 1 edges colored blue.

13/40

The Greedy Algorithm

Red rule.

• Let C be a cycle with no red edges.

• Select an uncolored edge of C of max cost and color it red.

Blue rule.

• Let D be a cutset with no blue edges.

• Select an uncolored edge in D of min cost and color it blue.

Greedy algorithm.

• Apply the red and blue rules (nondeterministically!) until all edges are colored. The blue edges

form an MST.

• Note: can stop once |V | − 1 edges colored blue.

13/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Base case. No edges colored =⇒ every MST satisfies invariant.

14/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Base case. No edges colored =⇒ every MST satisfies invariant.

14/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Base case. No edges colored =⇒ every MST satisfies invariant.

14/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

• let D be chosen cutset, and let f be edge colored blue.

• if f ∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cycle C by adding f to T ∗.

• let e ∈ C be another edge in D.

• e is uncolored and ce ≥ cf since

- e ∈ T ∗ ⇒ not red
- blue rule ⇒ e not blue and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

15/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

• let D be chosen cutset, and let f be edge colored blue.

• if f ∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cycle C by adding f to T ∗.

• let e ∈ C be another edge in D.

• e is uncolored and ce ≥ cf since

- e ∈ T ∗ ⇒ not red
- blue rule ⇒ e not blue and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

15/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

• let D be chosen cutset, and let f be edge colored blue.

• if f ∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cycle C by adding f to T ∗.

• let e ∈ C be another edge in D.

• e is uncolored and ce ≥ cf since

- e ∈ T ∗ ⇒ not red
- blue rule ⇒ e not blue and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

15/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

• let D be chosen cutset, and let f be edge colored blue.

• if f ∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cycle C by adding f to T ∗.

• let e ∈ C be another edge in D.

• e is uncolored and ce ≥ cf since

- e ∈ T ∗ ⇒ not red
- blue rule ⇒ e not blue and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

15/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

• let D be chosen cutset, and let f be edge colored blue.

• if f ∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cycle C by adding f to T ∗.

• let e ∈ C be another edge in D.

• e is uncolored and ce ≥ cf since

- e ∈ T ∗ ⇒ not red
- blue rule ⇒ e not blue and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

15/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

• let D be chosen cutset, and let f be edge colored blue.

• if f ∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cycle C by adding f to T ∗.

• let e ∈ C be another edge in D.

• e is uncolored and ce ≥ cf since

- e ∈ T ∗ ⇒ not red
- blue rule ⇒ e not blue and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

15/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

• let D be chosen cutset, and let f be edge colored blue.

• if f ∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cycle C by adding f to T ∗.

• let e ∈ C be another edge in D.

• e is uncolored and ce ≥ cf since

- e ∈ T ∗ ⇒ not red

- blue rule ⇒ e not blue and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

15/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

• let D be chosen cutset, and let f be edge colored blue.

• if f ∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cycle C by adding f to T ∗.

• let e ∈ C be another edge in D.

• e is uncolored and ce ≥ cf since

- e ∈ T ∗ ⇒ not red
- blue rule ⇒ e not blue and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

15/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

• let D be chosen cutset, and let f be edge colored blue.

• if f ∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cycle C by adding f to T ∗.

• let e ∈ C be another edge in D.

• e is uncolored and ce ≥ cf since

- e ∈ T ∗ ⇒ not red
- blue rule ⇒ e not blue and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

15/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.

• let C be chosen cycle, and let e be edge colored red.

• if e /∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cutset D by deleting e from T ∗.

• let f ∈ D be another edge in C.

• f is uncolored and ce ≥ cf since

- f /∈ T ∗ ⇒ f not blue
- red rule ⇒ f not red and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

16/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.

• let C be chosen cycle, and let e be edge colored red.

• if e /∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cutset D by deleting e from T ∗.

• let f ∈ D be another edge in C.

• f is uncolored and ce ≥ cf since

- f /∈ T ∗ ⇒ f not blue
- red rule ⇒ f not red and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

16/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.

• let C be chosen cycle, and let e be edge colored red.

• if e /∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cutset D by deleting e from T ∗.

• let f ∈ D be another edge in C.

