

Algorithm Design VII

Path in Graphs

Guoqiang Li
School of Software

Distances

Distances

Definition

The distance between two nodes is the length of the shortest path between them.
(a)

(b)

Breadth-First Search

```
BFS (G,v)
input : Graph G=(V,E), directed or undirected; Vertex v\inV
```

```
for all }u\inV\mathrm{ do
```

for all }u\inV\mathrm{ do
dist(u)=\infty;
dist(u)=\infty;
end
end
dist[v]=0;
dist[v]=0;
Q = [v] queue containing just v;
Q = [v] queue containing just v;
while Q is not empty do
while Q is not empty do
u=Eject (Q);
u=Eject (Q);
for all edge (u,s) \inE do
for all edge (u,s) \inE do
if }\operatorname{dist}(s)=\infty\mathrm{ then
if }\operatorname{dist}(s)=\infty\mathrm{ then
Inject (Q,s); dist[s]=\operatorname{dist}[u]+1;
Inject (Q,s); dist[s]=\operatorname{dist}[u]+1;
end
end
end
end
end

```
end
```

output: For all vertices u reachable from $v, \operatorname{dist}(u)$ is the set to the distance from v to u

Correctness

Lemma

For each $d=0,1,2, \ldots$ there is a moment at which,
(1) all nodes at distance $\leq d$ from s have their distances correctly set;
(2) all other nodes have their distances set to ∞; and
(3) the queue contains exactly the nodes at distance d.

Lengths on Edges

BFS treats all edges as having the same length.
It is rarely true in applications where shortest paths are to be found.

Every edge $e \in E$ with a length l_{e}.
If $e=(u, v)$, we will sometimes also write

$$
l(u, v) \quad \text { or } \quad l_{u v}
$$

Dijkstra's Algorithm

An Adaption of Breadth－First Search

BFS finds shortest paths in any graph whose edges have unit length．

An Adaption of Breadth-First Search

BFS finds shortest paths in any graph whose edges have unit length.

Q: Can we adapt it to a more general graph $G=(V, E)$ whose edge lengths l_{e} are positive integers?

An Adaption of Breadth-First Search

BFS finds shortest paths in any graph whose edges have unit length.

Q: Can we adapt it to a more general graph $G=(V, E)$ whose edge lengths l_{e} are positive integers?

A simple trick: For any edge $e=(u, v)$ of E, replace it by l_{e} edges of length 1 , by adding $l_{e}-1$ dummy nodes between u and v. It might take time

$$
O\left(|V|+\sum_{e \in E} l_{e}\right)
$$

An Adaption of Breadth-First Search

BFS finds shortest paths in any graph whose edges have unit length.

Q: Can we adapt it to a more general graph $G=(V, E)$ whose edge lengths l_{e} are positive integers?

A simple trick: For any edge $e=(u, v)$ of E, replace it by l_{e} edges of length 1 , by adding $l_{e}-1$ dummy nodes between u and v. It might take time

$$
O\left(|V|+\sum_{e \in E} l_{e}\right)
$$

It is bad in case we have edges with high length.

Alarm Clocks

Set an alarm clock for node s at time 0 .
Repeat until there are no more alarms:
The next alarm goes off at time T, for node u. Then:

- The distance from s to u is T.
- For each neighbor v of u in G :

- If there is no alarm yet for v, set one for time $T+l(u, v)$.
- If v 's alarm is set for later than $T+l(u, v)$, then reset it to this earlier time.

An Example

An Example

An Example

An Example

A： 0	D： 5
B： 3	E： 6
C： 2	

An Example

An Example

A： 0	D： 6
B： 3	E： 7
C： 2	

Dijkstra＇s Shortest－Path Algorithm

```
DIJKSTRA ( }G,l,s
input : Graph G=(V,E), directed or undirected; positive edge length
    {le | e\inE}; Vertex s\inV
output: For all vertices }u\mathrm{ reachable from s, dist(u) is the set to the distance
    from s}\mathrm{ to }
for all }u\inV\mathrm{ do
| dist(u)=\infty; prev (u)=nil;
end
dist(s)= 0;
H =makequeue ( V )\\ using dist-values as keys;
while H is not empty do
    u=deletemin(H);
    for all edge (u,v) \inE do
        if dist(v)>\operatorname{dist}(u)+l(u,v) then
            dist(v)=\operatorname{dist}(u)+l(u,v); prev(v)=u;
            decreasekey (H,v);
        end
    end
end
```


Data Structure Trailer: Priority Queue

Priority queue is a data structure usually implemented by heap.

