Greedy Algorithms

Guogiang Li SHANGHALI JIAO TONG
UNIVERSITY

School of Software

Minimum Spanning Trees

«0O>» «F»r «

it
v
a
it

APAN G4

Build a Network

3
SHANGHALI JIAO TONG
{% %4 UNIVERSITY

Suppose you are asked to network a collection of computers by linking selected pairs of them.

«40>» «F» «E» «

>

APAN G4

Build a Network

3
SHANGHALI JIAO TONG
mey" UNIVERSITY

Suppose you are asked to network a collection of computers by linking selected pairs of them.
This translates into a graph problem in which
® nodes are computers,

¢ undirected edges are potential links, each with a maintenance cost.

«40>» «F» «» «

>

APAN G4

Build a Network

e

SHANGHAI JIAO TONG
{

N

Y/ UNIVERSITY

(O <F>

i
v
a

Q>

Build a Network

3
SHANGHALI JIAO TONG
{% %4 UNIVERSITY

The goal is to

* pick enough of these edges that the nodes are connected,
¢ the total maintenance cost is minimum.

«40>» «F» «E» «

>

APAN G4

Build a Network

)
SHANGHAI JIAO TONG
¢/ UNIVERSITY

The goal is to

* pick enough of these edges that the nodes are connected,
¢ the total maintenance cost is minimum.

One immediate observation is that the optimal set of edges cannot contain a cycle

«40>» «F» «E» «

>

APAN G4

= " " f“ HANGHALI JIAO TONG
Properties of the Optimal Solutions @) vy
Removing a cycle edge cannot disconnect a graph. I

«O0>» «Fr «Z» «

>

APAN G4

= " " f“ HANGHALI JIAO TONG
Properties of the Optimal Solutions @) vy
Removing a cycle edge cannot disconnect a graph. I

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.

«40>» «F» «E» «

>

APAN G4

= " " f“ HANGHALI JIAO TONG
Properties of the Optimal Solutions @) vy
Removing a cycle edge cannot disconnect a graph. I

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.
A tree with minimum total weight, is @ minimum spanning tree, MST.

«40>» «F» «E» «

>

APAN G4

= " " (:i\ HANGHALI JIAO TONG
Properties of the Optimal Solutions @) vy
Removing a cycle edge cannot disconnect a graph. I

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.
A tree with minimum total weight, is @ minimum spanning tree, MST.

Input: An undirected graph G = (V, E); edge weights we

«40>» «F» «E» «

>

APAN G4

= " " (:i\ HANGHALI JIAO TONG
Properties of the Optimal Solutions @) vy
Removing a cycle edge cannot disconnect a graph. I

So the solution must be connected and acyclic: undirected graphs of this kind are called trees.
A tree with minimum total weight, is a minimum spanning tree, MST

Input: An undirected graph G = (V, E); edge weights we

Output: Atree T = (V, E') with E' C E that minimizes

weight(T) = Z We

e€E/!

«40>» «F» «E» <

>

APAN G4

Trees

SHANGHAI JIAO TONG
A tree on n nodes has n — 1 edges.

s

) UNIVERSITY

«O» «F>»

i
v
a

APAN G4

Trees

P

A tree on n nodes has n — 1 edges. I
To build the tree one edge at a time, starting from an empty graph.

«O0>» «Fr «=» «

>

APAN G4

Trees

P

A tree on n nodes has n — 1 edges. I
To build the tree one edge at a time, starting from an empty graph.

Each of the n nodes is disconnected from the others, in a connected component by itself.

«40>» «F» «E» «

>

APAN G4

(7)) SHANGHAI JIAO TONG
Trees Km UNIVERSITY

A tree on n nodes has n — 1 edges. I

To build the tree one edge at a time, starting from an empty graph.

Each of the n nodes is disconnected from the others, in a connected component by itself.

As edges are added, these components merge. Since each edge unites two different components,
exactly n — 1 edges are added by the time the tree is fully formed.

«40>» «F» «E» «

>

APAN G4

o~
I) SHANGHAI JIAO TONG
Trees @®) voweind

A tree on n nodes has n — 1 edges. \

To build the tree one edge at a time, starting from an empty graph.

