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Complex Number

z = a+ bi is plotted at position (a, b).

In its polar coordinates, denoted (r, θ), rewrite as

z = r(cos θ + i sin θ) = reiθ

• length: r =
√
a2 + b2.

• angle: θ ∈ [0, 2π).
• θ can always be reduced modulo 2π.

Basic arithmetic:

• −z = (r, θ + π).
• (r1, θ1)× (r2, θ2) = (r1r2, θ1 + θ2).
• If z is on the unit circle (i.e., r = 1), then zn = (1, nθ).

3/1



Complex Number

z = a+ bi is plotted at position (a, b).

In its polar coordinates, denoted (r, θ), rewrite as

z = r(cos θ + i sin θ) = reiθ

• length: r =
√
a2 + b2.

• angle: θ ∈ [0, 2π).
• θ can always be reduced modulo 2π.

Basic arithmetic:

• −z = (r, θ + π).
• (r1, θ1)× (r2, θ2) = (r1r2, θ1 + θ2).
• If z is on the unit circle (i.e., r = 1), then zn = (1, nθ).

3/1



Complex Number

z = a+ bi is plotted at position (a, b).

In its polar coordinates, denoted (r, θ), rewrite as

z = r(cos θ + i sin θ) = reiθ

• length: r =
√
a2 + b2.

• angle: θ ∈ [0, 2π).
• θ can always be reduced modulo 2π.

Basic arithmetic:

• −z = (r, θ + π).
• (r1, θ1)× (r2, θ2) = (r1r2, θ1 + θ2).
• If z is on the unit circle (i.e., r = 1), then zn = (1, nθ).

3/1



The n-th Complex Roots of Unity

Solutions to the equation zn = 1

• by the multiplication rules: solutions are z = (1, θ), for θ a multiple of 2π/n.

• It can be represented as
1, ω, ω2, . . . , ωn−1

where
ω = e2πi/n

For n is even:

• These numbers are plus-minus paired.
• Their squares are the (n/2)-nd roots of unity.

4/1



The n-th Complex Roots of Unity

Solutions to the equation zn = 1

• by the multiplication rules: solutions are z = (1, θ), for θ a multiple of 2π/n.
• It can be represented as

1, ω, ω2, . . . , ωn−1

where
ω = e2πi/n

For n is even:

• These numbers are plus-minus paired.
• Their squares are the (n/2)-nd roots of unity.

4/1



The n-th Complex Roots of Unity

Solutions to the equation zn = 1

• by the multiplication rules: solutions are z = (1, θ), for θ a multiple of 2π/n.
• It can be represented as

1, ω, ω2, . . . , ωn−1

where
ω = e2πi/n

For n is even:

• These numbers are plus-minus paired.
• Their squares are the (n/2)-nd roots of unity.

4/1



Complex Conjugate

The complex conjugate of a complex number z = reiθ is z∗ = re−iθ.

The complex conjugate of a vector (or a matrix) is obtained by taking the complex conjugates of all
its entries.

The angle between two vectors u = (u0, . . . , un−1) and v(v0, . . . , vn−1) in Cn is just a scaling factor
times their inner product

u · v∗ = u0v
∗
0 + u1v

∗
1 + . . .+ un−1v

∗
n−1

The above quantity is maximized when the vectors lie in the same direction and is zero when the
vectors are orthogonal to each other.
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The Fast Fourier Transform
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Polynomial multiplication

If A(x) = a0 + a1x+ . . .+ adx
d and B(x) = b0 + b1x+ . . .+ bdx

d, their product

C(x) = c0 + c1x+ . . .+ c2dx
2d

has coefficients

ck = a0bk + a1bk−1 + . . .+ akb0 =

k∑
i=0

aibk−i

where for i > d, take ai and bi to be zero.

Computing ck from this formula take O(k) step, and finding all 2d+ 1 coefficients would therefore
seem to require Θ(d2) time.

Q: Can we do better?

7/1



Polynomial multiplication

If A(x) = a0 + a1x+ . . .+ adx
d and B(x) = b0 + b1x+ . . .+ bdx

d, their product

C(x) = c0 + c1x+ . . .+ c2dx
2d

has coefficients

ck = a0bk + a1bk−1 + . . .+ akb0 =

k∑
i=0

aibk−i

where for i > d, take ai and bi to be zero.

Computing ck from this formula take O(k) step, and finding all 2d+ 1 coefficients would therefore
seem to require Θ(d2) time.

Q: Can we do better?

7/1



Polynomial multiplication

If A(x) = a0 + a1x+ . . .+ adx
d and B(x) = b0 + b1x+ . . .+ bdx

d, their product

C(x) = c0 + c1x+ . . .+ c2dx
2d

has coefficients

ck = a0bk + a1bk−1 + . . .+ akb0 =

k∑
i=0

aibk−i

where for i > d, take ai and bi to be zero.

Computing ck from this formula take O(k) step, and finding all 2d+ 1 coefficients would therefore
seem to require Θ(d2) time.

