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Key points one should know of

R Set operations

¢ AUB, ANB, A—B,A, A ® B,P(A)
R Set identity laws
R Set applications

® Relation

v" Ordered pairs, AXB, Relation, Equivalence relation,
Partition

@ Function
v Onto function/Surjective function
v Injective function/One-to-one function/Single-rooted

v Bijective function
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Russell’s paradox

Bertrand Russell(1872-1970)

British philosopher, logician, mathematician,
historian, and social critic.

In 1950 Russell was awarded the Nobel Prize in
Literature, "in recognition of his varied and
significant writings in which he champions
humanitarian ideals and freedom of thought."

What | have lived for?

Three passions, simple but overwhelmingly
strong, have governed my life: the longing
for love, the search for knowledge, and

unbearable pity for the suffering of
mankind...
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Barber Paradox![1918]

arSuppose there is a town with just one male barber. The barber
shaves all and only those men in town who do not shave
themselves.

«RQuestion: Does the barber shave himself?

5 If the barber does NOT shave himself, then he MUST abide by the
rule and shave himself.

5 If he DOES shave himself, according to the rule he will NOT shave
himself.
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Formal Proof

«Theorem There is no set to which every set belongs.
[Russell, 1902]
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Formal Proof

«Theorem There is no set to which every set belongs.
[Russell, 1902]

Proof:
Let A be a set; we will construct a set not belonging to A. Let

B={x&EA | x&x}

We claim that B&A. we have, by the construction of B.
B&EB iff B&Aand B&B

If BEA, then this reduces to

B&B iff B&B, Which is impossible, since one side
must be true and the other false. Hence B&A
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Natural Numbers in Set Theory

e Constructing the natural numbers in terms of sets is
part of the process of

“Embedding mathematics tn set theory”
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John von Neumann

e December 28, 1903 - February 8, 1957. Hungarian

American mathematician who made major
contributions to a vast range of fields:

e Logic and set theory

e Quantum mechanics

e Economics and game theory

e Mathematical statistics and econometrics
e Nuclear weapons

e Computer science
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Natural numbers

e By von Neumann:

Each natural number is the set of all smaller natural
numbers.

0=0

1=10}=10}

2={0,1}=10, 10}}
3={0,1,2}={0, {9}, {2, {2}
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Some properties from the first four
natural numbers

0=0@

1={0}={0}

2={0,1}={9, {9}
3={0,1,2}={0, {9}, {@, {B}}}

(i1 = =orc

s eV egen
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Equinumerosity OEquinumerosity

Cardinal
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*Ordering
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Motivation

R To discuss the size of sets. Given two sets A and B,
we want to consider such questions as:

@3 Do A and B have the same size?
@3 Does A have more elements than B?
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Equinumerosity

X Definition A set ‘A is equinumerous to a set B
(written A=) iff there is a one-to-one function from

A onto B.

@R A one-to-one function from A onto B is called a one-
to-one correspondence between A and B.
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Example: ® X o= o

RThe set ® x ® is equinumerous to ®. There is a
function J mapping o X ® one-to-one onto o.

J(m,n)=((m+n)*+3m+n)/2

N
NN
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Example: o=Q

®Rf: 0— Q

[0] [10] (1]
see [5] =21 ~——1/1 [4] O]l =—s=1/1 [I] 2/ == }/] vee

i s
“03 (3l =12 m— 02 w——12 [2] 22 32 [12] so-

17] (8]

«ss 6] ey |} = ()} = | ] —= 2] [9] 3/3 o

[15] [14] ‘
see i —a— |4 -— 04 ——— ]/4 —— 24 —a—— 14 [I3] s

Spring 2024



Example: (0,1) =R

R (0,1)={x € R | O<x<1}, then (0,1) =R
3

o3 f(x)= tan(n(2x-1)/2)
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Examples

xR (0,1) = (n,m)
o5 Proof: f(x) = (n-m)x+m

R (0,1) = {Xx]| x€R A x>0} =(0,+ )
o5 Proof: f(x)=1/x -1
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Examples

xR [0,1] =[0,1)
©3 Proof: f(x)=x if 0<x<1and x#1/(2"), n€Ew
f)=1/(2™Y) if x=1/(2"), nEw
 [0,1) = (0,1)
©3 Proof: f(x)=x if 0<x<1 and x#1/(2"), n€w
f(0)=1/2 x=0
ibd=liZhe T2l new

x [0,1] = (0,1)
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Example: o(A) ~ 2

