
Algorithms Design II
Algorithms with Numbers I

Guoqiang Li
School of Software, Shanghai Jiao Tong University

1/42



Two Seemingly Similar Problems

Factoring: Given a number N , express it as a product of its prime factors.

Primality: Given a number N , determine whether it is a prime.

We believe that Factoring is hard and much of the electronic commerce is built on this assumption.

There are efficient algorithms for Primality, e.g., AKS test by Manindra Agrawal, Neeraj Kayal, and
Nitin Saxena.
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A Notable Result

The AKS primality test is a deterministic primality-proving algorithm created and published by
Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of
Technology Kanpur, on August 6, 2002, The algorithm was the first to determine whether any given
number is prime or composite within polynomial time. The authors received the 2006 Gödel Prize
and the 2006 Fulkerson Prize for this work.
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Preliminaries
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How to Represent Numbers

We are most familiar with decimal representation:

• 1024

But computers use binary representation:

•
1 0 . . . 0︸ ︷︷ ︸
10 times

The bigger the base is, the shorter the representation is. But how much do we really gain by
choosing large base?
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Bases and Logs

Q: How many digits are needed to represent the number N ≥ 0 in base b?

⌈logb(N + 1)⌉

Q: How much does the size of a number change when we change bases?

logb N =
loga N

loga b

In O notation, the base is irrelevant, and thus we write the size simply as O(logN)
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Roles of Log N

log N is the power to which you need to raise 2 in order to obtain N .

It can also be seen as the number of times you must halve N to get down to 1. (More precisely:
⌈log N⌉.)

It is the number of bits in the binary representation of N . (More precisely: ⌈log (N + 1)⌉.)

It is also the depth of a complete binary tree with N nodes. (More precisely: ⌊log N⌋.)

It is even the sum 1 + 1/2 + 1/3 + . . .+ 1/n, to within a constant factor.
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Basics Arithmetic
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Addition

Lemma

The sum of any three single-digit number is at most two digits long.
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Addition

This rule holds not just in decimal but in any b ≥ 2.

In binary, the maximum possible sum of three single-bit numbers is 3, which is a 2-bit number.

This simple rule gives us a way to add two numbers in any bases.

1 1 1 1

1 1 0 1 0 1

1 0 0 0 1 1

1 0 1 1 0 0 0
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Addition

Q: Given two binary number x and y, how long does our algorithm take to add them?

The answer expressed as a function of the size of the input: the number of bits of x and y (suppose
they are n bit long).

The sum of x and y is n+ 1 bits at most. Each individual bit of this sum gets computed in a fixed
amount of time.

The total running time for the addition is of form c0 + c1 n, where c0 and c1 are some constants, i.e.,
O(n).
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Addition

Q: Can we do better?

In order to add two n-bit numbers, we must read them and write down the answer, and even that
requires n operations.

So the addition algorithm is optimal.
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Perform Addition in One Step?

A single instruction we can add integers whose size in bits is within the word length of today’s
computer - 64 perhaps.

It is often useful and necessary to handle numbers much larger than this, perhaps several thousand
bits long.

To study the basic algorithms encoded in the hardware of today’s computers, we shall focus on the
bit complexity of the algorithm, the number of elementary operations on individual bits.
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Multiplication

The grade-school algorithm for multiplying two
number x and y is to create an array of
intermediate sums.

If x and y are both n bit, then there are n

intermediate rows with length of up to 2n bit.
(Q: why?)

1 1 0 1

× 1 0 1 1

1 1 0 1

1 1 0 1

0 0 0 0

+ 1 1 0 1

1 0 0 0 1 1 1 1

O(n) + . . .+O(n)︸ ︷︷ ︸
n− 1

O(n2)
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Quiz

What is the complexity of a number times 2?
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Multiplication by Al Khwarizmi

• write them next to each other.

• halve the first number by 2, dropping the .5,
and double the second number.

• keep going till the first number gets down to
1.

• strike out all the rows where the first number
is even.

• add up the remains in the second columns.

11 13
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Multiplication by Al Khwarizmi

• write them next to each other.
• halve the first number by 2, dropping the .5,

and double the second number.
• keep going till the first number gets down to

1.
• strike out all the rows where the first number

is even.
• add up the remains in the second columns.

11 13

5 26

1 104

143

• The left is to calculate the binary
number.

• The right is to shift the row!
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Multiplication á la Françis

MULTIPLY(x, y)
Two n-bit integers x and y, where y ≥ 0;

if y = 0 then return 0;
z=MULTIPLY(x, ⌊y/2⌋);
if y is even then

return 2z;
else return x+ 2z;

end

Another formulation:

x · y =

{
2(x · ⌊y/2⌋) if y is even

x+ 2(x · ⌊y/2⌋) if y is odd
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Multiplication á la Françis

Q: How long does the algorithm take?

It will terminate after n recursive calls, since at each call y is halved.

At each call requires these operations:

• a division by 2 (right shift);
• a test for odd/even (looking up the last bit);
• a multiplication by 2 (left shift);
• and a possibly one addition.

