

Design and Analysis of Algorithms (VII)
Treewidth

Guoqiang Li
School of Software

Polynomial Time on Trees

It is well known that many NP-hard problems can be solved in polynomial time on trees, i.e., Independent Set, Dominating Set, 3-Colorability, etc.

Independent Sets on Trees

Independent Set

A subset of nodes $S \subseteq V$ is an independent set of graph $G=(V, E)$ if there are no edges between them.

A subset of nodes $S \subseteq V$ is an independent set of graph $G=(V, E)$ if there are no edges between them.

Finding the largest independent set in a graph is believed to be intractable.
However, when the graph happens to be a tree, the problem can be solved in linear time, using dynamic programming.

The Subproblems

$I(u)=$ size of largest independent set of subtree hanging from u.

The Subproblems

$I(u)=$ size of largest independent set of subtree hanging from u.

$$
I(u)=\max \left\{1+\sum_{\text {grandchildren } w \text { of } u} I(w), \sum_{\text {children } w \text { of } u} I(w)\right\}
$$

Independent Sets on Trees

An Example

Definition

Let \mathcal{G} be a graph. A tree decomposition of \mathcal{G} is a tuple $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$, where \mathcal{T} is a tree and B_{t} the bag at t such that the following conditions are satisfied:
T1 For every $v \in V(\mathcal{G})$ the set

$$
T_{v}:=\left\{t \in V(\mathcal{T}) \mid v \in B_{t}\right\}
$$

is nonempty and connected in \mathcal{T}, i.e., $\mathcal{T}\left[T_{v}\right]$ is a subtree of \mathcal{T}.
T2 For every $e \in E(\mathcal{G})$ there exists a $t \in V(\mathcal{T})$ such that $e \subseteq B_{t}$.

Tree Decomposition of Graphs, Examples

The complete graphs \mathcal{K}_{n} for $n \in \mathbb{N}$.

Tree Decomposition of Graphs, Examples

The complete graphs \mathcal{K}_{n} for $n \in \mathbb{N}$.
The trees.

Tree Decomposition of Graphs, Examples

The complete graphs \mathcal{K}_{n} for $n \in \mathbb{N}$.
The trees.
The grids $\mathcal{G}_{n \times n}$ for $n \in \mathbb{N}$.

Treewidth

The width of a tree decomposition $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ is

$$
\text { width }\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right):=\max \left\{\left|B_{t}\right|-1 \mid t \in V(\mathcal{T})\right\}
$$

The treewidth of \mathcal{G} is

$$
\operatorname{tw}(\mathcal{G}):=\min \left\{\operatorname{width}\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right) \mid\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right) \text { is a tree decomposition of } \mathcal{G}\right\}
$$

Treewidth，Examples

$t w\left(\mathcal{K}_{n}\right)=n-1$ for the complete graphs \mathcal{K}_{n}.

Treewidth，Examples

$t w\left(\mathcal{K}_{n}\right)=n-1$ for the complete graphs \mathcal{K}_{n}.
$t w(\mathcal{T})=1$ for every tree \mathcal{K} of size at least 2.

Treewidth, Examples

$t w\left(\mathcal{K}_{n}\right)=n-1$ for the complete graphs \mathcal{K}_{n}.
$t w(\mathcal{T})=1$ for every tree \mathcal{K} of size at least 2.
$t w\left(\mathcal{G}_{n \times n}\right)=n$ for every grid $\mathcal{G}_{n \times n}$.

Smooth Tree Decomposition

Definition

A tree decomposition $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ is smooth if for every $\left(t, t^{\prime}\right) \in E(\mathcal{T})$ we have

$$
\left|B_{t} \backslash B_{t^{\prime}}\right|=\left|B_{t^{\prime}} \backslash B_{t}\right|=1
$$

Theorem

Every tree decomposition can be efficiently transferred to a smooth one of the same width.

Theorem

Every graph \mathcal{G} has a smooth tree decomposition of width $t w(\mathcal{G})$.

Make Tree Decomposition Smooth

Let $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a tree decomposition of width w.

