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Let B be an n x n chessboard, where n is a power of 2. Use a divide-and-conquer argument to
describe how to cover all squares of B except one with L-shaped tiles. For example, if n = 2, then

there are four squares three of which can be covered by one L-shaped tile, and if n = 4, then there
are 16 squares of which 15 can be covered by 5 L-shaped tiles.
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Decompositions of Graphs
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EXPLORE (G, v)

input : G = (V,E)isagraph;v eV

output: visited(u) to true for all nodes u reachable from v
visited(v) = true;

PREVISIT (v);

for each edge (v,u) € E do

| if not visited(u) then EXPLORE (G, u) ;
end
POSTVISIT (v);
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forallv € V do

‘ visited(v) = false;
end
forallv € V do

‘ if not visited(v) then Explore (G, v);
end
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Connectivity in Undirected Graphs
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Types of Edges in Undirected Graphs
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Those edges in G that are traversed by EXPLORE are tree edges.
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Types of Edges in Undirected Graphs
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e
Those edges in G that are traversed by EXPLORE are tree edges.

The rest are back edges.
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Connectivity in Undirected Graphs
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Definition
An undirected graph is connected, if there is a path between any pair of vertices.
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Connectivity in Undirected Graphs
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Definition
An undirected graph is connected, if there is a path between any pair of vertices.
Definition

remaining vertices.

A connected component is a subgraph that is internally connected but has no edges to the
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Connectivity in Undirected Graphs
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Definition
An undirected graph is connected, if there is a path between any pair of vertices.
Definition

remaining vertices.

A connected component is a subgraph that is internally connected but has no edges to the

containing that vertex.

When EXPLORE is started at a particular vertex, it identifies precisely the connected component

Each time the DFS outer loop calls EXPLORE, a new connected component is picked out.
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Connectivity in Undirected Graphs
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DFS is trivially adapted to check if a graph is connected.
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Connectivity in Undirected Graphs
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DFS is trivially adapted to check if a graph is connected.

More generally, to assign each node v an integer ccnum/[v] identifying the connected component to
which it belongs.

PREVISIT (v)

cenum|v] = cc;

EXPLORE.

where cc needs to be initialized to zero and to be incremented each time the DFS procedure calls
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Previsit and Postvisit Orderings
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For each node, we will note down the times of two important events:
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Previsit and Postvisit Orderings

R
For each node, we will note down the times of two important events
® the moment of first discovery (corresponding to PREVISIT);
¢ and the moment of final departure (POSTVISIT).
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Previsit and Postvisit Orderings

For each node, we will note down the times of two important events:
® the moment of first discovery (corresponding to PREVISIT);
¢ and the moment of final departure (POSTVISIT).

PREVISIT (v) POSTVISIT (v)
pre[v] = clock; post[v] = clock;
clock + +; clock + +;

«0>» «F» « =>»

i
v

DA



Previsit and Postvisit Orderings
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For each node, we will note down the times of two important events:
® the moment of first discovery (corresponding to PREVISIT);
¢ and the moment of final departure (POSTVISIT).
PREVISIT (v) POSTVISIT (v)
pre[v] = clock; post[v] = clock;
clock + +;

clock + +;

For any nodes v and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)]
one is contained within the other.

are either disjoint or
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Previsit and Postvisit Orderings
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Connectivity in Directed Graphs
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Types of Edges in Directed Graphs
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DFS yields a search tree/forests.

«0O0>» «F» « =>»

i
v

DA



Types of Edges in Directed Graphs
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DFS yields a search tree/forests.
® root.
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Types of Edges in Directed Graphs
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DFS yields a search tree/forests.
® root.

e descendant and ancestor.
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Types of Edges in Directed Graphs
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DFS yields a search tree/forests.
® root.

e descendant and ancestor.
e parent and child.
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Types of Edges in Directed Graphs @) unsmrorone

DFS yields a search tree/forests.
® root.
® descendant and ancestor.
e parent and child.
® Tree edges are actually part of the DFS forest.
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Types of Edges in Directed Graphs S“"”““’“ oTons

DFS yields a search tree/forests.
® root.
e descendant and ancestor.

parent and child.
Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in the DFS tree.
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DFS yields a search tree/forests.

® root.

® descendant and ancestor.

parent and child.

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in the DFS tree.
Back edges lead to an ancestor in the DFS tree.
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DFS yields a search tree/forests.

