

Algorithm Design VIII

Greedy Algorithms

Guoqiang Li
School of Software

Minimum Spanning Trees

Build a Network

Suppose you are asked to network a collection of computers by linking selected pairs of them．

Build a Network

Suppose you are asked to network a collection of computers by linking selected pairs of them.
This translates into a graph problem in which

- nodes are computers,
- undirected edges are potential links, each with a maintenance cost.

Build a Network

Build a Network

The goal is to

- pick enough of these edges that the nodes are connected,
- the total maintenance cost is minimum.

Build a Network

The goal is to

- pick enough of these edges that the nodes are connected,
- the total maintenance cost is minimum.

One immediate observation is that the optimal set of edges cannot contain a cycle.

Properties of the Optimal Solutions

Lemma (1)
Removing a cycle edge cannot disconnect a graph.

Properties of the Optimal Solutions

Lemma (1)

Removing a cycle edge cannot disconnect a graph.

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.

Properties of the Optimal Solutions

Lemma (1)

Removing a cycle edge cannot disconnect a graph.

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.
A tree with minimum total weight, is a minimum spanning tree, MST.

Properties of the Optimal Solutions

Lemma (1)

Removing a cycle edge cannot disconnect a graph.

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.
A tree with minimum total weight, is a minimum spanning tree, MST.

Input: An undirected graph $G=(V, E)$; edge weights w_{e}

Properties of the Optimal Solutions

Lemma (1)

Removing a cycle edge cannot disconnect a graph.

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.
A tree with minimum total weight, is a minimum spanning tree, MST.

Input: An undirected graph $G=(V, E)$; edge weights w_{e}
Output: A tree $T=\left(V, E^{\prime}\right)$ with $E^{\prime} \subseteq E$ that minimizes

$$
\text { weight }(T)=\sum_{e \in E^{\prime}} w_{e}
$$

Trees

Lemma（2）

A tree on n nodes has $n-1$ edges．

Lemma (2)

A tree on n nodes has $n-1$ edges.

To build the tree one edge at a time, starting from an empty graph.

Trees

Lemma (2)

A tree on n nodes has $n-1$ edges.

To build the tree one edge at a time, starting from an empty graph.
Each of the n nodes is disconnected from the others, in a connected component by itself.

Lemma (2)

A tree on n nodes has $n-1$ edges.

To build the tree one edge at a time, starting from an empty graph.
Each of the n nodes is disconnected from the others, in a connected component by itself.
As edges are added, these components merge. Since each edge unites two different components, exactly $n-1$ edges are added by the time the tree is fully formed.

Trees

Lemma (2)

A tree on n nodes has $n-1$ edges.

To build the tree one edge at a time, starting from an empty graph.
Each of the n nodes is disconnected from the others, in a connected component by itself.
As edges are added, these components merge. Since each edge unites two different components, exactly $n-1$ edges are added by the time the tree is fully formed.

When a particular edge (u, v) comes up, we can be sure that u and v lie in separate connected components, for otherwise there would already be a path between them and this edge would create a cycle.

Lemma（3）

Any connected，undirected graph $G=(V, E)$ with $|E|=|V|-1$ is a tree．

Lemma (3)

Any connected, undirected graph $G=(V, E)$ with $|E|=|V|-1$ is a tree.

It is the converse of Lemma (2).

Lemma (3)

Any connected, undirected graph $G=(V, E)$ with $|E|=|V|-1$ is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.

Trees

Lemma (3)

Any connected, undirected graph $G=(V, E)$ with $|E|=|V|-1$ is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.
While the graph contains a cycle, remove one edge from this cycle.

Lemma (3)

Any connected, undirected graph $G=(V, E)$ with $|E|=|V|-1$ is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.
While the graph contains a cycle, remove one edge from this cycle.
The process terminates with some graph $G^{\prime}=\left(V, E^{\prime}\right), E^{\prime} \subseteq E$, which is acyclic and, by Lemma (1), is also connected.

