

Design and Analysis of Algorithms (VII)

Treewidth

Guoqiang Li School of Software

Polynomial Time on Trees

It is well known that many NP-hard problems can be solved in polynomial time on trees, i.e., Independent Set, Dominating Set, 3-Colorability, etc.

Independent Sets on Trees

Independent Set

A subset of nodes $S \subseteq V$ is an independent set of graph G = (V, E) if there are no edges between them.

Independent Set

A subset of nodes $S \subseteq V$ is an independent set of graph G = (V, E) if there are no edges between them.

Finding the largest independent set in a graph is believed to be intractable.

However, when the graph happens to be a tree, the problem can be solved in linear time, using dynamic programming.

The Subproblems

I(u) = size of largest independent set of subtree hanging from u.

The Subproblems

I(u) = size of largest independent set of subtree hanging from u.

$$I(u) = \max\{1 + \sum_{\text{grandchildren } w \text{ of } u} I(w), \sum_{\text{children } w \text{ of } u} I(w)\}$$

Independent Sets on Trees

An Example

Tree Decompositions of Graphs

Definition

Let \mathcal{G} be a graph. A tree decomposition of \mathcal{G} is a tuple $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$, where \mathcal{T} is a tree and B_t the bag at t such that the following conditions are satisfied:

T1 For every $v \in V(\mathcal{G})$ the set

 $T_v := \{t \in V(\mathcal{T}) \mid v \in B_t\}$

```
is nonempty and connected in \mathcal{T}, i.e., \mathcal{T}[T_v] is a subtree of \mathcal{T}.
```

```
T2 For every e \in E(\mathcal{G}) there exists a t \in V(\mathcal{T}) such that e \subseteq B_t.
```

Tree Decomposition of Graphs, Examples

The complete graphs \mathcal{K}_n for $n \in \mathbb{N}$.

Tree Decomposition of Graphs, Examples

The complete graphs \mathcal{K}_n for $n \in \mathbb{N}$.

The trees.

Tree Decomposition of Graphs, Examples

The complete graphs \mathcal{K}_n for $n \in \mathbb{N}$.

The trees.

The grids $\mathcal{G}_{n \times n}$ for $n \in \mathbb{N}$.

Treewidth

The width of a tree decomposition $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ is

 $width(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})}) := \max\{|B_t| - 1 \mid t \in V(\mathcal{T})\}$

The treewidth of \mathcal{G} is

 $tw(\mathcal{G}) := \min\{width(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})}) \mid (\mathcal{T}, (B_t)_{t \in V(\mathcal{T})}) \text{ is a tree decomposition of } \mathcal{G}\}$

Treewidth, Examples

 $tw(\mathcal{K}_n) = n - 1$ for the complete graphs \mathcal{K}_n .

Treewidth, Examples

 $tw(\mathcal{K}_n) = n - 1$ for the complete graphs \mathcal{K}_n .

 $tw(\mathcal{T}) = 1$ for every tree \mathcal{K} of size at least 2.

Treewidth, Examples

 $tw(\mathcal{K}_n) = n - 1$ for the complete graphs \mathcal{K}_n .

 $tw(\mathcal{T}) = 1$ for every tree \mathcal{K} of size at least 2.

 $tw(\mathcal{G}_{n \times n}) = n$ for every grid $\mathcal{G}_{n \times n}$.

Smooth Tree Decomposition

Definition

A tree decomposition $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ is smooth if for every $(t, t') \in E(\mathcal{T})$ we have

 $|B_t \backslash B_{t'}| = |B_{t'} \backslash B_t| = 1$

Theorem

Every tree decomposition can be efficiently transferred to a smooth one of the same width.

Theorem

Every graph \mathcal{G} has a smooth tree decomposition of width $tw(\mathcal{G})$.

Let $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a tree decomposition of width w.

Let $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a tree decomposition of width w.

1 Make bags equal size: We choose a node $r \in V(\mathcal{T})$ with $|B_r| = w + 1$ as the root. Let t be a child of r with $|B_t| \leq w$. Clearly

 $|B_r \backslash B_t| + |B_t| \ge w + 1$

Let $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a tree decomposition of width w.