® root.

® descendant and ancestor.

parent and child.

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant in the DFS tree.
Back edges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor.
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Directed Graphs
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Types of Edges
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pre/post ordering for (u, v)

[u

Edge type
L o
[v

[u

Tree/forward
™ I Back
[v I [ s Cross
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Types of Edges
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pre/post ordering for (u, v)

Edge type
[u [v }v }u Tree/forward
[v [u }u ]U BaCk

b o o Cross

Q: Is that all?
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Directed Acyclic Graphs (DAG)
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A cycle in a directed graph is a circular path

Vo —> V1 —> V2 — ...V — Vo
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Directed Acyclic Graphs (DAG)
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A cycle in a directed graph is a circular path

Vo —> V1 —> V2 — ...V — Vo

A directed graph has a cycle if and only if its depth-first search reveals a back edge. I
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Directed Acyclic Graphs (DAG)
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Directed Acyclic Graphs (DAG)
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Linearization/Topologically Sort: Order the vertices such that every edge goes from a earlier vertex
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Directed Acyclic Graphs (DAG)
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Linearization/Topologically Sort: Order the vertices such that every edge goes from a earlier vertex
Q: What types of dags can be linearized?
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Directed Acyclic Graphs (DAG) UNVERSITY

Linearization/Topologically Sort: Order the vertices such that every edge goes from a earlier vertex
to a later one.

Q: What types of dags can be linearized?

A: All of them.
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Directed Acyclic Graphs (DAG) UNVERSITY

Linearization/Topologically Sort: Order the vertices such that every edge goes from a earlier vertex
to a later one.

Q: What types of dags can be linearized?

A: All of them.

DFS tells us exactly how to do it: perform tasks in decreasing order of their post numbers.
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Linearization/Topologically Sort: Order the vertices such that every edge goes from a earlier vertex
to a later one.

Q: What types of dags can be linearized?

A: All of them.

DFS tells us exactly how to do it: perform tasks in decreasing order of their post numbers.

The only edges (u, v) in a graph for which post(u) < post(v) are back edges, and we have seen that
a DAG cannot have back edges.
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In a DAG, every edge leads to a vertex with a lower post number. I
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Directed Acyclic Graphs (DAG)
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There is a linear-time algorithm for ordering the nodes of a DAG.
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Directed Acyclic Graphs (DAG)
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There is a linear-time algorithm for ordering the nodes of a DAG
thing.

Acyclicity, linearizability, and the absence of back edges during a depth-first search - are the same
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There is a linear-time algorithm for ordering the nodes of a DAG.

Acyclicity, linearizability, and the absence of back edges during a depth-first search - are the same
thing.

The vertex with the smallest post number comes last in this linearization, and it must be a sink - no
outgoing edges.
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There is a linear-time algorithm for ordering the nodes of a DAG.

Acyclicity, linearizability, and the absence of back edges during a depth-first search - are the same
thing.

The vertex with the smallest post number comes last in this linearization, and it must be a sink - no
outgoing edges.

Symmetrically, the one with the highest post is a source, a node with no incoming edges.
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Every DAG has at least one source and at least one sink. I

«0O0>» «F» « =>»

i
v

DA



Directed Acyclic Graphs (DAG)
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Every DAG has at least one source and at least one sink. I

The guaranteed existence of a source suggests an alternative approach to linearization:
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Directed Acyclic Graphs (DAG)
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Every DAG has at least one source and at least one sink. I

The guaranteed existence of a source suggests an alternative approach to linearization
© Find a source, output it, and delete it from the graph.
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Directed Acyclic Graphs (DAG)
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Every DAG has at least one source and at least one sink. I

The guaranteed existence of a source suggests an alternative approach to linearization

© Find a source, output it, and delete it from the graph.
® Repeat until the graph is empty.
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Strongly Connected Components
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Defining Connectivity for Directed Graphs

Definition

to w.

Two nodes u and v of a directed graph are connected if there is a path from « to v and a path from v
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Defining Connectivity for Directed Graphs

Definition

to w.

Two nodes u and v of a directed graph are connected if there is a path from « to v and a path from v

This relation partitions V' into disjoint sets that we call strongly connected components (SCC).
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Defining Connectivity for Directed Graphs

Definition

to w.