)

Each of the n nodes is disconnected from the others, in a connected component by itself.

As edges are added, these components merge. Since each edge unites two different components,
exactly n — 1 edges are added by the time the tree is fully formed.

When a particular edge (u,v) comes up, we can be sure that v and v lie in separate connected

components, for otherwise there would already be a path between them and this edge would create
acycle.

«40>» «F» «E» «

>

APAN G4

Trees

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Any connected, undirected graph G = (V, E) with |[E| = |V| — 1 is a tree.

«O0>» «Fr «=» «

>

APAN G4

Trees

53
SHANGHAI JIAO TONG
& =) UNIVERSITY

Any connected, undirected graph G = (V, E) with |[E| = |V| — 1 is a tree.

It is the converse of Lemma (2).

«O0>» «Fr «Z» «

>

APAN G4

Trees

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Any connected, undirected graph G = (V, E) with |[E| = |V| — 1 is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.

«40>» «F» «E» «

>

APAN G4

Trees

P

\ SHANGHAI JIAO TONG

UNIVERSITY

Any connected, undirected graph G = (V, E) with |[E| = |V| — 1 is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.

While the graph contains a cycle, remove one edge from this cycle.

«40>» «F» «E» «

>

APAN G4

E‘, UNIVERSITY

Trees SHANGHAI JIAO TONG

Any connected, undirected graph G = (V, E) with |[E| = |V| — 1 is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.
While the graph contains a cycle, remove one edge from this cycle.

The process terminates with some graph G’ = (V, E’), E' C E, which is acyclic and, by Lemma (1),
is also connected.

«40>» «F» «E» «

>

APAN G4

Tl’ees \ SHANGHAI JIAO TONG

n = y UNIVERSITY

Any connected, undirected graph G = (V, E) with |[E| = |[V| — 1 is a tree.

It is the converse of Lemma (2). We just need to show that G is acyclic.
While the graph contains a cycle, remove one edge from this cycle.

The process terminates with some graph G’ = (V, E’), E' C E, which is acyclic and, by Lemma (1),
is also connected.

Therefore G’ is a tree, whereupon |E’| = |V| — 1 by Lemma (2). So E’ = E, no edges were
removed, and G was acyclic to start with.

«40>» «F» «E» «

>

APAN G4

Trees

P

\ SHANGHAI JIAO TONG

UNIVERSITY

An undirected graph is a tree if and only if there is a unique path between any pair of nodes. I

«O0>» «Fr «Z» «

>

APAN G4

Trees

3
SHANGHALI JIAO TONG
{% %4 UNIVERSITY

An undirected graph is a tree if and only if there is a unique path between any pair of nodes. I
of these paths would contain a cycle.

In a tree, any two nodes can only have one path between them; for if there were two paths, the union

«40>» «F» «E» «

>

APAN G4

SHANGHAI JIAO TONG
Tl’ees Kny UNIVERSITY

An undirected graph is a tree if and only if there is a unique path between any pair of nodes. I

In a tree, any two nodes can only have one path between them; for if there were two paths, the union
of these paths would contain a cycle.

On the other hand, if a graph has a path between any two nodes, then it is connected. If these paths
are unique, then the graph is also acyclic.

«40>» «F» «E» <

it
v
it

APAN G4

A Greedy Approach

E according to the following rule.

-

SHANGHAI]IAO TONG
UNIVERSITY
Kruskal’'s minimum spanning tree algorithm starts with the empty graph and then selects edges from

Repeatedly add the next lightest edge that doesn’t produce a cycle.

Starting with an empty graph and then attempt to add edges in increasing order of weight

B-C;C-D;B-D;C—-F;D—-F,E—F;A-D;A-B;C—-FE;A-C

>IN

«0O)>» «F»r «

it
v

APAN G4

The Cut Property

prn
®

) SHANGHAI JIAO TONG
/ UNIVERSITY

is part of some MST.

Suppose edges X are part of a MST of G = (V, E). Pick any subset of nodes S for which X does
not cross between S and V\ S, and let e be the lightest edge across this partition. Then

X U{e}

«0O0>» «F» « =>»

i
v

DA

The Cut Property

3
SHANGHALI JIAO TONG
{% 49 UNIVERSITY

A cut is any partition of the vertices into two
groups, S and V\S.