1 Make bags equal size: We choose a node $r \in V(\mathcal{T})$ with $|B_r| = w + 1$ as the root. Let t be a child of r with $|B_t| \leq w$. Clearly

 $|B_r \setminus B_t| + |B_t| \ge w + 1$

We add $w + 1 - |B_t|$ vertices in $B_r \setminus B_t$ to B_t . After repeating this procedure recursively from the root to leaves, every bag has size w + 1.

Let $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a tree decomposition of width w.

1 Make bags equal size: We choose a node $r \in V(\mathcal{T})$ with $|B_r| = w + 1$ as the root. Let t be a child of r with $|B_t| \leq w$. Clearly

 $|B_r \setminus B_t| + |B_t| \ge w + 1$

We add $w + 1 - |B_t|$ vertices in $B_r \setminus B_t$ to B_t . After repeating this procedure recursively from the root to leaves, every bag has size w + 1.

2 Remove repetition: If there is an edge $(t, t') \in E(\mathcal{T})$ with $B_t = B_{t'}$, then we merge t' with t.

Let $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a tree decomposition of width w.

1 Make bags equal size: We choose a node $r \in V(\mathcal{T})$ with $|B_r| = w + 1$ as the root. Let t be a child of r with $|B_t| \leq w$. Clearly

 $|B_r \setminus B_t| + |B_t| \ge w + 1$

We add $w + 1 - |B_t|$ vertices in $B_r \setminus B_t$ to B_t . After repeating this procedure recursively from the root to leaves, every bag has size w + 1.

2 Remove repetition: If there is an edge $(t, t') \in E(\mathcal{T})$ with $B_t = B_{t'}$, then we merge t' with t.

3 Interpolation: Let $(t, t') \in E(\mathcal{T})$ with $|B_t \setminus B_{t'}| < w$, i.e.,

$$B_t \setminus B_{t'} = \{u_1, \dots, u_\ell\}$$
 and $B_{t'} \setminus B_t = \{v_1, \dots, v_\ell\}$

for some $\ell > 2$ and pairwise distinct $u_1, \ldots u_\ell$ and v_1, \ldots, v_ℓ . We insert new nodes $t_1, \ldots t_{\ell-1}$ between t and t' with

$$B_{t_i} := B_t \cap B_{t'} \cup \{v_1, \dots, v_i, u_{i+1}, \dots, u_\ell\}$$

for every $i \in [\ell - 1]$.

The Size of Smooth Tree Decompositions

Theorem

For every smooth tree decomposition $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ of \mathcal{G} we have

 $|V(\mathcal{T})| \le |V(\mathcal{G})|$

▲□▶▲□▶▲ Ξ▶ ▲ Ξ▶ Ξ - 의 ۹. 안 14/29

The Size of Smooth Tree Decompositions

Theorem

For every smooth tree decomposition $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ of \mathcal{G} we have

 $|V(\mathcal{T})| \le |V(\mathcal{G})|$

Theorem

 $|E(\mathcal{G})| \leq tw(\mathcal{G}) \cdot |V(\mathcal{G})|$

 $tw(\mathcal{K}_n) \le n-1$:

▲□▶ ▲□▶ ▲ 王▶ ▲ 王▶ 王 · · · ○ へ ○ · 15/29

 $tw(\mathcal{K}_n) \leq n-1$: Take a tree decomposition with a singleton tree.

 $tw(\mathcal{K}_n) \leq n-1$: Take a tree decomposition with a singleton tree.

 $tw(\mathcal{K}_n) \ge n-1$:

 $tw(\mathcal{K}_n) \leq n-1$: Take a tree decomposition with a singleton tree.

 $tw(\mathcal{K}_n) \ge n-1$: Let $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a smooth tree decomposition of \mathcal{K}_n of width $tw(\mathcal{K}_n)$. We show that there exists a B_t with $|B_t| = n$.

 $tw(\mathcal{K}_n) \leq n-1$: Take a tree decomposition with a singleton tree.

 $tw(\mathcal{K}_n) \ge n-1$: Let $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a smooth tree decomposition of \mathcal{K}_n of width $tw(\mathcal{K}_n)$. We show that there exists a B_t with $|B_t| = n$.