Trees

Lemma (3)

Any connected, undirected graph $G=(V, E)$ with $|E|=|V|-1$ is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.
While the graph contains a cycle, remove one edge from this cycle.
The process terminates with some graph $G^{\prime}=\left(V, E^{\prime}\right), E^{\prime} \subseteq E$, which is acyclic and, by Lemma (1), is also connected.

Therefore G^{\prime} is a tree, whereupon $\left|E^{\prime}\right|=|V|-1$ by Lemma (2). So $E^{\prime}=E$, no edges were removed, and G was acyclic to start with.

Lemma (4)

An undirected graph is a tree if and only if there is a unique path between any pair of nodes.

Trees

Lemma (4)

An undirected graph is a tree if and only if there is a unique path between any pair of nodes.

In a tree, any two nodes can only have one path between them; for if there were two paths, the union of these paths would contain a cycle.

Lemma (4)

An undirected graph is a tree if and only if there is a unique path between any pair of nodes.

In a tree, any two nodes can only have one path between them; for if there were two paths, the union of these paths would contain a cycle.

On the other hand, if a graph has a path between any two nodes, then it is connected. If these paths are unique, then the graph is also acyclic.

A Greedy Approach

Kruskal's minimum spanning tree algorithm starts with the empty graph and then selects edges from E according to the following rule.

Repeatedly add the next lightest edge that doesn't produce a cycle.

Example

Starting with an empty graph and then attempt to add edges in increasing order of weight

$$
B-C ; C-D ; B-D ; C-F ; D-F ; E-F ; A-D ; A-B ; C-E ; A-C
$$

The Cut Property

Lemma

Suppose edges X are part of a MST of $G=(V, E)$. Pick any subset of nodes S for which X does not cross between S and $V \backslash S$, and let e be the lightest edge across this partition. Then

$$
X \cup\{e\}
$$

is part of some MST.

The Cut Property

A cut is any partition of the vertices into two groups，S and $V \backslash S$ ．

It is safe to add the lightest edge across any cut， provided X has no edges across the cut．

Proof of the Cut Property

Proof:

Proof of the Cut Property

Proof:
Edges X are part of some MST T;

Proof of the Cut Property

Proof:
Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is nothing to prove.

Proof of the Cut Property

Proof:
Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is nothing to prove.

So assume e is not in T.

Proof of the Cut Property

Proof:
Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is nothing to prove.

So assume e is not in T. We will construct a different MST T^{\prime} containing $X \cup\{e\}$ by altering T slightly, changing just one of its edges.

Proof of the Cut Property

Proof:

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is nothing to prove.

So assume e is not in T. We will construct a different MST T^{\prime} containing $X \cup\{e\}$ by altering T slightly, changing just one of its edges.

Add edge e to T.

Proof of the Cut Property

Proof:

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is nothing to prove.

So assume e is not in T. We will construct a different MST T^{\prime} containing $X \cup\{e\}$ by altering T slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding e creates a cycle.

Proof of the Cut Property

Proof:

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is nothing to prove.

So assume e is not in T. We will construct a different MST T^{\prime} containing $X \cup\{e\}$ by altering T slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding e creates a cycle.

This cycle must also have some other edge e^{\prime} across the cut $(S, V \backslash S)$.

Proof of the Cut Property

Proof:

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is nothing to prove.

So assume e is not in T. We will construct a different MST T^{\prime} containing $X \cup\{e\}$ by altering T slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding e creates a cycle.

This cycle must also have some other edge e^{\prime} across the cut ($S, V \backslash S$). If we now remove e^{\prime}

$$
T^{\prime}=T \cup\{e\} \backslash\left\{e^{\prime}\right\}
$$

which we will show to be a tree.

Proof of the Cut Property

Proof:

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is nothing to prove.

So assume e is not in T. We will construct a different MST T^{\prime} containing $X \cup\{e\}$ by altering T slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding e creates a cycle.

This cycle must also have some other edge e^{\prime} across the cut ($S, V \backslash S$). If we now remove e^{\prime}

$$
T^{\prime}=T \cup\{e\} \backslash\left\{e^{\prime}\right\}
$$

which we will show to be a tree.
T^{\prime} is connected by Lemma (1), since e^{\prime} is a cycle edge.