• f is uncolored and ce ≥ cf since

- f /∈ T ∗ ⇒ f not blue
- red rule ⇒ f not red and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

16/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.

• let C be chosen cycle, and let e be edge colored red.

• if e /∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cutset D by deleting e from T ∗.

• let f ∈ D be another edge in C.

• f is uncolored and ce ≥ cf since

- f /∈ T ∗ ⇒ f not blue
- red rule ⇒ f not red and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

16/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.

• let C be chosen cycle, and let e be edge colored red.

• if e /∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cutset D by deleting e from T ∗.

• let f ∈ D be another edge in C.

• f is uncolored and ce ≥ cf since

- f /∈ T ∗ ⇒ f not blue
- red rule ⇒ f not red and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

16/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.

• let C be chosen cycle, and let e be edge colored red.

• if e /∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cutset D by deleting e from T ∗.

• let f ∈ D be another edge in C.

• f is uncolored and ce ≥ cf since

- f /∈ T ∗ ⇒ f not blue
- red rule ⇒ f not red and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

16/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.

• let C be chosen cycle, and let e be edge colored red.

• if e /∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cutset D by deleting e from T ∗.

• let f ∈ D be another edge in C.

• f is uncolored and ce ≥ cf since

- f /∈ T ∗ ⇒ f not blue

- red rule ⇒ f not red and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

16/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.

• let C be chosen cycle, and let e be edge colored red.

• if e /∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cutset D by deleting e from T ∗.

• let f ∈ D be another edge in C.

• f is uncolored and ce ≥ cf since

- f /∈ T ∗ ⇒ f not blue
- red rule ⇒ f not red and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

16/40

Proof of Correctness

Color invariant. There exists an MST (V, T ∗) containing every blue edge and no red edge.

Proof. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.

• let C be chosen cycle, and let e be edge colored red.

• if e /∈ T ∗, then T ∗ still satisfies invariant.

• Otherwise, consider fundamental cutset D by deleting e from T ∗.

• let f ∈ D be another edge in C.

• f is uncolored and ce ≥ cf since

- f /∈ T ∗ ⇒ f not blue
- red rule ⇒ f not red and ce ≥ cf

• Thus, T ∗ ∪ {f} − {e} satisfies invariant.

16/40

Proof of Correctness

Theorem

The greedy algorithm terminates. Blue edges form an MST.

Proof. We need to show that either the red or blue rule (or both) applies.

• Suppose edge e is left uncolored.

• Blue edges form a forest.

• Case 1: both endpoints of e are in same blue tree.

⇒ apply red rule to cycle formed by adding e to blue forest.

17/40

Proof of Correctness

Theorem

The greedy algorithm terminates. Blue edges form an MST.

Proof. We need to show that either the red or blue rule (or both) applies.

• Suppose edge e is left uncolored.

• Blue edges form a forest.

• Case 1: both endpoints of e are in same blue tree.

⇒ apply red rule to cycle formed by adding e to blue forest.

17/40

Proof of Correctness

Theorem

The greedy algorithm terminates. Blue edges form an MST.

Proof. We need to show that either the red or blue rule (or both) applies.

• Suppose edge e is left uncolored.
• Blue edges form a forest.
• Case 1: both endpoints of e are in same blue tree.

⇒ apply red rule to cycle formed by adding e to blue forest.
• Case 2: both endpoints of e are in different blue trees.

⇒ apply blue rule to cutset induced by either of two blue trees.

18/40

Prim, Kruskal, Bor̊uvka

19/40

Prim’s Algorithm

Initialize S = any node, T = ∅.

Repeat |V | − 1 times:

• Add to T a min-cost edge with one endpoint in S.

• Add new node to S.

Theorem

Prim’s algorithm computes an MST.

Proof. Special case of greedy algorithm (blue rule repeatedly applied to

S).

20/40

Prim’s Algorithm

Initialize S = any node, T = ∅.

Repeat |V | − 1 times:

• Add to T a min-cost edge with one endpoint in S.

• Add new node to S.

Theorem

Prim’s algorithm computes an MST.

Proof. Special case of greedy algorithm (blue rule repeatedly applied to

S).

20/40

Prim’s Algorithm

Initialize S = any node, T = ∅.

