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Let’s Count！



𝑛 balls are put into 𝑚 bins

balls per bin unrestricted ≤ 𝟏 ≥ 𝟏

𝑛 distinct balls,

𝑚 distinct bins.

𝑛 identical balls,

𝑚 distinct bins.

𝑛 distinct balls,

𝑚 identical bins.

𝑛 identical balls,

𝑚 identical bins.
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𝑛 balls are put into 𝑚 bins

balls per bin unrestricted ≤ 𝟏 ≥ 𝟏

𝑛 distinct balls,

𝑚 distinct bins.

𝑛 identical balls,

𝑚 distinct bins.

𝑛 distinct balls,

𝑚 identical bins.
ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚

𝑛 identical balls,

𝑚 identical bins.
ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚
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Basic counting 

Binomial theorem

Generalized Binomial theoremSome 

special numbers
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We will start with 

counting the ordered

objects.
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Ordered sequence



• Problem1：How many 5-letter words are

there(using the 26-letter English alphabet)？

e.g. abcde, sssdd, …

• Problem2： How many distinct 5-letter

words are there(using the 26-letter English

alphabet) ？

e.g. abcde, sssdd, …

9



5-letter words

L1 L2 L3 L4 L5

a, b, c, … x, y, z

26 26

26 × 26 × 26 × 26 × 26 = 265
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Distinct 5-letter words

L1 L2 L3 L4 L5

a, b, c, … x, y, z

26
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Distinct 5-letter words

L1 L2 L3 L4 L5

a, b, c, … x, y, z

26 25
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Distinct 5-letter words

L1 L2 L3 L4 L5

a, b, c, … x, y, z

26

26 × 25 × 24 × 23 × 22

25 24
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Proof by induction

Goal: show that 𝑃(𝑥) is true for any 𝑥 ∈ 𝜔

① Check that 𝑃(0) is true;

② Suppose that 𝑃(𝑘) is true; // Induction hypothesis

③ Prove that 𝑃(𝑘 + 1) is true. 
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The generalization of Problem 1

• Proposition1：Let 𝑁 be an 𝑛-element set, 

and 𝑀 be an 𝑚-element set, with 𝑛 ≥
0,𝑚 ≥ 1. Then the number of all possible 

mappings 𝑓:𝑁 → 𝑀 is 𝑚𝑛. 

• Proof: ( By induction on 𝑛)

– 𝑛 = 0: 𝑓 = ∅；𝑚0 = 1 。

– Suppose the results works for 𝑛 = 𝑘;

– If 𝑛 = 𝑘 + 1 :

15



𝒂

𝑵 𝑴

𝒇′
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𝑛 = 𝑘 + 1 ，take any 𝑎 ∈ 𝑁:

𝑚 ⋅ 𝑚𝑛−1 = 𝑚𝑛



𝑛 balls are put into 𝑚 bins

balls per bin unrestricted ≤ 𝟏 ≥ 𝟏

𝑛 distinct balls,

𝑚 distinct bins.
𝑚𝑛

𝑛 identical balls,

𝑚 distinct bins.

𝑛 distinct balls,

𝑚 identical bins.
ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚

𝑛 identical balls,

𝑚 identical bins.
ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚
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The generalization of Problem 2
• Proposition2： Let 𝑁 be an 𝑛-element set, 

and 𝑀 be an 𝑚-element set, with 𝑛,𝑚 ≥ 0. 

Then there exist exactly 

𝑚 𝑚− 1 … (𝑚 − 𝑛 + 1) =ෑ

𝑖=0

𝑛−1

(𝑚 − 𝑖)

one-to-one mappings from 𝑁 into 𝑀.

• Proof: ( By induction on 𝑛)

– 𝑛 = 0: 𝑓 = ∅.  The value of an empty product is 
defined as 1.

– Suppose the results works for 𝑛 = 𝑘; 18



– for 𝑛 = 𝑘 + 1, take any 𝑎 ∈ 𝑁：

𝑚 𝑚 − 1 …(𝑚 − 𝑛 + 1)

𝒂

𝑵 𝑴

𝒇′
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Falling factorial notation

20

𝑥 𝑛

= 𝑥𝑛

= 𝑥 𝑥 − 1 ⋯(𝑥 − 𝑛 + 1)



𝑛 balls are put into 𝑚 bins

balls per bin unrestricted ≤ 𝟏 ≥ 𝟏

𝑛 distinct balls,

𝑚 distinct bins.
𝑚𝑛 𝑚 𝑛

𝑛 identical balls,

𝑚 distinct bins.