It is safe to add the lightest edge across any cut,
provided X has no edges across the cut.

«0O>» «Fr» «=)» <

v
it

DA

Proof of the Cut Property
Proof:

P

\ SHANGHAI JIAO TONG

UNIVERSITY

«0>» «F» « =>»

i
v

DA

Proof of the Cut Property
Proof:

f”‘ HANGHALI JIAO TONG
S JIAO T
Edges X are part of some MST T;

UNIVERSITY

«0>» «F» « =>»

i
v

DA

Proof of the Cut Property
Proof:

nothing to prove.

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is

«0>» «F» « =>»

i
v

DA

(:i‘ HANGHALI JIAO TONG
Proof of the Cut Property @) tasmior
Proof:
Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is

nothing to prove.

So assume eis notin 7.

«O>» «Fr «=» <

i
v
it

DA

Proof of the Cut Property
Proof:

nothing to prove.

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.

«0O0>» «F» «=)» <

i
v

DA

Proof of the Cut Property Unvesiry o
Proof:

o
k UNIVERSITY
nothing to prove.

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.
Add edge eto T.

«0>» «F» « =>»

i
v

DA

Proof of the Cut Property k/

SHANGHAI]lAO TONG
y"‘ UNIVERSITY
Proof:

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is
nothing to prove.

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding
e creates a cycle.

«0O0>» «F» «=)» <

i
v
it

DA

(7)) SHANGHAI JIAO TONG
PI’OOf Of the Cut Property K‘ %NIVERSIT\; B

Proof:

Edges X are part of some MST T; if the new edge e also happens to be part of T, then there is
nothing to prove.

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding
e creates a cycle.

This cycle must also have some other edge ¢’ across the cut (S, V\S).

«0O0>» «F» «=)» <

i
v
it

DA

7\ SHANGHALI JIAO TONG
7" UNIVERSITY

Proof of the Cut Property

Proof:

Edges X are part of some MST T'; if the new edge e also happens to be part of T', then there is
nothing to prove.

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding
e creates a cycle.

This cycle must also have some other edge ¢’ across the cut (S, V\S). If we now remove ¢’
T =TU{e}\{e'}

which we will show to be a tree.

«0O0>» «F» «=)» <

i
v
it

DA

7\ SHANGHALI JIAO TONG
7" UNIVERSITY

Proof of the Cut Property

Proof:

Edges X are part of some MST T'; if the new edge e also happens to be part of T', then there is
nothing to prove.

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding
e creates a cycle.

This cycle must also have some other edge ¢’ across the cut (S, V\S). If we now remove ¢’

T' = TU {e}\(¢'}

which we will show to be a tree.

T’ is connected by Lemma (1), since ¢’ is a cycle edge.

«0O0>» «F>» «=)» <

i
v
it

DA

7\ SHANGHALI JIAO TONG
7" UNIVERSITY

Proof of the Cut Property

Proof:

Edges X are part of some MST T'; if the new edge e also happens to be part of T', then there is
nothing to prove.

So assume e is not in 7. We will construct a different MST 7" containing X U {e} by altering T
slightly, changing just one of its edges.

Add edge e to T. Since T is connected, it already has a path between the endpoints of e, so adding
e creates a cycle.

This cycle must also have some other edge ¢’ across the cut (S, V\S). If we now remove ¢’
T =Tu{e\{e}
which we will show to be a tree.

T’ is connected by Lemma (1), since ¢’ is a cycle edge. And it has the same number of edges as T';
so by Lemma (2) and Lemma (3), it is also a tree.

«O0>» «F>» «=)» <

i
v
it

DA

Proof of the Cut Property

Proof:

P

\ SHANGHAI JIAO TONG

UNIVERSITY

«0>» «F» « >

i
v

DA

Proof of the Cut Property

Proof:

P

\ SHANGHAI JIAO TONG

UNIVERSITY

T’ is a minimum spanning tree, since

«0>» «F» « >

i
v

DA

Proof of the Cut Property

Proof:

P

\ SHANGHAI JIAO TONG

UNIVERSITY

T’ is a minimum spanning tree, since

weight(T") = weight(T) + w(e) — w(e’)

«0>» «F» « >

i
v

DA

Proof of the Cut Property

e
Proof:

\ SHANGHAI JIAO TONG

UNIVERSITY

T’ is a minimum spanning tree, since

weight(T") = weight(T) + w(e) — w(e’)

Both e and ¢’ cross between S and V'\ S, and ¢ is the lightest edge of this type.

