Set Theory Paradox \& Cardinality

Huan Long
Shanghai Jiao Tong University

longhuan@situ.edu.cn

Key points one should know of

\propto Set operations
$\bullet \mathrm{A} \cup \mathrm{B}, \mathrm{A} \cap \mathrm{B}, A-B, \bar{A}, \mathrm{~A} \oplus \mathrm{~B}, \mathrm{P}(\mathrm{A})$
a Set identity laws
\propto Set applications

- Relation
\checkmark Ordered pairs, $\mathrm{A} \times \mathrm{B}$, Relation, Equivalence relation, Partition
- Function
\checkmark Onto function/Surjective function
\checkmark Injective function/One-to-one function/Single-rooted
\checkmark Bijective function

Part II.

Paradox

- Paradox and ZFC

Equinumerosity

- Equinumerosity
- Ordering
- Countable sets

Modern
© Axiomatic set theory set theory
Paradox

Naive
set theory

Russell`s paradox

- Bertrand Russell(1872-1970)
- British philosopher, logician, mathematician, historian, and social critic.
- In 1950 Russell was awarded the Nobel Prize in Literature, "in recognition of his varied and significant writings in which he champions humanitarian ideals and freedom of thought."
-What I have lived for? Three passions, simple but overwhelmingly strong, have governed my life: the longing for love, the search for knowledge, and unbearable pity for the suffering of
 mankind...

Barber Paradox ${ }^{[1918]}$

caSuppose there is a town with just one male barber. The barber shaves all and only those men in town who do not shave themselves.
œQQuestion: Does the barber shave himself?
cs If the barber does NOT shave himself, then he MUST abide by the rule and shave himself.
cos If he DOES shave himself, according to the rule he will NOT shave himself.

Formal Proof

∞ Theorem There is no set to which every set belongs. [Russell, 1902]

Formal Proof

c_{s} Theorem There is no set to which every set belongs.
[Russell, 1902]
Proof:
Let A be a set; we will construct a set not belonging to A. Let

$$
B=\{x \in A \mid x \notin x\}
$$

We claim that $B \notin A$. we have, by the construction of B.

$$
B \in B \text { iff } B \in A \text { and } B \notin B
$$

If $B \in A$, then this reduces to
$B \in B$ iff $B \notin B$, Which is impossible, since one side must be true and the other false. Hence $B \notin A$

Natural Numbers in Set Theory

- Constructing the natural numbers in terms of sets is part of the process of
"Embedding mathematics in set theory"

John von Neumann

- December 28, 1903 - February 8, 1957. Hungarian American mathematician who made major contributions to a vast range of fields:
- Logic and set theory
- Quantum mechanics
- Economics and game theory
- Mathematical statistics and econometrics
- Nuclear weapons
- Computer science

Natural numbers

- By von Neumann:

Each natural number is the set of all smaller natural numbers.

$$
\begin{aligned}
& 0=\varnothing \\
& 1=\{0\}=\{\varnothing\} \\
& 2=\{0,1\}=\{\varnothing,\{\varnothing\}\} \\
& 3=\{0,1,2\}=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}
\end{aligned}
$$

. .

Some properties from the first four natural numbers

$0=\varnothing$
$1=\{0\}=\{\varnothing\}$
$2=\{0,1\}=\{\varnothing,\{\varnothing\}\}$
$3=\{0,1,2\}=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$
$0 \in 1 \in 2 \in 3 \in \ldots$
$0 \subseteq 1 \subseteq 2 \subseteq 3 \subseteq \ldots$

Paradox

- Paradox and ZFC

Equinumerosity

Cardinal
Numbers

Infinite Cardinals

- Ordering
- Countable sets

Motivation

$\propto 3$ To discuss the size of sets. Given two sets A and B, we want to consider such questions as: os Do A and B have the same size?
\mathscr{H} Does A have more elements than B?

Example

Spring 2024

Equinumerosity

$\mathfrak{\infty}$ Definition A set \mathcal{A} is equinumerous to a set \mathcal{B} (written $\mathcal{A} \approx \mathcal{B}$) iff there is a one-to-one function from \mathcal{A} onto \mathcal{B}.
cs A one-to-one function from \mathcal{A} onto \mathcal{B} is called a one-to-one correspondence between \mathcal{A} and \mathcal{B}.

