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Polynomial Time on Trees

It is well known that many NP-hard problems can be solved in polynomial time on trees, i.e.,
Independent Set, Dominating Set, 3-Colorability, etc.
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Independent Sets on Trees
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Independent Set

A subset of nodes S ⊆ V is an independent set of graph G = (V,E) if there are no edges between
them.

1 2

3 4

5 6

Finding the largest independent set in a graph is believed to be intractable.

However, when the graph happens to be a tree, the problem can be solved in linear time, using
dynamic programming.
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The Subproblems

I(u) = size of largest independent set of subtree hanging from u.

I(u) = max{1 +
∑

grandchildren w of u

I(w),
∑

children w of u

I(w)}
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Independent Sets on Trees
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An Example

574 Chapter 10 Extending the Limits of Tractability

(a) (b) (c)

Figure 10.5 Parts (a) and (b) depict the same graph drawn in different ways. The drawing
in (b) emphasizes the way in which it is composed of ten interlocking triangles. Part (c)
illustrates schematically how these ten triangles “fit together.”

So G is tree-like if we view it not as being composed of twelve nodes, as
we usually would, but instead as being composed of ten triangles. Although G
clearly contains many cycles, it seems, intuitively, to lack cycles when viewed
at the level of these ten triangles; and based on this, it inherits many of the
nice decomposition properties of a tree.

We will want to represent the tree-like structure of these triangles by
having each triangle correspond to a node in a tree, as shown in Figure 10.5(c).
Intuitively, the tree in this figure corresponds to this graph, with each node of
the tree representing one of the triangles. Notice, however, that the same nodes
of the graph occur in multiple triangles, even in triangles that are not adjacent
in the tree structure; and there are edges between nodes in triangles very
far away in the tree-structure—for example, the central triangle has edges to
nodes in every other triangle. How can we make the correspondence between
the tree and the graph precise? We do this by introducing the idea of a tree
decomposition of a graph G, so named because we will seek to decompose G
according to a tree-like pattern.

Formally, a tree decomposition of G = (V , E) consists of a tree T (on a
different node set from G), and a subset Vt ⊆ V associated with each node t of
T. (We will call these subsets Vt the “pieces” of the tree decomposition.) We
will sometimes write this as the ordered pair (T , {Vt : t ∈ T}). The tree T and
the collection of pieces {Vt : t ∈ T} must satisfy the following three properties.
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Tree Decompositions of Graphs

Definition

Let G be a graph. A tree decomposition of G is a tuple (T , (Bt)t∈V (T )), where T is a tree and Bt the
bag at t such that the following conditions are satisfied:

T1 For every v ∈ V (G) the set
Tv := {t ∈ V (T ) | v ∈ Bt}

is nonempty and connected in T , i.e., T [Tv] is a subtree of T .

T2 For every e ∈ E(G) there exists a t ∈ V (T ) such that e ⊆ Bt.
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Tree Decomposition of Graphs, Examples

The complete graphs Kn for n ∈ N.

The trees.

The grids Gn×n for n ∈ N.
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Treewidth

The width of a tree decomposition (T , (Bt)t∈V (T )) is

width(T , (Bt)t∈V (T )) := max{|Bt| − 1 | t ∈ V (T )}

The treewidth of G is

tw(G) := min{width(T , (Bt)t∈V (T )) | (T , (Bt)t∈V (T )) is a tree decomposition of G}
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Treewidth, Examples

tw(Kn) = n− 1 for the complete graphs Kn.

tw(T ) = 1 for every tree K of size at least 2.

tw(Gn×n) = n for every grid Gn×n.
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Smooth Tree Decomposition

Definition

A tree decomposition (T , (Bt)t∈V (T )) is smooth if for every (t, t′) ∈ E(T ) we have

|Bt\Bt′ | = |Bt′\Bt| = 1

Theorem

Every tree decomposition can be efficiently transferred to a smooth one of the same width.

Theorem

Every graph G has a smooth tree decomposition of width tw(G).
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Make Tree Decomposition Smooth

Let (T , (Bt)t∈V (T )) be a tree decomposition of width w.

1 Make bags equal size: We choose a node r ∈ V (T ) with |Br| = w + 1 as the root. Let t be a
child of r with |Bt| ≤ w. Clearly

|Br\Bt|+ |Bt| ≥ w + 1

We add w+1− |Bt| vertices in Br\Bt to Bt. After repeating this procedure recursively from the
root to leaves, every bag has size w + 1.

