
Design and Analysis of Algorithms (VIII)
Max-Flow Min-Cut Theorem

Guoqiang Li
School of Software

1/48

Max-Flow and Min-Cut Problem

2/48

A Flow Network

A flow network is a tuple G = (V,E, s, t, c).

• Diagraph (V,E) with source s ∈ V and sink t ∈ V .
• Capacity c(e) > 0 for each e ∈ E.

Intuition. Material flowing through a transportation network, which originates at source and is sent to
sink.

3/48

A Flow Network

A flow network is a tuple G = (V,E, s, t, c).

• Diagraph (V,E) with source s ∈ V and sink t ∈ V .
• Capacity c(e) > 0 for each e ∈ E.

Intuition. Material flowing through a transportation network, which originates at source and is sent to
sink.

3/48

Minimum-Cut Problem

An st-cut (cut) is a partition (A,B) of the nodes with s ∈ A and t ∈ B.

Its capacity is the sum of the capacities of the edges from A to B.

cap(A,B) =
∑

e out of A

c(e)

4/48

Minimum-Cut Problem

An st-cut (cut) is a partition (A,B) of the nodes with s ∈ A and t ∈ B.

Its capacity is the sum of the capacities of the edges from A to B.

cap(A,B) =
∑

e out of A

c(e)

4/48

Minimum-Cut Problem

An st-cut (cut) is a partition (A,B) of the nodes with s ∈ A and t ∈ B.

Its capacity is the sum of the capacities of the edges from A to B.

cap(A,B) =
∑

e out of A

c(e)

4/48

Minimum-Cut Problem

An st-cut (cut) is a partition (A,B) of the nodes with s ∈ A and t ∈ B.

Its capacity is the sum of the capacities of the edges from A to B.

cap(A,B) =
∑

e out of A

c(e)

5/48

Minimum-Cut Problem

Min-cut problem. Find a cut of minimum capacity.

6/48

Quiz 1

Which is the capacity of the given st-cut?

A. 11 (20 + 25− 8− 11− 9− 6)

B. 34 (8 + 11 + 9 + 6)

C. 45 (20 + 25)

D. 79 (20 + 25 + 8 + 11 + 9 + 6)

7/48

Maximum-Flow Problem

An st-flow(flow) f is a function that satisfies:

• For each e ∈ E: 0 ≤ f(e) ≤ c(e)
• For each v ∈ V − {s, t}:

∑
e in to v

f(e) =
∑

e out of v
f(e)

8/48

Maximum-Flow Problem

An st-flow(flow) f is a function that satisfies:

• For each e ∈ E: 0 ≤ f(e) ≤ c(e)
• For each v ∈ V − {s, t}:

∑
e in to v

f(e) =
∑

e out of v
f(e)

The value of a flow f is: val(f) =
∑

e out of s
f(e)−

∑
e in to s

f(e)

9/48

Maximum-Flow Problem

Max-flow problem. Find a flow of maximum value.

10/48

Ford-Fulkerson Algorithm

11/48

Toward a Max-Flow Algorithm

Greedy algorithm.

• Start with f(e) = 0 for each edge e ∈ E.
• Find an s t path P where each edge has f(e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck.

12/48

Toward a Max-Flow Algorithm

Greedy algorithm.

• Start with f(e) = 0 for each edge e ∈ E.
• Find an s t path P where each edge has f(e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck.

13/48

Toward a Max-Flow Algorithm

Greedy algorithm.

• Start with f(e) = 0 for each edge e ∈ E.
• Find an s t path P where each edge has f(e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck.

14/48

Toward a Max-Flow Algorithm

Greedy algorithm.

• Start with f(e) = 0 for each edge e ∈ E.
• Find an s t path P where each edge has f(e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck.

15/48

Toward a Max-Flow Algorithm

Greedy algorithm.

• Start with f(e) = 0 for each edge e ∈ E.
• Find an s t path P where each edge has f(e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck.

16/48

Toward a Max-Flow Algorithm

Greedy algorithm.

• Start with f(e) = 0 for each edge e ∈ E.
• Find an s t path P where each edge has f(e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck.