«0>» «F» « >

i
v

DA

Proof of the Cut Property

Proof:

\ SHANGHAI JIAO TONG
UNIVERSITY

T’ is a minimum spanning tree, since

weight(T") = weight(T) +w(e)

—w(e)
w(e) < w(e'), and

weight(T'

Both e and ¢’ cross between S and V'\ S, and ¢ is the lightest edge of this type. Therefore
) < weight(T)

«0>» «F» « >

i
v

DA

Proof of the Cut Property

‘\ SHANGHAI]lAO TONG
Proof:

UNIVERSITY

T’ is a minimum spanning tree, since

weight(T") = weight(T) + w(e) — w(e’)
w(e) < w(e'), and

Both e and ¢’ cross between S and V'\ S, and ¢ is the lightest edge of this type. Therefore

weight(T") < weight(T)

Since T is an MST, it must be the case that weight(

) = weight(T) and that 7" is also an MST

«0>» «F» « >

DA

An Example of Cut Property

(7)) SHANGHAI JIAO TONG
Kw UNIVERSITY
® BO——o—®
2 21
E—@
(b)

©
Edges X:

(c) e @
The cut: . & i
I ©)

MST T":
S

V-5

«0O0>» «F» « =>»

<

i
v

DA

" (ﬂ“‘ HANGHALI JIAO TONG
Kruskal’s Algorithm @) o

o y UNIVERSITY

KRUSKAL (G, w)
input : A connected undirected graph G = (V, E), with edge weight we
output: A minimum spanning tree defined by the edges X

for allu € V do
‘ makeset (U);
end
X={}
Sort the edges F by weight;
for all (u,v) € E in increasing order of weight do
if find (u)#Afind (v)then
add (u,v) to X;
union (u,v)
end
end

«O0>» «F» «=)» <

i
v
it

DA

Data Structure Retailer: Disjoint Sets

)
SHANGHAI JIAO TONG
Eﬁ% <7 UNIVERSITY

makeset(z) create a singleton set containing z |V]|
find(z) find the set that « belong to 2-|E]
union(z, y)

merge the sets containingz andy |V| -1

«0>» «F» « >

i
v

DA

<O Fr <

Prim’s Algorithm

=

Q>

3 H f“‘ HANGHALI JIAO TONG
A General Kruskal’s Algorithm @) o

X={k
repeat until | X| = |V|—1;

pick a set S C V for which X has no edges between S and
V-5,

let e € E be the minimum-weight edge between S and V — S;
X =X U{e};

«0O>» «Fr «=» «

i
v
it

DA

Prim’s Algorithm

3
SHANGHALI JIAO TONG
{% %4 UNIVERSITY

A popular alternative to Kruskal’s algorithm is Prim’s, in which the intermediate set of edges X
always forms a subtree, and S is chosen to be the set of this tree’s vertices.

«0>» «F» « =>»

i
v

DA

. . (7)) SHANGHAI JIAO TONG
Pl’lm S A|gOI‘Ithm K‘ UNIVERSITY

A popular alternative to Kruskal’s algorithm is Prim’s, in which the intermediate set of edges X
always forms a subtree, and S is chosen to be the set of this tree’s vertices.

On each iteration, the subtree defined by X grows by one edge.

The lightest edge between a vertex in S and a vertex outside S. We can equivalently think of S as
growing to include the vertex v ¢ S of smallest cost:

«0O0>» «F» «=)» <

i
v
it

DA

. . (7)) SHANGHAI JIAO TONG
Pl’lm S A|gOI‘Ithm K‘ UNIVERSITY

A popular alternative to Kruskal’s algorithm is Prim’s, in which the intermediate set of edges X
always forms a subtree, and S is chosen to be the set of this tree’s vertices.