2 Remove repetition: If there is an edge (t, t′) ∈ E(T ) with Bt = Bt′ , then we merge t′ with t.

3 Interpolation: Let (t, t′) ∈ E(T ) with |Bt\Bt′ | < w, i.e.,

Bt\Bt′ = {u1, . . . uℓ} and Bt′\Bt = {v1, . . . , vℓ}

for some ℓ > 2 and pairwise distinct u1, . . . uℓ and v1, . . . , vℓ. We insert new nodes t1, . . . tℓ−1

between t and t′ with
Bti := Bt ∩Bt′ ∪ {v1, . . . , vi, ui+1, . . . , uℓ}

for every i ∈ [ℓ− 1].
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The Size of Smooth Tree Decompositions

Theorem

For every smooth tree decomposition (T , (Bt)t∈V (T )) of G we have

|V (T )| ≤ |V (G)|

Theorem

|E(G)| ≤ tw(G) · |V (G)|
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tw(Kn) = n− 1

tw(Kn) ≤ n− 1: Take a tree decomposition with a singleton tree.

tw(Kn) ≥ n− 1: Let (T , (Bt)t∈V (T )) be a smooth tree decomposition of Kn of width tw(Kn). We
show that there exists a Bt with |Bt| = n.

Trivial if |V (T )| = 1. Otherwise choose a leaf t and let t′ be its parent in T .

By the smoothness
Bt\Bt′ = {v} for some v ∈ V (Kn)

Since v is adjacent to every other vertex in Kn, we see that Bt = V (Kn)
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Helly Property for Trees

Theorem

Let T be a tree and T1, . . . , Tn subtrees of T such that

V (Ti) ∩ V (Tj) ̸= ∅

for every i, j ∈ [n]. Then ⋂
i∈[n]

V (Ti) ̸= ∅
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Proof

We prove by induction on the size of T .

Basic step |V (T )|: Trivial.

Hypothesis step Let t be a leaf of T . If t ∈ V (Ti) for every i ∈ [n], then we are done.

Now assume t /∈ V (Ti) for some i ∈ [n]. Consider

T \{t}; T1\{t}, . . . , Tn\{t}

Then

• every Ti\{t} is a (nonempty) subtree of T \{t}.
• V (Ti\{t}) ∩ V (Tj\{t}) ̸= ∅ for every i, j ∈ [n].

The result follows from the induction hypothesis.
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tw(Kn) = n− 1, Again

Theorem

Let G = (V,E) be a graph and S ⊆ V a clique. Then for every tree decomposition (T , (Bt)t∈V (T ))

there is a node t ∈ V (T ) with S ⊆ Bt .

Proof.

For every v ∈ V recall
Tv := {t ∈ V (T ) | v ∈ Bt}

induces a subtree Tv := T [Tv] of T .

Clearly for every u, v ∈ S, we have

V (Tu) ∩ V (Tv) = Tu ∩ Tv ̸= ∅

since there is an edge (u, v) in G. The result follows from Helly property.
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Computing the Treewidth

Theorem (Bodlaender, 1996)

The problem

TREEWIDTH

INPUT: A graph G and a number k ∈ N.

PROBLEM: Decide whether tw(G) ≤ k and if so output a tree decom-
position of G with width ≤ k.

can be computed in time
2k

O(1)

· ||G||
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Computing the Treewidth

Corollary

For every k ∈ N there is a linear time algorithm which on every graph G either outputs a tree
decomposition of G of width ≤ k or reports that tw(G) > k.
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Independent Sets via Tree Decompositions
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Independent Sets via Tree Decompositions (1)

Let G be a graph and (T , (Bt)t∈V (T )) a smooth tree decomposition of G. And let
w := tw(T , (Bt)t∈V (T )).

We fix an arbitrary node r ∈ V (T ) as the root of T .

Let t ∈ V (T ). We define Gt as the induced subgraph of G on vertices in Bt.

Furthermore, G≤tis the induced subgraph of G on vertices in

Bt ∪
⋃

descendants t′ of t

Bt′
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Independent Sets via Tree Decompositions (2)

By dynamic programming we compute for every t ∈ V (T ) and every X ⊆ Bt independent in Gt

I(t,X) := size of a largest independent set I of G≤t with I ∩Bt = X

= |X|+
∑

children t′ of t

max{I(t′, X ′)− |X ′ ∩X| | X ′ ∩Bt = X capBt′}

Note there are at most
|V (T )| · 2w+1 ≤ |V (G)| · 2w+1

many I(t,X).
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|V (T )| · 2w+1 ≤ |V (G)| · 2w+1

many I(t,X).
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Independent Sets via Tree Decompositions (3)

Theorem

For every k ∈ N there is a linear time algorithm which on every graph G with tw(G) ≤ k outputs a
largest independent set in G.
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Partial k-Trees
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k-Trees and Partial k-Trees

Definition (k-trees)

Let k ∈ N. Then the set of k-trees is defined as follows.
K1 A complete graph Kk+1 is a k-tree.
K2 Let G be a graph and v ∈ V such that

• NG[v] is isomorphic to Kk+1, where NG[v] is the induced subgraph of G on

NG[v] := {u ∈ V (G) | (u, v) ∈ E(G)} ∪ {v}

• G[V (G)\{v}] is a k-tree.
Then G is a k-tree.

Definition (partial k-tree)

A graph is a partial k-tree if it is a subgraph of a k-tree.
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Partial k-Trees and Bounded Treewidth

Theorem

A graph G is a partial k-tree if and only if tw(G) ≤ k.

