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Suppose you are asked to network a collection of computers by linking selected pairs of them.

This translates into a graph problem in which

• nodes are computers,
• undirected edges are potential links, each with a maintenance cost.
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The goal is to

• pick enough of these edges that the nodes are connected,
• the total maintenance cost is minimum.

One immediate observation is that the optimal set of edges cannot contain a cycle.
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Properties of the Optimal Solutions

Lemma (1)

Removing a cycle edge cannot disconnect a graph.

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.

A tree with minimum total weight, is a minimum spanning tree, MST.

Input: An undirected graph G = (V,E); edge weights we

Output: A tree T = (V,E′) with E′ ⊆ E that minimizes

weight(T ) =
∑
e∈E′

we
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Trees

Lemma (2)

A tree on n nodes has n− 1 edges.

To build the tree one edge at a time, starting from an empty graph.

Each of the n nodes is disconnected from the others, in a connected component by itself.

As edges are added, these components merge. Since each edge unites two different components,
exactly n− 1 edges are added by the time the tree is fully formed.

When a particular edge (u, v) comes up, we can be sure that u and v lie in separate connected
components, for otherwise there would already be a path between them and this edge would create
a cycle.
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Trees

Lemma (3)

Any connected, undirected graph G = (V,E) with |E| = |V | − 1 is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.

While the graph contains a cycle, remove one edge from this cycle.

The process terminates with some graph G′ = (V,E′), E′ ⊆ E, which is acyclic and, by Lemma (1),
is also connected.

Therefore G′ is a tree, whereupon |E′| = |V | − 1 by Lemma (2). So E′ = E, no edges were
removed, and G was acyclic to start with.
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Trees

Lemma (4)

An undirected graph is a tree if and only if there is a unique path between any pair of nodes.

In a tree, any two nodes can only have one path between them; for if there were two paths, the union
of these paths would contain a cycle.

On the other hand, if a graph has a path between any two nodes, then it is connected. If these paths
are unique, then the graph is also acyclic.
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A Greedy Approach

Kruskal’s minimum spanning tree algorithm starts with the empty graph and then selects edges from
E according to the following rule.

Repeatedly add the next lightest edge that doesn’t produce a cycle.

Example

Starting with an empty graph and then attempt to add edges in increasing order of weight

B − C;C −D;B −D;C − F ;D − F ;E − F ;A−D;A−B;C − E;A− C
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The Cut Property

Lemma

Suppose edges X are part of a MST of G = (V,E). Pick any subset of nodes S for which X does
not cross between S and V \S, and let e be the lightest edge across this partition. Then

X ∪ {e}

is part of some MST.
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The Cut Property

A cut is any partition of the vertices into two
groups, S and V \S.

It is safe to add the lightest edge across any cut,
provided X has no edges across the cut.

 !

"#

$ $%

& &' '

()*+

, ,- -

./01

23

45

67
89

: :;

< <=

e

S V − S

e′

11/28



Proof of the Cut Property

Proof:

Edges X are part of some MST T ; if the new edge e also happens to be part of T , then there is
nothing to prove.

So assume e is not in T . We will construct a different MST T ′ containing X ∪ {e} by altering T

slightly, changing just one of its edges.

Add edge e to T . Since T is connected, it already has a path between the endpoints of e, so adding
e creates a cycle.

This cycle must also have some other edge e′ across the cut (S, V \S). If we now remove e′

T ′ = T ∪ {e}\{e′}

which we will show to be a tree.

T ′ is connected by Lemma (1), since e′ is a cycle edge. And it has the same number of edges as T ;
so by Lemma (2) and Lemma (3), it is also a tree.
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Proof of the Cut Property

Proof:

T ′ is a minimum spanning tree, since

weight(T ′) = weight(T ) + w(e)− w(e′)

Both e and e′ cross between S and V \S, and e is the lightest edge of this type. Therefore
w(e) ≤ w(e′), and

weight(T ′) ≤ weight(T )

Since T is an MST, it must be the case that weight(T ′) = weight(T ) and that T ′ is also an MST.
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An Example of Cut Property

(a)
A

B

C E

FD
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2 3
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41
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2 1

(b)

Edges X:

A

B

C E

FD

MST T :

A

B

C E

FD

(c)

The cut:

A

B

C E

FD

e

S V − S

MST T ′:

A

B

C E

FD
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Kruskal’s Algorithm

KRUSKAL(G, w)
input : A connected undirected graph G = (V,E), with edge weight we

output: A minimum spanning tree defined by the edges X

for all u ∈ V do
makeset (u);

end
X = { };
Sort the edges E by weight;
for all (u, v) ∈ E in increasing order of weight do

if find (u)̸=find (v) then
add (u, v) to X;
union (u,v)

end
end
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Data Structure Retailer: Disjoint Sets

makeset(x) create a singleton set containing x |V |
find(x) find the set that x belong to 2 · |E|
union(x, y) merge the sets containing x and y |V | − 1
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Prim’s Algorithm
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A General Kruskal’s Algorithm

X = { };
repeat until |X| = |V | − 1;

pick a set S ⊂ V for which X has no edges between S and
V − S;

let e ∈ E be the minimum-weight edge between S and V − S;
X = X ∪ {e};
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Prim’s Algorithm

A popular alternative to Kruskal’s algorithm is Prim’s, in which the intermediate set of edges X

always forms a subtree, and S is chosen to be the set of this tree’s vertices.

On each iteration, the subtree defined by X grows by one edge.

The lightest edge between a vertex in S and a vertex outside S. We can equivalently think of S as
growing to include the vertex v ̸∈ S of smallest cost:

cost(v) = min
u∈S

w(u, v)
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The Algorithm

PRIM(G, w)
input : A connected undirected graph G = (V,E), with edge weights we

output: A minimum spanning tree defined by the array prev

for all u ∈ V do
cost(u) = ∞;
prev(u) = nil;

end
pick any initial node u0;
cost(u0) = 0;
H =makequeue(V )\\ using cost-values as keys;
while H is not empty do

v=deletemin(H);
for each (v, z) ∈ E do

if cost(z) > w(v, z) then
cost(v) = w(v, z); prev(z) = v;
decreasekey (H,z);

end
end

end
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Dijkstra’s Algorithm

DIJKSTRA(G, l, s)
input : Graph G = (V,E), directed or undirected; positive edge length {le | e ∈ E};

Vertex s ∈ V

output: For all vertices u reachable from s, dist(u) is the set to the distance from s to
u

for all u ∈ V do
dist(u) = ∞;
prev(u) = nil;

end
dist(s) = 0;
H =makequeue(V )\\ using dist-values as keys;
while H is not empty do

u=deletemin(H);
for all edge (u, v) ∈ E do

if dist(v) > dist(u) + l(u, v) then
dist(v) = dist(u) + l(u, v); prev(v) = u;
decreasekey (H,v);

end
end

end
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Set Cover

22/28



The Problem

A county is in its early stages of planning and is deciding where to put schools.

There are only two constraints:

• each school should be in a town,
• and no one should have to travel more than 30 miles to reach one of them.

Q: What is the minimum number of schools needed?
(a)
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The Problem

This is a typical (cardinality) set cover problem.

• For each town x, let Sx be the set of towns within 30 miles of it.
• A school at x will essentially “cover” these other towns.
• The question is then, how many sets Sx must be picked in order to cover all the towns in the

county?
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Set Cover Problem

SET COVER

• Input: A set of elements B, sets S1, . . . , Sm ⊆ B

• Output: A selection of the Si whose union is B.
• Cost: Number of sets picked.
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The Example

(b)
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Performance Ratio

Lemma

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at most lnn ·OPT sets.

Proof.
Let nt be the number of elements still not covered after t iterations of the greedy algorithm (so
n0 = n).

Since these remaining elements are covered by the optimal OPT sets, there must be some set with
at least nt/OPT of them.

Therefore, the greedy strategy will ensure that

nt+1 ≤ nt − nt

OPT
= nt(1− 1

OPT
)

which by repeated application implies

nt ≤ n0(1− 1

OPT
)t
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Performance Ratio

A more convenient bound can be obtained from the useful inequality

1− x ≤ e−x for all x

with equality if and only if x = 0,

Thus
nt ≤ n0(1− 1

OPT
)t < n0(e

− 1
OPT )t = ne−

t
OPT

At t = lnn ·OPT , therefore, nt is strictly less than ne− lnn = 1, which means no elements remain to
be covered.
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