17/48

Toward a Max-Flow Algorithm

Greedy algorithm.

• Start with f(e) = 0 for each edge e ∈ E.
• Find an s t path P where each edge has f(e) < c(e).
• Augment flow along path P .
• Repeat until you get stuck.

18/48

Why the Greedy Algorithm Fails

Q. Why does the greedy algorithm fail?

A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network G.

• The unique max flow has f∗(v, w) = 0.
• Greedy algorithm could choose s→ v → w → t as first

augmenting path.

19/48

Why the Greedy Algorithm Fails

Q. Why does the greedy algorithm fail?

A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network G.

• The unique max flow has f∗(v, w) = 0.
• Greedy algorithm could choose s→ v → w → t as first

augmenting path.

19/48

Why the Greedy Algorithm Fails

Q. Why does the greedy algorithm fail?

A. Once greedy algorithm increases flow on an edge, it never decreases it.

Ex. Consider flow network G.

• The unique max flow has f∗(v, w) = 0.
• Greedy algorithm could choose s→ v → w → t as first

augmenting path.

19/48

Why the Greedy Algorithm Fails

Bottom line. Need some mechanism to undo a bad decision.

20/48

Residual Network

Original edge e = (u, v) ∈ E.
• Flow f(e).
• Capacity c(e)

Reverse edge e reverse = (v, u)

• Undo flow sent.

Residual capacity

cf (e) =

{
c(e)− f(e) if e ∈ E
f(e) if e reverse ∈ E

Residual network Gf = (V,Ef , s, t, cf)

• Ef = {e : f(e) < c(e)} ∪ {e reverse : f(e) > 0}.
• Key property: f ′ is a flow in Gf iff f + f ′ is a flow in G

21/48

Residual Network

Original edge e = (u, v) ∈ E.
• Flow f(e).
• Capacity c(e)

Reverse edge e reverse = (v, u)

• Undo flow sent.

Residual capacity

cf (e) =

{
c(e)− f(e) if e ∈ E
f(e) if e reverse ∈ E

Residual network Gf = (V,Ef , s, t, cf)

• Ef = {e : f(e) < c(e)} ∪ {e reverse : f(e) > 0}.
• Key property: f ′ is a flow in Gf iff f + f ′ is a flow in G

21/48

Residual Network

Original edge e = (u, v) ∈ E.
• Flow f(e).
• Capacity c(e)

Reverse edge e reverse = (v, u)

• Undo flow sent.

Residual capacity

cf (e) =

{
c(e)− f(e) if e ∈ E
f(e) if e reverse ∈ E

Residual network Gf = (V,Ef , s, t, cf)

• Ef = {e : f(e) < c(e)} ∪ {e reverse : f(e) > 0}.
• Key property: f ′ is a flow in Gf iff f + f ′ is a flow in G

21/48

Augmenting Path

An augmenting path is a simple s t path in the residual network Gf .

The bottleneck capacity of an augmenting path P is the minimum residual capacity of any edge in P .

22/48

Augmenting Path

An augmenting path is a simple s t path in the residual network Gf .

The bottleneck capacity of an augmenting path P is the minimum residual capacity of any edge in P .

22/48

Augmenting Path

Key Property

Let f be a flow and let P be an augmenting path in Gf . After calling f ′ ← AUGMENT(f, P), the
resulting f ′ is a flow and

val(f ′) = val(f) + bottleneck(Gf , P)

AUGMENT(f ,P)

δ ← bottleneck capacity of augmenting path P;
for each edge e ∈ P do

if (e ∈ E) then f(e)← f(e) + δ;
else

f (e reverse)← f (e reverse)− δ
end

end
RETURN f ;

23/48

Augmenting Path

Key Property

Let f be a flow and let P be an augmenting path in Gf . After calling f ′ ← AUGMENT(f, P), the
resulting f ′ is a flow and

val(f ′) = val(f) + bottleneck(Gf , P)

AUGMENT(f ,P)

