Combinatorial Counting

longhuan@sjtu.edu.cn

n balls are put into m bins

balls per bin	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins.			
$\frac{n}{m}$ identical balls, m distinct bins.			
<i>n</i> distinct balls, <i>m</i> identical bins.			
n identical balls, m identical bins.			

n balls are put into m bins

balls per bin	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins.			
<i>n</i> identical balls, <i>m</i> distinct bins.			
<i>n</i> distinct balls, <i>m</i> identical bins.		$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	
n identical balls, m identical bins.		$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	

We will start with counting the ordered objects.

Ordered sequence

- Problem1: How many 5-letter words are there(using the 26-letter English alphabet)?
 e. g. abcde, sssdd, ...
- Problem2: How many distinct 5-letter words are there(using the 26-letter English alphabet) ?
 - e.g. abcde, sssdd, ...

5-letter words

 $26 \times 26 \times 26 \times 26 \times 26 = 26^5$

Distinct 5-letter words

Distinct 5-letter words

Distinct 5-letter words

 $26 \times 25 \times 24 \times 23 \times 22$

Proof by induction

Goal: show that P(x) is true for any $x \in \omega$

- ① Check that P(0) is true;
- ② Suppose that P(k) is true; // Induction hypothesis
- ③ Prove that P(k + 1) is true.

The generalization of Problem 1

- Proposition1: Let *N* be an *n*-element set, and *M* be an *m*-element set, with $n \ge 0, m \ge 1$. Then the number of all possible mappings $f: N \to M$ is m^n .
- Proof: (By induction on *n*)
 - -n=0: $f=\emptyset; m^0=1$.

- Suppose the results works for n = k;

- If n = k + 1 :

n = k + 1, take any $a \in N$:

$$m \cdot m^{n-1} = m^n$$

n balls are put into m bins

balls per bin	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins.	m^n		
n identical balls, m distinct bins.			
<i>n</i> distinct balls, <i>m</i> identical bins.		$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	
n identical balls, m identical bins.		$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	

The generalization of Problem 2

• Proposition2: Let N be an n-element set, and M be an m-element set, with $n, m \ge 0$. Then there exist exactly

$$m(m-1)...(m-n+1) = \prod_{i=0}^{n-1} (m-i)$$

one-to-one mappings from N into M.

- Proof: (By induction on *n*)
 - -n = 0: $f = \emptyset$. The value of an empty product is defined as 1.

18

- Suppose the results works for n = k;

- for n = k + 1, take any $a \in N$:

 $m(m-1)\dots(m-n+1)$

Falling factorial notation

 $(x)_n$ $= x^{\underline{n}}$ $= x(x-1)\cdots(x-n+1)$

n balls are put into m bins

balls per bin	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins.	m^n	(<i>m</i>) _{<i>n</i>}	
n identical balls, m distinct bins.			
<i>n</i> distinct balls, <i>m</i> identical bins.		$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	
n identical balls, m identical bins.		$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	

Application 1: Counting the different subsets

Given set X, |X| = n, then X has exactly 2^n subsets $(n \ge 0)$.

- Proof¹: By induction on n. (Exercise)
- Proof²:

for any $A \subseteq X$, define $f_A: X \to \{0,1\}$ as

$$f_A(x) = \{ \begin{array}{cc} 1 & if \ x \in A \\ 0 & if \ x \notin A \end{array} \right.$$

There exists a bijective relation between the subsets of X and $f: X \rightarrow \{0,1\}$ (Recall: Equinumerous).

Application2: Counting the permutations

- **Permutation**: A bijective mapping of a finite set *X* to itself is called a permutation of the set *X*.
- Recall: Bijective functions.

Counting permutations-Factorial

Given set X, |X| = n, then there are $n \cdot (n-1) \cdot ... \cdot 2 \cdot 1$ different permutations on set *X*.

n factorial:

$$n! = n \cdot (n-1) \cdot \ldots \cdot 2 \cdot 1 = \prod_{i=1}^{n} i.$$

- So far, we considered ordered sequences.
- What about the un-ordered occasion?