A

RFor any set A, we have P(4) =~ 2

Proof: Define a function H from P(A) onto “2 as:

For any subset B of A, H(B) is the characteristic
bR L@ AL 157
Bl i xcB

felx) =

=0 =t w4 —F
H is one-to-one and onto.
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Theorem

RFor any sets A, B and C:
LB e
@ [f A~BthenB~= A

® [f A=Band B~ C then A = C.
Proof:

Spring 2024



Theorem(Cantor 1873)

RThe set o is not equinumerous to the set R of
real numbers.

&R No set 1s equinumerous to its power set.
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R The set o is not equinumerous to the set
R of real numbers.

Proof: show that for any functon f: ®— R, there is a real
number z not belonging to ran f

£(0) =32.4345...,
f(1) =-43.334...,
0 =0,

z: the integer part is 0, and the (n+1)%* decimal place of z is
7 unless the (n+1)st decimal place of f(n1) is 7, in which case
the (n+1)st decimal place of z is 6.

Then z is a real number not in ran f.
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® No set 1s equinumerous to 1ts power set.
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® No set 1s equinumerous to its power set.

Proof: Let ¢: A—p(A); we will construct a subset B of A
that is not in ran g. Specifically, let

B={x€ A | x¢& g(x)}
Then BEA, but for each x€ A
xE BiitlxeE o)
Hence B#¢(x).
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Application
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Ordering Cardinal Numbers

RDefinition A set A is dominated by a set B
(written A< B) iff there is a one-to-one
function from A into B.
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Examples

R Any set dominates itself.
R If ACSB, then A is dominated by B.

®R AL Biff A is equinumerous to some subset of B.
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Schroder-Bernstein Theorem

RIf A<B and B<A, then A~=B.
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R Proof:

Ao B g B o Deline G by recursion:
G 4 gang and ¢ glffc |
o = f (x) if x € C,, for some n,
= (x) otherwise
g(y)

RS

h(x) is one -to- one and onto.
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Application of the Schroder-
Bernstein Theorem

RExample

31f ACBCC and A~=C, then all three sets are
equinumerous.

@3The set R of real numbers is equinumerous
to the closed unit interval [0,1].
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RN is the least infinite cardinal. i.e. ®<A for
any infinite A.
®RN 270 =?
P e e R G D
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Countable Sets

RDefinition A set A is countable iff A<,

RIntuitively speaking, the elements in a countable
set can be counted by means of the natural
numbers.

R An equivalent definition: A set A is countable iff
either A is finiteor A~ o .
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Example

R o is countable, asis Z and Q
&R R is uncountable

R A, B are countable sets
3 V CC€A, Cis countable
«3 AUB is countable
3 A X B is countable
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Example

R o is countable, asis Z and Q
&R R is uncountable

R A, B are countable sets
3 V CC€A, Cis countable
«3 AUB is countable
3 A X B is countable

R For any infinite set A, g(A) is uncountable.
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Continuum Hypothesis

Are there any sets with cardinality between X, and 270 ?
R Continuum hypothesis (Cantor): No.
i.e., there is no A with 85 <\ <270,

Or, equivalently, it says: Every uncountable set of real numbers is
equinumerous to the set of all real numbers.

GENERAL VERSION: for any infinite cardinal «, there is no cardinal
number between « and 2.

HISTORY

< Georg Cantor: 1878, proposed the conjecture
% David Hilbert: 1900, the first of Hilbert’s 23 problems.
v KunhGodels 1930 ZEE =GR

s = PaulCohen: - 1965 ZF- = ~CElE
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Thanks!
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