Two nodes u and v of a directed graph are connected if there is a path from « to v and a path from v

This relation partitions V' into disjoint sets that we call strongly connected components (SCC).
Every directed graph is a DAG of its SCC. I

«O» «F)r «

Er <

3

DA



Strongly Connected Components
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An Efficient Algorithm
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have been visited.

If the EXPLORE subroutine at node w, then it will terminate precisely when all nodes reachable from u
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An Efficient Algorithm
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have been visited.

component.

If the EXPLORE subroutine at node w, then it will terminate precisely when all nodes reachable from u

If we call explore on a node that lies somewhere in a sink SCC, then we will retrieve exactly that
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An Efficient Algorithm
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have been visited.

component.

If the EXPLORE subroutine at node w, then it will terminate precisely when all nodes reachable from u

If we call explore on a node that lies somewhere in a sink SCC, then we will retrieve exactly that
We have two problems:
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An Efficient Algorithm
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have been visited.

component.

If the EXPLORE subroutine at node w, then it will terminate precisely when all nodes reachable from u

If we call explore on a node that lies somewhere in a sink SCC, then we will retrieve exactly that
We have two problems:

© How do we find a node that we know for sure lies in a sink SCC?
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An Efficient Algorithm
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have been visited.

component.

If the EXPLORE subroutine at node w, then it will terminate precisely when all nodes reachable from u

If we call explore on a node that lies somewhere in a sink SCC, then we will retrieve exactly that
We have two problems:

© How do we find a node that we know for sure lies in a sink SCC?

® How do we continue once this first component has been discovered?
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An Efficient Algorithm
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The node that receives the highest post number in a depth-first search must lie in a source SCC. I
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An Efficient Algorithm
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The node that receives the highest post number in a depth-first search must lie in a source SCC I

IfC and C'" are SCC, and there is an edge from a node in C to a node in C’, then the highest post
number in C'is bigger than the highest post number in C’

«0>» «F» « =>»

a
i

DA



An Efficient Algorithm
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The node that receives the highest post number in a depth-first search must lie in a source SCC. I

IfC and C'" are SCC, and there is an edge from a node in C to a node in C’, then the highest post
number in C' is bigger than the highest post number in C'.

numbers.

Hence the SCCs can be linearized by arranging them in decreasing order of their highest post
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Solving Problem A
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Consider the reverse graph G, the same as G but with all edges reversed.
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Solving Problem A
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Consider the reverse graph G, the same as G but with all edges reversed.
G' has exactly the same SCCs as G.
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Solving Problem A ku SHANGHAL JIAOTONG

Consider the reverse graph G, the same as G but with all edges reversed.

G' has exactly the same SCCs as G.

If we do a depth-first search of G, the node with the highest post number will come from a source
SCCin G*.
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Solving Problem A
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Consider the reverse graph G, the same as G but with all edges reversed.
G' has exactly the same SCCs as G.

SCCin G*.

If we do a depth-first search of G, the node with the highest post number will come from a source
Itis a sink SCC in G.
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Solving Problem B
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Once we have found the first SCC and deleted it from the graph, the node with the highest post
number among those remaining will belong to a sink SCC of whatever remains of G.
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Solving Problem B
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Once we have found the first SCC and deleted it from the graph, the node with the highest post
number among those remaining will belong to a sink SCC of whatever remains of G.

Therefore we can keep using the post numbering from our initial depth-first search on G to
successively output the second strongly connected component, the third SCC, and so on.
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The Linear-Time Algorithm
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© Run depth-first search on G%.
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The Linear-Time Algorithm
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© Run depth-first search on G%.

® Run the EXPLORE algorithm on G, and during the depth-first search, process the vertices in
decreasing order of their post numbers from step 1.
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Think About
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How the SCC algorithm works when the graph is very, very huge?
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Think About
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How about edges instead of paths?
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Suppose a CS curriculum consists of n courses, all of them mandatory. The prerequisite graph G
has a node for each course, and an edge from course v to course w if and only if v is a prerequisite
for w. Find an algorithm that works directly with this graph representation, and computes the
minimum number of semesters necessary to complete the curriculum (assume that a student

can take any number of courses in one semester). The running time of your algorithm should be
linear.
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Exercises 2
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Give an efficient algorithm which takes as input a directed graph G = (V, E), and determines
whether or not there is a vertex s € V from which all other vertices are reachable.
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