δ ← bottleneck capacity of augmenting path P;
for each edge e ∈ P do

if (e ∈ E) then f(e)← f(e) + δ;
else

f (e reverse)← f (e reverse)− δ
end

end
RETURN f ;

23/48

A Flow Example

(a)

s

a

b

c

d

e

t s

a

b

c

d

e

t
3

3

4

10 1

2

1

5

1

2

5

(b)

s

a

b

c

d

e

t

1

1

1

1

1

s

a

b

c

d

e

t
3

4

10 1

1 1

21

2

1

1

1

4

1

4

24/48

A Flow Example

(c)

s

a

b

c

d

e

t

1

1
1

2

2

2

s

a

b

c

d

e

t
3

4

10 1

1 1

2

1

4

2

2

1

3

2

(d)

s

a

b

c

d

e

t
1

1

2

2

5

4

3

s

a

b

c

d

e

t
3

10 1

1 1

2

2

2

1

3

1

1

4

5

25/48

Ford–Fulkerson Algorithm

Ford–Fulkerson augmenting path algorithm.

• Start with f(e) = 0 for each edge e ∈ E.
• Find an s t path P in the residual network Gf .
• Augment flow along path P .
• Repeat until you get stuck.

26/48

Ford–Fulkerson Algorithm

FORD–FULKERSON(G)

for each edge e ∈ E do
f(e)← 0

end
Gf ← residual network of G with respect to flow f ;
while there exists an s t path P in Gf do

f ← AUGMENT(f ,P);
UPDATE(Gf);

end
RETURN f ;

27/48

Max-Flow Min-Cut Theorem

28/48

Flows and Cuts

Lemma

Let f be any flow and let (A,B) be any cut. Then, the value of the flow f equals the net flow across
the cut (A,B).

val(f) =
∑

out of A

f(e)−
∑

e in to A

f(e)

29/48

Flows and Cuts

Lemma

Let f be any flow and let (A,B) be any cut. Then, the value of the flow f equals the net flow across
the cut (A,B).

val(f) =
∑

out of A

f(e)−
∑

e in to A

f(e)

30/48

Flows and Cuts

Lemma

Let f be any flow and let (A,B) be any cut. Then, the value of the flow f equals the net flow across
the cut (A,B).

val(f) =
∑

out of A

f(e)−
∑

e in to A

f(e)

31/48

Quiz 3

Which is the net flow across the given cut?

A. 11 (20 + 25− 8− 11− 9− 6)

B. 26 (20 + 22− 8− 4− 4)

C. 42 (20 + 22)

D. 45 (20 + 25)

32/48

Flows and Cuts

Lemma

Let f be any flow and let (A,B) be any cut. Then, the value of the flow f equals the net flow across
the cut (A,B).

val(f) =
∑

out of A

f(e)−
∑

e in to A

f(e)

Proof.

val(f) =
∑

e out of s
f(e)−

∑
e in to s

f(e)

=
∑
v∈A

(∑
e out of v

f(e)−
∑

e in to v

f(e)

)
=

∑
e out of A

f(e)−
∑

e in to A

f(e).

33/48

Flows and Cuts

Lemma

Let f be any flow and let (A,B) be any cut. Then, the value of the flow f equals the net flow across
the cut (A,B).

val(f) =
∑

out of A

f(e)−
∑

e in to A

f(e)

Proof.

val(f) =
∑

e out of s
f(e)−

∑
e in to s

f(e)

=
∑
v∈A

(∑
e out of v

f(e)−
∑

e in to v

f(e)

)
=

∑
e out of A

f(e)−
∑

e in to A

f(e).

33/48

Flows and Cuts

Theorem (Weak Duality)

Let f be any flow and (A,B) be any cut. Then, val(f) ≤ cap(A,B).

Proof.
val(f) =

∑
e out of A

f(e)−
∑

e in to A

f(e) ≤
∑

e out of A

f(e) ≤
∑

e out of A

c(e)

= cap(A,B)

34/48

Flows and Cuts

Theorem (Weak Duality)

Let f be any flow and (A,B) be any cut. Then, val(f) ≤ cap(A,B).