Trivial if $|V(\mathcal{T})| = 1$. Otherwise choose a leaf t and let t' be its parent in \mathcal{T} .

$$tw(\mathcal{K}_n) = n - 1$$

 $tw(\mathcal{K}_n) \leq n-1$: Take a tree decomposition with a singleton tree.

 $tw(\mathcal{K}_n) \ge n-1$: Let $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a smooth tree decomposition of \mathcal{K}_n of width $tw(\mathcal{K}_n)$. We show that there exists a B_t with $|B_t| = n$.

Trivial if $|V(\mathcal{T})| = 1$. Otherwise choose a leaf *t* and let *t'* be its parent in \mathcal{T} .

By the smoothness

 $B_t \setminus B_{t'} = \{v\}$ for some $v \in V(\mathcal{K}_n)$

$$tw(\mathcal{K}_n) = n - 1$$

 $tw(\mathcal{K}_n) \leq n-1$: Take a tree decomposition with a singleton tree.

 $tw(\mathcal{K}_n) \ge n-1$: Let $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a smooth tree decomposition of \mathcal{K}_n of width $tw(\mathcal{K}_n)$. We show that there exists a B_t with $|B_t| = n$.

Trivial if $|V(\mathcal{T})| = 1$. Otherwise choose a leaf t and let t' be its parent in \mathcal{T} .

By the smoothness

 $B_t \setminus B_{t'} = \{v\}$ for some $v \in V(\mathcal{K}_n)$

Since v is adjacent to every other vertex in \mathcal{K}_n , we see that $B_t = V(\mathcal{K}_n)$

Helly Property for Trees

Theorem Let \mathcal{T} be a tree and $\mathcal{T}_1, \dots, \mathcal{T}_n$ subtrees of \mathcal{T} such that $V(\mathcal{T}_i) \cap V(\mathcal{T}_j) \neq \emptyset$ for every $i, j \in [n]$. Then $\bigcap_{i \in [n]} V(\mathcal{T}_i) \neq \emptyset$

We prove by induction on the size of \mathcal{T} .

We prove by induction on the size of T.

Basic step $|V(\mathcal{T})|$: Trivial.

We prove by induction on the size of T.

Basic step $|V(\mathcal{T})|$: Trivial.

Hypothesis step

We prove by induction on the size of T.

Basic step $|V(\mathcal{T})|$: Trivial.

Hypothesis step Let t be a leaf of \mathcal{T} . If $t \in V(\mathcal{T}_i)$ for every $i \in [n]$, then we are done.

We prove by induction on the size of T.

```
Basic step |V(\mathcal{T})|: Trivial.
```

Hypothesis step Let t be a leaf of \mathcal{T} . If $t \in V(\mathcal{T}_i)$ for every $i \in [n]$, then we are done.

```
Now assume t \notin V(\mathcal{T}_i) for some i \in [n].
```


We prove by induction on the size of T.

```
Basic step |V(\mathcal{T})|: Trivial.
```

Hypothesis step Let t be a leaf of \mathcal{T} . If $t \in V(\mathcal{T}_i)$ for every $i \in [n]$, then we are done.

```
Now assume t \notin V(\mathcal{T}_i) for some i \in [n]. Consider
```

 $\mathcal{T} \setminus \{t\}; \mathcal{T}_1 \setminus \{t\}, \dots, \mathcal{T}_n \setminus \{t\}$

We prove by induction on the size of T.

```
Basic step |V(\mathcal{T})|: Trivial.
```

Hypothesis step Let t be a leaf of \mathcal{T} . If $t \in V(\mathcal{T}_i)$ for every $i \in [n]$, then we are done.

```
Now assume t \notin V(\mathcal{T}_i) for some i \in [n]. Consider
```

 $\mathcal{T} \setminus \{t\}; \mathcal{T}_1 \setminus \{t\}, \dots, \mathcal{T}_n \setminus \{t\}$

Then

- every $\mathcal{T}_i \setminus \{t\}$ is a (nonempty) subtree of $\mathcal{T} \setminus \{t\}$.
- $V(\mathcal{T}_i \setminus \{t\}) \cap V(\mathcal{T}_j \setminus \{t\}) \neq \emptyset$ for every $i, j \in [n]$.