Make Tree Decomposition Smooth

Let $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a tree decomposition of width w.
(1) Make bags equal size: We choose a node $r \in V(\mathcal{T})$ with $\left|B_{r}\right|=w+1$ as the root. Let t be a child of r with $\left|B_{t}\right| \leq w$. Clearly

$$
\left|B_{r} \backslash B_{t}\right|+\left|B_{t}\right| \geq w+1
$$

Make Tree Decomposition Smooth

Let $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a tree decomposition of width w.
(1) Make bags equal size: We choose a node $r \in V(\mathcal{T})$ with $\left|B_{r}\right|=w+1$ as the root. Let t be a child of r with $\left|B_{t}\right| \leq w$. Clearly

$$
\left|B_{r} \backslash B_{t}\right|+\left|B_{t}\right| \geq w+1
$$

We add $w+1-\left|B_{t}\right|$ vertices in $B_{r} \backslash B_{t}$ to B_{t}. After repeating this procedure recursively from the root to leaves, every bag has size $w+1$.

Make Tree Decomposition Smooth

Let $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a tree decomposition of width w.
(1) Make bags equal size: We choose a node $r \in V(\mathcal{T})$ with $\left|B_{r}\right|=w+1$ as the root. Let t be a child of r with $\left|B_{t}\right| \leq w$. Clearly

$$
\left|B_{r} \backslash B_{t}\right|+\left|B_{t}\right| \geq w+1
$$

We add $w+1-\left|B_{t}\right|$ vertices in $B_{r} \backslash B_{t}$ to B_{t}. After repeating this procedure recursively from the root to leaves, every bag has size $w+1$.
(2) Remove repetition: If there is an edge $\left(t, t^{\prime}\right) \in E(\mathcal{T})$ with $B_{t}=B_{t^{\prime}}$, then we merge t^{\prime} with t.

Make Tree Decomposition Smooth

Let $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a tree decomposition of width w.
(1) Make bags equal size: We choose a node $r \in V(\mathcal{T})$ with $\left|B_{r}\right|=w+1$ as the root. Let t be a child of r with $\left|B_{t}\right| \leq w$. Clearly

$$
\left|B_{r} \backslash B_{t}\right|+\left|B_{t}\right| \geq w+1
$$

We add $w+1-\left|B_{t}\right|$ vertices in $B_{r} \backslash B_{t}$ to B_{t}. After repeating this procedure recursively from the root to leaves, every bag has size $w+1$.
(2) Remove repetition: If there is an edge $\left(t, t^{\prime}\right) \in E(\mathcal{T})$ with $B_{t}=B_{t^{\prime}}$, then we merge t^{\prime} with t.
(3) Interpolation: Let $\left(t, t^{\prime}\right) \in E(\mathcal{T})$ with $\left|B_{t} \backslash B_{t^{\prime}}\right|<w$, i.e.,

$$
B_{t} \backslash B_{t^{\prime}}=\left\{u_{1}, \ldots u_{\ell}\right\} \text { and } B_{t^{\prime}} \backslash B_{t}=\left\{v_{1}, \ldots, v_{\ell}\right\}
$$

for some $\ell>2$ and pairwise distinct $u_{1}, \ldots u_{\ell}$ and v_{1}, \ldots, v_{ℓ}. We insert new nodes $t_{1}, \ldots t_{\ell-1}$ between t and t^{\prime} with

$$
B_{t_{i}}:=B_{t} \cap B_{t^{\prime}} \cup\left\{v_{1}, \ldots, v_{i}, u_{i+1}, \ldots, u_{\ell}\right\}
$$

for every $i \in[\ell-1]$.