Proof.

val(f) =
∑

e out of A

f(e)−
∑

e in to A

f(e) ≤
∑

e out of A

f(e) ≤
∑

e out of A

c(e)

= cap(A,B)

34/48

Flows and Cuts

Theorem (Weak Duality)

Let f be any flow and (A,B) be any cut. Then, val(f) ≤ cap(A,B).

Proof.
val(f) =

∑
e out of A

f(e)−
∑

e in to A

f(e) ≤
∑

e out of A

f(e) ≤
∑

e out of A

c(e)

= cap(A,B)

34/48

Certificate of Optimality

Corollary

Let f be a flow and let (A,B) be any cut. If val(f) = cap(A,B), then f is a max flow and (A,B) is a
min cut.

Proof.

• For any flow f ′ : val (f ′) ≤ cap(A,B) = val(f).
• For any cut (A′, B′) : cap (A′, B′) ≥ val(f) = cap(A,B)

35/48

Certificate of Optimality

Corollary

Let f be a flow and let (A,B) be any cut. If val(f) = cap(A,B), then f is a max flow and (A,B) is a
min cut.

Proof.

• For any flow f ′ : val (f ′) ≤ cap(A,B) = val(f).
• For any cut (A′, B′) : cap (A′, B′) ≥ val(f) = cap(A,B)

35/48

Certificate of Optimality

Corollary

Let f be a flow and let (A,B) be any cut. If val(f) = cap(A,B), then f is a max flow and (A,B) is a
min cut.

Proof.

• For any flow f ′ : val (f ′) ≤ cap(A,B) = val(f).
• For any cut (A′, B′) : cap (A′, B′) ≥ val(f) = cap(A,B)

35/48

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

Value of a max flow = Capacity of a min cut.

36/48

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

Value of a max flow = capacity of a min cut.

Augmenting Path Theorem

A flow f is a max flow iff no augmenting paths.

Proof. The following three conditions are equivalent for any flow f :

i. There exists a cut (A,B) such that cap(A,B) = val(f).

ii. f is a max flow.

iii. There is no augmenting path with respect to f .

[i⇒ ii] This is the weak duality corollary.

37/48

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

Value of a max flow = capacity of a min cut.

Augmenting Path Theorem

A flow f is a max flow iff no augmenting paths.

Proof. The following three conditions are equivalent for any flow f :

i. There exists a cut (A,B) such that cap(A,B) = val(f).

ii. f is a max flow.

iii. There is no augmenting path with respect to f .

[i⇒ ii] This is the weak duality corollary.

37/48

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

Value of a max flow = capacity of a min cut.

Augmenting Path Theorem

A flow f is a max flow iff no augmenting paths.

Proof. The following three conditions are equivalent for any flow f :

i. There exists a cut (A,B) such that cap(A,B) = val(f).

ii. f is a max flow.

iii. There is no augmenting path with respect to f .

[i⇒ ii]

This is the weak duality corollary.

37/48

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

Value of a max flow = capacity of a min cut.

Augmenting Path Theorem

A flow f is a max flow iff no augmenting paths.

Proof. The following three conditions are equivalent for any flow f :

i. There exists a cut (A,B) such that cap(A,B) = val(f).

ii. f is a max flow.

iii. There is no augmenting path with respect to f .

[i⇒ ii] This is the weak duality corollary.

37/48

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

Value of a max flow = capacity of a min cut.

Augmenting Path Theorem

A flow f is a max flow iff no augmenting paths.

Proof. The following three conditions are equivalent for any flow f :

i. There exists a cut (A,B) such that cap(A,B) = val(f).
ii. f is a max flow.

iii. There is no augmenting path with respect to f .

[ii⇒ iii]

We prove contrapositive: ¬ iii⇒ ¬ii.

• Suppose that there is an augmenting path with respect to f .
• Can improve flow f by sending flow along this path.
• Thus, f is not a max flow.

38/48

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

Value of a max flow = capacity of a min cut.

Augmenting Path Theorem

A flow f is a max flow iff no augmenting paths.

