Decompositions of Graphs

SHANGHAI JIAO TONG

Guogiang Li
UNIVERSITY

School of Software, Shanghai Jiao Tong University

1/36

. (7)) SHANGHAI JIAO TONG
AI‘I Eer‘CIse K‘ UNIVERSITY

Let B be an n x n chessboard, where n is a power of 2. Use a divide-and-conquer argument to
describe how to cover all squares of B except one with L-shaped tiles. For example, if n = 2, then

there are four squares three of which can be covered by one L-shaped tile, and if n = 4, then there
are 16 squares of which 15 can be covered by 5 L-shaped tiles.

«40>» «F» «E» «

>

APAN G4

Decompositions of Graphs

«0O>» «F»r «

it
v
a
it

APAN G4

7

- f ¢\ SHANGHAI JIAO TONG
Exploring Graphs @) o

UNIVERSITY

EXPLORE (G, v)

input : G = (V,E)isagraph;v eV

output: visited(u) to true for all nodes u reachable from v
visited(v) = true;

PREVISIT (v);

for each edge (v,u) € E do

| if not visited(u) then EXPLORE (G, u) ;
end
POSTVISIT (v);

«40>» «F» «E» «

>

APAN G4

- (7)) SHANGHAI JIAO TONG
Depth-Fll‘St Seal‘ch %NIVERSIT\; B

DE'S ((+)

forallv € V do

‘ visited(v) = false;
end
forallv € V do

‘ if not visited(v) then Explore (G, v);
end

«O0>» «Fr «=» «

>

APAN G4

Connectivity in Undirected Graphs

«0O0>» «F>r» « >

<

APAN G4

Types of Edges in Undirected Graphs

7

f ¢\ SHANGHAI JIAO TONG
Those edges in G that are traversed by EXPLORE are tree edges.

UNIVERSITY

«40>» «F» «E» «

>

APAN G4

Types of Edges in Undirected Graphs

\ SHANGHAI JIAO TONG

UNIVERSITY

e
Those edges in G that are traversed by EXPLORE are tree edges.

The rest are back edges.

LT

«0» «F»r» «

i
v

Connectivity in Undirected Graphs

P

Definition
An undirected graph is connected, if there is a path between any pair of vertices.

«O0>» «Fr «=» «

>

APAN G4

Connectivity in Undirected Graphs

(%

@) ssworone
Definition
An undirected graph is connected, if there is a path between any pair of vertices.
Definition

remaining vertices.

A connected component is a subgraph that is internally connected but has no edges to the

«40>» «F» «E» <

>

APAN G4

Connectivity in Undirected Graphs

=

Definition
An undirected graph is connected, if there is a path between any pair of vertices.
Definition

remaining vertices.

A connected component is a subgraph that is internally connected but has no edges to the

containing that vertex.

When EXPLORE is started at a particular vertex, it identifies precisely the connected component

Each time the DFS outer loop calls EXPLORE, a new connected component is picked out.

«40>» «F» «E» <

>

APAN G4

Connectivity in Undirected Graphs

P

, SHANGHAI JIAO TONG
& =) UNIVERSITY

DFS is trivially adapted to check if a graph is connected.

«40>» «F» «E» <

>

APAN G4

Connectivity in Undirected Graphs

=

@®

7
\ SHANGHAI JIAO TONG
y" UNIVERSITY

DFS is trivially adapted to check if a graph is connected.

More generally, to assign each node v an integer ccnum/[v] identifying the connected component to
which it belongs.

PREVISIT (v)

cenum|v] = cc;

EXPLORE.

where cc needs to be initialized to zero and to be incremented each time the DFS procedure calls

«40>» «F» «E» «

>

APAN G4

Previsit and Postvisit Orderings

7

SHANGHAI JIAO TONG
For each node, we will note down the times of two important events:

UNIVERSITY

«0O0>» «F» « =»

i
v

DA

Previsit and Postvisit Orderings

R
For each node, we will note down the times of two important events
® the moment of first discovery (corresponding to PREVISIT);
¢ and the moment of final departure (POSTVISIT).

«0O0>» «F» « =»

i
v

DA

Previsit and Postvisit Orderings

For each node, we will note down the times of two important events:
® the moment of first discovery (corresponding to PREVISIT);
¢ and the moment of final departure (POSTVISIT).