On each iteration, the subtree defined by X grows by one edge.

The lightest edge between a vertex in S and a vertex outside S. We can equivalently think of S as
growing to include the vertex v ¢ S of smallest cost:

cost(v) = min w(u, v)

«O0>» «F» «=)» <

i
v
it

DA

UNIVERSITY

" (:i‘ HANGHALI JIAO TONG
The Algorithm E‘s Ao T

PRIM (G, w)
input : A connected undirected graph G = (V, E), with edge weights w.
output: A minimum spanning tree defined by the array prev
forallu € V do
cost(u) = oo;
prev(u) = nil;

end
pick any initial node wo;
cost(ug) = 0;

H =makequeue (V) \\ using cost-values as keys;
while H is not empty do
v=deletemin (H);
for each (v, z) € E do
if cost(z) > w(v, z) then
cost(v) = w(v, z); prev(z) = v;
decreasekey (H,z);
end
end
end

«0O>» «Fr «=» «

i
v
it

DA

UNIVERSITY

e) " (:i' HANGHALI JIAO TONG
Dijkstra’s Algorithm @) tasmior

DIJKSTRA (G, [, s)
input : Graph G = (V, E), directed or undirected; positive edge length {l. | e € E};
Vertex s € V

output: For all vertices u reachable from s, dist(u) is the set to the distance from s to
u

for allu € V do
dist(u) = oo;
prev(u) = nil;
end
dist(s) = 0;
H =makequeue (V) \\ using dist-values as keys;
while /1 is not empty do
u=deletemin (H);
for all edge (u,v) € E do
if dist(v) > dist(u) + l(u, v) then
dist(v) = dist(u) + l(u,v); prev(v) = u;
decreasekey (H,v);
end
end
end

A,

«0O>» «F»r» «=» <

i
v
it

DA

<O Fr <

Set Cover

Q>

The Problem

A county is in its early stages of planning and is deciding where to put schools.

«0O0>» «F» « =>»

i
v

DA

The Problem

A county is in its early stages of planning and is deciding where to put schools.
There are only two constraints:

«0O0>» «F» « =>»

i
v

DA

The Problem

R
@) ssworone
A county is in its early stages of planning and is deciding where to put schools.
There are only two constraints:
® each school should be in a town,

«0O0>» «F» « =>»

i
v

DA

The Problem

)
SHANGHAI JIAO TONG
¢/ UNIVERSITY

A county is in its early stages of planning and is deciding where to put schools.
There are only two constraints:

® each school should be in a town,

® and no one should have to travel more than 30 miles to reach one of them.

«0O0>» «F» « =>»

i
v

DA

The Problem

A county is in its early stages of planning and is deciding where to put schools
There are only two constraints:

® each school should be in a town,

o cC

® and no one should have to travel more than 30 miles to reach one of them.
Q: What is the minimum number of schools needed?
(a)

(b)

.
o

i
v

DA

The Problem

P

\ SHANGHAI JIAO TONG

UNIVERSITY

This is a typical (cardinality) set cover problem.

«0>» «F» « =>»

i
v

DA

The Problem

)
SHANGHAI JIAO TONG
Eﬁ% = UNIVERSITY

This is a typical (cardinality) set cover problem.

® For each town z, let S, be the set of towns within 30 miles of it.

«0>» «F» « =>»

i
v

DA

The Problem

3
SHANGHALI JIAO TONG
{% %4 UNIVERSITY

This is a typical (cardinality) set cover problem.

® For each town z, let S, be the set of towns within 30 miles of it.
® A school at « will essentially “cover” these other towns.

«0>» «F» « =>»

i
v

DA

(ﬂ“\ HANGHAI JIAO TONG
The Problem @) ot

o y UNIVERSITY

This is a typical (cardinality) set cover problem.

® For each town z, let S, be the set of towns within 30 miles of it.
® A school at « will essentially “cover” these other towns.

® The question is then, how many sets S, must be picked in order to cover all the towns in the
county?

«O0>» «F» «=)» <

i
v
it

DA

Set Cover Problem

P

\ SHANGHAI JIAO TONG

UNIVERSITY

® |nput: A set of elements B, sets S,

5w C B

e Qutput: A selection of the S; whose union is B.

e Cost: Number of sets picked.

