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Suppose you are asked to network a collection of computers by linking selected pairs of them.
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Suppose you are asked to network a collection of computers by linking selected pairs of them.
This translates into a graph problem in which
® nodes are computers,

¢ undirected edges are potential links, each with a maintenance cost.
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The goal is to

* pick enough of these edges that the nodes are connected,
¢ the total maintenance cost is minimum.
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Build a Network
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The goal is to

* pick enough of these edges that the nodes are connected,
¢ the total maintenance cost is minimum.

One immediate observation is that the optimal set of edges cannot contain a cycle
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Properties of the Optimal Solutions @) vy
Removing a cycle edge cannot disconnect a graph. I
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Properties of the Optimal Solutions @) vy
Removing a cycle edge cannot disconnect a graph. I

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.
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Removing a cycle edge cannot disconnect a graph. I

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.
A tree with minimum total weight, is @ minimum spanning tree, MST.
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Properties of the Optimal Solutions @) vy
Removing a cycle edge cannot disconnect a graph. I

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.
A tree with minimum total weight, is @ minimum spanning tree, MST.

Input: An undirected graph G = (V, E); edge weights we
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Properties of the Optimal Solutions @) vy
Removing a cycle edge cannot disconnect a graph. I

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.
A tree with minimum total weight, is a minimum spanning tree, MST

Input: An undirected graph G = (V, E); edge weights we

Output: Atree T = (V, E') with E' C E that minimizes

weight(T) = Z We

e€E/!
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Trees
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A tree on n nodes has n — 1 edges.
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Trees
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A tree on n nodes has n — 1 edges. I
To build the tree one edge at a time, starting from an empty graph.
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Trees
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A tree on n nodes has n — 1 edges. I
To build the tree one edge at a time, starting from an empty graph.

Each of the n nodes is disconnected from the others, in a connected component by itself.
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A tree on n nodes has n — 1 edges. I

To build the tree one edge at a time, starting from an empty graph.

Each of the n nodes is disconnected from the others, in a connected component by itself.

As edges are added, these components merge. Since each edge unites two different components,
exactly n — 1 edges are added by the time the tree is fully formed.
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A tree on n nodes has n — 1 edges. \

To build the tree one edge at a time, starting from an empty graph.

)

Each of the n nodes is disconnected from the others, in a connected component by itself.

As edges are added, these components merge. Since each edge unites two different components,
exactly n — 1 edges are added by the time the tree is fully formed.

When a particular edge (u,v) comes up, we can be sure that v and v lie in separate connected

components, for otherwise there would already be a path between them and this edge would create
acycle.
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Any connected, undirected graph G = (V, E) with |[E| = |V| — 1 is a tree.
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Any connected, undirected graph G = (V, E) with |[E| = |V| — 1 is a tree.

It is the converse of Lemma (2).
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Any connected, undirected graph G = (V, E) with |[E| = |V| — 1 is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.
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Any connected, undirected graph G = (V, E) with |[E| = |V| — 1 is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.

While the graph contains a cycle, remove one edge from this cycle.
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Trees SHANGHAI JIAO TONG

Any connected, undirected graph G = (V, E) with |[E| = |V| — 1 is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.
While the graph contains a cycle, remove one edge from this cycle.

The process terminates with some graph G’ = (V, E’), E' C E, which is acyclic and, by Lemma (1),
is also connected.
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Any connected, undirected graph G = (V, E) with |[E| = |[V| — 1 is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.
While the graph contains a cycle, remove one edge from this cycle.

The process terminates with some graph G’ = (V, E’), E' C E, which is acyclic and, by Lemma (1),
is also connected.

Therefore G’ is a tree, whereupon |E’| = |V| — 1 by Lemma (2). So E’ = E, no edges were
removed, and G was acyclic to start with.

«40>» «F» «E» «

>

APAN G4



Trees

P

\ SHANGHAI JIAO TONG

UNIVERSITY

An undirected graph is a tree if and only if there is a unique path between any pair of nodes. I
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An undirected graph is a tree if and only if there is a unique path between any pair of nodes. I
of these paths would contain a cycle.

In a tree, any two nodes can only have one path between them; for if there were two paths, the union
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An undirected graph is a tree if and only if there is a unique path between any pair of nodes. I

In a tree, any two nodes can only have one path between them; for if there were two paths, the union
of these paths would contain a cycle.

On the other hand, if a graph has a path between any two nodes, then it is connected. If these paths
are unique, then the graph is also acyclic.
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A Greedy Approach

E according to the following rule.
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Kruskal’'s minimum spanning tree algorithm starts with the empty graph and then selects edges from

Repeatedly add the next lightest edge that doesn’t produce a cycle.