PREVISIT (v) POSTVISIT (v)
pre[v] = clock; post[v] = clock;
clock + +; clock + +;

«0>» «F» « =>»

i
v

DA

Previsit and Postvisit Orderings

(:i‘ HANGHALI JIAO TONG
g %NIVERSITY] B
For each node, we will note down the times of two important events:
® the moment of first discovery (corresponding to PREVISIT);
¢ and the moment of final departure (POSTVISIT).
PREVISIT (v) POSTVISIT (v)
pre[v] = clock; post[v] = clock;
clock + +;

clock + +;

For any nodes v and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)]
one is contained within the other.

are either disjoint or

«O» «F)r «

it
v
i
v

DA

Previsit and Postvisit Orderings

SHANGHAI JIAO TONG

UNIVERSITY

15,16

«O» «F)r «

it

v

a
i

DA

Connectivity in Directed Graphs

«O0>» «F>r «E>r» «

it
v

DA

Types of Edges in Directed Graphs

P

f SHANGHAI JIAO TONG
& %) UNIVERSITY

DFS yields a search tree/forests.

«0O0>» «F» « =>»

i
v

DA

Types of Edges in Directed Graphs

53
SHANGHAI JIAO TONG
& %) UNIVERSITY

DFS yields a search tree/forests.
® root.

«0O0>» «F» « =>»

i
v

DA

Types of Edges in Directed Graphs

53
SHANGHAI JIAO TONG
& %) UNIVERSITY

DFS yields a search tree/forests.
® root.

e descendant and ancestor.

«0O0>» «F» « =>»

i
v

DA

Types of Edges in Directed Graphs

P

, SHANGHAI JIAO TONG
& =) UNIVERSITY

DFS yields a search tree/forests.
® root.

e descendant and ancestor.
e parent and child.

«0O0>» «F» « =>»

i
v

DA

E‘, UNIVERSITY

Types of Edges in Directed Graphs @) unsmrorone

DFS yields a search tree/forests.
® root.
® descendant and ancestor.
e parent and child.
® Tree edges are actually part of the DFS forest.

«0O>» «Fr «Z» «

i
v
it

DA

UNIVERSITY

Types of Edges in Directed Graphs S“"”““’“ oTons

DFS yields a search tree/forests.
® root.
e descendant and ancestor.

parent and child.
Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in the DFS tree.

«0O>» «Fr «=)» <

i
v
it

DA

Types of Edges in Directed Graphs S“"N““’“ oTons

UNIVERSITY

DFS yields a search tree/forests.

® root.

® descendant and ancestor.

parent and child.

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in the DFS tree.
Back edges lead to an ancestor in the DFS tree.

«O0>» «F» «=)» <

i
v
it

DA

" " (j\ HANGHALI JIAO TONG
Types of Edges in Directed Graphs (@) ey "

gt/

DFS yields a search tree/forests.

® root.

® descendant and ancestor.

parent and child.

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in the DFS tree.
Back edges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor.

«O0>» «F» «=)» <

i
v
it

DA

Directed Graphs

SHANGHAI JIAO TONG

%) UNIVERSITY

>

«5F»

i
v
it
v

Types of Edges

AR

) SHANGHAI JIAO TONG
} UNIVERSITY

pre/post ordering for (u, v)

[u

Edge type
L o
[v

[u

Tree/forward
™ I Back
[v I [s Cross

«0>» «F»>» « =>»

<

i
v

DA

Types of Edges

) SHANGHAI JIAO TONG
47 UNIVERSITY

pre/post ordering for (u, v)

Edge type
[u [v }v }u Tree/forward
[v [u }u]U BaCk

b o o Cross

Q: Is that all?