Data Structure Trailer: Priority Queue

Priority queue is a data structure usually implemented by heap.

- Insert: Add a new element to the set.

Data Structure Trailer: Priority Queue

Priority queue is a data structure usually implemented by heap.

- Insert: Add a new element to the set.
- Decrease-key: Accommodate the decrease in key value of a particular element.

Data Structure Trailer: Priority Queue

Priority queue is a data structure usually implemented by heap.

- Insert: Add a new element to the set.
- Decrease-key: Accommodate the decrease in key value of a particular element.
- Delete-min: Return the element with the smallest key, and remove it from the set.

Data Structure Trailer: Priority Queue

Priority queue is a data structure usually implemented by heap.

- Insert: Add a new element to the set.
- Decrease-key: Accommodate the decrease in key value of a particular element.
- Delete-min: Return the element with the smallest key, and remove it from the set.
- Make-queue: Build a priority queue out of the given elements, with the given key values. (In many implementations, this is significantly faster than inserting the elements one by one.)

Data Structure Trailer: Priority Queue

Priority queue is a data structure usually implemented by heap.

- Insert: Add a new element to the set.
- Decrease-key: Accommodate the decrease in key value of a particular element.
- Delete-min: Return the element with the smallest key, and remove it from the set.
- Make-queue: Build a priority queue out of the given elements, with the given key values. (In many implementations, this is significantly faster than inserting the elements one by one.)

The first two let us set alarms, and the third tells us which alarm is next to go off.

Running Time

Since makequeue takes at most as long as $|V|$ insert operations, we get a total of $|V|$ deletemin and $|V|+|E|$ insert/decreasekey operations.

Shortest Paths in the Presence of Negative Edges

Negative Edges

Dijkstra's algorithm works because the shortest path from the starting point s to any node v must pass exclusively through nodes that are closer than v.

Negative Edges

Dijkstra's algorithm works because the shortest path from the starting point s to any node v must pass exclusively through nodes that are closer than v.

This no longer holds when edge lengths can be negative.

Dijkstra's algorithm works because the shortest path from the starting point s to any node v must pass exclusively through nodes that are closer than v.

This no longer holds when edge lengths can be negative.
Q: What needs to be changed in order to accommodate this new complication?

Dijkstra's algorithm works because the shortest path from the starting point s to any node v must pass exclusively through nodes that are closer than v.

This no longer holds when edge lengths can be negative.
Q: What needs to be changed in order to accommodate this new complication?
A crucial invariant of Dijkstra's algorithm is that the dist values it maintains are always either overestimates or exactly correct.

Dijkstra's algorithm works because the shortest path from the starting point s to any node v must pass exclusively through nodes that are closer than v.

This no longer holds when edge lengths can be negative.
Q: What needs to be changed in order to accommodate this new complication?
A crucial invariant of Dijkstra's algorithm is that the dist values it maintains are always either overestimates or exactly correct.

They start off at ∞, and the only way they ever change is by updating along an edge:

$$
\begin{aligned}
& \operatorname{UPDATE}((u, v) \in E) \\
& \operatorname{dist}(v)=\min \{\operatorname{dist}(v), \operatorname{dist}(u)+l(u, v)\}
\end{aligned}
$$

Update

$$
\begin{aligned}
& \operatorname{UPDATE}((u, v) \in E) \\
& \operatorname{dist}(v)=\min \{\operatorname{dist}(v), \operatorname{dist}(u)+l(u, v)\}
\end{aligned}
$$

This UPDATE operation expresses that the distance to v cannot possibly be more than the distance to u, plus $l(u, v)$. It has the following properties,
(1) It gives the correct distance to v in the particular case where u is the second-last node in the shortest path to v, and $\operatorname{dist}(u)$ is correctly set.
(2) It will never make $\operatorname{dist}(v)$ too small, and in this sense it is safe.

