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Brief History of Set Theory

 Georg Cantor(1845-1918)
oGerman mathematician

o Founder of set theory

 Bertrand Russell(1872-1970)
oBritish philosopher, logician, 
mathematician,  historian, and social critic.

 Ernst Zermelo(1871-1953)
oGerman mathematician, foundations of
mathematics and hence on philosophy

 David Hilbert (1862-1943)

o German mathematician, one of the most 
influential and universal mathematicians 
of the 19th and early 20th centuries. 

 Kurt Gödel(1906-1978) 
oAustrian American logician, mathematician, 
and philosopher.  ZFC not ⊢ ¬CH .

 Paul Cohen(1934-2007)
oAmerican mathematician, 1963:  ZFC not ⊢ CH,AC .
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What is a set ?

 By Georg Cantor in 1870s:

A set is an unordered collection of objects.
◦ The  objects are called the elements, or members, of the set. A set is 

said to contain its elements.

 Notation:  𝑎 ∈ 𝐴
◦ Meaning  that: 𝑎 is an element of the set A, or,

Set A contains 𝑎 .

 Important: 

◦ Duplicates do not matter. 

◦ Order does not matter.
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Basic notions

 a∈A a is an element of the set A.

 a∉A a is NOT an element of the set A.

 Set of sets {{a,b},{1, 5.2}, k}

 ∅ the empty set, or the null set, is set that has no elements.

 A⊆B  subset relation. Each element of A is also an element of B.

 A=B equal relation. A⊆B and B⊆A.

 A≠B  

 A⊂B  strict subset relation. If A⊆B  and A≠B  

 |A|   cardinality of a set, or the number of distinct elements.

 Venn Diagram 
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Examples

 𝑎 ∈ {𝑎, 𝑒 𝑖, 𝑜, 𝑢}

 a ∉{{a}}

 ∅ ∉∅

 ∅ ∈ ∅ ∈ {{∅}}

 {3,4,5}={5,4,3,4}

 ∅⊆S

 ∅ ⊂{∅ } 

 S ⊆S

 |{3, 3, 4, {2, 3},{1,2,{f}} }|=4
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Set Operations

Union

 Intersection

Difference

Complement

Symmetric difference

Power set
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Union

 Definition Let A and B be sets. The union of the sets A and 

B, denoted by A∪B, is the set that contains those elements 

that are either in A or in B, or both.

A U B={x | x∈A or x∈B}

 Example: {1,3,5} U {1,2,3}={1,2,3,5}

 Venn Diagram representation
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Intersection

 Definition Let A and B be sets. The intersection of the sets 

A and B, denoted by  A ∩ B, is the set that containing those 

elements in both A and B.

A ∩ B={x | x∈A and x∈B}

 Example: {1,3,5} ∩ {1,2,3}={1,3}

 Venn Diagram Representation
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Difference

 Definition Let A and B be sets. The difference of the sets A 

and B, denoted by  A - B, is the set that containing those 

elements in  A but not in B.

𝐴 − 𝐵 = 𝑥 𝑥 ∈ 𝐴 𝑏𝑢𝑡 𝑥∉𝐵} = 𝐴 ∩ ത𝐵

 Example: {1,3,5}-{1,2,3}={5} 

 Venn Diagram Representation
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Complement

 Definition Let U be the universal set. The complement of 

the sets A, denoted by ҧ𝐴 or −𝐴, is the complement of with 

respect to U.

ҧ𝐴 = 𝑥 𝑥∉𝐴} = 𝑈 − 𝐴

 Example: -E = O

 Venn Diagram Representation
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Symmetric difference

 Definition Let A and B be sets. The symmetric difference of 

A and B, denoted by  A ⊕ B, is the set containing those 

elements in either A or B, but not in their intersection. 

A ⊕ B={x| (x∈A ∨ x∈B) ∧ x∉ A∩B }

=(A-B)∪(B-A)

 Venn Diagram:  A ⊕ B               A ⊕ B ⊕ c    
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Symmetric difference

 Definition Let A and B be sets. The symmetric difference of 

A and B, denoted by  A ⊕ B, is the set containing those 

elements in either A or B, but not in their intersection. 

A ⊕ B={x| (x∈A ∨ x∈B) ∧ x∉ A∩B }

=(A-B)∪(B-A)

 Venn Diagram:  A ⊕ B               A ⊕ B ⊕ c    
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The Power Set

 Many problems involves testing all combinations of 

elements of a set to see if they satisfy some property. To 

consider all such combinations of elements of a set S, we 

build a new set that has its members all the subsets of S. 