Repeat |V | − 1 times:

• Add to T a min-cost edge with one endpoint in S.

• Add new node to S.

Theorem

Prim’s algorithm computes an MST.

Proof. Special case of greedy algorithm (blue rule repeatedly applied to

S).

20/40

Prim’s Algorithm

Initialize S = any node, T = ∅.

Repeat |V | − 1 times:

• Add to T a min-cost edge with one endpoint in S.

• Add new node to S.

Theorem

Prim’s algorithm computes an MST.

Proof. Special case of greedy algorithm (blue rule repeatedly applied to

S).

20/40

Prim’s Algorithm

Initialize S = any node, T = ∅.

Repeat |V | − 1 times:

• Add to T a min-cost edge with one endpoint in S.

• Add new node to S.

Theorem

Prim’s algorithm computes an MST.

Proof. Special case of greedy algorithm (blue rule repeatedly applied to

S).

20/40

Prim’s Algorithm

Initialize S = any node, T = ∅.

Repeat |V | − 1 times:

• Add to T a min-cost edge with one endpoint in S.

• Add new node to S.

Theorem

Prim’s algorithm computes an MST.

Proof. Special case of greedy algorithm (blue rule repeatedly applied to

S).

20/40

Prim’s Algorithm

Initialize S = any node, T = ∅.

Repeat |V | − 1 times:

• Add to T a min-cost edge with one endpoint in S.

• Add new node to S.

Theorem

Prim’s algorithm computes an MST.

Proof. Special case of greedy algorithm

(blue rule repeatedly applied to

S).

20/40

Prim’s Algorithm

Initialize S = any node, T = ∅.

Repeat |V | − 1 times:

• Add to T a min-cost edge with one endpoint in S.

• Add new node to S.

Theorem

Prim’s algorithm computes an MST.

Proof. Special case of greedy algorithm (blue rule repeatedly applied to

S).

20/40

Prim’s Algorithm: Implementation

PRIM(G, w)

input : A connected undirected graph G = (V,E), with edge weights we

output: A minimum spanning tree defined by the array prev

for all u ∈ V do
cost(u) = ∞;
prev(u) = nil;

end
pick any initial node u0;
cost(u0) = 0;
H =makequeue(V)\\ using cost-values as keys;
while H is not empty do

v=deletemin(H);
for each (v, z) ∈ E do

if cost(z) > w(v, z) then
cost(v) = w(v, z); prev(z) = v;
decreasekey (H,z);

end

end

end

21/40

Prim’s Algorithm: Analysis

Theorem

Prim’s algorithm can be implemented to run in O(|E| log |V |) time.

Proof.

By priority queue implementation.

22/40

Prim’s Algorithm: Analysis

Theorem

Prim’s algorithm can be implemented to run in O(|E| log |V |) time.

Proof.

By priority queue implementation.

22/40

Prim’s Algorithm: Analysis

Theorem

Prim’s algorithm can be implemented to run in O(|E| log |V |) time.

Proof.

By priority queue implementation.

22/40

Kruskal’s Algorithm

Consider edges in ascending order of cost:

• Add to tree unless it would create a cycle.

Theorem

Kruskal’s algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1: both endpoints of e in same blue tree.

⇒ color e red by applying red rule to unique cycle.

• Case 2: both endpoints of e in different blue trees.

⇒ color e blue by applying blue rule to cutset defined by either tree.

23/40

Kruskal’s Algorithm

Consider edges in ascending order of cost:

• Add to tree unless it would create a cycle.

Theorem

Kruskal’s algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1: both endpoints of e in same blue tree.

⇒ color e red by applying red rule to unique cycle.

• Case 2: both endpoints of e in different blue trees.

⇒ color e blue by applying blue rule to cutset defined by either tree.

23/40

Kruskal’s Algorithm

Consider edges in ascending order of cost:

• Add to tree unless it would create a cycle.

Theorem

Kruskal’s algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1: both endpoints of e in same blue tree.

⇒ color e red by applying red rule to unique cycle.

• Case 2: both endpoints of e in different blue trees.

⇒ color e blue by applying blue rule to cutset defined by either tree.

23/40

Kruskal’s Algorithm

Consider edges in ascending order of cost:

• Add to tree unless it would create a cycle.