The result follows from the induction hypothesis.

SHANGHAI JIAO TONG UNIVERSITY

Theorem

Let $\mathcal{G} = (V, E)$ be a graph and $S \subseteq V$ a clique. Then for every tree decomposition $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ there is a node $t \in V(\mathcal{T})$ with $S \subseteq B_t$.

Theorem

Let $\mathcal{G} = (V, E)$ be a graph and $S \subseteq V$ a clique. Then for every tree decomposition $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ there is a node $t \in V(\mathcal{T})$ with $S \subseteq B_t$.

Proof.

Theorem

Let $\mathcal{G} = (V, E)$ be a graph and $S \subseteq V$ a clique. Then for every tree decomposition $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ there is a node $t \in V(\mathcal{T})$ with $S \subseteq B_t$.

Proof.

For every $v \in V$ recall

 $T_v := \{t \in V(\mathcal{T}) \mid v \in B_t\}$

induces a subtree $\mathcal{T}_v := T[\mathcal{T}_v]$ of \mathcal{T} .

Theorem

Let $\mathcal{G} = (V, E)$ be a graph and $S \subseteq V$ a clique. Then for every tree decomposition $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ there is a node $t \in V(\mathcal{T})$ with $S \subseteq B_t$.

Proof.

For every $v \in V$ recall

$$T_v := \{t \in V(\mathcal{T}) \mid v \in B_t\}$$

induces a subtree $\mathcal{T}_v := T[\mathcal{T}_v]$ of \mathcal{T} .

Clearly for every $u, v \in S$, we have

 $V(\mathcal{T}_u) \cap V(\mathcal{T}_v) = T_u \cap T_v \neq \emptyset$

Theorem

Let $\mathcal{G} = (V, E)$ be a graph and $S \subseteq V$ a clique. Then for every tree decomposition $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ there is a node $t \in V(\mathcal{T})$ with $S \subseteq B_t$.

Proof.

For every $v \in V$ recall

$$T_v := \{t \in V(\mathcal{T}) \mid v \in B_t\}$$

induces a subtree $\mathcal{T}_v := T[\mathcal{T}_v]$ of \mathcal{T} .

Clearly for every $u, v \in S$, we have

 $V(\mathcal{T}_u) \cap V(\mathcal{T}_v) = T_u \cap T_v \neq \emptyset$

since there is an edge (u, v) in \mathcal{G} . The result follows from Helly property.

Computing the Treewidth

Theorem (Bodlaender, 1996)

The problem

TREEWIDTH

INPUT: A graph \mathcal{G} and a number $k \in \mathbb{N}$.

PROBLEM: Decide whether $tw(\mathcal{G}) \leq k$ and if so output a tree decomposition of \mathcal{G} with width $\leq k$.

can be computed in time

 $2^{k^{O(1)}} \cdot ||\mathcal{G}||$

Computing the Treewidth

Corollary

For every $k \in \mathbb{N}$ there is a linear time algorithm which on every graph \mathcal{G} either outputs a tree decomposition of \mathcal{G} of width $\leq k$ or reports that $tw(\mathcal{G}) > k$.

Independent Sets via Tree Decompositions

Independent Sets via Tree Decompositions (1)

Let \mathcal{G} be a graph and $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ a smooth tree decomposition of \mathcal{G} . And let $w := tw(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$.

Let \mathcal{G} be a graph and $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ a smooth tree decomposition of \mathcal{G} . And let $w := tw(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$.

We fix an arbitrary node $r \in V(\mathcal{T})$ as the root of \mathcal{T} .

Let $t \in V(\mathcal{T})$. We define \mathcal{G}_t as the induced subgraph of \mathcal{G} on vertices in B_t .

