Set Theory Paradox & Cardinality

(%

Huan Long Shanghai Jiao Tong University

longhuan@sjtu.edu.cn

Key points one should know of

• $A \cup B, A \cap B, A - B, \overline{A}, A \oplus B, P(A)$

🛯 Set identity laws

🛯 Set applications

Relation

 Ordered pairs, A×B, Relation, Equivalence relation, Partition

Function

Onto function/Surjective function

✓ Injective function/One-to-one function/Single-rooted

✓ Bijective function

Naive set theory

Russell`s paradox

- Bertrand Russell(1872-1970)
- British philosopher, logician, mathematician, historian, and social critic.
- In 1950 Russell was awarded the Nobel Prize in Literature, "in recognition of his varied and significant writings in which he champions humanitarian ideals and freedom of thought."
- What I have lived for? Three passions, simple but overwhelmingly strong, have governed my life: the longing for love, the search for knowledge, and unbearable pity for the suffering of mankind.... Spring 2024

Barber Paradox^[1918]

Suppose there is a town with just one male barber. The barber shaves all and only those men in town who do not shave themselves.

Question: Does the barber shave himself?

✓ If the barber does NOT shave himself, then he MUST abide by the rule and shave himself.

✓ If he DOES shave himself, according to the rule he will NOT shave himself.

Formal Proof

CRUSSEN There is no set to which every set belongs. [Russell, 1902]

Formal Proof

CR Theorem There is no set to which every set belongs. [Russell, 1902]

Proof:

Let A be a set; we will construct a set not belonging to A. Let

 $B={x \in A \mid x \notin x}$

We claim that $B \notin A$. we have, by the construction of B.

 $B \in B$ iff $B \in A$ and $B \notin B$

If $B \in A$, then this reduces to

 $B \in B$ iff $B \notin B$, Which is impossible, since one side must be true and the other false. Hence $B \notin A$

Natural Numbers in Set Theory

• Constructing the natural numbers in terms of sets is part of the process of

"Embedding mathematics in set theory"

John von Neumann

- December 28, 1903 February 8, 1957. Hungarian American mathematician who made major contributions to a vast range of fields:
 - Logic and set theory
 - Quantum mechanics
 - Economics and game theory
 - Mathematical statistics and econometrics
 - Nuclear weapons
 - Computer science

Natural numbers

• By von Neumann:

Each natural number is the set of all smaller natural numbers.

 $0 = \emptyset$ $1 = \{0\} = \{\emptyset\}$ $2 = \{0,1\} = \{\emptyset, \{\emptyset\}\}$ $3 = \{0,1,2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$

.

Some properties from the first four natural numbers

 $0 = \emptyset$ $1 = \{0\} = \{\emptyset\}$ $2 = \{0,1\} = \{\emptyset, \{\emptyset\}\}$ $3 = \{0,1,2\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$

 $0 \in 1 \in 2 \in 3 \in \cdots$ $0 \subseteq 1 \subseteq 2 \subseteq 3 \subseteq \cdots$

<u> </u>	
Paradox	 Paradox and ZFC
Equinumerosity	• Equinumerosity
Cardinal Numbers	•Ordering
Infinite Cardinals	•Countable sets

Motivation

To discuss the size of sets. Given two sets A and B, we want to consider such questions as:
Do A and B have the same size?
Does A have more elements than B?

\bigcirc **Definition** A set \mathcal{A} is *equinumerous* to a set \mathcal{B} (written $\mathcal{A} \approx \mathcal{B}$) iff there is a one-to-one function from \mathcal{A} onto \mathcal{B} .

Equinumerosity

 \bigcirc A one-to-one function from \mathcal{A} onto \mathcal{B} is called a *one-to-one correspondence* between \mathcal{A} and \mathcal{B} .

Example: $\omega \times \omega \approx \omega$ **C** The set $\omega \times \omega$ is equinumerous to ω . There is a

function **J** mapping $\omega \times \omega$ one-to-one onto ω .

 $J(m,n)=((m+n)^2+3m+n)/2$

Example: ω≈Q

 $\mathbf{c} \mathbf{r} \mathbf{f} \colon \omega \to \mathbf{Q}$

...

Example: $(0,1) \approx \mathbb{R}$

$∧ (0,1) = {x ∈$ **R** $| 0 < x < 1}, then (0,1) ≈$ **R**

CB

cs $f(x) = tan(\pi(2x-1)/2)$

Examples

$(0,1) ≈ {x | x ∈$ **R** $∧ x>0} = (0,+∞)$ S Proof: f(x)=1/x -1

Examples

Example:
$$\wp(A) \approx ^{A}2$$

 \bigcirc For any set *A*, we have *P*(*A*) ≈ ^{*A*}2.