Theorem

Kruskal’s algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1: both endpoints of e in same blue tree.

⇒ color e red by applying red rule to unique cycle.

• Case 2: both endpoints of e in different blue trees.

⇒ color e blue by applying blue rule to cutset defined by either tree.

23/40

Kruskal’s Algorithm

Consider edges in ascending order of cost:

• Add to tree unless it would create a cycle.

Theorem

Kruskal’s algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1: both endpoints of e in same blue tree.

⇒ color e red by applying red rule to unique cycle.

• Case 2: both endpoints of e in different blue trees.

⇒ color e blue by applying blue rule to cutset defined by either tree.

23/40

Kruskal’s Algorithm

Consider edges in ascending order of cost:

• Add to tree unless it would create a cycle.

Theorem

Kruskal’s algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1: both endpoints of e in same blue tree.

⇒ color e red by applying red rule to unique cycle.

• Case 2: both endpoints of e in different blue trees.

⇒ color e blue by applying blue rule to cutset defined by either tree.

23/40

Kruskal’s Algorithm

Consider edges in ascending order of cost:

• Add to tree unless it would create a cycle.

Theorem

Kruskal’s algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1: both endpoints of e in same blue tree.

⇒ color e red by applying red rule to unique cycle.

• Case 2: both endpoints of e in different blue trees.

⇒ color e blue by applying blue rule to cutset defined by either tree.

23/40

Kruskal’s Algorithm

Consider edges in ascending order of cost:

• Add to tree unless it would create a cycle.

Theorem

Kruskal’s algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1: both endpoints of e in same blue tree.

⇒ color e red by applying red rule to unique cycle.

• Case 2: both endpoints of e in different blue trees.

⇒ color e blue by applying blue rule to cutset defined by either tree.

23/40

Kruskal’s Algorithm

Consider edges in ascending order of cost:

• Add to tree unless it would create a cycle.

Theorem

Kruskal’s algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1: both endpoints of e in same blue tree.

⇒ color e red by applying red rule to unique cycle.

• Case 2: both endpoints of e in different blue trees.

⇒ color e blue by applying blue rule to cutset defined by either tree.

23/40

Kruskal’s Algorithm

Kruskal(V , E, c)

Sort m edges by cost and renumber so that

c (e1) ≤ c (e2) ≤ . . . ≤ c (em);

T ← ∅;

for each v ∈ V do MakeSet(v);

for i = 1 to m do

(u, v)← ei;

if FindSet(u) 6= FindSet(v) then

T ← T ∪ {ei};
Union(u,v);

end

end

Return T;

24/40

Kruskal’s Algorithm: Analysis

Theorem

Kruskal’s algorithm can be implemented to run in O(|E| log |E|) time.

• Sort edges by cost.

• Use disjoint set data structure to dynamically maintain connected components.

25/40

Kruskal’s Algorithm: Analysis

Theorem

Kruskal’s algorithm can be implemented to run in O(|E| log |E|) time.

• Sort edges by cost.

• Use disjoint set data structure to dynamically maintain connected components.

25/40

Kruskal’s Algorithm: Analysis

Theorem

Kruskal’s algorithm can be implemented to run in O(|E| log |E|) time.

• Sort edges by cost.

• Use disjoint set data structure to dynamically maintain connected components.

25/40

Reverse-Delete Algorithm

Start with all edges in T and consider them in descending order of cost:

• Delete edge from T unless it would disconnect T .

Theorem

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1. [deleting edge e does not disconnect T]

⇒ apply red rule to cycle C formed by adding e to another path in T between its two endpoints

• Case 2. [deleting edge e disconnects T]

⇒ apply blue rule to cutset D induced by either component

Fact. [Thorup 2000] Can be implemented to run in O(|E| log |V |(log log |V |)3) time.

26/40

Reverse-Delete Algorithm

Start with all edges in T and consider them in descending order of cost:

• Delete edge from T unless it would disconnect T .

Theorem

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1. [deleting edge e does not disconnect T]

⇒ apply red rule to cycle C formed by adding e to another path in T between its two endpoints

• Case 2. [deleting edge e disconnects T]

⇒ apply blue rule to cutset D induced by either component

Fact. [Thorup 2000] Can be implemented to run in O(|E| log |V |(log log |V |)3) time.