A total operations are O(n), The total time taken is thus O(n2).

Q: Can we do better?

• Yes!
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Division

DIVIDE(x, y)
Two n-bit integers x and y, where y ≥ 1;

if x = 0 then return(0, 0);
(q, r)=DIVIDE(⌊x/2⌋, y);
q = 2 · q, r = 2 · r;
if x is odd then r = r + 1;
if r ≥ y then r = r − y, q = q + 1;
return(q, r);

Q: How long does the algorithm take?
• Exercise 1.8!
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Modular Arithmetic
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What Is Modular

Modular arithmetic is a system for dealing with restricted ranges of integers.

x modulo N is the remainder when x is divided by N ; that is, if x = qN + r with 0 ≤ r < N , then x

modulo N is equal to r.

x and y are congruent modulo N if they differ by a multiple of N , i.e.

x ≡ y mod N ⇔ N divides (x− y)
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Two Interpretations

1 It limits numbers to a predefined range {0, 1, . . . , N} and wraps around whenever you try to
leave this range - like the hand of a clock.

2 Modular arithmetic deals with all the integers, but divides them into N equivalence classes,
each of the form {i+ k ·N | k ∈ Z} for some i between 0 and N − 1.
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Two’s Complement

Modular arithmetic is nicely illustrated in two’s complement, the most common format for storing
signed integers.

It uses n bits to represent numbers in the range

−2n−1, 2n−1 − 1

and is usually described as follows:

• Positive integers, in the range 0 to 2n−1 − 1, are stored in regular binary and have a leading bit
of 0.

• Negative integers −x, with 1 ≤ x ≤ 2n−1, are stored by first constructing x in binary, then
flipping all the bits, and finally adding 1. The leading bit in this case is 1.
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Two’s Complement

(from wiki)
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Rules

Substitution rules: if x ≡ x′ mod N and y ≡ y′ mod N , then

x+ y ≡ x′ + y′ mod N

xy ≡ x′y′ mod N

x+ (y + z) ≡ (x+ y) + z mod N Associativity

xy ≡ yx mod N Commutativity

x(y + z) ≡ xy + xz mod N Distributivity

It is legal to reduce intermediate results to their remainders modulo N at any stage.

2345 ≡ (25)69 ≡ 3269 ≡ 169 ≡ 1 mod 31
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Modular Addition

Since x and y are each in the range 0 to N − 1,their sum is between 0 and 2(N − 1).

If the sum exceeds N − 1, we merely need to subtract off N to bring it back into the required range.

The overall computation therefore consists of an addition, and possibly a subtraction, of numbers
that never exceed 2N .

Its running time is O(n), where n = ⌈logN⌉.
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Modular Multiplication

The product of x and y can be as large as (N − 1)2, but this is still at most 2n bits long since

log (N − 1)2 = 2log (N − 1) ≤ 2n

To reduce the answer mod N , we compute the remainder upon dividing it by N . (O(n2))

Multiplication thus remains a quadratic operation.
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Modular Division

Not quite so easy!

In ordinary arithmetic there is just one tricky case - division by zero.

It turns out that in modular arithmetic there are potentially other such cases as well.

Whenever division is legal, however, it can be managed in cubic time, O(n3).
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Modular Exponentiation

In the cyptosystem, it is necessary to compute xy ( mod N) for values of x, y, and N that are
several hundred bits long.

The result is some number mod N and is therefore a few hundred bits long. However, the raw
value xy could be much, much longer.

When x and y are just 20-bit numbers, xy is at least

(219)(2
19) = 2(19)(524288)

about 10 million bits long!
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Modular Exponentiation

To make sure the numbers never grow too large, we need to perform all intermediate computations
modulo N .

First idea: calculate xy mod N by repeatedly multiplying by x modulo N .

The resulting sequence of intermediate products,

x mod N → x2 mod N → x3 mod N → . . . → xy mod N

consists of numbers that are smaller than N , and so the individual multiplications do not take too
long.

But imagine if y is 500 bits long . . .
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Modular Exponentiation

Second idea: starting with x and squaring repeatedly modulo N , we get

x mod N → x2 mod N → x4 mod N → x8 mod N → . . . x2⌊log y⌋
mod N

Each takes just O(log2 N) time to compute, and in this case there are only log y multiplications.

To determine xy mod N , multiply together an appropriate subset of these powers, those
corresponding to 1’s in the binary representation of y.