Ordered sequence

Un-ordered set

Problem 3: counting *k*-element subsets Given set *X*, |X| = n, $n \ge k \ge 0$, how many different subsets of *X* contains exactly *k* elements?

e.g.
$$X = \{a, b, c\}$$
, $k = 2$.

Then: $\{a, b\}$, $\{a, c\}$, $\{b, c\}$. Three 2-size subsets.

Convention: $\binom{X}{k}$ VS. $|\binom{X}{k}|$ e. g. $\binom{X}{k} = \{\{a, b\}, \{a, c\}, \{b, c\}\}, |\binom{X}{k}| = 3.$ Proposition: For any finite set X with |X| = n, the number of all k-element subsets is

$$\binom{X}{k} = \frac{n(n-1)(n-2)\dots(n-k+1)}{k(k-1)\dots(2\cdot 1)}$$

• Proof: (Double counting!)

Application: counting non-negative solutions.

 $m \ge r \ge 0$, the equation $x_1 + x_2 + \dots + x_r = m$ has $\binom{m+r-1}{r-1}$ non-negative integers solutions of the form (x_1, x_2, \dots, x_r) .

 $x_1 = 3, x_2 = 0, x_3 = 2, x_4 = 0, \cdots, x_{r-1} = 4, x_r = 2$

Application: counting non-negative solutions.

 $m \ge r \ge 0$, the equation $x_1 + x_2 + \dots + x_r = m$ has $\binom{m+r-1}{r-1}$ non-negative integers solutions of the form (x_1, x_2, \dots, x_r) .

Application: counting non-negative solutions.

 $m \ge r \ge 0$, the equation $x_1 + x_2 + \dots + x_r = m$ has $\binom{m+r-1}{r-1}$ non-negative integers solutions of the form (x_1, x_2, \dots, x_r) .

Question: counting positive solutions.

 $m \ge r \ge 0$, the equation $x_1 + x_2 + \dots + x_r = m$ has _____ positive integers solutions of the form (x_1, x_2, \dots, x_r) .

Question: counting positive solutions.

 $m \ge r \ge 0$, the equation $x_1 + x_2 + \dots + x_r = m$ has $\binom{m-1}{r-1}$ positive integers solutions of the form (x_1, x_2, \dots, x_r) .

Basic Properties

$$\binom{n}{k} = \binom{n}{n-k}$$

• Proof¹:

• Proof²:

Pascal's Identity:

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$

• Proof:

$$\binom{n-1}{k-1}$$

 $\binom{n-1}{k}$

Exercise

$$\sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}$$

$$\sum_{k=0}^{n} \binom{m+k-1}{k} = \binom{n+m}{n}$$

• Proof:
$$\sum_{i=0}^{n} {\binom{n}{i}}^2 = {\binom{2n}{n}}$$

Vandermonde's identity/convolution

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k}$$

The general form

$$\binom{n_1 + \dots + n_p}{m} = \sum_{k_1 + \dots + k_p = m} \binom{n_1}{k_1} \binom{n_2}{k_2} \cdots \binom{n_p}{k_p}$$

n balls are put into m bins

balls per bin	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins.	m^n	(<i>m</i>) _{<i>n</i>}	
n identical balls, m distinct bins.	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
<i>n</i> distinct balls, <i>m</i> identical bins.		$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	
n identical balls, m identical bins.		$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	

Multiset Coefficient

 The number of multisets of cardinality k, with elements taken from a finite set of cardinality n, is called the multiset coefficient or multiset number.

•
$$\binom{\binom{n}{k}}{=} \binom{n+k-1}{n-1} = \binom{n+k-1}{k}$$

= $\frac{n(n+1)(n+2)\cdots(n+k-1)}{k!} = \frac{n^{\overline{k}}}{k!}$

n balls are put into m bins

balls per bin	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins.	m^n	(<i>m</i>) _{<i>n</i>}	
n identical balls, m distinct bins.	$\binom{m}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
<i>n</i> distinct balls, <i>m</i> identical bins.		$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	
n identical balls, m identical bins.		$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	

Binomial theorem

• **Binomial Theorem:** for any non-negative integer *n*, we have

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

- Proof: Exercise
- Applications:

$$-\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^{n} \text{ (take } x = 1)$$

$$-\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} \dots = \sum_{k=0}^{n} \binom{n}{k} (-1)^{k} = 0$$

$$-2\left[\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots\right] = 2^{n}$$
⁴⁷

Pascal's Triangle (1654) / 杨辉三角(1261)

(Un-)Ordered sequence

Ordered sequence

With 5 different red balls, 3 different yellow balls, 4 different blue balls, we can get (5 + 3 + 4)! = 12! different sequences.

