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An Exercise

Let B be an n× n chessboard, where n is a power of 2. Use a divide-and-conquer argument to
describe how to cover all squares of B except one with L-shaped tiles. For example, if n = 2, then
there are four squares three of which can be covered by one L-shaped tile, and if n = 4, then there
are 16 squares of which 15 can be covered by 5 L-shaped tiles.
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Decompositions of Graphs
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Exploring Graphs

EXPLORE(G, v)
input : G = (V,E) is a graph; v ∈ V

output: visited(u) to true for all nodes u reachable from v

visited(v) = true;
PREVISIT(v);
for each edge (v, u) ∈ E do

if not visited(u) then EXPLORE(G, u);
end
POSTVISIT(v);
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Depth-First Search

DFS(G)

for all v ∈ V do
visited(v) = false;

end
for all v ∈ V do

if not visited(v) then Explore(G, v);
end
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Connectivity in Undirected Graphs
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Types of Edges in Undirected Graphs

Those edges in G that are traversed by EXPLORE are tree edges.

The rest are back edges.
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Connectivity in Undirected Graphs

Definition

An undirected graph is connected, if there is a path between any pair of vertices.

Definition

A connected component is a subgraph that is internally connected but has no edges to the
remaining vertices.

When EXPLORE is started at a particular vertex, it identifies precisely the connected component
containing that vertex.

Each time the DFS outer loop calls EXPLORE, a new connected component is picked out.
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Connectivity in Undirected Graphs

DFS is trivially adapted to check if a graph is connected.

More generally, to assign each node v an integer ccnum[v] identifying the connected component to
which it belongs.

PREVISIT(v)

ccnum[v] = cc;

where cc needs to be initialized to zero and to be incremented each time the DFS procedure calls
EXPLORE.
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Previsit and Postvisit Orderings

For each node, we will note down the times of two important events:

• the moment of first discovery (corresponding to PREVISIT);
• and the moment of final departure (POSTVISIT).

PREVISIT(v)

pre[v] = clock;
clock ++;

POSTVISIT(v)

post[v] = clock;
clock ++;

Lemma

For any nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are either disjoint or
one is contained within the other.
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Previsit and Postvisit Orderings
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Connectivity in Directed Graphs
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Types of Edges in Directed Graphs

DFS yields a search tree/forests.

• root.
• descendant and ancestor.
• parent and child.
• Tree edges are actually part of the DFS forest.
• Forward edges lead from a node to a nonchild descendant in the DFS tree.
• Back edges lead to an ancestor in the DFS tree.
• Cross edges lead to neither descendant nor ancestor.
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Directed Graphs
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Types of Edges

pre/post ordering for (u, v) Edge type

[u [v ]v ]u Tree/forward
[v [u ]u ]v Back
[v ]v [u ]u Cross

Q: Is that all?
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Directed Acyclic Graphs (DAG)

Definition

A cycle in a directed graph is a circular path

v0 → v1 → v2 → . . . vk → v0

Lemma

A directed graph has a cycle if and only if its depth-first search reveals a back edge.
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Directed Acyclic Graphs (DAG)
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Directed Acyclic Graphs (DAG)

Linearization/Topologically Sort: Order the vertices such that every edge goes from a earlier vertex
to a later one.

Q: What types of dags can be linearized?

A: All of them.

DFS tells us exactly how to do it: perform tasks in decreasing order of their post numbers.

The only edges (u, v) in a graph for which post(u) < post(v) are back edges, and we have seen that
a DAG cannot have back edges.
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Directed Acyclic Graphs (DAG)

Lemma

In a DAG, every edge leads to a vertex with a lower post number.
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Directed Acyclic Graphs (DAG)

There is a linear-time algorithm for ordering the nodes of a DAG.

Acyclicity, linearizability, and the absence of back edges during a depth-first search - are the same
thing.

The vertex with the smallest post number comes last in this linearization, and it must be a sink - no
outgoing edges.

Symmetrically, the one with the highest post is a source, a node with no incoming edges.
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Directed Acyclic Graphs (DAG)

Lemma

Every DAG has at least one source and at least one sink.

The guaranteed existence of a source suggests an alternative approach to linearization:

1 Find a source, output it, and delete it from the graph.

2 Repeat until the graph is empty.
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Strongly Connected Components
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Defining Connectivity for Directed Graphs

Definition

Two nodes u and v of a directed graph are connected if there is a path from u to v and a path from v

to u.

This relation partitions V into disjoint sets that we call strongly connected components (SCC).

Lemma

Every directed graph is a DAG of its SCC.
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Strongly Connected Components

(a)

A

D E

C

F

B

HG

K

L

JI

(b)

A B,E C,F

D
J,K,L

G,H,I

24/36



An Efficient Algorithm

Lemma

If the EXPLORE subroutine at node u, then it will terminate precisely when all nodes reachable from u

have been visited.

If we call explore on a node that lies somewhere in a sink SCC, then we will retrieve exactly that
component.

We have two problems:

1 How do we find a node that we know for sure lies in a sink SCC?

2 How do we continue once this first component has been discovered?
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An Efficient Algorithm

Lemma

The node that receives the highest post number in a depth-first search must lie in a source SCC.

Lemma

If C and C′ are SCC, and there is an edge from a node in C to a node in C′, then the highest post
number in C is bigger than the highest post number in C′.

Hence the SCCs can be linearized by arranging them in decreasing order of their highest post
numbers.
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Solving Problem A

Consider the reverse graph GR, the same as G but with all edges reversed.

GR has exactly the same SCCs as G.

If we do a depth-first search of GR, the node with the highest post number will come from a source
SCC in GR.

It is a sink SCC in G.
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Strongly Connected Components
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Solving Problem B

Once we have found the first SCC and deleted it from the graph, the node with the highest post
number among those remaining will belong to a sink SCC of whatever remains of G.

Therefore we can keep using the post numbering from our initial depth-first search on GR to
successively output the second strongly connected component, the third SCC, and so on.
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The Linear-Time Algorithm

1 Run depth-first search on GR.

2 Run the EXPLORE algorithm on G, and during the depth-first search, process the vertices in
decreasing order of their post numbers from step 1.
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Think About

How the SCC algorithm works when the graph is very, very huge?

32/36



Think About

How about edges instead of paths?
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Exercises
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Exercises 1

3.16. Suppose a CS curriculum consists of n courses, all of them mandatory. The prerequisite graph G

has a node for each course, and an edge from course v to course w if and only if v is a prerequisite

for w. Find an algorithm that works directly with this graph representation, and computes the

minimum number of semesters necessary to complete the curriculum (assume that a student

can take any number of courses in one semester). The running time of your algorithm should be

linear.

35/36



Exercises 2

3.22. Give an efficient algorithm which takes as input a directed graph G = (V, E), and determines
whether or not there is a vertex s ∈ V from which all other vertices are reachable.
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