Example: $\omega \times \omega \approx \omega$

 03caThe set $\omega \times \omega$ is equinumerous to ω. There is a function J mapping $\omega \times \omega$ one-to-one onto ω.

$$
J(m, n)=\left((m+n)^{2}+3 m+n\right) / 2
$$

Example: $\omega \approx$ Q

crf: $\omega \rightarrow$ Q

Example: $(0,1) \approx R$

$$
\underset{\cos }{\cos (0,1)}=\{x \in \mathbf{R} \mid 0<x<1\}, \text { then }(0,1) \approx \mathbf{R}
$$

$\cos f(x)=\tan (\pi(2 x-1) / 2)$

Examples

$\alpha(0,1) \approx(n, m)$
\cos Proof: $f(x)=(n-m) x+m$
$\propto(0,1) \approx\{x \mid x \in \mathbf{R} \wedge x>0\}=(0,+\infty)$
cs Proof: $f(x)=1 / x-1$

Examples

$$
\begin{aligned}
& \infty[0,1] \approx[0,1) \\
& \text { cos Proof: } f(x)=x \text { if } 0 \leq x<1 \text { and } x \neq 1 /\left(2^{n}\right), n \in \omega \\
& f(x)=1 /\left(2^{n+1}\right) \text { if } x=1 /\left(2^{n}\right), \quad n \in \omega \\
& \infty[0,1) \approx(0,1) \\
& \text { cos Proof: } f(x)=x \quad \text { if } 0<x<1 \text { and } x \neq 1 /\left(2^{n}\right), n \in \omega \\
& f(0)=1 / 2 \quad x=0 \\
& f(x)=1 /\left(2^{n+1}\right) \quad \text { if } x=1 /\left(2^{n}\right), \quad n \in \omega \\
& \propto[0,1] \approx(0,1)
\end{aligned}
$$

Example: $\wp(\mathrm{A}) \approx{ }^{\mathrm{A}} 2$

 cos@For any set A, we have $P(A) \approx{ }^{A} 2$.

Proof: Define a function H from $P(A)$ onto ${ }^{A} 2$ as:
For any subset B of $A, H(B)$ is the characteristic function of B :

$$
f_{B}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in B \\
0 & \text { if } & x \in A-B
\end{array}\right.
$$

H is one-to-one and onto.

Theorem

crFor any sets A, B and C :

- $A \approx A$
- If $\mathrm{A} \approx \mathrm{B}$ then $\mathrm{B} \approx \mathrm{A}$
- If $A \approx B$ and $B \approx C$ then $A \approx C$.

Proof:

Theorem(Cantor 1873)

\propto The set ω is not equinumerous to the set \mathbf{R} of real numbers.
$\mathrm{c}_{\mathrm{N}} \mathrm{No}$ set is equinumerous to its power set.

\leftrightarrow The set ω is not equinumerous to the set R of real numbers.

Proof: show that for any functon $\mathrm{f}: \omega \rightarrow \mathbf{R}$, there is a real number z not belonging to $\operatorname{ran} f$

$$
\begin{aligned}
& f(0)=32.4345 \ldots, \\
& f(1)=-43.334 \ldots, \\
& f(2)=0.12418 \ldots,
\end{aligned}
$$

z : the integer part is 0 , and the $(\mathrm{n}+1)^{\text {st }}$ decimal place of z is 7 unless the $(\mathrm{n}+1)^{\text {st }}$ decimal place of $f(n)$ is 7 , in which case the $(\mathrm{n}+1)^{\text {st }}$ decimal place of z is 6 .
Then z is a real number not in ran f.

Q No set is equinumerous to its power set. $\longrightarrow \quad \operatorname{CS}$
$\propto<$ No set is equinumerous to its power set.

Proof: Let $g: A \rightarrow \wp(A)$; we will construct a subset B of A that is not in ran g. Specifically, let

$$
\mathrm{B}=\{\mathrm{x} \in \mathrm{~A} \mid \mathrm{x} \notin g(x)\}
$$

Then $B \subseteq A$, but for each $x \in A$

$$
\mathrm{x} \in \mathrm{~B} \text { iff } \mathrm{x} \notin g(x)
$$

Hence $\mathrm{B} \neq g(x)$.

