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 Set operations

◆ A ∪ B,  A ∩ B, 𝐴 − 𝐵, ҧ𝐴, A ⊕ B, P(A)

 Set identity laws

 Set applications

◆ Relation

✓ Ordered pairs, A×B, Relation,  Equivalence relation, 
Partition

◆ Function

✓ Onto function/Surjective function

✓ Injective function/One-to-one function/Single-rooted 

✓ Bijective function
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Key points one should know of





Part II.

•Paradox and ZFC   Paradox

•EquinumerosityEquinumerosity

•Ordering Cardinal 
Numbers

•Countable setsInfinite Cardinals
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Naive 
set 
theory

Paradox

Axiomatic 
set theory

Modern 
set theory
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Russell`s paradox

 Bertrand Russell(1872-1970)

 British philosopher, logician, mathematician, 
historian, and social critic.

 In 1950 Russell was awarded the Nobel Prize in 
Literature, "in recognition of his varied and 
significant writings in which he champions 
humanitarian ideals and freedom of thought."

 What I have lived for? 
Three passions, simple but overwhelmingly 
strong, have governed my life: the longing 
for love, the search for knowledge, and 
unbearable pity for the suffering of 
mankind.…
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Barber Paradox[1918] 

Suppose there is a town with just one male barber. The barber 

shaves all and only those men in town who do not shave 

themselves.

Question: Does the barber shave himself?

 If the barber does NOT shave himself, then he MUST abide by the 

rule and shave himself.

 If he DOES shave himself, according to the rule he will NOT shave 

himself.
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Formal Proof

Theorem  There is no set to which every set belongs.

[Russell, 1902]
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Formal Proof

Theorem  There is no set to which every set belongs.

[Russell, 1902]

Proof: 

Let A be a set; we will construct a  set not belonging to A. Let

B={x∈A | x∉x}

We claim that B∉A. we have, by the construction of B.

B∈B iff B∈A and B∉B

If B∈A, then this reduces to 

B∈B iff B∉B, Which is impossible, since one side 

must be true and the other false. Hence B∉A
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Natural Numbers in Set Theory

∙ Constructing the natural numbers in terms of sets is   
part of the process of

“Embedding mathematics in set theory”
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John von Neumann

∙ December 28, 1903 – February 8, 1957. Hungarian 
American mathematician who made major 
contributions to a vast range of fields:

∙ Logic and set theory

∙ Quantum mechanics

∙ Economics and game theory

∙ Mathematical statistics and econometrics

∙ Nuclear weapons

∙ Computer science
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Natural numbers

∙ By  von Neumann: 

Each natural number is the set of all smaller natural 
numbers.

0= ∅

1={0}={∅}

2={0,1}={∅, {∅}}

3={0,1,2}={∅, {∅}, {∅, {∅}}}

……
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Some properties from the first four 
natural numbers

0= ∅

1={0}={∅}

2={0,1}={∅, {∅}}

3={0,1,2}={∅, {∅}, {∅, {∅}}}

0∈ 1 ∈ 2 ∈ 3 ∈⋯

0⊆1 ⊆ 2 ⊆ 3 ⊆⋯
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•Paradox and ZFC   Paradox

•EquinumerosityEquinumerosity

•Ordering Cardinal 
Numbers

•Countable setsInfinite Cardinals
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Motivation

 To discuss the size of sets. Given two sets A and B, 
we want to consider such questions as:

 Do A and B have the same size?

 Does A have more elements than B?
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Example
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Equinumerosity

Definition A set A is equinumerous to a set B 
(written A≈B) iff there is a one-to-one function from 
A onto B.

A one-to-one function from A onto B is called a one-
to-one correspondence between A and B.
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Example: ω× ω ≈ ω

The set ω ×ω is equinumerous to ω. There is a 
function J mapping ω ×ω one-to-one onto ω.
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J(m,n)=((m+n)2+3m+n)/2





Example: ω≈Q

f: ω→ Q
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Example: (0,1) ≈ R

 (0,1)={x ∈ R | 0<x<1}, then (0,1) ≈ R



 f(x)= tan(π(2x-1)/2)
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Examples

 (0,1) ≈ (n,m)

 Proof:  f(x) = (n-m)x+m

 (0,1) ≈ {x| x∈R ∧ x>0} =(0,+∞)

 Proof:  f(x)=1/x -1
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Examples

 [0,1] ≈ [0,1)

 Proof:  f(x)=x             if  0≤x<1 and x≠1/(2n),   n∈ω
f(x)=1/(2n+1)   if x=1/(2n),   n∈ω

 [0,1) ≈ (0,1)

 Proof:   f(x)=x             if  0<x<1 and x≠1/(2n),   n∈ω
f(0)=1/2          x=0
f(x)=1/(2n+1)   if x=1/(2n),   n∈ω

 [0,1] ≈ (0,1)
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Example: ℘(A) ≈ A2

For any set  𝐴, we have  𝑃 𝐴 ≈
𝐴
2. 