Furthermore, $\mathcal{G}_{\leq t}$ is the induced subgraph of \mathcal{G} on vertices in

 $B_t \cup \bigcup_{\text{descendants } t' \text{ of } t} B_{t'}$

By dynamic programming we compute for every $t \in V(\mathcal{T})$ and every $X \subseteq B_t$ independent in \mathcal{G}_t

I(t,X) := size of a largest independent set I of $\mathcal{G}_{\leq t}$ with $I \cap B_t = X$

$$= |X| + \sum_{\text{children } t' \text{ of } t} \max\{I(t', X') - |X' \cap X| \mid X' \cap B_t = X \ capB_{t'}\}$$

Independent Sets via Tree Decompositions (2)

By dynamic programming we compute for every $t \in V(\mathcal{T})$ and every $X \subseteq B_t$ independent in \mathcal{G}_t

I(t,X) := size of a largest independent set I of $\mathcal{G}_{\leq t}$ with $I \cap B_t = X$

$$= |X| + \sum_{\text{children } t' \text{ of } t} \max\{I(t', X') - |X' \cap X| \mid X' \cap B_t = X \ capB_{t'}\}$$

Note there are at most

$$|V(\mathcal{T})| \cdot 2^{w+1} \le |V(\mathcal{G})| \cdot 2^{w+1}$$

many I(t, X).

Independent Sets via Tree Decompositions (3)

Theorem

For every $k \in \mathbb{N}$ there is a linear time algorithm which on every graph \mathcal{G} with $tw(\mathcal{G}) \leq k$ outputs a largest independent set in \mathcal{G} .

Partial *k*-Trees

▲□▶ ▲□▶ ▲ 토▶ ▲ 토▶ 토 - 키९(° 25/29)

k-Trees and Partial k-Trees

Definition (*k***-trees)**

Let $k \in \mathbb{N}$. Then the set of *k*-trees is defined as follows.

- **K1** A complete graph \mathcal{K}_{k+1} is a *k*-tree.
- **K2** Let \mathcal{G} be a graph and $v \in V$ such that
 - $\mathcal{N}^G[v]$ is isomorphic to \mathcal{K}_{k+1} , where $\mathcal{N}^G[v]$ is the induced subgraph of \mathcal{G} on

 $\mathcal{N}^G[v] := \{ u \in V(\mathcal{G}) \mid (u, v) \in E(\mathcal{G}) \} \cup \{ v \}$

• $\mathcal{G}[V(\mathcal{G}) \setminus \{v\}]$ is a *k*-tree. Then \mathcal{G} is a *k*-tree.

k-Trees and Partial *k*-Trees

Definition (*k***-trees)**

Let $k \in \mathbb{N}$. Then the set of *k*-trees is defined as follows.

K1 A complete graph \mathcal{K}_{k+1} is a *k*-tree.

- **K2** Let \mathcal{G} be a graph and $v \in V$ such that
 - $\mathcal{N}^G[v]$ is isomorphic to \mathcal{K}_{k+1} , where $\mathcal{N}^G[v]$ is the induced subgraph of $\mathcal G$ on

 $\mathcal{N}^{G}[v] := \{ u \in V(\mathcal{G}) \mid (u, v) \in E(\mathcal{G}) \} \cup \{ v \}$

• $\mathcal{G}[V(\mathcal{G}) \setminus \{v\}]$ is a *k*-tree. Then \mathcal{G} is a *k*-tree.

Definition (partial *k*-tree)

A graph is a partial *k*-tree if it is a subgraph of a *k*-tree.

Partial *k*-Trees and Bounded Treewidth

Theorem

A graph \mathcal{G} is a partial *k*-tree if and only if $tw(G) \leq k$.

Partial *k*-Trees and Bounded Treewidth

Theorem

A graph \mathcal{G} is a partial *k*-tree if and only if $tw(G) \leq k$.

Lemma

Let \mathcal{G} be a subgraph of \mathcal{H} , i.e., $V(\mathcal{G}) \subseteq V(\mathcal{H})$ and $E(\mathcal{G}) \subseteq E(\mathcal{H})$. Then $tw(\mathcal{G}) \leq tw(\mathcal{H})$.

Partial *k*-Trees and Bounded Treewidth

Theorem

A graph \mathcal{G} is a partial *k*-tree if and only if $tw(G) \leq k$.