𝑛 distinct balls,

𝑚 identical bins.
ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚

𝑛 identical balls,

𝑚 identical bins.
ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚
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Application 1: Counting the 

different subsets
Given set 𝑋 , 𝑋 = 𝑛, then 𝑋 has exactly 2𝑛

subsets (𝑛 ≥ 0).

• Proof1: By induction on 𝑛. (Exercise)

• Proof2:

for any 𝐴 ⊆ 𝑋,  define 𝑓𝐴: 𝑋 → {0,1} as

22

𝑓𝐴 𝑥 = {
1 𝑖𝑓 𝑥 ∈ 𝐴
0 𝑖𝑓 𝑥 ∉ 𝐴



There exists a bijective relation between the subsets of 

𝑋 and 𝑓: 𝑋 → {0,1} (Recall: Equinumerous).
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𝑋 𝐴

𝑓𝐴 0    0    1    0    1     1    0    1

Characteristic function

𝑓𝐴 𝑥 = {
1 𝑖𝑓 𝑥 ∈ 𝐴
0 𝑖𝑓 𝑥 ∉ 𝐴



Application2：Counting the 

permutations
• Permutation：A bijective mapping of a 

finite set 𝑋 to itself is called a permutation 

of the set 𝑋.

• Recall：Bijective functions.
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Counting permutations-Factorial

Given set  𝑋 , 𝑋 = 𝑛, then there are 

𝑛 ⋅ 𝑛 − 1 ⋅ … ⋅ 2 ⋅ 1 different permutations on 

set 𝑋.

𝒏 factorial：

𝑛! = 𝑛 ⋅ 𝑛 − 1 ⋅ … ⋅ 2 ⋅ 1 =ෑ

𝑖=1

𝑛

𝑖.
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• So far, we considered ordered sequences.

• What about the un-ordered occasion?
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Ordered sequence



28
Un-ordered set



Problem 3：counting 𝑘-element subsets

Given set  𝑋 , 𝑋 = 𝑛,  𝑛 ≥ 𝑘 ≥ 0，how 

many different subsets of 𝑋 contains exactly 

𝑘 elements？

e.g. 𝑋 = {𝑎, 𝑏, 𝑐} ， 𝑘 = 2 。

Then: {𝑎, 𝑏} ，{𝑎, 𝑐} ，{𝑏, 𝑐} . Three 2-size 

subsets.

Convention: 𝑋
𝑘

VS. 𝑋
𝑘

e.g. 𝑋
𝑘

= { 𝑎, 𝑏 , 𝑎, 𝑐 , {𝑏, 𝑐}}， 𝑋
𝑘

= 3.
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• Proposition：For any finite set 𝑋 with 

𝑋 = 𝑛, the number of all 𝑘-element 

subsets is

𝑋
𝑘

=
𝑛 𝑛−1 𝑛−2 …(𝑛−𝑘+1)

𝑘 𝑘−1 ⋅…⋅2⋅1
.

• Proof：(Double counting!)
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Binomial coefficients

• 𝑛
𝑘

= 𝑋
𝑘

= 
𝑛 𝑛−1 𝑛−2 …(𝑛−𝑘+1)

𝑘 𝑘−1 ⋅…⋅2⋅1

= 
ς𝑖=0
𝑘−1(𝑛−𝑖)

𝑘!

= 
𝑛 𝑛−1 𝑛−2 … 𝑛−𝑘+1 ⋅ 𝑛−𝑘 ⋅…⋅ 1

𝑘 𝑘−1 ⋅…⋅2⋅1⋅ 𝑛−𝑘 ⋅…⋅ 1

= 
𝑛!

𝑘!⋅ 𝑛−𝑘 !
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Application: counting non-negative solutions.

𝑚 ≥ 𝑟 ≥ 0, the equation 𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 =

𝑚 has 𝑚+𝑟−1
𝑟−1

non-negative integers 

solutions of the form (𝑥1, 𝑥2, … , 𝑥𝑟) .

32

𝑚

𝑟 − 1

𝑥1 𝑥2 𝑥3 𝑥4 𝑥𝑟−1 𝑥𝑟⋯

𝒙𝟏 = 𝟑, 𝒙𝟐 = 𝟎, 𝒙𝟑= 𝟐, 𝒙𝟒 = 𝟎,⋯ , 𝒙𝒓−𝟏 = 𝟒, 𝒙𝒓 = 𝟐



Application: counting non-negative solutions.

𝑚 ≥ 𝑟 ≥ 0, the equation 𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 =

𝑚 has 𝑚+𝑟−1
𝑟−1

non-negative integers 

solutions of the form (𝑥1, 𝑥2, … , 𝑥𝑟) .