Proof of the Cut Property

Proof:

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is nothing to prove.

So assume e is not in T. We will construct a different MST T^{\prime} containing $X \cup\{e\}$ by altering T slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding e creates a cycle.

This cycle must also have some other edge e^{\prime} across the cut ($S, V \backslash S$). If we now remove e^{\prime}

$$
T^{\prime}=T \cup\{e\} \backslash\left\{e^{\prime}\right\}
$$

which we will show to be a tree.
T^{\prime} is connected by Lemma (1), since e^{\prime} is a cycle edge. And it has the same number of edges as T; so by Lemma (2) and Lemma (3), it is also a tree.

Proof of the Cut Property

Proof:

Proof of the Cut Property

Proof:
T^{\prime} is a minimum spanning tree, since

Proof of the Cut Property

Proof:
T^{\prime} is a minimum spanning tree, since

$$
w \operatorname{eight}\left(T^{\prime}\right)=w \operatorname{eight}(T)+w(e)-w\left(e^{\prime}\right)
$$

Proof of the Cut Property

Proof:
T^{\prime} is a minimum spanning tree, since

$$
w \operatorname{eight}\left(T^{\prime}\right)=w \operatorname{eight}(T)+w(e)-w\left(e^{\prime}\right)
$$

Both e and e^{\prime} cross between S and $V \backslash S$, and e is the lightest edge of this type.

Proof of the Cut Property

Proof:
T^{\prime} is a minimum spanning tree, since

$$
w \operatorname{eight}\left(T^{\prime}\right)=w \operatorname{eight}(T)+w(e)-w\left(e^{\prime}\right)
$$

Both e and e^{\prime} cross between S and $V \backslash S$, and e is the lightest edge of this type. Therefore $w(e) \leq w\left(e^{\prime}\right)$, and

$$
\text { weight }\left(T^{\prime}\right) \leq \text { weight }(T)
$$

Proof of the Cut Property

Proof:
T^{\prime} is a minimum spanning tree, since

$$
w \operatorname{eight}\left(T^{\prime}\right)=w \operatorname{eight}(T)+w(e)-w\left(e^{\prime}\right)
$$

Both e and e^{\prime} cross between S and $V \backslash S$, and e is the lightest edge of this type. Therefore $w(e) \leq w\left(e^{\prime}\right)$, and

$$
\text { weight }\left(T^{\prime}\right) \leq \text { weight }(T)
$$

Since T is an MST, it must be the case that weight $\left(T^{\prime}\right)=$ weight (T) and that T^{\prime} is also an MST.

An Example of Cut Property

(b)

Kruskal＇s Algorithm

```
KRUSKAL (G,w)
input : A connected undirected graph G=(V,E), with edge weight we
output: A minimum spanning tree defined by the edges }
```

```
for all }u\inV\mathrm{ do
```

for all }u\inV\mathrm{ do
makeset (u);
makeset (u);
end
end
X={ };
Sort the edges E by weight;
for all (u,v)\inE in increasing order of weight do
if find (u)\not=find (v) then
add (u,v) to X;
union (u,v)
end
end

```

\section*{Data Structure Retailer: Disjoint Sets}
```

makeset(x) create a singleton set containing x
find}(x)\quad\mathrm{ find the set that }x\mathrm{ belong to 2 | |E|
union(x,y) merge the sets containing }x\mathrm{ and }y\quad|V|-

```

\section*{Prim's Algorithm}

\section*{A General Kruskal's Algorithm}
```