Lemma

Let \mathcal{G} be a subgraph of \mathcal{H} , i.e., $V(\mathcal{G}) \subseteq V(\mathcal{H})$ and $E(\mathcal{G}) \subseteq E(\mathcal{H})$. Then $tw(\mathcal{G}) \leq tw(\mathcal{H})$.

Theorem

- **1** Every graph of treewidth $\leq k$ is a partial k-tree.
- 2 Every k-tree has a tree decomposition of width $\leq k$.

Let \mathcal{G} be a graph with $tw(\mathcal{G}) \leq k$. Moreover, let $\mathscr{T} = (\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a smooth tree decomposition of \mathcal{G} of width k.

Let \mathcal{G} be a graph with $tw(\mathcal{G}) \leq k$. Moreover, let $\mathscr{T} = (\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a smooth tree decomposition of \mathcal{G} of width k.

From \mathcal{T} we define a graph $\mathcal{H}_{\mathscr{T}}$ by induction on $V(\mathcal{T})$ such that

(H1) $\mathcal{H}_{\mathscr{T}}$ is a *k*-tree. (H2) $\mathcal{H}_{\mathscr{T}}[B_t]$ is isomorphic to \mathcal{K}_{k+1} for every $t \in V(\mathcal{T})$. (H3) $\mathcal{G} \subset \mathcal{H}_{\mathscr{T}}$.

Let \mathcal{G} be a graph with $tw(\mathcal{G}) \leq k$. Moreover, let $\mathscr{T} = (\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a smooth tree decomposition of \mathcal{G} of width k.

From \mathcal{T} we define a graph $\mathcal{H}_{\mathscr{T}}$ by induction on $V(\mathcal{T})$ such that

(H1) $\mathcal{H}_{\mathscr{T}}$ is a *k*-tree. (H2) $\mathcal{H}_{\mathscr{T}}[B_t]$ is isomorphic to \mathcal{K}_{k+1} for every $t \in V(\mathcal{T})$. (H3) $\mathcal{G} \subseteq \mathcal{H}_{\mathscr{T}}$.

If $|V(\mathcal{T})| = 1$, then $\mathcal{H}_{\mathscr{T}}$ is \mathcal{K}_{k+1} , and we are done.

Let \mathcal{G} be a graph with $tw(\mathcal{G}) \leq k$. Moreover, let $\mathscr{T} = (\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a smooth tree decomposition of \mathcal{G} of width k.

From \mathcal{T} we define a graph $\mathcal{H}_{\mathscr{T}}$ by induction on $V(\mathcal{T})$ such that

(H1) $\mathcal{H}_{\mathscr{T}}$ is a *k*-tree. (H2) $\mathcal{H}_{\mathscr{T}}[B_t]$ is isomorphic to \mathcal{K}_{k+1} for every $t \in V(\mathcal{T})$. (H3) $\mathcal{G} \subseteq \mathcal{H}_{\mathscr{T}}$.

If $|V(\mathcal{T})| = 1$, then $\mathcal{H}_{\mathscr{T}}$ is \mathcal{K}_{k+1} , and we are done.

Otherwise, choose a leaf t and let t' be its parent in \mathcal{T} . Therefore, $B_t \setminus B_{t'} = \{v\}$ for some $v \in V(\mathcal{K}_n)$. Then $\mathscr{T}' := (\mathcal{T} \setminus \{t\}, (B_t)_{t \in V(\mathcal{T} \setminus \{t\})})$ is a smooth tree decomposition of the graph $\mathcal{G} \setminus \{v\}$.

Let \mathcal{G} be a graph with $tw(\mathcal{G}) \leq k$. Moreover, let $\mathscr{T} = (\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ be a smooth tree decomposition of \mathcal{G} of width k.

From \mathcal{T} we define a graph $\mathcal{H}_{\mathscr{T}}$ by induction on $V(\mathcal{T})$ such that

(H1) $\mathcal{H}_{\mathscr{T}}$ is a *k*-tree. (H2) $\mathcal{H}_{\mathscr{T}}[B_t]$ is isomorphic to \mathcal{K}_{k+1} for every $t \in V(\mathcal{T})$. (H3) $\mathcal{G} \subseteq \mathcal{H}_{\mathscr{T}}$.