The Size of Smooth Tree Decompositions

Theorem

For every smooth tree decomposition $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ of \mathcal{G} we have

$$
|V(\mathcal{T})| \leq|V(\mathcal{G})|
$$

Theorem

For every smooth tree decomposition $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ of \mathcal{G} we have

$$
|V(\mathcal{T})| \leq|V(\mathcal{G})|
$$

Theorem

$$
|E(\mathcal{G})| \leq t w(\mathcal{G}) \cdot|V(\mathcal{G})|
$$

$$
t w\left(\mathcal{K}_{n}\right)=n-1
$$

$$
t w\left(\mathcal{K}_{n}\right) \leq n-1:
$$

$$
t w\left(\mathcal{K}_{n}\right)=n-1
$$

$t w\left(\mathcal{K}_{n}\right) \leq n-1$: Take a tree decomposition with a singleton tree.

$$
t w\left(\mathcal{K}_{n}\right)=n-1
$$

$t w\left(\mathcal{K}_{n}\right) \leq n-1$: Take a tree decomposition with a singleton tree.
$t w\left(\mathcal{K}_{n}\right) \geq n-1:$

$$
t w\left(\mathcal{K}_{n}\right)=n-1
$$

$t w\left(\mathcal{K}_{n}\right) \leq n-1$: Take a tree decomposition with a singleton tree.
$t w\left(\mathcal{K}_{n}\right) \geq n-1$: Let $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a smooth tree decomposition of \mathcal{K}_{n} of width $t w\left(\mathcal{K}_{n}\right)$. We show that there exists a B_{t} with $\left|B_{t}\right|=n$.

$$
t w\left(\mathcal{K}_{n}\right)=n-1
$$

$t w\left(\mathcal{K}_{n}\right) \leq n-1$: Take a tree decomposition with a singleton tree.
$t w\left(\mathcal{K}_{n}\right) \geq n-1$: Let $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a smooth tree decomposition of \mathcal{K}_{n} of width $t w\left(\mathcal{K}_{n}\right)$. We show that there exists a B_{t} with $\left|B_{t}\right|=n$.

Trivial if $|V(\mathcal{T})|=1$. Otherwise choose a leaf t and let t^{\prime} be its parent in \mathcal{T}.

$$
t w\left(\mathcal{K}_{n}\right)=n-1
$$

$t w\left(\mathcal{K}_{n}\right) \leq n-1$: Take a tree decomposition with a singleton tree.
$t w\left(\mathcal{K}_{n}\right) \geq n-1$: Let $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a smooth tree decomposition of \mathcal{K}_{n} of width $t w\left(\mathcal{K}_{n}\right)$. We show that there exists a B_{t} with $\left|B_{t}\right|=n$.

Trivial if $|V(\mathcal{T})|=1$. Otherwise choose a leaf t and let t^{\prime} be its parent in \mathcal{T}.
By the smoothness

$$
B_{t} \backslash B_{t^{\prime}}=\{v\} \text { for some } v \in V\left(\mathcal{K}_{n}\right)
$$

$$
t w\left(\mathcal{K}_{n}\right)=n-1
$$

$t w\left(\mathcal{K}_{n}\right) \leq n-1$: Take a tree decomposition with a singleton tree.
$t w\left(\mathcal{K}_{n}\right) \geq n-1$: Let $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a smooth tree decomposition of \mathcal{K}_{n} of width $t w\left(\mathcal{K}_{n}\right)$. We show that there exists a B_{t} with $\left|B_{t}\right|=n$.

Trivial if $|V(\mathcal{T})|=1$. Otherwise choose a leaf t and let t^{\prime} be its parent in \mathcal{T}.
By the smoothness

$$
B_{t} \backslash B_{t^{\prime}}=\{v\} \text { for some } v \in V\left(\mathcal{K}_{n}\right)
$$

Since v is adjacent to every other vertex in \mathcal{K}_{n}, we see that $B_{t}=V\left(\mathcal{K}_{n}\right)$

Helly Property for Trees

Theorem

Let \mathcal{T} be a tree and $\mathcal{T}_{1}, \ldots, \mathcal{T}_{n}$ subtrees of \mathcal{T} such that

$$
V\left(\mathcal{T}_{i}\right) \cap V\left(\mathcal{T}_{j}\right) \neq \emptyset
$$

for every $i, j \in[n]$ ．Then

$$
\bigcap_{i \in[n]} V\left(\mathcal{T}_{i}\right) \neq \emptyset
$$

Proof

We prove by induction on the size of \mathcal{T}.