Proof: Define a function H from P(A) onto ^A2 as: For any subset B of A, H(B) is the characteristic function of B:

 $f_B(x) = \begin{bmatrix} 1 & \text{if } x \in B \\ 0 & \text{if } x \in A - B \\ H \text{ is one-to-one and onto.} \end{bmatrix}$

Theorem

• $A \approx A$

• If $A \approx B$ then $B \approx A$

• If $A \approx B$ and $B \approx C$ then $A \approx C$.

Proof:

Theorem(Cantor 1873)

 \mathbf{R} The set ω is not equinumerous to the set **R** of real numbers.

ℴℕo set is equinumerous to its power set.

rightarrow The set ω is not equinumerous to the set \mathbf{R} of real numbers.

Proof: show that for any functon $f: \omega \rightarrow \mathbb{R}$, there is a real number z not belonging to *ran* f f(0) = 32.4345..., f(1) = -43.334...,f(2) = 0.12418...,

z: the integer part is 0, and the $(n+1)^{st}$ decimal place of z is 7 unless the $(n+1)^{st}$ decimal place of f(n) is 7, in which case the $(n+1)^{st}$ decimal place of z is 6. Then z is a real number not in *ran* f.

A No set is equinumerous to its power set.

 \sim No set is equinumerous to its power set.

Proof: Let $g: A \rightarrow \wp(A)$; we will construct a subset B of A that is not in *ran* g. Specifically, let $B=\{x \in A \mid x \notin g(x)\}$ Then B \subseteq A, but for each $x \in A$ $x \in B$ iff $x \notin g(x)$

Hence $B \neq g(x)$.

Application

Ordering Cardinal Numbers

CADefinition A set \mathcal{A} is **dominated** by a set \mathcal{B} (written $\mathcal{A} \preccurlyeq \mathcal{B}$) iff there is a *one-to-one* function from \mathcal{A} into \mathcal{B} .

Examples

 \bigcirc Any set dominates itself. \bigcirc If $\mathcal{A} \subseteq \mathcal{B}$, then \mathcal{A} is dominated by \mathcal{B} . $\bigcirc \mathcal{A} \preccurlyeq \mathcal{B}$ iff \mathcal{A} is equinumerous to some subset of \mathcal{B} .

Schröder-Bernstein Theorem

 \bigcirc If A≤B and B≤A, then A≈B.

Reproof:

Application of the Schröder-Bernstein Theorem

RExample

If A⊆B⊆C and A≈C, then all three sets are equinumerous.

G The set ℝ of real numbers is equinumerous to the closed unit interval [0,1].

 $\begin{array}{l} \bigotimes \aleph_0 \text{ is the least infinite cardinal. i.e. } \omega \leqslant A \text{ for} \\ any infinite A. \\ \bigotimes \aleph_0 \cdot 2^{\aleph_0} =? \\ 2^{\aleph_0} \leq \aleph_0 \cdot 2^{\aleph_0} \leq 2^{\aleph_0} \cdot 2^{\aleph_0} =2^{\aleph_0} \end{array}$

<u> </u>	
Paradox	 Paradox and ZFC
Equinumerosity	•Equinumerosity
Cardinal Numbers	•Ordering
Infinite Cardinals	•Countable sets

Countable Sets

 \bigcirc **Definition** A set *A* is countable iff *A*≤ω,

Real Intuitively speaking, the elements in a countable set can *be counted by* means of the natural numbers.

Continuum Hypothesis

Are there any sets with cardinality between \aleph_0 and 2^{\aleph_0} ? Continuum hypothesis (Cantor): No.

i.e., there is no λ with $\aleph_0 < \lambda < 2^{\aleph_0}$.

Or, equivalently, it says: Every uncountable set of real numbers is equinumerous to the set of all real numbers.

GENERAL VERSION: for any infinite cardinal κ , there is no cardinal number between κ and 2^{κ} .

HISTORY

- Georg Cantor: 1878, proposed the conjecture
- David Hilbert: 1900, the first of Hilbert's 23 problems.
- ★ Kurt Gödel: 1939, ZF ⊭ ¬CH.
- ✤ Paul Cohen: 1963, ZF ⊭ CH.

