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Divide-and-Conquer

The divide-and-conquer strategy solves a problem by:

1 Breaking it into subproblems that are themselves smaller instances of the same type of problem.

2 Recursively solving these subproblems.

3 Appropriately combining their answers.
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Multiplication
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Product of Complex Numbers

Carl Friedrich Gauss(1777-1855) noticed that although the product of two complex numbers

(a+ bi)(c+ di) = ac− bd+ (bc+ ad)i

seems to involve four real-number multiplications, it can in fact be done with just three: ac, bd, and
(a+ b)(c+ d), since

bc+ ad = (a+ b)(c+ d)− ac− bd

• In big O way of thinking, reducing the number of multiplications from four to three seems wasted
ingenuity.

• But this modest improvement becomes very significant when applied recursively.
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Multiplication

Suppose x and y are two n-integers, and assume for convenience that n is a power of 2.

[Hints: For every n there exists an n′ with n ≤ n′ ≤ 2n such that n′ a power of 2.]

As a first step toward multiplying x and y, we split each of them into their left and right halves, which
are n/2 bits long

x = xL xR = 2n/2xL + xR

y = yL yR = 2n/2yL + yR

xy = (2n/2xL + xR)(2
n/2yL + yR) = 2nxLyL + 2n/2(xLyR + xRyL) + xRyR

Additions and multiplications by powers of 2 take linear time.
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Multiplication

The additions take linear time, as do multiplications by powers of 2 (that is, O(n)).

The significant operations are the four n/2-bit multiplications: these can be handled by four recursive
calls.

Writing T (n) for the overall running time on n-bit inputs, we get the recurrence relations:

T (n) = 4T (n/2) +O(n)

Solution: O(n2)

By Gauss’s trick, three multiplications xLyL, xRyR, and (xL + xR)(yL + yR) suffice.
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Algorithm for Integer Multiplication

MULTIPLY(x, y)
Two positive integers x and y, in binary;

n=max (size of x, size of y) rounded as a power of 2;
if n = 1 then return(xy);
xL, xR= leftmost n/2, rightmost n/2 bits of x;
yL, yR= leftmost n/2, rightmost n/2 bits of y;
P1=MULTIPLY(xL, yL);
P2=MULTIPLY(xR, yR);
P3=MULTIPLY(xL + xR, yL + yR);
return(P1 × 2n + (P3 − P1 − P2)× 2n/2 + P2)
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Time Analysis

The recurrence relation

T (n) = 3T (n/2) +O(n)

The algorithm’s recursive calls form a tree structure.

At each successive level of recursion the subproblems get halved in size.

At the (log2 n)
th level, the subproblems get down to size 1, and so the recursion ends.

The height of the tree is log2 n.

The branch factor is 3: each problem produces three smaller ones, with the result that at depth k

there are 3k subproblems, each of size n/2k.

For each subproblem, a linear amount of work is done in combining their answers.
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Time Analysis

The total time spent at depth k in the tree is

3k ×O(
n

2k
) = (

3

2
)k ×O(n)

At the top level, when k = 0, we need O(n).

At the bottom, when k = log2 n, it is O(3log2 n) = O(nlog2 3)

The work done increases geometrically from O(n) to O(nlog2 3), by a factor of 3/2 per level.

The sum of any increasing geometric series is, within a constant factor, the last term of the series.

Therefore, the overall running time is

O(nlog2 3) ≈ O(n1.59)
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Time Analysis

Q: Can we do better?

• Yes!
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Recurrence Relations

11/33



Master Theorem

Master Theorem

If T (n) = aT (⌈n/b⌉) +O(nd) for some constants a > 0, b > 1 and d ≥ 0, then

T (n) =


O(nd) if d > logb a

O(nd logn) if d = logb a

O(nlogb a) if d < logb a
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The Proof of the Theorem

Proof:

Assume that n is a power of b.

The size of the subproblems decreases by a factor of b with each level of recursion, and therefore
reaches the base case after logb n levels - the the height of the recursion tree.

Its branching factor is a, so the k-th level of the tree is made up of ak subproblems, each of size
n/bk.

ak ×O(
n

bk
)d = O(nd)× (

a

bd
)k

k goes from 0 to logb n, these numbers form a geometric series with ratio a/bd, comes down to three
cases.
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The Proof of the Theorem

The ratio is less than 1.

Then the series is decreasing, and its sum is just given by its first term, O(nd).

The ratio is greater than 1.

The series is increasing and its sum is given by its last term, O(nlogb a)

The ratio is exactly 1.