33

𝑚

𝑟 − 1



Application: counting non-negative solutions.

𝑚 ≥ 𝑟 ≥ 0, the equation 𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 =

𝑚 has 𝑚+𝑟−1
𝑟−1

non-negative integers 

solutions of the form (𝑥1, 𝑥2, … , 𝑥𝑟) .

34

𝑚

𝑟 − 1



Question: counting positive solutions.

𝑚 ≥ 𝑟 ≥ 0, the equation 𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 =
𝑚 has positive integers solutions of the 

form (𝑥1, 𝑥2, … , 𝑥𝑟) .

35

𝑚

𝑟 − 1



Question: counting positive solutions.

𝑚 ≥ 𝑟 ≥ 0, the equation 𝑥1 + 𝑥2 +⋯+ 𝑥𝑟 =

𝑚 has 𝑚−1
𝑟−1

positive integers solutions of 

the form (𝑥1, 𝑥2, … , 𝑥𝑟) .

36

𝑚

𝑟 − 1



Basic Properties
𝑛

𝑘
=

𝑛

𝑛 − 𝑘

• Proof1：

• Proof2:

37

𝑘 𝑛 − 𝑘



Pascal’s Identity: 

𝑛 − 1

𝑘 − 1
+

𝑛 − 1

𝑘
=

𝑛

𝑘

• Proof:

𝑛 − 1

𝑘 − 1

𝑛 − 1

𝑘

38

𝑎
𝑘 − 1

𝑎
𝑘



Pascal’s Triangle （1654）/ 杨辉三角（1261）



Exercise

40

෍

𝑘=0

𝑛
𝑘

𝑚
=

𝑛 + 1

𝑚 + 1

෍

𝑘=0

𝑛
𝑚 + 𝑘 − 1

𝑘
=

𝑛 +𝑚

𝑛



෍

𝑖=0

𝑛
𝑛

𝑖

2

=
2𝑛

𝑛

• Proof：σ𝑖=0
𝑛 𝑛

𝑖

2
= σ𝑖=0

𝑛 𝑛
𝑖

𝑛
𝑛−𝑖

41

𝑖

𝑛 − 𝑖

𝑛 𝑛

𝑋



Vandermonde’s identity/convolution

42

𝑚 + 𝑛

𝑟
= ෍

𝑘=0

𝑟
𝑚

𝑘

𝑛

𝑟 − 𝑘

𝑛1 +⋯+ 𝑛𝑝
𝑚

= ෍

𝑘1+⋯+𝑘𝑝=𝑚

𝑛1
𝑘1

𝑛2
𝑘2

⋯
𝑛𝑝
𝑘𝑝

The general form 



𝑛 balls are put into 𝑚 bins

balls per bin unrestricted ≤ 𝟏 ≥ 𝟏

𝑛 distinct balls,

𝑚 distinct bins.
𝑚𝑛 𝑚 𝑛

𝑛 identical balls,

𝑚 distinct bins.

𝑛 +𝑚 − 1

𝑚− 1

𝑚

𝑛

𝑛 − 1

𝑚− 1

𝑛 distinct balls,

𝑚 identical bins.
ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚

𝑛 identical balls,

𝑚 identical bins.
ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚
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Multiset Coefficient

• The number of multisets of cardinality 𝑘, 

with elements taken from a finite set of 

cardinality 𝑛, is called the multiset 

coefficient or multiset number. 

•
𝑛
𝑘

= 𝑛+𝑘−1
𝑛−1

= 𝑛+𝑘−1
𝑘

=
𝑛 𝑛+1 (𝑛+2)⋯ 𝑛+𝑘−1

𝑘!
=

𝑛
ഥ𝑘

𝑘!

44



𝑛 balls are put into 𝑚 bins

balls per bin unrestricted ≤ 𝟏 ≥ 𝟏

𝑛 distinct balls,

𝑚 distinct bins.
𝑚𝑛 𝑚 𝑛

𝑛 identical balls,

𝑚 distinct bins.

𝑚
𝑛

𝑚

𝑛

𝑛 − 1

𝑚− 1

𝑛 distinct balls,

𝑚 identical bins.
ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚

𝑛 identical balls,

𝑚 identical bins.
ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚
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Basic counting 

Binomial theorem

Generalized Binomial theorem

Some special numbers

46



Binomial theorem

• Binomial Theorem: for any non-negative 

integer 𝑛, we have

1 + 𝑥 𝑛 = ෍

𝑘=0

𝑛
𝑛

𝑘
𝑥𝑘

• Proof：Exercise

• Applications：

– 𝑛
0
+ 𝑛

1
+ 𝑛

2
+⋯+ 𝑛

𝑛
= 2𝑛 ( take 𝑥 = 1)

– 𝑛
0
− 𝑛

1
+ 𝑛

2
− 𝑛

3
⋯ = σ𝑘=0

𝑛 𝑛
𝑘

−1 𝑘 = 0

– 2 𝑛
0
+ 𝑛

2
+ 𝑛

4
+⋯ = 2𝑛 47



Pascal’s Triangle （1654）/ 杨辉三角（1261）



49
(Un-)Ordered sequence



50
Ordered sequence



• With 5 different red balls, 3 different yellow 

balls, 4 different blue balls, we can get 

5 + 3 + 4 ! = 12! different sequences.