 Question: With 5 <u>equal</u> red balls, 3 <u>equal</u> yellow balls, 4 <u>equal</u> blue balls, how many different sequences can we get?

• **Theorem:** if we have objects of *m* kinds, k_i indistinguishable objects of *i*th kind, where $k_1 + k_2 + \cdots + k_m = n$, then the number of distinct arrangements of the objects in a row is $\frac{n!}{k_1!k_2!...k_m!}$. Usually written $\binom{n}{k_1,k_2,\ldots,k_m}$ °

• Multinomial Theorem: For arbitrary real
number
$$x_1, x_2, ..., x_m$$
 and any natural
number $n \ge 1$, the following equality holds:
 $(x_1 + x_2 + \dots + x_m)^n$
 $= \sum_{\substack{k_1 + \dots + k_m = n \\ k_1, \dots, k_m \ge 0}} {n \choose k_1, k_2, \dots, k_m} x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m}.$

• e.g. In
$$(x + y + z)^{10}$$
 the coefficient of $x^2y^3z^5$ is $\binom{10}{2,3,5} = 2520$.

Newton(1665)'s generalized binomial theorem

Let
$$\binom{r}{k} = \frac{r(r-1)\cdots(r-k+1)}{k!} = \frac{(r)_k}{k!}$$
 where *r* is arbitrary,
 $k > 0$ is an integer
If *x* and *y* are real numbers with $|x| > |y|$

$$(x+y)^r = \sum_{k=0}^{\infty} \binom{r}{k} x^{r-k} y^k$$

$$= x^{r} + rx^{r-1}y + \frac{r(r-1)}{2!}x^{r-2}y^{2} + \frac{r(r-1)(r-2)}{3!}x^{r-3}y^{3} + \cdots$$

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \frac{7}{256}x^5 - \cdots$$
$$(1+x)^{-1} = \frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - x^5 + \cdots$$

Generally: r = -s

$$\frac{1}{(1-x)^s} = \sum_{k=0}^{\infty} \binom{s+k-1}{k} x^k$$
$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \frac{63}{256}x^5 + \cdots$$

• The second Stirling Numbers $\binom{n}{k}$: The number of ways to partition a set of n things into k nonempty subsets.

• e.g.
$$\binom{4}{2} = 7$$

• The second Stirling Numbers $\binom{n}{k}$: The number of ways to partition a set of n things into k nonempty subsets.

• e.g.
$$\binom{4}{2} = 7$$

(*n*) 2^{n-1} 1

• $\binom{n}{2} = 2^{n-1} - 1$ why?

• The second Stirling Numbers $\binom{n}{k}$: The number of ways to partition a set of n things into k nonempty subsets.

• e.g.
$$\binom{4}{2} = 7$$

• $\binom{n}{2} = 2^{n-1} - 1$ why?

• The second Stirling Numbers $\binom{n}{k}$: The number of ways to partition a set of n things into k nonempty subsets.

• e.g.
$$\binom{4}{2} = 7$$

• $\binom{n}{2} = 2^{n-1} - 1$ why?

• The second Stirling Numbers $\binom{n}{k}$: The number of ways to partition a set of n things into k nonempty subsets.