«0>» «F» « =>»

i
v

DA

The Example

e

o)
’ SHANGHAI JIAO TONG
kwyﬁ =¢) UNIVERSITY

(o> I

i
v
a
it
v

Q>

Performance Ratio

P

, SHANGHAI JIAO TONG
& } UNIVERSITY

«O» «Fr «=)>»

it
v

Q>

Performance Ratio

e
algorithm will use at mostInn - OPT sets.

\ SHANGHAI JIAO TONG

> UNIVERSITY
Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy

«0O0>» «F» « =>»

i
v

DA

Performance Ratio

e
algorithm will use at mostInn - OPT sets.

\ SHANGHAI JIAO TONG

Proof.

> UNIVERSITY
Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy

«0O0>» «F» « =>»

i
v

DA

Performance Ratio

@®

1) SHANGHAI JIAO TONG
UNIVERSITY
Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy

p7
algorithm will use at mostInn - OPT sets.

Proof.

no = n).

Let n; be the number of elements still not covered after ¢ iterations of the greedy algorithm (so

«0O0>» «F» « =>»

i
v

DA

. (7)) SHANGHAI JIAO TONG
Performance RatIO Km %NIVERSIT\; B

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at mostInn - OPT sets.

Proof.

Let n; be the number of elements still not covered after ¢ iterations of the greedy algorithm (so
no = n).

Since these remaining elements are covered by the optimal O PT sets, there must be some set with
at least n, /OPT of them.

«0O>» «F»r» «=)» <

i
v
it

DA

- (j\ HANGHAI JIAO TONG
Performance Ratio @) ot

n = y UNIVERSITY

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at mostInn - OPT sets.

Proof.

Let n; be the number of elements still not covered after ¢ iterations of the greedy algorithm (so
no = n).

Since these remaining elements are covered by the optimal O PT sets, there must be some set with
at least n, /OPT of them.

Therefore, the greedy strategy will ensure that

Tt

OPT

1

Nt41 <ng— - m)

= nt(l

«O0>» «F» «=)» <

i
v
it

DA

- (j\ HANGHAI JIAO TONG
Performance Ratio @) jeor

o y UNIVERSITY

Suppose B contains n elements and that the optimal cover consists of OPT sets. Then the greedy
algorithm will use at mostInn - OPT sets.

Proof.

Let n; be the number of elements still not covered after ¢ iterations of the greedy algorithm (so
no = n).

Since these remaining elements are covered by the optimal O PT sets, there must be some set with
at least n, /OPT of them.

Therefore, the greedy strategy will ensure that

Tt 1

me <= Gpp == Gpr)
which by repeated application implies
1
me< ol =)

«O0>» «F» «=)» <

i
v
it

DA

Performance Ratio

P

, SHANGHAI JIAO TONG
& } UNIVERSITY

«O» «Fr» «=)>»

it
v

Q>

Performance Ratio

3
SHANGHALI JIAO TONG
{% 49 UNIVERSITY

A more convenient bound can be obtained from the useful inequality

l—z<e “forallz
with equality if and only if z = 0,

«0>» «F» « =>»

i
v

DA

Performance Ratio

3
SHANGHALI JIAO TONG
{% 49 UNIVERSITY

A more convenient bound can be obtained from the useful inequality

l—z<e “forallz
with equality if and only if z = 0,
Thus
1 ¢
ng <no(l— m) < ng(e OPT)" =mne OPT

«0>» «F» « >

i
v

DA

Performance Ratio

)
SHANGHALI JIAO TONG
‘u,w yr‘ UNIVERSITY

A more convenient bound can be obtained from the useful inequality

l—z<e “forallz
with equality if and only if z = 0,
Thus

1 1 ot
ne < no(l— m)t < no(e obT) =ne oPT
be covered.

Att = Inn - OPT, therefore, n, is strictly less than ne~ "™ = 1, which means no elements remain to

«0>» «F» « >

i
v

DA

	Minimum Spanning Trees
	Build a Network
	Tree
	The Algorithm

	Prim's Algorithm
	Set Cover