«O» «F)r «

it

v

a
it

DA

Directed Acyclic Graphs (DAG)

e
Definition

SHANGHAI JIAO TONG

UNIVERSITY

A cycle in a directed graph is a circular path

Vo —> V1 —> V2 — ...V — Vo

«0O0>» «F» « =>»

i
v

DA

Directed Acyclic Graphs (DAG)
Definition

prn
@®

1) SHANGHAI JIAO TONG
UNIVERSITY

A cycle in a directed graph is a circular path

Vo —> V1 —> V2 — ...V — Vo

A directed graph has a cycle if and only if its depth-first search reveals a back edge. I

«0O0>» «F» « =>»

<

i
v

DA

Directed Acyclic Graphs (DAG)

P

\ SHANGHAI JIAO TONG

UNIVERSITY

& —®

B—0 ©

«0>» «F» « >

i
v

DA

Directed Acyclic Graphs (DAG)

Py
@
to a later one.

1) SHANGHAI JIAO TONG
UNIVERSITY

Linearization/Topologically Sort: Order the vertices such that every edge goes from a earlier vertex

«0>» «F» « >

i
v

DA

Directed Acyclic Graphs (DAG)

Py
@
to a later one.

1) SHANGHAI JIAO TONG
UNIVERSITY

Linearization/Topologically Sort: Order the vertices such that every edge goes from a earlier vertex
Q: What types of dags can be linearized?

«0>» «F» « >

i
v

DA

Directed Acyclic Graphs (DAG) UNVERSITY

Linearization/Topologically Sort: Order the vertices such that every edge goes from a earlier vertex
to a later one.

Q: What types of dags can be linearized?

A: All of them.

«0O>» «Fr «=» <

i
v
it

DA

Directed Acyclic Graphs (DAG) UNVERSITY

Linearization/Topologically Sort: Order the vertices such that every edge goes from a earlier vertex
to a later one.

Q: What types of dags can be linearized?

A: All of them.

DFS tells us exactly how to do it: perform tasks in decreasing order of their post numbers.

«0O>» «Fr «=» <

i
v
it

DA

Directed Acyclic Graphs (DAG) TaveRsiry

UNIVERSITY

Linearization/Topologically Sort: Order the vertices such that every edge goes from a earlier vertex
to a later one.

Q: What types of dags can be linearized?

A: All of them.

DFS tells us exactly how to do it: perform tasks in decreasing order of their post numbers.

The only edges (u, v) in a graph for which post(u) < post(v) are back edges, and we have seen that
a DAG cannot have back edges.

«0O0>» «F» «=)» <

i
v
it

DA

Directed Acyclic Graphs (DAG)

SHANGHAI JIAO TONG

UNIVERSITY

In a DAG, every edge leads to a vertex with a lower post number. I

«0O0>» «F» « =>»

a
i

DA

Directed Acyclic Graphs (DAG)

P

\ SHANGHAI JIAO TONG

UNIVERSITY

There is a linear-time algorithm for ordering the nodes of a DAG.

«0>» «F» « =»

i
v

DA

Directed Acyclic Graphs (DAG)

K‘\ SHANGHAI JIAO TONG

UNIVERSITY

There is a linear-time algorithm for ordering the nodes of a DAG
thing.

Acyclicity, linearizability, and the absence of back edges during a depth-first search - are the same

«0>» «F» « =»

a
i

DA

. . (7)) SHANGHAI JIAO TONG
Dll’ected ACVC'IC Gl’aphs (DAG) wy %vamsmg B

There is a linear-time algorithm for ordering the nodes of a DAG.

Acyclicity, linearizability, and the absence of back edges during a depth-first search - are the same
thing.

The vertex with the smallest post number comes last in this linearization, and it must be a sink - no
outgoing edges.

«O0>» «F» «=)» <

i
v
it

DA

Directed Acyclic Graphs (DAG) /\ UNVERSITY

3
K y"‘ UNIVERSITY

There is a linear-time algorithm for ordering the nodes of a DAG.

Acyclicity, linearizability, and the absence of back edges during a depth-first search - are the same
thing.

The vertex with the smallest post number comes last in this linearization, and it must be a sink - no
outgoing edges.

Symmetrically, the one with the highest post is a source, a node with no incoming edges.

«O0>» «F» «=)» <

i
v
it

DA

Directed Acyclic Graphs (DAG)

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Every DAG has at least one source and at least one sink. I

«0O0>» «F» « =>»

i
v

DA

Directed Acyclic Graphs (DAG)

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Every DAG has at least one source and at least one sink. I

The guaranteed existence of a source suggests an alternative approach to linearization:

«0>» «F» « =>»

i
v

DA

Directed Acyclic Graphs (DAG)

)
SHANGHAI JIAO TONG
Eﬁ% = UNIVERSITY

Every DAG has at least one source and at least one sink. I

The guaranteed existence of a source suggests an alternative approach to linearization
© Find a source, output it, and delete it from the graph.