26/40

Reverse-Delete Algorithm

Start with all edges in T and consider them in descending order of cost:

• Delete edge from T unless it would disconnect T .

Theorem

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1. [deleting edge e does not disconnect T]

⇒ apply red rule to cycle C formed by adding e to another path in T between its two endpoints

• Case 2. [deleting edge e disconnects T]

⇒ apply blue rule to cutset D induced by either component

Fact. [Thorup 2000] Can be implemented to run in O(|E| log |V |(log log |V |)3) time.

26/40

Reverse-Delete Algorithm

Start with all edges in T and consider them in descending order of cost:

• Delete edge from T unless it would disconnect T .

Theorem

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1. [deleting edge e does not disconnect T]

⇒ apply red rule to cycle C formed by adding e to another path in T between its two endpoints

• Case 2. [deleting edge e disconnects T]

⇒ apply blue rule to cutset D induced by either component

Fact. [Thorup 2000] Can be implemented to run in O(|E| log |V |(log log |V |)3) time.

26/40

Reverse-Delete Algorithm

Start with all edges in T and consider them in descending order of cost:

• Delete edge from T unless it would disconnect T .

Theorem

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1. [deleting edge e does not disconnect T]

⇒ apply red rule to cycle C formed by adding e to another path in T between its two endpoints

• Case 2. [deleting edge e disconnects T]

⇒ apply blue rule to cutset D induced by either component

Fact. [Thorup 2000] Can be implemented to run in O(|E| log |V |(log log |V |)3) time.

26/40

Reverse-Delete Algorithm

Start with all edges in T and consider them in descending order of cost:

• Delete edge from T unless it would disconnect T .

Theorem

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1. [deleting edge e does not disconnect T]

⇒ apply red rule to cycle C formed by adding e to another path in T between its two endpoints

• Case 2. [deleting edge e disconnects T]

⇒ apply blue rule to cutset D induced by either component

Fact. [Thorup 2000] Can be implemented to run in O(|E| log |V |(log log |V |)3) time.

26/40

Reverse-Delete Algorithm

Start with all edges in T and consider them in descending order of cost:

• Delete edge from T unless it would disconnect T .

Theorem

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1. [deleting edge e does not disconnect T]

⇒ apply red rule to cycle C formed by adding e to another path in T between its two endpoints

• Case 2. [deleting edge e disconnects T]

⇒ apply blue rule to cutset D induced by either component

Fact. [Thorup 2000] Can be implemented to run in O(|E| log |V |(log log |V |)3) time.

26/40

Reverse-Delete Algorithm

Start with all edges in T and consider them in descending order of cost:

• Delete edge from T unless it would disconnect T .

Theorem

The reverse-delete algorithm computes an MST.

Proof. Special case of greedy algorithm.

• Case 1. [deleting edge e does not disconnect T]

⇒ apply red rule to cycle C formed by adding e to another path in T between its two endpoints

• Case 2. [deleting edge e disconnects T]

⇒ apply blue rule to cutset D induced by either component

Fact. [Thorup 2000] Can be implemented to run in O(|E| log |V |(log log |V |)3) time.

26/40

Review: the Greedy MST Algorithm

Red rule.

• Let C be a cycle with no red edges.

• Select an uncolored edge of C of max cost and color it red.

Blue rule.

• Let D be a cutset with no blue edges.

• Select an uncolored edge in D of min cost and color it blue.

Greedy algorithm.

• Apply the red and blue rules (nondeterministically!) until all edges are colored. The blue edges

form an MST.

• Note: can stop once |V | − 1 edges colored blue.

27/40

Review: the Greedy MST Algorithm

Theorem

The greedy algorithm is correct.

Special cases. Prim, Kruskal, reverse-delete, . . .

28/40

Review: the Greedy MST Algorithm

Theorem

The greedy algorithm is correct.

Special cases. Prim, Kruskal, reverse-delete, . . .

28/40

Bor̊uvka’s Algorithm

Repeat until only one tree.

• Apply blue rule to cutset corresponding to each blue tree.
• Color all selected edges blue.