• e.g.
$$\binom{4}{2} = 7$$

• $\binom{n}{k} = k \binom{n-1}{k} + \binom{n-1}{k-1}$

Stirling cycle numbers

- The first Stirling Numbers $\begin{bmatrix}n\\k\end{bmatrix}$: The number of ways to partition a set of n things into k nonempty cycles.
- $\begin{bmatrix} n \\ k \end{bmatrix} \ge {\binom{n}{k}},$

Stirling cycle numbers

- The first Stirling Numbers $\begin{bmatrix}n\\k\end{bmatrix}$: The number of ways to partition a set of n things into k nonempty cycles.
- $\begin{bmatrix} n \\ k \end{bmatrix} \ge {\binom{n}{k}}$, e.g. $\begin{bmatrix} 4 \\ 2 \end{bmatrix} = 11$

Stirling cycle numbers

• The first Stirling Numbers $\begin{bmatrix} n \\ k \end{bmatrix}$: The number of ways to partition a set of n things into k nonempty cycles.

•
$$\begin{bmatrix} n \\ k \end{bmatrix} \ge {\binom{n}{k}}$$
, e.g. $\begin{bmatrix} 4 \\ 2 \end{bmatrix} = 11$
• $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n-1)!$

• $\sum_{k=0}^{n} {n \brack k} = n!$ where $n \in Z^+$.

• $\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \cdot \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}$ Why? 65

•
$$\sum_{k=0}^{n} {n \brack k} = n!$$
 where $n \in Z^+$.

n balls are put into m bins

balls per bin	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins.	m^n	(<i>m</i>) _{<i>n</i>}	$m! {n \\ m}$
<i>n</i> identical balls, <i>m</i> distinct bins.	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
<i>n</i> distinct balls, <i>m</i> identical bins.	$\sum_{k=1}^{m} {n \\ k}$	$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	${n \atop m}$
n identical balls, m identical bins.		$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	

Partition of a number

• $P_k(n)$: number of partition the positive integer n into k parts.

• e.g.
$$P_2(7) = 3 \quad \{\{1,6\}, \{2,5\}, \{3,4\}\}$$

 $P_6(7) = 1 \quad \{\{1,1,1,1,1,2\}\}$

Number of integral solutions to

$$\begin{cases} x_1 + x_2 + \dots + x_k = n \\ x_1 \ge x_2 \ge \dots \ge x_k \ge 1 \end{cases}$$

• $P_k(n) = P_{k-1}(n-1) + P_k(n-k)$ why?

n balls are put into m bins

balls per bin	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins.	m^n	(<i>m</i>) _{<i>n</i>}	$m! {n \\ m}$
<i>n</i> identical balls, <i>m</i> distinct bins.	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
<i>n</i> distinct balls, <i>m</i> identical bins.	$\sum_{k=1}^{m} {n \\ k}$	$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	${n \atop m}$
n identical balls, m identical bins.	$\sum_{k=1}^{m} p_k(n)$	$\begin{cases} 1 & n \le m \\ 0 & n > m \end{cases}$	$p_m(n)$

Partition of a number

• $P_k(n)$: number of partition the positive integer n into k parts.

• $\sum_{k=1}^{m} p_k(n) = p_m(n+m)$ why?

Twelvefold way

The twelve combinatorial objects and their enumeration formulas.

f-class	Any f	Injective f	Surjective f
f	$rac{n}{x^n}$ -sequence in X	n-permutation in X $x^{\underline{n}}$	composition of <i>N</i> with <i>x</i> subsets $x! \{ {n \atop x} \}$
f∘S _n	n -multisubset of X $ig(x+n-1 \ n ig)$	$ \begin{array}{c} n \text{-subset of } X \\ \begin{pmatrix} x \\ n \end{pmatrix} \end{array} $	composition of n with x terms $\binom{n-1}{n-x}$
S _x ∘ f	partition of <i>N</i> into $\leq x$ subsets $\sum_{k=0}^{x} {n \\ k}$	partition of <i>N</i> into $\leq x$ elements $[n \leq x]$	partition of <i>N</i> into <i>x</i> subsets ${n \\ x}$
$S_x \circ f \circ S_n$	partition of n into x non-negative parts $p_x(n+x)$	partition of n into $\leq x$ parts 1 $[n \leq x]$	partition of n into x parts $p_x(n)$

https://en.wikipedia.org/wiki/Twelvefold_way