Proof:  Define a function 𝐻 from 𝑃(𝐴) onto 
𝐴
2 as:

For any subset 𝐵 of 𝐴, 𝐻(𝐵) is the characteristic    
function of 𝐵:  

1     if      𝑥 ∈ 𝐵

𝑓𝐵 𝑥 =

0    if      𝑥 ∈ 𝐴 − 𝐵
𝐻 is one-to-one and onto. 
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Theorem

For any sets A, B and C:

⚫ A ≈ A

⚫ If A ≈ B then B ≈ A

⚫ If A ≈ B and B ≈ C then A ≈ C.

Proof:
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Theorem(Cantor 1873)

The set ω is not equinumerous to the set R of 
real numbers.

No set is equinumerous to its power set.
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 The set ω is not equinumerous to the set 
R of real numbers.

Proof:  show that for any functon f: ω→ R, there is a real 
number z not belonging to ran f

f(0) =32.4345…,

f(1) =-43.334…,

f(2) = 0.12418…,

……

z: the integer part is 0, and the (n+1)st decimal place of z is 
7 unless the (n+1)st decimal place of f(n) is 7, in which case 
the (n+1)st decimal place of z is 6.

Then z is a real number not in ran f.
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 No set is equinumerous to its power set.
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 No set is equinumerous to its power set.

Proof: Let g: A→℘(A); we will construct a subset B of A 
that is not in ran g. Specifically, let

B={x∈ A | x∉ g(x)}

Then B⊆A, but for each x∈ A

x∈ B iff x∉ g(x)

Hence B≠g(x).
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Application





•Paradox and ZFC   Paradox

•EquinumerosityEquinumerosity

•OrderingCardinal 
Numbers

•Countable setsInfinite Cardinals
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Ordering Cardinal Numbers

Definition A set A is dominated by a set B
(written A≼B) iff there is a one-to-one
function from A into B.
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Examples

Any set dominates itself.

 If A⊆B, then A is dominated by B.

A≼B iff A is equinumerous to some subset of B.

B

F

A B
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Schröder-Bernstein Theorem

If A≼B and B≼A, then A≈B.
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 Proof:

𝑓: 𝐴 → 𝐵, 𝑔: 𝐵 → 𝐴. Define 𝐶𝑛by recursion:

𝐶0 = 𝐴 − 𝑟𝑎𝑛 𝑔 and 𝐶𝑛
+ = 𝑔 𝑓 𝐶𝑛

ℎ 𝑥 = 𝑓(𝑥) if 𝑥 ∈ 𝐶𝑛 for some 𝑛,

g−1 x otherwise  

ℎ(𝑥) is one-to-one and onto.
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Application of the Schröder-
Bernstein Theorem 

Example

If A⊆B⊆C and A≈C, then all three sets are 
equinumerous.

The set R of real numbers is equinumerous 
to the closed unit interval [0,1].
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ℵ0 is the least infinite cardinal. i.e. ω≼A for 
any infinite A.

ℵ0 ∙2
ℵ0 =?

2ℵ0≤ ℵ0 ∙2
ℵ0≤ 2ℵ0 ∙2 ℵ0 =2ℵ0
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•Paradox and ZFC   Paradox

•EquinumerosityEquinumerosity

•Ordering Cardinal 
Numbers

•Countable setsInfinite Cardinals
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Countable Sets

Definition A set A is countable iff A≼ω, 

Intuitively speaking, the elements in a countable 
set can be counted by means of the natural 
numbers.

An equivalent definition: A set A is countable iff
either A is finite or A ≈ ω .
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Example

 ω is countable, as is Z and Q

R is uncountable

A, B are countable sets

 ∀ C⊆A, C is countable

 A∪B is countable

 A ×B is countable
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Example

 ω is countable, as is Z and Q

R is uncountable

A, B are countable sets

 ∀ C⊆A, C is countable

 A∪B is countable

 A ×B is countable

 For any infinite set A, ℘(A) is uncountable.
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Continuum Hypothesis

Are there any sets with cardinality between ℵ0 and 2ℵ0 ?
 Continuum hypothesis (Cantor):  No.

i.e., there is no λ with ℵ0 < λ < 2ℵ0 . 
Or, equivalently, it says: Every uncountable set of real numbers is 

equinumerous to the set of all real numbers.

GENERAL VERSION:  for any infinite cardinal κ, there is no cardinal 
number between κ and 2κ .

HISTORY
❖ Georg Cantor:  1878,  proposed the conjecture 
❖ David Hilbert:  1900, the first of Hilbert’s 23 problems.

❖ Kurt Gödel:       1939,  ZF ⊢ ¬CH .

❖ Paul Cohen:      1963,  ZF ⊢ CH .
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Thanks!
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