Q: Can we do better?

7/1



An alternative representation

Fact: A degree-d polynomial is uniquely characterized by its values at any d+ 1 distinct points.

We can specify a degree-d polynomial A(x) = a0 + a1x+ . . .+ adx
d by either of the following:

• Its coefficients a0, a1, . . . , ad. (coefficient representation).

• The values A(x0), A(x1), . . . A(xd) (value representation).

coefficient representation value representation

evaluation

interpolation

1
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An alternative representation

coefficient representation value representation

evaluation

interpolation

1

The product C(x) has degree 2d, it is determined by its value at any 2d+ 1 points.

Its value at any given point z is just A(z) times B(z).

Therefore, polynomial multiplication takes linear time in the value representation.
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The algorithm

Input: Coefficients of two polynomials, A(x) and B(x), of degree d

Output: Their product C = A ·B

Selection
Pick some points x0, x1, . . . , xn−1, where n ≥ 2d+ 1.

Evaluation
Compute A(x0), A(x1), . . . , A(xn−1) and B(x0), B(x1), . . . , B(xn−1).

Multiplication
Compute C(xk) = A(xk)B(xk) for all k = 0, . . . , n− 1.

Interpolation
Recover C(x) = c0 + c1x+ . . .+ c2dx

2d
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Fast Fourier Transform

The selection step and the multiplications are just linear time:

• In a typical setting for polynomial multiplication, the coefficients of the polynomials are real
number.

• Moreover, are small enough that basic arithmetic operations take unit time.

Evaluating a polynomial of degree d ≤ n at a single point takes O(n), and so the baseline for n
points is Θ(n2).

The Fast Fourier Transform (FFT) does it in just O(n logn) time, for a particularly clever choice of
x0, . . . , xn−1.
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Evaluation by divide-and-conquer

Q: How to make it efficient?

First idea, we pick the n points,
±x0,±x1, . . . ,±xn/2−1

then the computations required for each A(xi) and A(−xi) overlap a lot, because the even power of
xi coincide with those of −xi.

We need to split A(x) into its odd and even powers, for instance

3 + 4x+ 6x2 + 2x3 + x4 + 10x5 = (3 + 6x2 + x4) + x(4 + 2x2 + 10x4)

More generally
A(x) = Ae(x

2) + xAo(x
2)

where Ae(·), with the even-numbered coefficients, and Ao(·), with the odd-numbered coefficients,
are polynomials of degree ≤ n/2− 1.
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Evaluation by divide-and-conquer

Given paired points ±xi, the calculations needed for A(xi) can be recycled toward computing
A(−xi):

A(xi) = Ae(x
2
i ) + xiAo(x

2
i )

A(−xi) = Ae(x
2
i )− xiAo(x

2
i )

Evaluating A(x) at n paired points ±x0, . . . ,±xn/2−1 reduces to evaluating Ae(x) and Ao(x) at just
n/2 points, x2

0, . . . , x
2
n/2−1.

If we could recurse, we would get a divide-and-conquer procedure with running time

T (n) = 2T (n/2) +O(n) = O(n logn)
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How to choose n points?

Aim: To recurse at the next level, we need the n/2 evaluation points x2
0, x

2
1, . . . , x

2
n/2−1 to be

themselves plus-minus pairs.

Q: How can a square be negative?

• We use complex numbers.

At the very bottom of the recursion, we have a single point, 1, in which case the level above it must
consist of its square roots, ±

√
1 = ±1.

The next level up then has ±
√
+1 = ±1, as well as the complex numbers ±

√
−1 = ±i.

By continuing in this manner, we eventually reach the initial set of n points: the complex n th roots of
unity, that is the n complex solutions of the equation

zn = 1
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The n-th complex roots of unity

Solutions to the equation zn = 1

• by the multiplication rules: solutions are z = (1, θ), for θ a multiple of 2π/n.
• It can be represented as

1, ω, ω2, . . . , ωn−1

where
ω = e2πi/n

For n is even:

• These numbers are plus-minus paired.
• Their squares are the (n/2)-nd roots of unity.
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The FFT algorithm

FFT(A, ω)
input : coefficient reprentation of a polynomial A(x) of degree ≤ n− 1, where n is a power of 2;

ω, an n-th root of unity
output: value representation A(ω0), . . . , A(ωn−1)

if ω = 1 then return A(1);
express A(x) in the form Ae(x

2) + xAo(x
2);

call FFT(Ae,ω2) to evaluate Ae at even powers of ω;
call FFT(Ao,ω2) to evaluate Ao at even powers of ω;
for j = 0 to n− 1 do

compute A(ωj) = Ae(ω
2j) + ωjAo(ω

2j);
end
return(A(ω0), . . . , A(ωn−1));
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Interpolation

FFT moves from coefficients to values in time just O(n logn), when the points {xi} are complex n-th
roots of unity (1, ω, ω2, . . . , ωn−1).