X={ };
repeat until |X| = |V|-1;
pick a set S\subsetV for which X has no edges between S and
V-S;
let e\inE be the minimum-weight edge between S and V-S;
X=X\cup{e};

```

\section*{Prim's Algorithm}

A popular alternative to Kruskal's algorithm is Prim's, in which the intermediate set of edges \(X\) always forms a subtree, and \(S\) is chosen to be the set of this tree's vertices.

\section*{Prim's Algorithm}

A popular alternative to Kruskal's algorithm is Prim's, in which the intermediate set of edges \(X\) always forms a subtree, and \(S\) is chosen to be the set of this tree's vertices.

On each iteration, the subtree defined by \(X\) grows by one edge.
The lightest edge between a vertex in \(S\) and a vertex outside \(S\). We can equivalently think of \(S\) as growing to include the vertex \(v \notin S\) of smallest cost:

\section*{Prim's Algorithm}

A popular alternative to Kruskal's algorithm is Prim's, in which the intermediate set of edges \(X\) always forms a subtree, and \(S\) is chosen to be the set of this tree's vertices.

On each iteration, the subtree defined by \(X\) grows by one edge.
The lightest edge between a vertex in \(S\) and a vertex outside \(S\). We can equivalently think of \(S\) as growing to include the vertex \(v \notin S\) of smallest cost:
\[
\operatorname{cost}(v)=\min _{u \in S} w(u, v)
\]

\section*{The Algorithm}
\(\operatorname{PRIM}(G, w)\)
input : A connected undirected graph \(G=(V, E)\), with edge weights \(w_{e}\) output: A minimum spanning tree defined by the array prev
```

for all $u \in V$ do
$\operatorname{cost}(u)=\infty$;
$\operatorname{prev}(u)=n i l ;$
end
pick any initial node u_{0};
$\operatorname{cost}\left(u_{0}\right)=0$;
$H=$ makequeue $(V) \backslash \backslash$ using cost-values as keys;
while H is not empty do
$v=$ deletemin (H);
for each $(v, z) \in E$ do
if $\operatorname{cost}(z)>w(v, z)$ then
$\operatorname{cost}(v)=w(v, z) ; \operatorname{prev}(z)=v ;$
decreasekey (H, z);
end
end
end

```

\section*{Dijkstra＇s Algorithm}
```