Proof

We prove by induction on the size of \mathcal{T}.
Basic step $\quad|V(\mathcal{T})|:$ Trivial.

Proof

We prove by induction on the size of \mathcal{T}.
Basic step $\quad|V(\mathcal{T})|$: Trivial.
Hypothesis step

Proof

We prove by induction on the size of \mathcal{T}.
Basic step $\quad|V(\mathcal{T})|$: Trivial.
Hypothesis step Let t be a leaf of \mathcal{T}. If $t \in V\left(\mathcal{T}_{i}\right)$ for every $i \in[n]$, then we are done.

Proof

We prove by induction on the size of \mathcal{T}.
Basic step $\quad|V(\mathcal{T})|$: Trivial.
Hypothesis step Let t be a leaf of \mathcal{T}. If $t \in V\left(\mathcal{T}_{i}\right)$ for every $i \in[n]$, then we are done.

Now assume $t \notin V\left(\mathcal{T}_{i}\right)$ for some $i \in[n]$.

Proof

We prove by induction on the size of \mathcal{T}.
Basic step $\quad|V(\mathcal{T})|$: Trivial.
Hypothesis step Let t be a leaf of \mathcal{T}. If $t \in V\left(\mathcal{T}_{i}\right)$ for every $i \in[n]$, then we are done.

Now assume $t \notin V\left(\mathcal{T}_{i}\right)$ for some $i \in[n]$. Consider

$$
\mathcal{T} \backslash\{t\} ; \mathcal{T}_{1} \backslash\{t\}, \ldots, \mathcal{T}_{n} \backslash\{t\}
$$

Proof

We prove by induction on the size of \mathcal{T}.
Basic step $\quad|V(\mathcal{T})|$: Trivial.
Hypothesis step Let t be a leaf of \mathcal{T}. If $t \in V\left(\mathcal{T}_{i}\right)$ for every $i \in[n]$, then we are done.

Now assume $t \notin V\left(\mathcal{T}_{i}\right)$ for some $i \in[n]$. Consider

$$
\mathcal{T} \backslash\{t\} ; \mathcal{T}_{1} \backslash\{t\}, \ldots, \mathcal{T}_{n} \backslash\{t\}
$$

Then

- every $\mathcal{T}_{i} \backslash\{t\}$ is a (nonempty) subtree of $\mathcal{T} \backslash\{t\}$.
- $V\left(\mathcal{T}_{i} \backslash\{t\}\right) \cap V\left(\mathcal{T}_{j} \backslash\{t\}\right) \neq \emptyset$ for every $i, j \in[n]$.

The result follows from the induction hypothesis.

Theorem

Let $\mathcal{G}=(V, E)$ be a graph and $S \subseteq V$ a clique. Then for every tree decomposition $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ there is a node $t \in V(\mathcal{T})$ with $S \subseteq B_{t}$.

Theorem

Let $\mathcal{G}=(V, E)$ be a graph and $S \subseteq V$ a clique. Then for every tree decomposition $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ there is a node $t \in V(\mathcal{T})$ with $S \subseteq B_{t}$.

Proof.

Theorem

Let $\mathcal{G}=(V, E)$ be a graph and $S \subseteq V$ a clique．Then for every tree decomposition $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ there is a node $t \in V(\mathcal{T})$ with $S \subseteq B_{t}$ ．

Proof．

For every $v \in V$ recall

$$
T_{v}:=\left\{t \in V(\mathcal{T}) \mid v \in B_{t}\right\}
$$

induces a subtree $\mathcal{T}_{v}:=T\left[\mathcal{T}_{v}\right]$ of \mathcal{T} ．

Theorem

Let $\mathcal{G}=(V, E)$ be a graph and $S \subseteq V$ a clique. Then for every tree decomposition $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ there is a node $t \in V(\mathcal{T})$ with $S \subseteq B_{t}$.

Proof.