Theorem

Bor̊uvka’s algorithm computes the MST. ←− assume edge

costs are distinct

Proof. Special case of greedy algorithm (repeatedly apply blue rule).

29/40

Bor̊uvka’s Algorithm

Repeat until only one tree.

• Apply blue rule to cutset corresponding to each blue tree.
• Color all selected edges blue.

Theorem

Bor̊uvka’s algorithm computes the MST. ←− assume edge

costs are distinct

Proof. Special case of greedy algorithm (repeatedly apply blue rule).

29/40

Bor̊uvka’s Algorithm

Repeat until only one tree.

• Apply blue rule to cutset corresponding to each blue tree.
• Color all selected edges blue.

Theorem

Bor̊uvka’s algorithm computes the MST. ←− assume edge

costs are distinct

Proof. Special case of greedy algorithm (repeatedly apply blue rule).

29/40

Bor̊uvka’s Algorithm

Theorem

Bor̊uvka’s algorithm can be implemented to run in O(|E| log |V |) time.

Proof.

To implement a phase in O(|E|) time:
• compute connected components of blue edges
• for each edge (u, v) ∈ E, check if u and v are in different components; if so, update each

component’s best edge in cutset

≤ log2 |V | phases since each phase (at least) halves total # components.

30/40

Bor̊uvka’s Algorithm

Theorem

Bor̊uvka’s algorithm can be implemented to run in O(|E| log |V |) time.

Proof.

To implement a phase in O(|E|) time:
• compute connected components of blue edges
• for each edge (u, v) ∈ E, check if u and v are in different components; if so, update each

component’s best edge in cutset

≤ log2 |V | phases since each phase (at least) halves total # components.

30/40

Bor̊uvka’s Algorithm

Theorem

Bor̊uvka’s algorithm can be implemented to run in O(|E| log |V |) time.

Proof.

To implement a phase in O(|E|) time:
• compute connected components of blue edges
• for each edge (u, v) ∈ E, check if u and v are in different components; if so, update each

component’s best edge in cutset

≤ log2 |V | phases since each phase (at least) halves total # components.

30/40

Bor̊uvka’s Algorithm

Theorem

Bor̊uvka’s algorithm can be implemented to run in O(|E| log |V |) time.

Proof.

To implement a phase in O(|E|) time:
• compute connected components of blue edges
• for each edge (u, v) ∈ E, check if u and v are in different components; if so, update each

component’s best edge in cutset

≤ log2 |V | phases since each phase (at least) halves total # components.

30/40

Bor̊uvka’s Algorithm

Contraction version.

• After each phase, contract each blue tree to a single supernode.

• Delete self-loops and parallel edges (keeping only cheapest one).

• Bor̊uvka phase becomes: take cheapest edge incident to each node.

31/40

A Question

Q. How to contract a set of edges?

32/40

Contract a Set of Edges

Problem. Given a graph G = (V,E) and a set of edges F , contract all edges in F , removing any

self-loops or parallel edges.

Goal. O(|V |+ |E|) time.

33/40

Contract a Set of Edges

Problem. Given a graph G = (V,E) and a set of edges F , contract all edges in F , removing any

self-loops or parallel edges.

Goal. O(|V |+ |E|) time.

33/40

Contract a Set of Edges

1 mark the edges to be contracted;

2 determine the connected components formed by the marked edges;

3 replace each connected component by a single vertex;

4 finally, eliminate the self-loops and multiple edges created by these contractions.

34/40

Contract a Set of Edges

1 mark the edges to be contracted;
• To find the minimum weight edge incident on each node, takes O(|E|+ |V |) time;

2 determine the connected components formed by the marked edges;

3 replace each connected component by a single vertex;

4 finally, eliminate the self-loops and multiple edges created by these contractions.

34/40

Contract a Set of Edges

1 mark the edges to be contracted;
• To find the minimum weight edge incident on each node, takes O(|E|+ |V |) time;

2 determine the connected components formed by the marked edges;
• Use DFS to find the connected components, take O(|E|+ |V |) time;

3 replace each connected component by a single vertex;

4 finally, eliminate the self-loops and multiple edges created by these contractions.