That is,
⟨value⟩ = FFT(⟨coefficients⟩, ω)

We will see that the interpolation can be computed by

⟨coefficients⟩ = 1

n
FFT(⟨values⟩, ω−1)
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A matrix reformation

Let’s explicitly set down the relationship between our two representations for a polynomial A(x) of
degree ≤ n− 1.


A(x0)

A(x1)
...

A(xn−1)

 =


1 x0 x2

0 . . . xn−1
0

1 x1 x2
1 . . . xn−1

1

...
1 xn−1 x2

n−1 . . . xn−1
n−1




a0

a1

...
an−1


Let M be the matrix in the middle, which is a Vandermonde matrix.

• If x0, x1, . . . , xn−1 are distinct numbers, then M is invertible.
• evaluation is multiplication by M , while interpolation is multiplication by M−1.
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A matrix reformation

This reformulation of our polynomial operations reveals their essential nature more clearly.

It justifies an assumption that A(x) is uniquely characterized by its values at any n points.

Vandermonde matrices also have the distinction of being quicker to invert than more general
matrices, in O(n2) time instead of O(n3).

However, using this for interpolation would still not be fast enough for us..
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Interpolation resolved

In linear algebra terms, the FFT multiplies an arbitrary n-dimensional vector, which we have been
calling the coefficient representation, by the n× n matrix.

Mn(ω) =



1 1 1 . . . 1

1 ω ω2 . . . ωn−1

...
1 ωj ω2j . . . ω(n−1)j

...
1 ωn−1 ω2(n−1) . . . x(n−1)(n−1)


Its (j, k)-th entry (starting row- and column-count at zero) is ωjk
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Interpolation resolved

The columns of M are orthogonal to each other, which is often called the Fourier basis.

The FFT is thus a change of basis, a rigid rotation. The inverse of M is the opposite rotation, from
the Fourier basis back into the standard basis.

Inversion formula
Mn(ω)

−1 =
1

n
Mn(ω

−1)
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Interpolation resolved

Take ω to be e2πi/n, and think of M as vectors in Cn.

Recall that the angle between two vectors u = (u0, . . . , un−1) and v(v0, . . . , vn−1) in Cn is just a
scaling factor times their inner product

u · v∗ = u0v
∗
0 + u1v

∗
1 + . . .+ un−1v

∗
n−1

where z∗ denotes the complex conjugate of z.

The above quantity is maximized when the vectors lie in the same direction and is zero when the
vectors are orthogonal to each other.
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Interpolation resolved

Lemma

The columns of matrix M are orthogonal to each other.

Proof.

• Take the inner product of of any columns j and k of matrix M ,

1 + ωj−k + ω2(j−k) + . . .+ ω(n−1)(j−k)

This is a geometric series with first term 1, last term ω(n−1)(j−k), and ratio ωj−k.
• Therefore, if j ̸= k, it evaluates to

1− ωn(j−k)

1− ω(j−k)
= 0

• If j = k, then it evaluates to n.
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Interpolation resolved

Corollary

MM∗ = nI, i.e.,

M−1
n =

1

n
M∗

n
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The definitive FFT algorithm

The FFT takes as input a vector a = (a0, . . . , an−1) and a complex number ω whose powers
1, ω, ω2, . . . , ωn−1 are the complex n-th roots of unity.

It multiplies vector a by the n× n matrix Mn(ω), which has (j, k)-th entry ωjk.

The potential for using divide-and-conquer in this matrix-vector multiplication becomes apparent
when M ’s columns are segregated into evens and odds.

The product of Mn(ω) with vector a = (a0, . . . , an−1), a size-n problem, can be expressed in terms
of two size-n/2 problems: the product of Mn/2(ω

2) with (a0, a2, . . . , an−2) and with
(a1, a3, . . . , an−1).

This divide-and-conquer strategy leads to the definitive FFT algorithm, whose running time is
T (n) = 2T (n/2) +O(n) = O(nlogn).
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The general FFT algorithm

FFT(a, ω)
input : An array a = (a0, a1, . . . , an−1) for n is a power of 2; ω, an n-th root of unity
output: Mn(ω)a

if ω = 1 then return a;
(s0, s1, . . . , sn/2−1)=FFT ((a0, a2, . . . , an−2), ω2);
(s′0, s

′
1, . . . , s

′
n/2−1)=FFT ((a1, a3, . . . , an−1), ω2);

for j = 0 to n/2− 1 do
rj=sj + ωjs′j ;
rj+n/2=sj − ωjs′j ;

end
return (r0, r1, . . . , rn−1);
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Top 10 algorithms of the 20th century

1946: The Metropolis Algorithm

1947: Simplex Method

1950: Krylov Subspace Method

1951: The Decompositional Approach to Matrix Computations

1957: The Fortran Optimizing Compiler

1959: QR Algorithm

1962: Quicksort

1965: Fast Fourier Transform

1977: Integer Relation Detection

1987: Fast Multipole Method
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Homework
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Homework

• Assignment 2 (1 week). Exercises 2.13, 2.19, 2.22, and 2.28.
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