Proof. The following three conditions are equivalent for any flow f :

i. There exists a cut (A,B) such that cap(A,B) = val(f).
ii. f is a max flow.

iii. There is no augmenting path with respect to f .

[ii⇒ iii] We prove contrapositive: ¬ iii⇒ ¬ii.

• Suppose that there is an augmenting path with respect to f .
• Can improve flow f by sending flow along this path.
• Thus, f is not a max flow.

38/48

Max-Flow Min-Cut Theorem

Max-Flow Min-Cut Theorem

Value of a max flow = capacity of a min cut.

Augmenting Path Theorem

A flow f is a max flow iff no augmenting paths.

Proof. The following three conditions are equivalent for any flow f :

i. There exists a cut (A,B) such that cap(A,B) = val(f).
ii. f is a max flow.

iii. There is no augmenting path with respect to f .

[ii⇒ iii] We prove contrapositive: ¬ iii⇒ ¬ii.

• Suppose that there is an augmenting path with respect to f .
• Can improve flow f by sending flow along this path.
• Thus, f is not a max flow.

38/48

Max-Flow Min-Cut Theorem

[iii⇒ i]

• Let f be a flow with no augmenting paths.
• Let A be set of nodes reachable from s in residual network Gf .
• By definition of A : s ∈ A.
• By definition of flow f : t /∈ A.

val(f) =
∑

e out of A

f(e)−
∑

e in to A

f(e)

=
∑

e out of A

c(e)− 0

= cap(A,B)

39/48

Analysis of the Algorithm

40/48

Analysis of the Algorithm

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e) and residual capacity cf (e) is
an integer.

Proof. By induction on the number of augmenting paths.

Theorem

Ford–Fulkerson terminates after at most val (f∗) ≤ |V | · C augmenting paths, where f∗ is a max
flow.

Proof. Each augmentation increases the value of the flow by at least 1.

41/48

Analysis of the Algorithm

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e) and residual capacity cf (e) is
an integer.

Proof. By induction on the number of augmenting paths.

Theorem

Ford–Fulkerson terminates after at most val (f∗) ≤ |V | · C augmenting paths, where f∗ is a max
flow.

Proof. Each augmentation increases the value of the flow by at least 1.

41/48

Analysis of the Algorithm

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e) and residual capacity cf (e) is
an integer.

Proof. By induction on the number of augmenting paths.

Theorem

Ford–Fulkerson terminates after at most val (f∗) ≤ |V | · C augmenting paths, where f∗ is a max
flow.

Proof. Each augmentation increases the value of the flow by at least 1.

41/48

Analysis of the Algorithm

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e) and residual capacity cf (e) is
an integer.

Proof. By induction on the number of augmenting paths.

Theorem

Ford–Fulkerson terminates after at most val (f∗) ≤ |V | · C augmenting paths, where f∗ is a max
flow.

Proof. Each augmentation increases the value of the flow by at least 1.

41/48

Analysis of the Algorithm

Assumption. Every edge capacity c(e) is an integer between 1 and C.

Integrality invariant. Throughout Ford-Fulkerson, every edge flow f(e) and residual capacity cf (e) is
an integer.

Proof. By induction on the number of augmenting paths.

Theorem

Ford–Fulkerson terminates after at most val (f∗) ≤ |V | · C augmenting paths, where f∗ is a max
flow.

Proof. Each augmentation increases the value of the flow by at least 1.

41/48

Analysis of the Algorithm

Corollary

The running time of Ford–Fulkerson is O(|V | · |E| · C).

Proof. Can use either BFS or DFS to find an augmenting path in O(|E|) time.

Integrality Theorem

There exists an integral max flow f∗

Proof. Since Ford–Fulkerson terminates, theorem follows from integrality invariant.

42/48

Analysis of the Algorithm

Corollary

The running time of Ford–Fulkerson is O(|V | · |E| · C).

Proof. Can use either BFS or DFS to find an augmenting path in O(|E|) time.

Integrality Theorem

There exists an integral max flow f∗

Proof. Since Ford–Fulkerson terminates, theorem follows from integrality invariant.