For every $v \in V$ recall

$$
T_{v}:=\left\{t \in V(\mathcal{T}) \mid v \in B_{t}\right\}
$$

induces a subtree $\mathcal{T}_{v}:=T\left[\mathcal{T}_{v}\right]$ of \mathcal{T}.
Clearly for every $u, v \in S$, we have

$$
V\left(\mathcal{T}_{u}\right) \cap V\left(\mathcal{T}_{v}\right)=T_{u} \cap T_{v} \neq \emptyset
$$

Theorem

Let $\mathcal{G}=(V, E)$ be a graph and $S \subseteq V$ a clique. Then for every tree decomposition $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ there is a node $t \in V(\mathcal{T})$ with $S \subseteq B_{t}$.

Proof.

For every $v \in V$ recall

$$
T_{v}:=\left\{t \in V(\mathcal{T}) \mid v \in B_{t}\right\}
$$

induces a subtree $\mathcal{T}_{v}:=T\left[\mathcal{T}_{v}\right]$ of \mathcal{T}.

Clearly for every $u, v \in S$, we have

$$
V\left(\mathcal{T}_{u}\right) \cap V\left(\mathcal{T}_{v}\right)=T_{u} \cap T_{v} \neq \emptyset
$$

since there is an edge (u, v) in \mathcal{G}. The result follows from Helly property.

Computing the Treewidth

Theorem (Bodlaender, 1996)

The problem

```
TREEWIDTH
INPUT: A graph \mathcal{G and a number }k\in\mathbb{N}\mathrm{ .}
Problem: Decide whether }tw(\mathcal{G})\leqk\mathrm{ and if so output a tree decom-
position of \mathcal{G}}\mathrm{ with width }\leqk\mathrm{ .
```

can be computed in time

$$
2^{k^{O(1)}} \cdot\|\mathcal{G}\|
$$

Computing the Treewidth

Coroliary

For every $k \in \mathbb{N}$ there is a linear time algorithm which on every graph \mathcal{G} either outputs a tree decomposition of \mathcal{G} of width $\leq k$ or reports that $\operatorname{tw}(\mathcal{G})>k$.

Independent Sets via Tree Decompositions

Independent Sets via Tree Decompositions (1)

Let \mathcal{G} be a graph and $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ a smooth tree decomposition of \mathcal{G}. And let $w:=t w\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$.

Independent Sets via Tree Decompositions (1)

Let \mathcal{G} be a graph and $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ a smooth tree decomposition of \mathcal{G}. And let $w:=t w\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$.

We fix an arbitrary node $r \in V(\mathcal{T})$ as the root of \mathcal{T}.

Let $t \in V(\mathcal{T})$. We define \mathcal{G}_{t} as the induced subgraph of \mathcal{G} on vertices in B_{t}.

Furthermore, $\mathcal{G}_{\leq t}$ is the induced subgraph of \mathcal{G} on vertices in

$$
B_{t} \cup \bigcup_{\text {descendants } t^{\prime} \text { of } t} B_{t^{\prime}}
$$

Independent Sets via Tree Decompositions (2)

By dynamic programming we compute for every $t \in V(\mathcal{T})$ and every $X \subseteq B_{t}$ independent in \mathcal{G}_{t}

$$
\begin{aligned}
I(t, X) & :=\text { size of a largest independent set } I \text { of } \mathcal{G}_{\leq t} \text { with } I \cap B_{t}=X \\
& =|X|+\sum_{\text {children } t^{\prime} \text { of } t} \max \left\{I\left(t^{\prime}, X^{\prime}\right)-\left|X^{\prime} \cap X\right| \mid X^{\prime} \cap B_{t}=X \operatorname{cap} B_{t^{\prime}}\right\}
\end{aligned}
$$

Independent Sets via Tree Decompositions (2)

By dynamic programming we compute for every $t \in V(\mathcal{T})$ and every $X \subseteq B_{t}$ independent in \mathcal{G}_{t}

$$
\begin{aligned}
I(t, X) & :=\text { size of a largest independent set } I \text { of } \mathcal{G} \leq t \text { with } I \cap B_{t}=X \\
& =|X|+\sum_{\text {children } t^{\prime} \text { of } t} \max \left\{I\left(t^{\prime}, X^{\prime}\right)-\left|X^{\prime} \cap X\right| \mid X^{\prime} \cap B_{t}=X \operatorname{cap} B_{t^{\prime}}\right\}
\end{aligned}
$$

Note there are at most

$$
|V(\mathcal{T})| \cdot 2^{w+1} \leq|V(\mathcal{G})| \cdot 2^{w+1}
$$

many $I(t, X)$.