DIJKSTRA (}G,l,s
input : Graph G=(V,E), directed or undirected; positive edge length {le | e\inE};
Vertex s\inV
output: For all vertices }u\mathrm{ reachable from s, dist(u) is the set to the distance from s}\mathrm{ to
u
for all }u\inV\mathrm{ do
dist(u)=\infty;
prev (u) = nil;
end
dist(s)=0;
H=makequeue (V)
 using dist-values as keys;
while }H\mathrm{ is not empty do
u=deletemin(H);
for all edge (u,v) \inE do
if dist(v)>\operatorname{dist}(u)+l(u,v) then
dist(v)=\operatorname{dist}(u)+l(u,v); prev(v)=u;
decreasekey (H,v);
end
end
end

```

\section*{Set Cover}

\section*{The Problem}

A county is in its early stages of planning and is deciding where to put schools.

\section*{The Problem}

A county is in its early stages of planning and is deciding where to put schools．

There are only two constraints：

\section*{The Problem}

A county is in its early stages of planning and is deciding where to put schools.

There are only two constraints:
- each school should be in a town,

\section*{The Problem}

A county is in its early stages of planning and is deciding where to put schools.

There are only two constraints:
- each school should be in a town,
- and no one should have to travel more than 30 miles to reach one of them.

\section*{The Problem}

A county is in its early stages of planning and is deciding where to put schools.

There are only two constraints:
- each school should be in a town,
- and no one should have to travel more than 30 miles to reach one of them.

Q: What is the minimum number of schools needed?
(a)

(b)


\author{
The Problem
}

This is a typical (cardinality) set cover problem.

\section*{The Problem}

This is a typical (cardinality) set cover problem.
- For each town \(x\), let \(S_{x}\) be the set of towns within 30 miles of it.

\section*{The Problem}

This is a typical (cardinality) set cover problem.
- For each town \(x\), let \(S_{x}\) be the set of towns within 30 miles of it.
- A school at \(x\) will essentially "cover" these other towns.

\section*{The Problem}

This is a typical (cardinality) set cover problem.
- For each town \(x\), let \(S_{x}\) be the set of towns within 30 miles of it.
- A school at \(x\) will essentially "cover" these other towns.
- The question is then, how many sets \(S_{x}\) must be picked in order to cover all the towns in the county?

\section*{Set Cover Problem}

\section*{Set Cover}
- Input: A set of elements \(B\), sets \(S_{1}, \ldots, S_{m} \subseteq B\)
- Output: A selection of the \(S_{i}\) whose union is \(B\).
- Cost: Number of sets picked.

The Example


\author{
Performance Ratio
}

\section*{Performance Ratio}

\section*{Lemma}

Suppose \(B\) contains \(n\) elements and that the optimal cover consists of OPT sets. Then the greedy algorithm will use at most \(\ln n \cdot O P T\) sets.

\section*{Performance Ratio}

\section*{Lemma}

Suppose \(B\) contains \(n\) elements and that the optimal cover consists of OPT sets. Then the greedy algorithm will use at most \(\ln n \cdot O P T\) sets.

Proof.

\section*{Performance Ratio}

\section*{Lemma}

Suppose \(B\) contains \(n\) elements and that the optimal cover consists of OPT sets．Then the greedy algorithm will use at most \(\ln n \cdot O P T\) sets．

Proof．
Let \(n_{t}\) be the number of elements still not covered after \(t\) iterations of the greedy algorithm（so \(n_{0}=n\) ）．

\section*{Performance Ratio}

\section*{Lemma}

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy algorithm will use at most \(\ln n \cdot O P T\) sets.

Proof.
Let \(n_{t}\) be the number of elements still not covered after \(t\) iterations of the greedy algorithm (so \(n_{0}=n\) ).

Since these remaining elements are covered by the optimal \(O P T\) sets, there must be some set with at least \(n_{t} / O P T\) of them.

\section*{Performance Ratio}

\section*{Lemma}

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy algorithm will use at most \(\ln n \cdot O P T\) sets.

Proof.
Let \(n_{t}\) be the number of elements still not covered after \(t\) iterations of the greedy algorithm (so \(n_{0}=n\) ).

Since these remaining elements are covered by the optimal \(O P T\) sets, there must be some set with at least \(n_{t} / O P T\) of them.

Therefore, the greedy strategy will ensure that
\[
n_{t+1} \leq n_{t}-\frac{n_{t}}{O P T}=n_{t}\left(1-\frac{1}{O P T}\right)
\]

\section*{Performance Ratio}

\section*{Lemma}

Suppose \(B\) contains \(n\) elements and that the optimal cover consists of OPT sets. Then the greedy algorithm will use at most \(\ln n \cdot O P T\) sets.

Proof.
Let \(n_{t}\) be the number of elements still not covered after \(t\) iterations of the greedy algorithm (so \(n_{0}=n\) ).

Since these remaining elements are covered by the optimal \(O P T\) sets, there must be some set with at least \(n_{t} / O P T\) of them.

Therefore, the greedy strategy will ensure that
\[
n_{t+1} \leq n_{t}-\frac{n_{t}}{O P T}=n_{t}\left(1-\frac{1}{O P T}\right)
\]
which by repeated application implies
\[
n_{t} \leq n_{0}\left(1-\frac{1}{O P T}\right)^{t}
\]

\author{
Performance Ratio
}

\section*{Performance Ratio}

A more convenient bound can be obtained from the useful inequality
\[
1-x \leq e^{-x} \text { for all } x
\]
with equality if and only if \(x=0\),

\section*{Performance Ratio}

A more convenient bound can be obtained from the useful inequality
\[
1-x \leq e^{-x} \text { for all } x
\]
with equality if and only if \(x=0\) ，
Thus
\[
n_{t} \leq n_{0}\left(1-\frac{1}{O P T}\right)^{t}<n_{0}\left(e^{-\frac{1}{O P T}}\right)^{t}=n e^{-\frac{t}{O P T}}
\]

\section*{Performance Ratio}

A more convenient bound can be obtained from the useful inequality
\[
1-x \leq e^{-x} \text { for all } x
\]
with equality if and only if \(x=0\),
Thus
\[
n_{t} \leq n_{0}\left(1-\frac{1}{O P T}\right)^{t}<n_{0}\left(e^{-\frac{1}{O P T}}\right)^{t}=n e^{-\frac{t}{O P T}}
\]

At \(t=\ln n \cdot O P T\), therefore, \(n_{t}\) is strictly less than \(n e^{-\ln n}=1\), which means no elements remain to be covered.```