«0>» «F» « =>»

i
v

DA

Directed Acyclic Graphs (DAG)

)
SHANGHAI JIAO TONG
Eﬁ% = UNIVERSITY

Every DAG has at least one source and at least one sink. I

The guaranteed existence of a source suggests an alternative approach to linearization

© Find a source, output it, and delete it from the graph.
® Repeat until the graph is empty.

«0O0>» «F» « =>»

i
v

DA

Strongly Connected Components

«O0>» «F>r «E>r» «

it
v

DA

Defining Connectivity for Directed Graphs

Definition

to w.

Two nodes u and v of a directed graph are connected if there is a path from « to v and a path from v

«0>» «F» « >

i
v

DA

Defining Connectivity for Directed Graphs

Definition

to w.

Two nodes u and v of a directed graph are connected if there is a path from « to v and a path from v

This relation partitions V' into disjoint sets that we call strongly connected components (SCC).

«0>» «F» « >

i
v

DA

Defining Connectivity for Directed Graphs

Definition

to w.

Two nodes u and v of a directed graph are connected if there is a path from « to v and a path from v

This relation partitions V' into disjoint sets that we call strongly connected components (SCC).
Every directed graph is a DAG of its SCC. I

«O» «F)r «

Er <

3

DA

Strongly Connected Components

(@

SHANGHAI JIAO TONG
&

S 49 UNIVERSITY

®)

«O» «F»

it
v
a
i
v

DA

An Efficient Algorithm

P

\ SHANGHAI JIAO TONG

UNIVERSITY

have been visited.

If the EXPLORE subroutine at node w, then it will terminate precisely when all nodes reachable from u

«0O0>» «F» « =>»

i
v

DA

An Efficient Algorithm

3
SHANGHALI JIAO TONG
{% %4 UNIVERSITY

have been visited.

component.

If the EXPLORE subroutine at node w, then it will terminate precisely when all nodes reachable from u

If we call explore on a node that lies somewhere in a sink SCC, then we will retrieve exactly that

«0>» «F» « >

i
v

DA

An Efficient Algorithm

)
SHANGHAI JIAO TONG
Eﬁ% = UNIVERSITY

have been visited.

component.

If the EXPLORE subroutine at node w, then it will terminate precisely when all nodes reachable from u

If we call explore on a node that lies somewhere in a sink SCC, then we will retrieve exactly that
We have two problems:

«0>» «F» « =>»

i
v

DA

An Efficient Algorithm

)
SHANGHAI JIAO TONG
Eﬁ% = UNIVERSITY

have been visited.

component.

If the EXPLORE subroutine at node w, then it will terminate precisely when all nodes reachable from u

If we call explore on a node that lies somewhere in a sink SCC, then we will retrieve exactly that
We have two problems:

© How do we find a node that we know for sure lies in a sink SCC?

«0>» «F» « =>»

i
v

DA

An Efficient Algorithm

3
SHANGHALI JIAO TONG
mey" UNIVERSITY

have been visited.

component.

If the EXPLORE subroutine at node w, then it will terminate precisely when all nodes reachable from u

If we call explore on a node that lies somewhere in a sink SCC, then we will retrieve exactly that
We have two problems:

© How do we find a node that we know for sure lies in a sink SCC?

® How do we continue once this first component has been discovered?

«0>» «F» « =>»

i
v

DA

An Efficient Algorithm

P

\ SHANGHAI JIAO TONG

UNIVERSITY
The node that receives the highest post number in a depth-first search must lie in a source SCC. I

«0>» «F» « =»

i
v

DA

An Efficient Algorithm

K‘\ SHANGHAI JIAO TONG

UNIVERSITY

The node that receives the highest post number in a depth-first search must lie in a source SCC I

IfC and C'" are SCC, and there is an edge from a node in C to a node in C’, then the highest post
number in C'is bigger than the highest post number in C’

«0>» «F» « =>»

a
i

DA

An Efficient Algorithm

(i
:Qw

K SHANGHAI JIAO TONG

/’ UNIVERSITY
The node that receives the highest post number in a depth-first search must lie in a source SCC. I

IfC and C'" are SCC, and there is an edge from a node in C to a node in C’, then the highest post
number in C' is bigger than the highest post number in C'.

numbers.