Starting with an empty graph and then attempt to add edges in increasing order of weight

B-C;C-D;B-D;C—-F;D—-F,E—F;A-D;A-B;C—-FE;A-C

>IN
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The Cut Property
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is part of some MST.

Suppose edges X are part of a MST of G = (V, E). Pick any subset of nodes S for which X does
not cross between S and V\ S, and let e be the lightest edge across this partition. Then

X U{e}
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The Cut Property
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A cut is any partition of the vertices into two
groups, S and V\S.

It is safe to add the lightest edge across any cut,
provided X has no edges across the cut.
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Proof of the Cut Property
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Proof of the Cut Property
Proof:

nothing to prove.

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is
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Proof:
Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is

nothing to prove.

So assume eis notin 7.
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Proof of the Cut Property
Proof:

nothing to prove.

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.
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nothing to prove.

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.
Add edge eto T.
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Proof:

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is
nothing to prove.

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding
e creates a cycle.
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Proof:

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is
nothing to prove.

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding
e creates a cycle.

This cycle must also have some other edge ¢’ across the cut (S, V\S).
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Proof of the Cut Property

Proof:

Edges X are part of some MST T'; if the new edge e also happens to be part of T', then there is
nothing to prove.

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding
e creates a cycle.

This cycle must also have some other edge ¢’ across the cut (S, V\S). If we now remove ¢’
T =TU{e}\{e'}

which we will show to be a tree.
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Proof of the Cut Property

Proof:

Edges X are part of some MST T'; if the new edge e also happens to be part of T', then there is
nothing to prove.

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding
e creates a cycle.

This cycle must also have some other edge ¢’ across the cut (S, V\S). If we now remove ¢’

T' = TU {e}\(¢'}

which we will show to be a tree.

T’ is connected by Lemma (1), since ¢’ is a cycle edge.
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Proof of the Cut Property

Proof:

Edges X are part of some MST T'; if the new edge e also happens to be part of T', then there is
nothing to prove.

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding
e creates a cycle.

This cycle must also have some other edge ¢’ across the cut (S, V\S). If we now remove ¢’
T =Tu{e\{e}
which we will show to be a tree.

T’ is connected by Lemma (1), since ¢’ is a cycle edge. And it has the same number of edges as T';
so by Lemma (2) and Lemma (3), it is also a tree.
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T’ is a minimum spanning tree, since
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Proof of the Cut Property
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T’ is a minimum spanning tree, since

weight(T") = weight(T) + w(e) — w(e’)

«0>» «F» « >

i
v

DA



Proof of the Cut Property

e
Proof:

\ SHANGHAI JIAO TONG

UNIVERSITY

T’ is a minimum spanning tree, since

weight(T") = weight(T) + w(e) — w(e’)

Both e and ¢’ cross between S and V'\ S, and ¢ is the lightest edge of this type.
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T’ is a minimum spanning tree, since

weight(T") = weight(T) +w(e)

—w(e)
w(e) < w(e'), and

weight(T'

Both e and ¢’ cross between S and V'\ S, and ¢ is the lightest edge of this type. Therefore
) < weight(T)
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Proof of the Cut Property
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T’ is a minimum spanning tree, since

weight(T") = weight(T) + w(e) — w(e’)
w(e) < w(e'), and

Both e and ¢’ cross between S and V'\ S, and ¢ is the lightest edge of this type. Therefore

weight(T") < weight(T)

Since T is an MST, it must be the case that weight(

) = weight(T) and that 7" is also an MST
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An Example of Cut Property
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Edges X:

(c) e @
The cut: . & i
I ©)

MST T":
S

V-5
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KRUSKAL (G, w)
input : A connected undirected graph G = (V, E), with edge weight we
output: A minimum spanning tree defined by the edges X

for allu € V do
‘ makeset (U);
end
X={}
Sort the edges F by weight;
for all (u,v) € E in increasing order of weight do
if find (u)#Afind (v)then
add (u,v) to X;
union (u,v)
end
end
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Data Structure Retailer: Disjoint Sets
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makeset(z) create a singleton set containing z  |V]|
find(z) find the set that « belong to 2-|E]
union(z, y)

merge the sets containingz andy  |V| -1
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X={k
repeat until | X| = |V|—1;

pick a set S C V for which X has no edges between S and
V-5,

let e € E be the minimum-weight edge between S and V — S;
X =X U{e};
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A popular alternative to Kruskal’s algorithm is Prim’s, in which the intermediate set of edges X
always forms a subtree, and S is chosen to be the set of this tree’s vertices.
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A popular alternative to Kruskal’s algorithm is Prim’s, in which the intermediate set of edges X
always forms a subtree, and S is chosen to be the set of this tree’s vertices.

On each iteration, the subtree defined by X grows by one edge.