Theorem

For every $k \in \mathbb{N}$ there is a linear time algorithm which on every graph \mathcal{G} with $t w(\mathcal{G}) \leq k$ outputs a largest independent set in \mathcal{G} ．

Partial k-Trees

Definition (k-trees)

Let $k \in \mathbb{N}$. Then the set of k-trees is defined as follows.
K1 A complete graph \mathcal{K}_{k+1} is a k-tree.
K2 Let \mathcal{G} be a graph and $v \in V$ such that

- $\mathcal{N}^{G}[v]$ is isomorphic to \mathcal{K}_{k+1}, where $\mathcal{N}^{G}[v]$ is the induced subgraph of \mathcal{G} on

$$
\mathcal{N}^{G}[v]:=\{u \in V(\mathcal{G}) \mid(u, v) \in E(\mathcal{G})\} \cup\{v\}
$$

- $\mathcal{G}[V(\mathcal{G}) \backslash\{v\}]$ is a k-tree.

Then \mathcal{G} is a k-tree.

k-Trees and Partial k-Trees

Definition (k-trees)

Let $k \in \mathbb{N}$. Then the set of k-trees is defined as follows.
K1 A complete graph \mathcal{K}_{k+1} is a k-tree.
K2 Let \mathcal{G} be a graph and $v \in V$ such that

- $\mathcal{N}^{G}[v]$ is isomorphic to \mathcal{K}_{k+1}, where $\mathcal{N}^{G}[v]$ is the induced subgraph of \mathcal{G} on

$$
\mathcal{N}^{G}[v]:=\{u \in V(\mathcal{G}) \mid(u, v) \in E(\mathcal{G})\} \cup\{v\}
$$

- $\mathcal{G}[V(\mathcal{G}) \backslash\{v\}]$ is a k-tree.

Then \mathcal{G} is a k-tree.

Definition (partial k-tree)

A graph is a partial k-tree if it is a subgraph of a k-tree.

Theorem

A graph \mathcal{G} is a partial k-tree if and only if $\operatorname{tw}(G) \leq k$.

Theorem

A graph \mathcal{G} is a partial k-tree if and only if $\operatorname{tw}(G) \leq k$.

Lemma

Let \mathcal{G} be a subgraph of \mathcal{H}, i.e., $V(\mathcal{G}) \subseteq V(\mathcal{H})$ and $E(\mathcal{G}) \subseteq E(\mathcal{H})$. Then $t w(\mathcal{G}) \leq t w(\mathcal{H})$.

Theorem

A graph \mathcal{G} is a partial k-tree if and only if $\operatorname{tw}(G) \leq k$.

Lemma

Let \mathcal{G} be a subgraph of \mathcal{H}, i.e., $V(\mathcal{G}) \subseteq V(\mathcal{H})$ and $E(\mathcal{G}) \subseteq E(\mathcal{H})$. Then $t w(\mathcal{G}) \leq t w(\mathcal{H})$.

Theorem

(1) Every graph of treewidth $\leq k$ is a partial k-tree.
(2) Every k-tree has a tree decomposition of width $\leq k$.

Proof

Let \mathcal{G} be a graph with $t w(\mathcal{G}) \leq k$ ．Moreover，let $\mathscr{T}=\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a smooth tree decomposition of \mathcal{G} of width k ．

Proof

Let \mathcal{G} be a graph with $t w(\mathcal{G}) \leq k$. Moreover, let $\mathscr{T}=\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a smooth tree decomposition of \mathcal{G} of width k.