Update

```
UPDATE ((u,v) \inE)
dist(v)=min{dist(v), dist(u)+l(u,v)};
```


Update

$$
\begin{aligned}
& \text { UPDATE }((u, v) \in E) \\
& \operatorname{dist}(v)=\min \{\operatorname{dist}(v), \operatorname{dist}(u)+l(u, v)\}
\end{aligned}
$$

Let

$$
s \rightarrow u_{1} \rightarrow u_{2} \rightarrow u_{3} \rightarrow \ldots \rightarrow u_{k} \rightarrow t
$$

be a shortest path from s to t.

Update

$$
\begin{aligned}
& \text { UPDATE }((u, v) \in E) \\
& \operatorname{dist}(v)=\min \{\operatorname{dist}(v), \operatorname{dist}(u)+l(u, v)\}
\end{aligned}
$$

Let

$$
s \rightarrow u_{1} \rightarrow u_{2} \rightarrow u_{3} \rightarrow \ldots \rightarrow u_{k} \rightarrow t
$$

be a shortest path from s to t.
This path can have at most $|V|-1$ edges (why?).

Update

$$
\begin{aligned}
& \text { UPDATE }((u, v) \in E) \\
& \operatorname{dist}(v)=\min \{\operatorname{dist}(v), \operatorname{dist}(u)+l(u, v)\}
\end{aligned}
$$

Let

$$
s \rightarrow u_{1} \rightarrow u_{2} \rightarrow u_{3} \rightarrow \ldots \rightarrow u_{k} \rightarrow t
$$

be a shortest path from s to t.
This path can have at most $|V|-1$ edges (why?).
If the sequence of updates performed includes $\left(s, u_{1}\right),\left(u_{1}, u_{2}\right), \ldots,\left(u_{k}, t\right)$, in that order, then by rule 1 the distance to t will be correctly computed.

Update

$$
\begin{aligned}
& \operatorname{UPDATE}((u, v) \in E) \\
& \operatorname{dist}(v)=\min \{\operatorname{dist}(v), \operatorname{dist}(u)+l(u, v)\}
\end{aligned}
$$

Let

$$
s \rightarrow u_{1} \rightarrow u_{2} \rightarrow u_{3} \rightarrow \ldots \rightarrow u_{k} \rightarrow t
$$

be a shortest path from s to t.
This path can have at most $|V|-1$ edges (why?).
If the sequence of updates performed includes $\left(s, u_{1}\right),\left(u_{1}, u_{2}\right), \ldots,\left(u_{k}, t\right)$, in that order, then by rule 1 the distance to t will be correctly computed.

It doesn't matter what other updates occur on these edges, or what happens in the rest of the graph, because updates are safe (by rule 2).

Bellman-Ford Algorithm

But still, if we don't know all the shortest paths beforehand, how can we be sure to update the right edges in the right order?

Bellman-Ford Algorithm

But still, if we don't know all the shortest paths beforehand, how can we be sure to update the right edges in the right order?

We simply update all the edges, $|V|-1$ times!

Bellman-Ford Algorithm

```
SHORTEST-PATHS (G,l,s)
    distance from s to }
for all }u\inV\mathrm{ do
    dist(u)=\infty;
    prev(u)=nil;
end
dist[s]=0;
repeat }|V|-1\mathrm{ times: for }e\inE\mathrm{ do
UPDATE (e);
end
```

input : Graph $G=(V, E)$, edge length $\left\{l_{e} \mid e \in E\right\}$; Vertex $s \in V$
output: For all vertices u reachable from s, $\operatorname{dist}(u)$ is the set to the

```
SHORTEST-PATHS (G,l,s)
    distance from s to }
for all }u\inV\mathrm{ do
    dist(u)=\infty;
    prev(u)=nil;
end
dist[s]=0;
repeat }|V|-1\mathrm{ times: for }e\inE\mathrm{ do
| UPDATE (e);
end
```

input : Graph $G=(V, E)$, edge length $\left\{l_{e} \mid e \in E\right\}$; Vertex $s \in V$
output: For all vertices u reachable from s, $\operatorname{dist}(u)$ is the set to the