The lightest edge between a vertex in S and a vertex outside S. We can equivalently think of S as
growing to include the vertex v ¢ S of smallest cost:
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A popular alternative to Kruskal’s algorithm is Prim’s, in which the intermediate set of edges X
always forms a subtree, and S is chosen to be the set of this tree’s vertices.

On each iteration, the subtree defined by X grows by one edge.

The lightest edge between a vertex in S and a vertex outside S. We can equivalently think of S as
growing to include the vertex v ¢ S of smallest cost:

cost(v) = min w(u, v)
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PRIM (G, w)
input : A connected undirected graph G = (V, E), with edge weights w.
output: A minimum spanning tree defined by the array prev
forallu € V do
cost(u) = oo;
prev(u) = nil;

end
pick any initial node wo;
cost(ug) = 0;

H =makequeue (V) \\ using cost-values as keys;
while H is not empty do
v=deletemin (H);
for each (v, z) € E do
if cost(z) > w(v, z) then
cost(v) = w(v, z); prev(z) = v;
decreasekey (H,z);
end
end
end
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DIJKSTRA (G, [, s)
input : Graph G = (V, E), directed or undirected; positive edge length {l. | e € E};
Vertex s € V

output: For all vertices u reachable from s, dist(u) is the set to the distance from s to
u

for allu € V do
dist(u) = oo;
prev(u) = nil;
end
dist(s) = 0;
H =makequeue (V) \\ using dist-values as keys;
while /1 is not empty do
u=deletemin (H);
for all edge (u,v) € E do
if dist(v) > dist(u) + l(u, v) then
dist(v) = dist(u) + l(u,v); prev(v) = u;
decreasekey (H,v);
end
end
end

A,
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The Problem

A county is in its early stages of planning and is deciding where to put schools.
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The Problem

A county is in its early stages of planning and is deciding where to put schools.
There are only two constraints:
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A county is in its early stages of planning and is deciding where to put schools.
There are only two constraints:
® each school should be in a town,
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A county is in its early stages of planning and is deciding where to put schools.
There are only two constraints:

® each school should be in a town,

® and no one should have to travel more than 30 miles to reach one of them.
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The Problem

A county is in its early stages of planning and is deciding where to put schools
There are only two constraints:

® each school should be in a town,

o cC

® and no one should have to travel more than 30 miles to reach one of them.
Q: What is the minimum number of schools needed?
(a)

(b)

.
o
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This is a typical (cardinality) set cover problem.
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This is a typical (cardinality) set cover problem.

® For each town z, let S, be the set of towns within 30 miles of it.
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The Problem
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This is a typical (cardinality) set cover problem.

® For each town z, let S, be the set of towns within 30 miles of it.
® A school at « will essentially “cover” these other towns.
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This is a typical (cardinality) set cover problem.

® For each town z, let S, be the set of towns within 30 miles of it.
® A school at « will essentially “cover” these other towns.

® The question is then, how many sets S, must be picked in order to cover all the towns in the
county?
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Set Cover Problem
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® |nput: A set of elements B, sets S,

5w C B

e Qutput: A selection of the S; whose union is B.

e Cost: Number of sets picked.
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Performance Ratio
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Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
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Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
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Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy

p7
algorithm will use at mostInn - OPT sets.

Proof.

no = n).

Let n; be the number of elements still not covered after ¢ iterations of the greedy algorithm (so
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Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at mostInn - OPT sets.

Proof.

Let n; be the number of elements still not covered after ¢ iterations of the greedy algorithm (so
no = n).

Since these remaining elements are covered by the optimal O PT sets, there must be some set with
at least n, /OPT of them.
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Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at mostInn - OPT sets.

Proof.

Let n; be the number of elements still not covered after ¢ iterations of the greedy algorithm (so
no = n).

Since these remaining elements are covered by the optimal O PT sets, there must be some set with
at least n, /OPT of them.

Therefore, the greedy strategy will ensure that

Tt

OPT

1

Nt41 <ng— - m)

= nt(l
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Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at mostInn - OPT sets.

Proof.

Let n; be the number of elements still not covered after ¢ iterations of the greedy algorithm (so
no = n).

Since these remaining elements are covered by the optimal O PT sets, there must be some set with
at least n, /OPT of them.

Therefore, the greedy strategy will ensure that

Tt 1

me <= Gpp == Gpr)
which by repeated application implies
1
me< ol = )
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A more convenient bound can be obtained from the useful inequality

l—z<e “forallz
with equality if and only if z = 0,
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A more convenient bound can be obtained from the useful inequality

l—z<e “forallz
with equality if and only if z = 0,
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A more convenient bound can be obtained from the useful inequality

l—z<e “forallz
with equality if and only if z = 0,
Thus

1 1 ot
ne < no(l— m)t < no(e obT ) =ne oPT
be covered.

Att = Inn - OPT, therefore, n, is strictly less than ne~ "™ = 1, which means no elements remain to
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