34/40

Contract a Set of Edges

1 mark the edges to be contracted;
• To find the minimum weight edge incident on each node, takes O(|E|+ |V |) time;

2 determine the connected components formed by the marked edges;
• Use DFS to find the connected components, take O(|E|+ |V |) time;

3 replace each connected component by a single vertex;
• Associate each connected component with that new vertex, take O(|E|+ |V |) time (in the above

loop);

4 finally, eliminate the self-loops and multiple edges created by these contractions.

34/40

Contract a Set of Edges

1 mark the edges to be contracted;
• To find the minimum weight edge incident on each node, takes O(|E|+ |V |) time;

2 determine the connected components formed by the marked edges;
• Use DFS to find the connected components, take O(|E|+ |V |) time;

3 replace each connected component by a single vertex;
• Associate each connected component with that new vertex, take O(|E|+ |V |) time (in the above

loop);

4 finally, eliminate the self-loops and multiple edges created by these contractions.
• To eliminate edges, takes O(|E|) time.

34/40

Bor̊uvka’s on Planar Graphs

Theorem

Bor̊uvka’s algorithm (contraction version) can be implemented to run in O(|V |) time on planar graphs.

35/40

Bor̊uvka’s on Planar Graphs

Theorem

Bor̊uvka’s algorithm (contraction version) can be implemented to run in O(|V |) time on planar graphs.

Proof.

Each Bor̊uvka phase takes O(|V |) time:

• Fact 1: |E| ≤ 3|V | for simple planar graphs.

• Fact 2: planar graphs remains planar after edge contractions/deletions.

Number of nodes (at least) halves in each phase.

Thus, overall running time ≤ c · |V |+ c · |V |/2 + c · |V |/4 + c · |V |/8 + · · · = O(|V |).

36/40

Bor̊uvka’s on Planar Graphs

Theorem

Bor̊uvka’s algorithm (contraction version) can be implemented to run in O(|V |) time on planar graphs.

Proof.

Each Bor̊uvka phase takes O(|V |) time:

• Fact 1: |E| ≤ 3|V | for simple planar graphs.

• Fact 2: planar graphs remains planar after edge contractions/deletions.

Number of nodes (at least) halves in each phase.

Thus, overall running time ≤ c · |V |+ c · |V |/2 + c · |V |/4 + c · |V |/8 + · · · = O(|V |).

36/40

Bor̊uvka’s on Planar Graphs

Theorem

Bor̊uvka’s algorithm (contraction version) can be implemented to run in O(|V |) time on planar graphs.

Proof.

Each Bor̊uvka phase takes O(|V |) time:

• Fact 1: |E| ≤ 3|V | for simple planar graphs.

• Fact 2: planar graphs remains planar after edge contractions/deletions.

Number of nodes (at least) halves in each phase.

Thus, overall running time ≤ c · |V |+ c · |V |/2 + c · |V |/4 + c · |V |/8 + · · · = O(|V |).

36/40

Bor̊uvka’s on Planar Graphs

Theorem

Bor̊uvka’s algorithm (contraction version) can be implemented to run in O(|V |) time on planar graphs.

Proof.

Each Bor̊uvka phase takes O(|V |) time:

• Fact 1: |E| ≤ 3|V | for simple planar graphs.

• Fact 2: planar graphs remains planar after edge contractions/deletions.

Number of nodes (at least) halves in each phase.

Thus, overall running time ≤ c · |V |+ c · |V |/2 + c · |V |/4 + c · |V |/8 + · · · = O(|V |).

36/40

Bor̊uvka’s on Planar Graphs

Theorem

Bor̊uvka’s algorithm (contraction version) can be implemented to run in O(|V |) time on planar graphs.

Proof.

Each Bor̊uvka phase takes O(|V |) time:

• Fact 1: |E| ≤ 3|V | for simple planar graphs.

• Fact 2: planar graphs remains planar after edge contractions/deletions.

Number of nodes (at least) halves in each phase.

Thus, overall running time ≤ c · |V |+ c · |V |/2 + c · |V |/4 + c · |V |/8 + · · · = O(|V |).