Running time: $O(|V| \cdot|E|)$

	Iteration								
Node	0	1	2	3	4	5	6	7	
S	0	0	0	0	0	0	0	0	
A	∞	10	10	5	5	5	5	5	
B	∞	∞	∞	10	6	5	5	5	
C	∞	∞	∞	∞	11	7	6	6	
D	∞	∞	∞	∞	∞	14	10	9	
E	∞	∞	12	8	7	7	7	7	
F	∞	∞	9	9	9	9	9	9	
G	∞	8	8	8	8	8	8	8	

Negative Cycles

If the graph has a negative cycle, then it doesn't make sense to even ask about shortest path.

Negative Cycles

If the graph has a negative cycle, then it doesn't make sense to even ask about shortest path.
Q: How to detect the existence of negative cycles:

Negative Cycles

If the graph has a negative cycle, then it doesn't make sense to even ask about shortest path.
Q: How to detect the existence of negative cycles:
Instead of stopping after $|V|-1$, iterations, perform one extra round.

Negative Cycles

If the graph has a negative cycle, then it doesn't make sense to even ask about shortest path.
Q: How to detect the existence of negative cycles:
Instead of stopping after $|V|-1$, iterations, perform one extra round.
There is a negative cycle if and only if some dist value is reduced during this final round.

Shortest Paths in DAGs

Graphs without Negative Edges

There are two subclasses of graphs that automatically exclude the possibility of negative cycles:

- graphs without negative edges,

Graphs without Negative Edges

There are two subclasses of graphs that automatically exclude the possibility of negative cycles:

- graphs without negative edges,
- and graphs without cycles.

Graphs without Negative Edges

There are two subclasses of graphs that automatically exclude the possibility of negative cycles:

- graphs without negative edges,
- and graphs without cycles.

We will now see how the single-source shortest-path problem can be solved in just linear time on directed acyclic graphs.

Graphs without Negative Edges

There are two subclasses of graphs that automatically exclude the possibility of negative cycles:

- graphs without negative edges,
- and graphs without cycles.

We will now see how the single-source shortest-path problem can be solved in just linear time on directed acyclic graphs.

As before, we need to perform a sequence of updates that includes every shortest path as a subsequence.

Graphs without Negative Edges

There are two subclasses of graphs that automatically exclude the possibility of negative cycles:

- graphs without negative edges,
- and graphs without cycles.

We will now see how the single-source shortest-path problem can be solved in just linear time on directed acyclic graphs.

As before, we need to perform a sequence of updates that includes every shortest path as a subsequence.

- In any path of a DAG, the vertices appear in increasing linearized order.

A Shortest-Path Algorithm for DAG

```
DAG-SHORTEST-PATHS ( }G,l,s
input : Graph G=(V,E), edge length{le | e\inE ; Vertex s\inV
output: For all vertices u}\mathrm{ reachable from s, dist(u) is the set to the distance from s to u
for all }u\inV\mathrm{ do
    dist(u)=\infty;
    prev(u)=nil;
end
dists = 0;
linearize G;
for each }u\inV\mathrm{ in linearized order do
    for all e\inE do
        UPDATE (e);
        end
end
```


A Shortest-Path Algorithm for DAG

A Shortest-Path Algorithm for DAG

The scheme does not require edges to be positive.

A Shortest-Path Algorithm for DAG

The scheme does not require edges to be positive.
Even can find longest paths in a DAG by the same algorithm: just negate all edge lengths.

Exercises

Exercises 1

Professor Fake suggests the following algorithm for finding the shortest path from node s to node t in a directed graph with some negative edges: add a large constant to each edge weight so that all the weights become positive, then run Dijkstra's algorithm starting at node s, and return the shortest path found to node t.

Exercises 2

You are given a strongly connected directed graph $G=(V, E)$ with positive edge weights along with a particular node $v_{0} \in V$. Give an efficient algorithm for finding shortest paths between all pairs of nodes, with the one restriction that these paths must all pass through v_{0}.