From \mathcal{T} we define a graph $\mathcal{H}_{\mathscr{T}}$ by induction on $V(\mathcal{T})$ such that
$(\mathrm{H} 1) \mathcal{H}_{\mathscr{T}}$ is a k-tree.
(H2) $\mathcal{H}_{\mathscr{T}}\left[B_{t}\right]$ is isomorphic to \mathcal{K}_{k+1} for every $t \in V(\mathcal{T})$.
(H3) $\mathcal{G} \subseteq \mathcal{H}_{\mathscr{T}}$.

Proof

Let \mathcal{G} be a graph with $t w(\mathcal{G}) \leq k$. Moreover, let $\mathscr{T}=\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a smooth tree decomposition of \mathcal{G} of width k.

From \mathcal{T} we define a graph $\mathcal{H}_{\mathscr{T}}$ by induction on $V(\mathcal{T})$ such that
$(\mathrm{H} 1) \mathcal{H}_{\mathscr{T}}$ is a k-tree.
(H2) $\mathcal{H}_{\mathscr{T}}\left[B_{t}\right]$ is isomorphic to \mathcal{K}_{k+1} for every $t \in V(\mathcal{T})$.
(H3) $\mathcal{G} \subseteq \mathcal{H}_{\mathscr{G}}$.
If $|V(\mathcal{T})|=1$, then $\mathcal{H}_{\mathscr{T}}$ is \mathcal{K}_{k+1}, and we are done.

Proof

Let \mathcal{G} be a graph with $t w(\mathcal{G}) \leq k$. Moreover, let $\mathscr{T}=\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a smooth tree decomposition of \mathcal{G} of width k.

From \mathcal{T} we define a graph $\mathcal{H}_{\mathscr{T}}$ by induction on $V(\mathcal{T})$ such that
(H1) $\mathcal{H}_{\mathscr{\sigma}}$ is a k-tree.
(H2) $\mathcal{H}_{\mathscr{G}}\left[B_{t}\right]$ is isomorphic to \mathcal{K}_{k+1} for every $t \in V(\mathcal{T})$.
(H3) $\mathcal{G} \subseteq \mathcal{H}_{\mathscr{G}}$.
If $|V(\mathcal{T})|=1$, then $\mathcal{H}_{\mathscr{T}}$ is \mathcal{K}_{k+1}, and we are done.

Otherwise, choose a leaf t and let t^{\prime} be its parent in \mathcal{T}. Therefore, $B_{t} \backslash B_{t^{\prime}}=\{v\}$ for some $v \in V\left(\mathcal{K}_{n}\right)$. Then $\mathscr{T}^{\prime}:=\left(\mathcal{T} \backslash\{t\},\left(B_{t}\right)_{t \in V(\mathcal{T} \backslash\{t\})}\right)$ is a smooth tree decomposition of the graph $\mathcal{G} \backslash\{v\}$.

Proof

Let \mathcal{G} be a graph with $t w(\mathcal{G}) \leq k$. Moreover, let $\mathscr{T}=\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ be a smooth tree decomposition of \mathcal{G} of width k.

From \mathcal{T} we define a graph $\mathcal{H}_{\mathscr{T}}$ by induction on $V(\mathcal{T})$ such that
(H1) $\mathcal{H}_{\mathscr{}}$ is a k-tree.
(H2) $\mathcal{H}_{\mathscr{G}}\left[B_{t}\right]$ is isomorphic to \mathcal{K}_{k+1} for every $t \in V(\mathcal{T})$.
(H3) $\mathcal{G} \subseteq \mathcal{H}_{\mathscr{G}}$.
If $|V(\mathcal{T})|=1$, then $\mathcal{H}_{\mathscr{T}}$ is \mathcal{K}_{k+1}, and we are done.

Otherwise, choose a leaf t and let t^{\prime} be its parent in \mathcal{T}. Therefore, $B_{t} \backslash B_{t^{\prime}}=\{v\}$ for some $v \in V\left(\mathcal{K}_{n}\right)$. Then $\mathscr{T}^{\prime}:=\left(\mathcal{T} \backslash\{t\},\left(B_{t}\right)_{t \in V(\mathcal{T} \backslash\{t\})}\right)$ is a smooth tree decomposition of the graph $\mathcal{G} \backslash\{v\}$.