Lemma

Let G be a subgraph of H, i.e., V (G) ⊆ V (H) and E(G) ⊆ E(H). Then tw(G) ≤ tw(H).

Theorem

1 Every graph of treewidth ≤ k is a partial k-tree.

2 Every k-tree has a tree decomposition of width ≤ k.
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Proof

Let G be a graph with tw(G) ≤ k. Moreover, let T = (T , (Bt)t∈V (T )) be a smooth tree
decomposition of G of width k.

From T we define a graph HT by induction on V (T ) such that

(H1) HT is a k-tree.

(H2) HT [Bt] is isomorphic to Kk+1 for every t ∈ V (T ).

(H3) G ⊆ HT .

If |V (T )| = 1, then HT is Kk+1, and we are done.

Otherwise, choose a leaf t and let t′ be its parent in T . Therefore, Bt\Bt′ = {v} for some
v ∈ V (Kn). Then T ′ := (T \{t}, (Bt)t∈V (T \{t})) is a smooth tree decomposition of the graph G\{v}.

By (H2) of the induction hypothesis, HT ′ [Bt ∩Bt′ ] is isomorphic to Kk. Then from HT ′ , we obtain
HT by adding the vertex v and the edges (v, u) for every u ∈ Bt ∩Bt′ .
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Proof (Con’t)

Let H be a k-tree. We show that tw(H) ≤ k by induction on the construction of H.

If H is isomorphic to Kk+1, i.e., (K1), then we are done.

Otherwise by (K2) let v ∈ V (H) satisfy that H\{v} is a k-tree and NG [v] is isomorphic to Kk+1.

By induction hypothesis, there is a tree decomposition (T , (Bt)t∈V (T )) of H\{v} of width k. As

NH(v) := {u ∈ V (H) | (u, v) ∈ E(H)

is a clique in H\{v}, by Helly property, there is a Bt with NH(v) ⊆ Bt.

We add a new leaf t′ adjacent to t and set Bt′ := NH[v].

29/29



Proof (Con’t)

Let H be a k-tree. We show that tw(H) ≤ k by induction on the construction of H.

If H is isomorphic to Kk+1, i.e., (K1), then we are done.

Otherwise by (K2) let v ∈ V (H) satisfy that H\{v} is a k-tree and NG [v] is isomorphic to Kk+1.

By induction hypothesis, there is a tree decomposition (T , (Bt)t∈V (T )) of H\{v} of width k. As

NH(v) := {u ∈ V (H) | (u, v) ∈ E(H)

is a clique in H\{v}, by Helly property, there is a Bt with NH(v) ⊆ Bt.

We add a new leaf t′ adjacent to t and set Bt′ := NH[v].

29/29



Proof (Con’t)

Let H be a k-tree. We show that tw(H) ≤ k by induction on the construction of H.

If H is isomorphic to Kk+1, i.e., (K1), then we are done.

Otherwise by (K2) let v ∈ V (H) satisfy that H\{v} is a k-tree and NG [v] is isomorphic to Kk+1.

By induction hypothesis, there is a tree decomposition (T , (Bt)t∈V (T )) of H\{v} of width k. As

NH(v) := {u ∈ V (H) | (u, v) ∈ E(H)

is a clique in H\{v}, by Helly property, there is a Bt with NH(v) ⊆ Bt.

We add a new leaf t′ adjacent to t and set Bt′ := NH[v].

29/29



Proof (Con’t)

Let H be a k-tree. We show that tw(H) ≤ k by induction on the construction of H.

If H is isomorphic to Kk+1, i.e., (K1), then we are done.

Otherwise by (K2) let v ∈ V (H) satisfy that H\{v} is a k-tree and NG [v] is isomorphic to Kk+1.

By induction hypothesis, there is a tree decomposition (T , (Bt)t∈V (T )) of H\{v} of width k. As

NH(v) := {u ∈ V (H) | (u, v) ∈ E(H)

is a clique in H\{v}, by Helly property, there is a Bt with NH(v) ⊆ Bt.

We add a new leaf t′ adjacent to t and set Bt′ := NH[v].

29/29



Proof (Con’t)

Let H be a k-tree. We show that tw(H) ≤ k by induction on the construction of H.

If H is isomorphic to Kk+1, i.e., (K1), then we are done.

Otherwise by (K2) let v ∈ V (H) satisfy that H\{v} is a k-tree and NG [v] is isomorphic to Kk+1.

By induction hypothesis, there is a tree decomposition (T , (Bt)t∈V (T )) of H\{v} of width k. As

NH(v) := {u ∈ V (H) | (u, v) ∈ E(H)

is a clique in H\{v}, by Helly property, there is a Bt with NH(v) ⊆ Bt.

We add a new leaf t′ adjacent to t and set Bt′ := NH[v].

29/29


	Independent Sets on Trees
	Independent Sets on Trees
	Independent Sets via Tree Decompositions
	Partial k-Trees