 Definition: Given a set S, the power set of S is the set of all 

subsets of the set S. The power set of S is denoted by P(S) 

or ℘S .

 Example: 

o P({0,1,2})={ɸ, {0},{1},{2}, {0,1},{0,2},{1,2},{0,1,2} }

o P(∅)={∅}

o P({∅})={∅,{∅}}
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Set Identities 

1. Identity laws

2. Domination laws

3. Idempotent laws
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Set Identities (Cont.) 

4. Complementation law

5. Commutative laws

6. Associative laws
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Set Identities (Cont.) 

7. Distributive laws

8. De Morgan’s laws

Spring 2024



Set Identities (Cont.) 

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Example
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Ordered Pairs

 In set theory {1,2}={2,1}

What if we need the object <1,2> that will 

encode more information:

o 1 is the first component

o 2 is the second component

Generally, we say

<x, y> =<u, v>  iff x=u ∧ y=v
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Cartesian Product

A×B={<x,y> | x∈A ∧ y ∈B } is the 
Cartesian product of set A and set B.

Example

A={1,2}  B={a,b,c}
A×B={<1,a>,<1,b>,<1,c>,

<2,a>,<2,b>,<2,c>}
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Relation

 Definition  A relation is a set of ordered pairs.

 Examples
o <={<x,y>∈R×R|  x is less than y}

o M={<x,y> ∈People× People| x is married to y}
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More about the binary relation

Let 𝑅 denote any binary relation on a set 𝑥, we say:

 𝑅 is reflexive, if (∀𝑎 ∈ 𝑥)(𝑎𝑅𝑎);

 𝑅 is symmetric, if (∀𝑎, 𝑏 ∈ 𝑥)(𝑎𝑅𝑏 → 𝑏𝑅𝑎);

 𝑅 is transitive ,   if ∀𝑎, 𝑏, 𝑐 ∈ 𝑥 [ 𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐 → (𝑎𝑅𝑐)];
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Equivalence relation

Definition 𝑅 is an equivalence relation on 𝐴
iff 𝑅 is a binary relation on 𝐴 that is

o Reflexive 

o Symmetric

o Transitive
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Partition

 Definition A partition π of a set A is a set of 
nonempty subsets of A that is disjoint and 
exhaustive. i.e.

(a) no two different sets in π have any
common elements, and

(b) each element of A is in some set in π.
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Equivalence class

 If R is an equivalence relation on A, then the quotient  set 

(equivalence class) A/R is defined as

A/R={ [x]R | ∈A }

Where A/R is read as “A modulo R”

 The natural map (or canonical map)
α:A→A/R defined by 

α(x)= [x]R 

 Theorem Assume that R is an 

equivalence relation on A. Then 

the set {[x]R |x ∈A} of all equivalence 

classes is a partition of A.
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Examples

 Let 𝜔 = {0,1,2,… };  and  𝑚 ∼ 𝑛 ⇔𝑚− 𝑛 is divisible by 6.

Then ∼ is an equivalence relation on 𝜔. The quotient set 

Τ𝜔 ∼ has six members:

0 = 0,6,12, … ,

1 = 1,7,13, … ,

……

5 = 5,11,17, …

 Clique (with self-circles on each node) : a graph in which 

every edge is presented. Take the existence of edge as a 

relation. Then the equivalence class decided by such 

relation over the graph would be clique.
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Ordering relations

 Linear order/total order

o transitive

o trichotomy

 Partial order

o reflexive

o anti-symmetric

o transitive

 Well order 

o total order

o every non-empty subset of S has a least element in this ordering. 
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Function

 Definition  A function is a relation F such that for each x in 

dom F there is only one y such that x F y.  And  y is called 

the value of F at x.

 Notation F(x)=y

 Example f(x) = x2 f : R → R,  f(2) = 4, f(3) = 9, etc.

 Composition (f∘g)(x)=f(g(x))

 Inverse The inverse of  F is the set

𝐹−1={<u,v> | v F u} 

𝐹−1 is not necessarily a function (why?)
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Special functions

 We say that F is a function from A into B or that F maps A 

into B (written F: A→B) iff F is a function, dom F=A and ran 

F⊆B.

o If, in addition, ran F=B,  then F is a function from A onto

B.  F is also named a surjective function.

o If, in addition, for  any x∈dom F, y∈dom F, with x≠y, 
F(x)≠F(y), then F is an injective function. or one-to-

one (or single-rooted). 

o F is bijective function : f is surjective and 
injective.
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