By (H2) of the induction hypothesis, $\mathcal{H}_{\mathscr{F}^{\prime}}\left[B_{t} \cap B_{t^{\prime}}\right]$ is isomorphic to \mathcal{K}_{k}. Then from $\mathcal{H}_{\mathscr{F}^{\prime}}$, we obtain $\mathcal{H}_{\mathscr{F}}$ by adding the vertex v and the edges (v, u) for every $u \in B_{t} \cap B_{t^{\prime}}$.

Proof（Con＇t）

Let \mathcal{H} be a k－tree．We show that $t w(\mathcal{H}) \leq k$ by induction on the construction of \mathcal{H} ．

Proof（Con＇t）

Let \mathcal{H} be a k－tree．We show that $t w(\mathcal{H}) \leq k$ by induction on the construction of \mathcal{H} ．

If \mathcal{H} is isomorphic to \mathcal{K}_{k+1} ，i．e．，（K1），then we are done．

Proof (Con't)

Let \mathcal{H} be a k-tree. We show that $t w(\mathcal{H}) \leq k$ by induction on the construction of \mathcal{H}.

If \mathcal{H} is isomorphic to \mathcal{K}_{k+1}, i.e., (K1), then we are done.

Otherwise by (K2) let $v \in V(\mathcal{H})$ satisfy that $\mathcal{H} \backslash\{v\}$ is a k-tree and $\mathcal{N}^{\mathcal{G}}[v]$ is isomorphic to \mathcal{K}_{k+1}.

Proof (Con't)

Let \mathcal{H} be a k-tree. We show that $t w(\mathcal{H}) \leq k$ by induction on the construction of \mathcal{H}.

If \mathcal{H} is isomorphic to \mathcal{K}_{k+1}, i.e., (K1), then we are done.

Otherwise by (K2) let $v \in V(\mathcal{H})$ satisfy that $\mathcal{H} \backslash\{v\}$ is a k-tree and $\mathcal{N}^{\mathcal{G}}[v]$ is isomorphic to \mathcal{K}_{k+1}.

By induction hypothesis, there is a tree decomposition $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ of $\mathcal{H} \backslash\{v\}$ of width k. As

$$
\mathcal{N}^{\mathcal{H}}(v):=\{u \in V(\mathcal{H}) \mid(u, v) \in E(\mathcal{H})
$$

is a clique in $\mathcal{H} \backslash\{v\}$, by Helly property, there is a B_{t} with $\mathcal{N}^{\mathcal{H}}(v) \subseteq B_{t}$.

Proof (Con't)

Let \mathcal{H} be a k-tree. We show that $t w(\mathcal{H}) \leq k$ by induction on the construction of \mathcal{H}.

If \mathcal{H} is isomorphic to \mathcal{K}_{k+1}, i.e., (K1), then we are done.

Otherwise by (K2) let $v \in V(\mathcal{H})$ satisfy that $\mathcal{H} \backslash\{v\}$ is a k-tree and $\mathcal{N}^{\mathcal{G}}[v]$ is isomorphic to \mathcal{K}_{k+1}.

By induction hypothesis, there is a tree decomposition $\left(\mathcal{T},\left(B_{t}\right)_{t \in V(\mathcal{T})}\right)$ of $\mathcal{H} \backslash\{v\}$ of width k. As

$$
\mathcal{N}^{\mathcal{H}}(v):=\{u \in V(\mathcal{H}) \mid(u, v) \in E(\mathcal{H})
$$

is a clique in $\mathcal{H} \backslash\{v\}$, by Helly property, there is a B_{t} with $\mathcal{N}^{\mathcal{H}}(v) \subseteq B_{t}$.

We add a new leaf t^{\prime} adjacent to t and set $B_{t^{\prime}}:=\mathcal{N}^{\mathcal{H}}[v]$.