• Question： With 5 equal red balls, 3 equal

yellow balls, 4 equal blue balls, how many 

different sequences can we get?

51

1 2 3 1 1 2 4 3 5 4 2 3



• Theorem：if we have objects of 𝑚 kinds, 

𝑘𝑖 indistinguishable objects of 𝑖th kind, 

where 𝑘1 + 𝑘2 +⋯+ 𝑘𝑚 = 𝑛, then the 

number of distinct arrangements of the 

objects in a row is  
𝑛!

𝑘1!𝑘2!…𝑘𝑚!
.  Usually 

written 𝑛
𝑘1,𝑘2,…,𝑘𝑚

。

52

12!

5!3!4!
种



• Multinomial Theorem: For arbitrary real 

number 𝑥1, 𝑥2, … , 𝑥𝑚 and any natural 

number 𝑛 ≥ 1, the following equality holds:
𝑥1 + 𝑥2 +⋯+ 𝑥𝑚

𝑛

= ෍
𝑘1+⋯𝑘𝑚=𝑛
𝑘1,⋯,𝑘𝑚≥0

𝑛

𝑘1, 𝑘2, … , 𝑘𝑚
𝑥1
𝑘1𝑥2

𝑘2 ⋯𝑥𝑚
𝑘𝑚 .

• e.g.In 𝑥 + 𝑦 + 𝑧 10 the coefficient of  

𝑥2𝑦3𝑧5 is 10
2,3,5

= 2520.
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Basic counting 

Binomial theorem

Generalized Binomial theorem

Some special numbers
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Newton(1665)’s generalized binomial theorem

55

Let 𝑟
𝑘

=
𝑟 𝑟−1 ⋯(𝑟−𝑘+1)

𝑘!
=

𝑟 𝑘

𝑘!
where 𝑟 is arbitrary, 

𝑘 > 0 is an integer
If 𝑥 and 𝑦 are real numbers with 𝑥 > |𝑦|

𝑥 + 𝑦 𝑟 = ෍

𝑘=0

∞
𝑟

𝑘
𝑥𝑟−𝑘𝑦𝑘

= 𝑥𝑟 + 𝑟𝑥𝑟−1𝑦 +
𝑟 𝑟 − 1

2!
𝑥𝑟−2𝑦2

+
𝑟 𝑟−1 (𝑟−2)

3!
𝑥𝑟−3𝑦3 +⋯



56

1 + 𝑥 = 1 +
1

2
𝑥 −

1

8
𝑥2 +

1

16
𝑥3 −

5

128
𝑥4 +

7

256
𝑥5 −⋯

1 + 𝑥 −1 =
1

1 + 𝑥
= 1 − 𝑥 + 𝑥2 − 𝑥3 + 𝑥4 − 𝑥5 +⋯

1

1 − 𝑥 𝑠
= ෍

𝑘=0

∞
𝑠 + 𝑘 − 1

𝑘
𝑥𝑘

1

1 + 𝑥
= 1 −

1

2
𝑥 +

3

8
𝑥2 −

5

16
𝑥3 +

35

128
𝑥4 −

63

256
𝑥5 +⋯

Generally:  𝑟 = −𝑠



Basic counting 

Binomial theorem

Generalized Binomial theorem

Some special numbers
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Stirling subset numbers

• The second Stirling Numbers 
𝑛
𝑘

: The 

number of ways to partition a set of 𝑛
things into 𝑘 nonempty subsets.

• e.g.  
4
2

= 7

58



Stirling subset numbers

• The second Stirling Numbers 
𝑛
𝑘

: The 

number of ways to partition a set of 𝑛
things into 𝑘 nonempty subsets.

• e.g.  
4
2

= 7

•
𝑛
2

= 2𝑛−1 − 1 why?

59



• The second Stirling Numbers 
𝑛
𝑘

: The 

number of ways to partition a set of 𝑛
things into 𝑘 nonempty subsets.

• e.g.  
4
2

= 7

•
𝑛
2

= 2𝑛−1 − 1 why?