If $|V(\mathcal{T})| = 1$, then $\mathcal{H}_{\mathscr{T}}$ is \mathcal{K}_{k+1} , and we are done.

Otherwise, choose a leaf t and let t' be its parent in \mathcal{T} . Therefore, $B_t \setminus B_{t'} = \{v\}$ for some $v \in V(\mathcal{K}_n)$. Then $\mathscr{T}' := (\mathcal{T} \setminus \{t\}, (B_t)_{t \in V(\mathcal{T} \setminus \{t\})})$ is a smooth tree decomposition of the graph $\mathcal{G} \setminus \{v\}$.

By (H2) of the induction hypothesis, $\mathcal{H}_{\mathscr{T}'}[B_t \cap B_{t'}]$ is isomorphic to \mathcal{K}_k . Then from $\mathcal{H}_{\mathscr{T}'}$, we obtain $\mathcal{H}_{\mathscr{T}}$ by adding the vertex v and the edges (v, u) for every $u \in B_t \cap B_{t'}$.

Let \mathcal{H} be a *k*-tree. We show that $tw(\mathcal{H}) \leq k$ by induction on the construction of \mathcal{H} .

Let \mathcal{H} be a *k*-tree. We show that $tw(\mathcal{H}) \leq k$ by induction on the construction of \mathcal{H} .

If \mathcal{H} is isomorphic to \mathcal{K}_{k+1} , i.e., (K1), then we are done.

Let \mathcal{H} be a *k*-tree. We show that $tw(\mathcal{H}) \leq k$ by induction on the construction of \mathcal{H} .

If \mathcal{H} is isomorphic to \mathcal{K}_{k+1} , i.e., (K1), then we are done.

Otherwise by (K2) let $v \in V(\mathcal{H})$ satisfy that $\mathcal{H} \setminus \{v\}$ is a k-tree and $\mathcal{N}^{\mathcal{G}}[v]$ is isomorphic to \mathcal{K}_{k+1} .

Let \mathcal{H} be a *k*-tree. We show that $tw(\mathcal{H}) \leq k$ by induction on the construction of \mathcal{H} .

If \mathcal{H} is isomorphic to \mathcal{K}_{k+1} , i.e., (K1), then we are done.

Otherwise by (K2) let $v \in V(\mathcal{H})$ satisfy that $\mathcal{H} \setminus \{v\}$ is a k-tree and $\mathcal{N}^{\mathcal{G}}[v]$ is isomorphic to \mathcal{K}_{k+1} .

By induction hypothesis, there is a tree decomposition $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ of $\mathcal{H} \setminus \{v\}$ of width k. As

 $\mathcal{N}^{\mathcal{H}}(v) := \{ u \in V(\mathcal{H}) \mid (u, v) \in E(\mathcal{H}) \}$

is a clique in $\mathcal{H} \setminus \{v\}$, by Helly property, there is a B_t with $\mathcal{N}^{\mathcal{H}}(v) \subseteq B_t$.

Let \mathcal{H} be a *k*-tree. We show that $tw(\mathcal{H}) \leq k$ by induction on the construction of \mathcal{H} .

If \mathcal{H} is isomorphic to \mathcal{K}_{k+1} , i.e., (K1), then we are done.

Otherwise by (K2) let $v \in V(\mathcal{H})$ satisfy that $\mathcal{H} \setminus \{v\}$ is a k-tree and $\mathcal{N}^{\mathcal{G}}[v]$ is isomorphic to \mathcal{K}_{k+1} .

By induction hypothesis, there is a tree decomposition $(\mathcal{T}, (B_t)_{t \in V(\mathcal{T})})$ of $\mathcal{H} \setminus \{v\}$ of width k. As

 $\mathcal{N}^{\mathcal{H}}(v) := \{ u \in V(\mathcal{H}) \mid (u, v) \in E(\mathcal{H}) \}$

is a clique in $\mathcal{H} \setminus \{v\}$, by Helly property, there is a B_t with $\mathcal{N}^{\mathcal{H}}(v) \subseteq B_t$.

We add a new leaf t' adjacent to t and set $B_{t'} := \mathcal{N}^{\mathcal{H}}[v]$.