Hence the SCCs can be linearized by arranging them in decreasing order of their highest post

«0>» «F» « =>»

i
v

DA

Solving Problem A

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Consider the reverse graph G, the same as G but with all edges reversed.
«0O>» «F»

«E>»

i
v

DA

Solving Problem A

3
SHANGHALI JIAO TONG
{% %4 UNIVERSITY

Consider the reverse graph G, the same as G but with all edges reversed.
G' has exactly the same SCCs as G.

«0O>» «F»

«E>»

i
v

DA

Solving Problem A ku SHANGHAL JIAOTONG

Consider the reverse graph G, the same as G but with all edges reversed.

G' has exactly the same SCCs as G.

If we do a depth-first search of G, the node with the highest post number will come from a source
SCCin G*.

«O>» «Fr «=)» <

i
v
it

DA

Solving Problem A

=

@®

7
\ SHANGHAI JIAO TONG
y" UNIVERSITY

Consider the reverse graph G, the same as G but with all edges reversed.
G' has exactly the same SCCs as G.

SCCin G*.

If we do a depth-first search of G, the node with the highest post number will come from a source
Itis a sink SCC in G.

«O0>» «F» «=)» <

i
v

DA

f”‘ HANGHALI JIAO TONG
Strongly Connected Components %mmm’ b

DA

Solving Problem B

3
SHANGHALI JIAO TONG
{% %4 UNIVERSITY

Once we have found the first SCC and deleted it from the graph, the node with the highest post
number among those remaining will belong to a sink SCC of whatever remains of G.

«0>» «F» « =>»

i
v

DA

Solving Problem B

R
rj‘{‘ SHANGHAI JIAO TONG
K‘y UNIVERSITY

Once we have found the first SCC and deleted it from the graph, the node with the highest post
number among those remaining will belong to a sink SCC of whatever remains of G.

Therefore we can keep using the post numbering from our initial depth-first search on G to
successively output the second strongly connected component, the third SCC, and so on.

«0O0>» «F» «=)» <

i
v
it

DA

The Linear-Time Algorithm

P

\ SHANGHAI JIAO TONG

UNIVERSITY

© Run depth-first search on G%.

«0>» «F» « =>»

i
v

DA

The Linear-Time Algorithm

)
SHANGHAI JIAO TONG
Eﬁ% = UNIVERSITY

© Run depth-first search on G%.

® Run the EXPLORE algorithm on G, and during the depth-first search, process the vertices in
decreasing order of their post numbers from step 1.

«0>» «F» « >

i
v

DA

f”‘ HANGHALI JIAO TONG
Strongly Connected Components %mmm’ b

DA

Think About

P

\ SHANGHAI JIAO TONG

UNIVERSITY

How the SCC algorithm works when the graph is very, very huge?

«0>» «F» « >

i
v

DA

Think About

P

\ SHANGHAI JIAO TONG

UNIVERSITY

How about edges instead of paths?

«0>» «F» « >

i
v

DA

[m]

>

“EFr o«

Q>

H (RS
Exercises 1 SHANGHAL J1AO TONG

Suppose a CS curriculum consists of n courses, all of them mandatory. The prerequisite graph G
has a node for each course, and an edge from course v to course w if and only if v is a prerequisite
for w. Find an algorithm that works directly with this graph representation, and computes the
minimum number of semesters necessary to complete the curriculum (assume that a student

can take any number of courses in one semester). The running time of your algorithm should be
linear.

«O» «F)r «

it
v
a

i
v

DA

Exercises 2

SHANGHAI JIAO TONG
INIVERSITY

Give an efficient algorithm which takes as input a directed graph G = (V, E), and determines
whether or not there is a vertex s € V from which all other vertices are reachable.

«O» «F)r «

it
v

DA

	Decompositions of Graphs
	Connectivity in Undirected Graphs
	Connectivity in Directed Graphs
	Strongly Connected Components
	Exercises