36/40

Bor̊uvka’s on Planar Graphs

Theorem

Bor̊uvka’s algorithm (contraction version) can be implemented to run in O(|V |) time on planar graphs.

Proof.

Each Bor̊uvka phase takes O(|V |) time:

• Fact 1: |E| ≤ 3|V | for simple planar graphs.

• Fact 2: planar graphs remains planar after edge contractions/deletions.

Number of nodes (at least) halves in each phase.

Thus, overall running time ≤ c · |V |+ c · |V |/2 + c · |V |/4 + c · |V |/8 + · · · = O(|V |).

36/40

A Hybrid Algorithm

Bor̊uvka-Prim algorithm.

• Run Bor̊uvka (contraction version) for log2 log2 |V | phases.

• Run Prim on resulting, contracted graph.

Theorem

Bor̊uvka-Prim computes an MST.

Proof. Special case of the greedy algorithm.

37/40

A Hybrid Algorithm

Bor̊uvka-Prim algorithm.

• Run Bor̊uvka (contraction version) for log2 log2 |V | phases.

• Run Prim on resulting, contracted graph.

Theorem

Bor̊uvka-Prim computes an MST.

Proof. Special case of the greedy algorithm.

37/40

A Hybrid Algorithm

Bor̊uvka-Prim algorithm.

• Run Bor̊uvka (contraction version) for log2 log2 |V | phases.

• Run Prim on resulting, contracted graph.

Theorem

Bor̊uvka-Prim computes an MST.

Proof. Special case of the greedy algorithm.

37/40

A Hybrid Algorithm

Theorem

Bor̊uvka-Prim can be implemented to run in O(|E| log log |V |) time.

Proof.

• The log2 log2 |V | phases of Bor̊uvka’s algorithm take O(|E| log log |V |) time; resulting graph has

≤ |V |/ log2 |V | nodes and ≤ |E| edges.

• Prim’s algorithm (using Fibonacci heaps) takes O(|E|+ |V |) time on a graph with |V |/ log2 |V |
nodes and |E| edges.

38/40

A Hybrid Algorithm

Theorem

Bor̊uvka-Prim can be implemented to run in O(|E| log log |V |) time.

Proof.

• The log2 log2 |V | phases of Bor̊uvka’s algorithm take O(|E| log log |V |) time; resulting graph has

≤ |V |/ log2 |V | nodes and ≤ |E| edges.

• Prim’s algorithm (using Fibonacci heaps) takes O(|E|+ |V |) time on a graph with |V |/ log2 |V |
nodes and |E| edges.

38/40

A Hybrid Algorithm

Theorem

Bor̊uvka-Prim can be implemented to run in O(|E| log log |V |) time.

Proof.

• The log2 log2 |V | phases of Bor̊uvka’s algorithm take O(|E| log log |V |) time; resulting graph has

≤ |V |/ log2 |V | nodes and ≤ |E| edges.

• Prim’s algorithm (using Fibonacci heaps) takes O(|E|+ |V |) time on a graph with |V |/ log2 |V |
nodes and |E| edges.

38/40

Linear-Time Algorithm?

year worst case discoverec by

1975 O (|E| log log |V |) Yao

1976 O (|E| log log |V |) Cheriton-Tarjan

1984 O (|E| log∗ |V |) , O (|E|+ |V | log |V |) Fredman-Tarjan

1986 (|E| log(log∗ |V |)) Gabow-Galil-Spencer-Tarjan

1997 O (|E|α(|V |) logα(|V |)) Chazelle

2000 O (|E|α(|V |)) Chazelle

2002 asymptotically optimal Pettie-Ramachandran

20xx O (|E|) ???
deterministic compare-based MST algorithms

iterated logarithm function

lg
∗
n =

{
0 if n ≤ 1

1 + lg∗(lgn) if n > 1

n lg∗ n

(−∞, 1] 0

(1, 2] 1

(2, 4] 2

(4, 16] 3

(16, 216] 4

(216, 265536] 5

39/40

Minimum Bottleneck Spanning Tree

Problem. Given a connected graph G with positive edge costs, find a spanning tree that minimizes the

most expensive edge.

Goal. O(|E| log |E|) time or better.

40/40

	Minimum Spanning Trees
	Prim, Kruskal, Boruvka