60

Stirling subset numbers



• The second Stirling Numbers 
𝑛
𝑘

: The 

number of ways to partition a set of 𝑛
things into 𝑘 nonempty subsets.

• e.g.  
4
2

= 7

•
𝑛
2

= 2𝑛−1 − 1 why?

61

Stirling subset numbers



• The second Stirling Numbers 
𝑛
𝑘

: The 

number of ways to partition a set of 𝑛
things into 𝑘 nonempty subsets.

• e.g.  
4
2

= 7

•
𝑛
𝑘

= 𝑘
𝑛 − 1
𝑘

+
𝑛 − 1
𝑘 − 1

62

Stirling subset numbers



• The first Stirling Numbers 
𝑛
𝑘

: The number 

of ways to partition a set of 𝑛 things into 𝑘
nonempty cycles.

•
𝑛
𝑘

≥
𝑛
𝑘

,   

63

Stirling cycle numbers



• The first Stirling Numbers 
𝑛
𝑘

: The number 

of ways to partition a set of 𝑛 things into 𝑘
nonempty cycles.

•
𝑛
𝑘

≥
𝑛
𝑘

,   e.g.  
4
2

= 11

64

Stirling cycle numbers



• The first Stirling Numbers 
𝑛
𝑘

: The number 

of ways to partition a set of 𝑛 things into 𝑘
nonempty cycles.

•
𝑛
𝑘

≥
𝑛
𝑘

,   e.g.  
4
2

= 11

•
𝑛
1

= 𝑛 − 1 !

• σ𝑘=0
𝑛 𝑛

𝑘
= 𝑛! where 𝑛 ∈ 𝑍+.

•
𝑛
𝑘

= 𝑛 − 1 ⋅
𝑛 − 1
𝑘

+
𝑛 − 1
𝑘 − 1

Why? 65

Stirling cycle numbers



• σ𝑘=0
𝑛 𝑛

𝑘
= 𝑛! where 𝑛 ∈ 𝑍+.

66



𝑛 balls are put into 𝑚 bins

balls per bin unrestricted ≤ 𝟏 ≥ 𝟏

𝑛 distinct balls,

𝑚 distinct bins.
𝑚𝑛 𝑚 𝑛 𝑚!

𝑛
𝑚

𝑛 identical balls,

𝑚 distinct bins.

𝑛 +𝑚 − 1

𝑚− 1

𝑚

𝑛

𝑛 − 1

𝑚− 1

𝑛 distinct balls,

𝑚 identical bins.
෍

𝑘=1

𝑚
𝑛
𝑘

ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚

𝑛
𝑚

𝑛 identical balls,

𝑚 identical bins.
ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚

67



Partition of a number

• 𝑃𝑘(𝑛)：number of partition the positive 

integer 𝑛 into 𝑘 parts.

• e.g.  𝑃2 7 = 3 { 1,6 , 2,5 , {3,4}}
𝑃6 7 = 1 {{1,1,1,1,1,2}}

• Number of integral solutions to 

ቊ
𝑥1 + 𝑥2 +⋯+ 𝑥𝑘 = 𝑛
𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑘 ≥ 1

• 𝑃𝑘 𝑛 = 𝑃𝑘−1 𝑛 − 1 + 𝑃𝑘(𝑛 − 𝑘) why?
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𝑛 balls are put into 𝑚 bins

balls per bin unrestricted ≤ 𝟏 ≥ 𝟏

𝑛 distinct balls,

𝑚 distinct bins.
𝑚𝑛 𝑚 𝑛 𝑚!

𝑛
𝑚

𝑛 identical balls,

𝑚 distinct bins.

𝑛 + 𝑚 − 1

𝑚 − 1

𝑚

𝑛

𝑛 − 1

𝑚 − 1

𝑛 distinct balls,

𝑚 identical bins.
෍

𝑘=1

𝑚
𝑛
𝑘

ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚

𝑛
𝑚

𝑛 identical balls,

𝑚 identical bins.
෍

𝑘=1

𝑚

𝑝𝑘(𝑛) ቊ
1 𝑛 ≤ 𝑚
0 𝑛 > 𝑚

𝑝𝑚(𝑛)
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Partition of a number

• 𝑃𝑘(𝑛)：number of partition the positive 

integer 𝑛 into 𝑘 parts.

• σ𝑘=1
𝑚 𝑝𝑘 𝑛 = 𝑝𝑚 𝑛 +𝑚 why?
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Twelvefold way
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https://en.wikipedia.org/wiki/Twelvefold_way

https://en.wikipedia.org/wiki/Twelvefold_way
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