Application

Paradox

- Paradox and ZFC

Equinumerosity

- Equinumerosity
- Ordering
- Countable sets

Ordering Cardinal Numbers

\propto Definition A set \mathcal{A} is dominated by a set \mathcal{B} (written $\mathcal{A} \preccurlyeq \mathcal{B}$) iff there is a one-to-one function from \mathcal{A} into \mathcal{B}.

Examples

OS

CB Any set dominates itself.
$\mathfrak{\infty}$ If $\mathcal{A} \subseteq \mathcal{B}$, then \mathcal{A} is dominated by \mathcal{B}.
$\propto ß \mathcal{A} \preccurlyeq \mathcal{B}$ iff \mathcal{A} is equinumerous to some subset of \mathcal{B}.

Schröder-Bernstein Theorem

œilf $A \preccurlyeq B$ and $B \preccurlyeq A$, then $A \approx B$.

@ Proof:

$f: A \rightarrow B, g: B \rightarrow A$. Define C_{n} by recursion:
$C_{0}=A-\operatorname{ran} g$ and $C_{n}^{+}=g\left[f\left[C_{n}\right]\right]$
$h(x)= \begin{cases}f(x) & \text { if } x \in C_{n} \text { for some } n, \\ g^{-1}(\mathrm{x}) & \text { otherwise }\end{cases}$

$h(x)$ is one-to-one and onto.

Application of the Schröder-

 Bernstein TheoremcrExample
ω If $A \subseteq B \subseteq C$ and $A \approx C$, then all three sets are equinumerous.
ω The set \mathbf{R} of real numbers is equinumerous to the closed unit interval $[0,1]$.
$\propto \kappa_{0}$ is the least infinite cardinal. i.e. $\omega \preccurlyeq A$ for any infinite A.

$$
\begin{aligned}
& \mathcal{R N}_{0} \cdot 2^{\aleph_{0}}=? \\
& 2^{\aleph_{0}} \leq \aleph_{0} \cdot 2^{\aleph 0} \leq 2^{\aleph 0} \cdot 2^{\aleph_{0}}=2^{\aleph_{0}}
\end{aligned}
$$

Paradox

- Paradox and ZFC

Equinumerosity

- Equinumerosity
- Ordering
- Countable sets

Countable Sets

 cos$\propto<B$ Definition A set A is countable iff $A \preccurlyeq \omega$,
∞ Intuitively speaking, the elements in a countable set can be counted by means of the natural numbers.
\propto_{B} An equivalent definition: A set A is countable iff either A is finite or $A \approx \omega$.

Example

$C R \omega$ is countable, as is \mathbf{Z} and \mathbf{Q}
$\bigcirc \underset{R}{ }$ is uncountable
$\propto \times A, B$ are countable sets
© $\forall C \subseteq A, C$ is countable
os $A \cup B$ is countable
$\cos A \times B$ is countable

Example

$C R \omega$ is countable, as is \mathbf{Z} and \mathbf{Q}
$\propto \mathbf{R}$ is uncountable
$\propto \operatorname{c} A, B$ are countable sets
ऊ $\forall C \subseteq A, C$ is countable
os $A \cup B$ is countable
$\cos A \times B$ is countable
α_{Ω} For any infinite set $A, \wp(A)$ is uncountable.

Continuum Hypothesis

\propto Are there any sets with cardinality between \aleph_{0} and $2^{N_{0}}$?
as Continuum hypothesis (Cantor): No.
i.e., there is no λ with $\aleph_{0}<\lambda<2^{\aleph} 0$.

Or, equivalently, it says: Every uncountable set of real numbers is equinumerous to the set of all real numbers.

GENERAL VERSION: for any infinite cardinal κ, there is no cardinal number between κ and 2^{κ}.

HISTORY

* Georg Cantor: 1878, proposed the conjecture

David Hilbert: 1900, the first of Hilbert's 23 problems.
Kurt Gödel: 1939, ZF $\forall \neg \mathrm{CH}$.
Paul Cohen: 1963, ZF $\forall \mathrm{CH}$.

Thanks!

 OS