In this case all O(logn) terms of the series are equal to O(nd).
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Merge Sort
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Merge Sort
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The Algorithm

MERGESORT(a[1 . . . n])

An array of numbers a[1 . . . n];

if n > 1 then
return(MERGE(MERGESORT(a[1 . . . ⌊n/2⌋]),
MERGESORT(a[⌊n/2⌋+ 1 . . . , n])));

else return(a);
end

MERGE(x[1 . . . k], y[1 . . . l])

if k = 0 then return y[1 . . . l];
if l = 0 then return x[1 . . . k];
if x[1] ≤ y[1] then return( x[1]◦MERGE(x[2 . . . k], y[1 . . . l]));
else return( y[1]◦MERGE(x[1 . . . k], y[2 . . . l]));
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An Iterative Version

ITERTIVE-MERGESORT(a[1 . . . n])

An array of numbers a[1 . . . n];

Q = [ ]empty queue;
for i = 1 to n do

Inject(Q, [a[i]]);
end
while |Q| > 1 do

Inject (Q,MERGE (Eject (Q),Eject (Q)));
end
return(Eject (Q));
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The Time Analysis

The recurrence relation:
T (n) = 2T (n/2) +O(n)

By Master Theorem:
T (n) = O(n logn)

Q: Can we do better?
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Sorting

3 2 1

Yes

a2 < a3?

a1 < a2?

a1 < a3?

a2 < a3? a1 < a3?

2 3 1

2 1 3

3 1 2 1 3 2

1 2 3

No

Sorting algorithms can be depicted as trees.

The depth of the tree - the number of comparisons on the longest path from root to leaf, is the
worst-case time complexity of the algorithm.

Assume n elements. Each of its leaves is labeled by a permutation of {1, 2, . . . , n}.
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Sorting
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Every permutation must appear as the label of a leaf.

This is a binary tree with n! leaves.

So, the depth of the tree - and the complexity of the algorithm - must be at least

log(n!) ≈ log(
√

π(2n+ 1/3) · nn · e−n) = Ω(n logn)
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Median
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Median

The median of a list of numbers is its 50th percentile: half the number are bigger than it, and half are
smaller.

If the list has even length, we pick the smaller one of the two.

The purpose of the median is to summarize a set of numbers by a single typical value.

Computing the median of n numbers is easy, just sort them. (O(n logn)).

Q: Can we do better?
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Selection

Input: A list of number S; an integer k.
Output: The k th smallest element of S.
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A Randomized Selection

For any number v, imagine splitting list S into three categories:

• elements smaller than v, i.e., SL;
• those equal to v, i.e., Sv (there might be duplicates);
• and those greater than v, i.e., SR; respectively.

selection(S, k) =


selection(SL, k) if k ≤ |SL|
v if |SL| < k ≤ |SL|+ |Sv|
selection(SR, k − |SL| − |Sv|) if k > |SL|+ |Sv|
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How to Choose v?

It should be picked quickly, and it should shrink the array substantially, the ideal situation being

| SL |, | SR |≈ | S |
2

If we could always guarantee this situation, we would get a running time of

T (n) = T (n/2) +O(n) = O(n)

But this requires picking v to be the median, which is our ultimate goal!

Instead, we pick v randomly from S!
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How to Choose v?

Worst-case scenario would force our selection algorithm to perform

n+ (n− 1) + (n− 2) + . . .+
n

2
= Θ(n2)

Best-case scenario O(n)
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The Efficiency Analysis

v is good if it lies within the 25th to 75th percentile of the array that it is chosen from.

A randomly chosen v has a 50% chance of being good.

Lemma

On average a fair coin needs to be tossed two times before a heads is seen.

Proof:

Let E be the expected number of tosses before heads is seen.

E = 1 +
1

2
E

Therefore, E = 2.
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The Efficiency Analysis

Let T (n) be the expected running time on the array of size n, we get

T (n) ≤ T (3n/4) +O(n) = O(n)
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Matrix Multiplication
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Matrix

The product of two n× n matrices X and Y is a n× n matrix Z = XY , with which (i, j)th entry

Zij =

n∑
i=1

XikYkj

In general, matrix multiplication is not commutative, say, XY ̸= Y X

The running time for matrix multiplication is O(n3)

• There are n2 entries to be computed, and each takes O(n) time.
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Divide-and-Conquer

Matrix multiplication can be performed blockwise.

X =

[
A B

C D

]
Y =

[
E F

G H

]

XY =

[
A B

C D

][
E F

G H

]
=

[
AE +BG AF +BH

CE +DG CF +DH

]

T (n) = 8T (n/2) +O(n2)

T (n) = O(n3)
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Strassen Algorithm

X =

[
A B

C D

]
Y =

[
E F

G H

]

XY =

[
P5 + P4 − P2 + P6 P1 + P2

P3 + P4 P1 + P5 − P3 − P7

]

P1 = A(F −H) P5 = (A+D)(E +H)

P2 = (A+B)H P6 = (B −D)(G+H)

P3 = (C +D)E P7 = (A− C)(E + F )

P4 = D(G− E)

T (n) = 7T (n/2) +O(n2)

T (n) = O(nlog2 7) ≈ O(n2.81)
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