For instance,
x25 = x110012 = x100002 · x10002 · x12 = x16 · x8 · x1
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Modular Exponentiation

MODEXP(x, y, N)

Two n-bit integers x and N , and an integer exponent y;

if y = 0 then return 1;
z=MODEXP (x, ⌊y/2⌋, N);
if y is even then

return z2 mod N ;
else return x · z2 mod N ;

end

Another formulation:

xy mod N =

{
(x⌊y/2⌋)2 mod N if y is even

x · (x⌊y/2⌋)2 mod N if y is odd
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Modular Exponentiation

MODEXP(x, y, N)

Two n-bit integers x and N , and an integer exponent y;

if y = 0 then return 1;
z=MODEXP (x, ⌊y/2⌋, N);
if y is even then

return z2 mod N ;
else return x · z2 mod N ;

end

The algorithm will halt after at most n recursive calls, and during each
call it multiplies n-bit numbers. for a total running time of O(n3)
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Euclid’s Algorithm for Greatest Common Divisor

Q: Given two integers x and y, how to find their greatest common divisor (gcd(x, y))?

Euclid’s rule

If x and y are positive integers with x ≥ y, then gcd(x, y) = gcd(x ( mod y), y).

Proof:

It is enough to show the rule gcd(x, y) = gcd(x− y, y). Result can be derived by repeatedly
subtracting y from x.
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Euclid’s Algorithm for Greatest Common Divisor

EUCLID(x, y)
Two integers x and y with x ≥ y;

if y = 0 then return x;
return(EUCLID(y, x mod y));

Lemma

If a ≥ b ≥ 0, then a mod b < a/2

Proof:

• if b ≤ a/2, a mod b < b ≤ a/2;
• if b > a/2, a mod b = a− b < a/2.
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Euclid’s Algorithm for Greatest Common Divisor

EUCLID(x, y)
Two integers x and y with x ≥ y;

if y = 0 then return x;
return(EUCLID(y, x mod y));

Lemma

If a ≥ b ≥ 0, then a mod b < a/2

This means that after any two consecutive rounds, both arguments, x
and y are at the very least halved in value, i.e., the length of each
decreases at least one bit.
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Euclid’s Algorithm for Greatest Common Divisor

EUCLID(x, y)
Two integers x and y with x ≥ y;

if y = 0 then return x;
return(EUCLID(y, x mod y));

Lemma

If a ≥ b ≥ 0, then a mod b < a/2

If they are initially n-bit integers, then the base case will be reached
within 2n recursive calls. Since each call involves a quadratic-time
division, the total time is O(n3).
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An Extension of Euclid’s Algorithm

Q: Suppose someone claims that d is the greatest common divisor of x and y, how can we check
this?

It is not enough to verify that d divides both x and y. . .

Lemma

If d divides both x and y, and d = ax+ by for some integers a and b, then necessarily d = gcd(x, y).

Proof:

d ≤ gcd(x, y), obviously;

d ≥ gcd(x, y), since gcd(x, y) can divide x and y, it must also divide ax+ by = d.
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An Extension of Euclid’s Algorithm

EXTENDED-EUCLID(a, b)
Two integers a and b with a ≥ b ≥ 0;

if b = 0 then return(1, 0, a);
(x′, y′, d)=EXTENDED-EUCLID(b, a ( mod b));
return(y′, x′ − ⌊a/b⌋y′, d);

Correctness of the algorithm?
DIY!
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Modular Inverse

We say x is the multiplicative inverse of a mod N if

ax ≡ 1 mod N

There can be at most one such x mod N , denoted a−1.

Remark: The inverse does not always exists! for instance, 2 is not invertible modulo 6.
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Modular Inverse

Lemma

If gcd(a,N) > 1, then ax ̸≡ 1 mod N .

Proof:

ax mod N = ax+ kN , then gcd(a,N) divides ax mod N

If gcd(a,N) = 1, then extended Euclid algorithm gives us integers x and y such that ax+Ny = 1,
which means ax ≡ 1 mod N . Thus x is a’s sought inverse.
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Modular Division

Theorem (Modular Division Theorem)

For any a mod N , a has a multiplicative inverse modulo N if and only if it is relatively prime to N .

When the inverse exists, it can be found in time O(n3) by running the extended Euclid algorithm.

This resolves the issues of modular division: when working modulo N , can divide by numbers
relatively prime to N . And to actually carry out the division, multiply by the inverse.

42/42



Modular Division

Theorem (Modular Division Theorem)

For any a mod N , a has a multiplicative inverse modulo N if and only if it is relatively prime to N .

When the inverse exists, it can be found in time O(n3) by running the extended Euclid algorithm.

This resolves the issues of modular division: when working modulo N , can divide by numbers
relatively prime to N . And to actually carry out the division, multiply by the inverse.

42/42



Modular Division

Theorem (Modular Division Theorem)

For any a mod N , a has a multiplicative inverse modulo N if and only if it is relatively prime to N .

When the inverse exists, it can be found in time O(n3) by running the extended Euclid algorithm.

This resolves the issues of modular division: when working modulo N , can divide by numbers
relatively prime to N . And to actually carry out the division, multiply by the inverse.

42/42


	Preliminaries
	Basics Arithmetic
	Addition
	Multiplication
	Division

	Modular Arithmetic
	What Is Modular
	Modular Addition
	Modular Multiplication
	Modular Division
	Modular Exponentiation
	Euclid Algorithm
	Modular Inverse