42/48

Analysis of the Algorithm

Corollary

The running time of Ford–Fulkerson is O(|V | · |E| · C).

Proof. Can use either BFS or DFS to find an augmenting path in O(|E|) time.

Integrality Theorem

There exists an integral max flow f∗

Proof. Since Ford–Fulkerson terminates, theorem follows from integrality invariant.

42/48

Analysis of the Algorithm

Corollary

The running time of Ford–Fulkerson is O(|V | · |E| · C).

Proof. Can use either BFS or DFS to find an augmenting path in O(|E|) time.

Integrality Theorem

There exists an integral max flow f∗

Proof. Since Ford–Fulkerson terminates, theorem follows from integrality invariant.

42/48

Exponential Example

Q. Is generic Ford–Fulkerson algorithm poly-time in input size?

A. No. If max capacity is C, then algorithm can take ≥ C iterations.

• s→ v → w → t

• s→ w → v → t

• s→ v → w → t

• s→ w → v → t

• . . .
• s→ v → w → t

• s→ w → v → t

43/48

Exponential Example

Q. Is generic Ford–Fulkerson algorithm poly-time in input size?

A. No. If max capacity is C, then algorithm can take ≥ C iterations.

• s→ v → w → t

• s→ w → v → t

• s→ v → w → t

• s→ w → v → t

• . . .
• s→ v → w → t

• s→ w → v → t

43/48

Exponential Example

Q. Is generic Ford–Fulkerson algorithm poly-time in input size?

A. No. If max capacity is C, then algorithm can take ≥ C iterations.

• s→ v → w → t

• s→ w → v → t

• s→ v → w → t

• s→ w → v → t

• . . .
• s→ v → w → t

• s→ w → v → t

43/48

Quiz 4

The Ford–Fulkerson algorithm is guaranteed to terminate if the edge capacities are . . .

A. Rational numbers.

B. Real numbers.

C. Both A and B.

D. Neither A nor B.

44/48

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

• Some choices lead to exponential algorithms.
• Clever choices lead to polynomial algorithms.

Pathology. When edge capacities can be irrational, no guarantee that Ford–Fulkerson terminates (or
converges to a maximum flow)!

Goal. Choose augmenting paths so that:

• Can find augmenting paths efficiently.
• Few iterations.

45/48

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

• Some choices lead to exponential algorithms.
• Clever choices lead to polynomial algorithms.

Pathology. When edge capacities can be irrational, no guarantee that Ford–Fulkerson terminates (or
converges to a maximum flow)!

Goal. Choose augmenting paths so that:

• Can find augmenting paths efficiently.
• Few iterations.

45/48

Choosing Good Augmenting Paths

Use care when selecting augmenting paths.

• Some choices lead to exponential algorithms.
• Clever choices lead to polynomial algorithms.

Pathology. When edge capacities can be irrational, no guarantee that Ford–Fulkerson terminates (or
converges to a maximum flow)!

Goal. Choose augmenting paths so that:

• Can find augmenting paths efficiently.
• Few iterations.

45/48

Choosing Good Augmenting Paths

Choose augmenting paths with:

• Max bottleneck capacity (“fattest”).
• Sufficiently large bottleneck capacity.
• Fewest edges.

46/48

Choosing Good Augmenting Paths

Choose augmenting paths with:

• Max bottleneck capacity (“fattest”).

• Sufficiently large bottleneck capacity.
• Fewest edges.

46/48

Choosing Good Augmenting Paths

Choose augmenting paths with:

• Max bottleneck capacity (“fattest”).
• Sufficiently large bottleneck capacity.

• Fewest edges.

46/48

Choosing Good Augmenting Paths

Choose augmenting paths with:

• Max bottleneck capacity (“fattest”).
• Sufficiently large bottleneck capacity.
• Fewest edges.

46/48

Referred Materials

47/48

Referred Materials

• Content of this lecture comes from Section 7.1-7.2 in [KT05].

48/48

	Max-Flow and Min-Cut Problem
	Ford-Fulkerson Algorithm
	Max-Flow Min-Cut Theorem
	Analysis of the Algorithm
	Referred Materials

