Combinatorial Counting

longhuan@sjtu.edu.cn

Let's Count!

n balls are put into m bins

balls per bin	unrestricted	$\leq \mathbf{1}$	$\geq \mathbf{1}$
n distinct balls, m distinct bins.			
n identical balls, m distinct bins.			
n distinct balls, m identical bins.			
n identical balls, m identical bins.			

n balls are put into m bins

balls per bin	unrestricted	$\leq \mathbf{1}$	$\geq \mathbf{1}$
n distinct balls, m distinct bins.			
n identical balls, m distinct bins.		$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$	
n distinct balls, m identical bins.		$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$	
n identical balls, m identical bins.			

Basic counting

Binomial theorem

Generalized Binomial theoremSome

special numbers

We will start with counting the ordered objects.

Ordered sequence

- Problem1: How many 5-letter words are there(using the 26-letter English alphabet)? e. g. abcde, sssdd, ...
- Problem2: How many distinct 5-letter words are there(using the 26-letter English alphabet) ?
e. g. abcde, sssdd, ...

5-letter words

$26 \times 26 \times 26 \times 26 \times 26=26^{5}$

Distinct 5-letter words

Distinct 5-letter words

Distinct 5-letter words

$$
26 \times 25 \times 24 \times 23 \times 22
$$

Proof by induction

Goal: show that $P(x)$ is true for any $x \in \omega$
(1) Check that $P(0)$ is true;
(2) Suppose that $P(k)$ is true; // Induction hypothesis
(3) Prove that $P(k+1)$ is true.

The generalization of Problem 1

Proposition1: Let N be an n-element set, and M be an m-element set, with $n \geq$ $0, m \geq 1$. Then the number of all possible mappings $f: N \rightarrow M$ is m^{n}.

- Proof: (By induction on n)
$-n=0: \quad f=\varnothing ; m^{0}=1$ 。
- Suppose the results works for $n=k$;
- If $n=k+1$:

$n=k+1$, take any $a \in N:$

$$
m \cdot m^{n-1}=m^{n}
$$

n balls are put into m bins

balls per bin	unrestricted	$\leq \mathbf{1}$	$\geq \mathbf{1}$
n distinct balls, m distinct bins.	m^{n}		
n identical balls, m distinct bins.		$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$	
n distinct balls, m identical bins.		$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$	
n identical balls, m identical bins.			

The generalization of Problem 2

 Proposition2: Let N be an n-element set, and M be an m-element set, with $n, m \geq 0$. Then there exist exactly$$
m(m-1) \ldots(m-n+1)=\prod_{i=0}(m-i)
$$

one-to-one mappings from N into M.

- Proof: (By induction on n)
$-n=0: f=\emptyset$. The value of an empty product is defined as 1 .
- Suppose the results works for $n=k$;
- for $n=k+1$, take any $a \in N$:

Falling factorial notation

$$
\begin{aligned}
& (x)_{n} \\
= & x \underline{n} \\
= & x(x-1) \cdots(x-n+1)
\end{aligned}
$$

n balls are put into m bins

balls per bin	unrestricted	$\leq \mathbf{1}$	$\geq \mathbf{1}$
n distinct balls, m distinct bins.	m^{n}	$(m)_{n}$	
n identical balls, m distinct bins.		$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$	
n distinct balls, m identical bins.		$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$	
n identical balls, m identical bins.			

Application 1: Counting the different subsets

Given set $X,|X|=n$, then X has exactly 2^{n} subsets ($n \geq 0$).

- Proof ${ }^{1}$: By induction on n. (Exercise)
- Proof ${ }^{2}$:
for any $A \subseteq X$, define $f_{A}: X \rightarrow\{0,1\}$ as

$$
f_{A}(x)=\left\{\begin{array}{ll|}
1 & \text { if } x \in A \\
0 & \text { if } x \notin A
\end{array}\right.
$$

Characteristic function

$$
f_{A}(x)= \begin{cases}1 & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{cases}
$$

$\begin{array}{lllllllll}f_{A} & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1\end{array}$

There exists a bijective relation between the subsets of X and $f: X \rightarrow\{0,1\}$ (Recall: Equinumerous).

Application2: Counting the permutations

- Permutation: A bijective mapping of a finite set X to itself is called a permutation of the set X.
- Recall: Bijective functions.

Counting permutations-Factorial

Given set $X,|X|=n$, then there are $n \cdot(n-1) \cdot \ldots \cdot 2 \cdot 1$ different permutations on set X.
n factorial:

$$
n!=n \cdot(n-1) \cdot \ldots \cdot 2 \cdot 1=\prod_{i=1}^{n} i .
$$

- So far, we considered ordered sequences.
- What about the un-ordered occasion?

Ordered sequence

Un-ordered set

Problem 3: counting k-element subsets Given set $X,|X|=n, n \geq k \geq 0$, how many different subsets of X contains exactly k elements?
e. g. $X=\{a, b, c\}, \quad k=2$ 。

Then: $\{a, b\},\{a, c\},\{b, c\}$. Three 2-size subsets.
Convention: $\binom{X}{k}$ VS. $\left|\binom{X}{k}\right|$
e. g. $\binom{X}{k}=\{\{a, b\},\{a, c\},\{b, c\}\},\left|\binom{X}{k}\right|=3$.

- Proposition: For any finite set X with $|X|=n$, the number of all k-element subsets is

$$
\left|\binom{X}{k}\right|=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k(k-1) \cdot \ldots \cdot 2 \cdot 1}
$$

- Proof: (Double counting!)

Binomial coefficients

$$
\begin{aligned}
\binom{n}{k} & =\left|\binom{X}{k}\right|=\frac{n(n-1)(n-2) \ldots(n-k+1)}{k(k-1) \cdot \ldots \cdot 2 \cdot 1} \\
& =\frac{\prod_{i=0}^{k-1}(n-i)}{k!} \\
& =\frac{n(n-1)(n-2) \ldots(n-k+1) \cdot(n-k) \cdot \ldots \cdot 1}{k(k-1) \cdot \ldots \cdot 2 \cdot 1 \cdot(n-k) \cdot \ldots \cdot 1} \\
& =\frac{n!}{k!\cdot(n-k)!}
\end{aligned}
$$

Application: counting non-negative solutions.

$m \geq r \geq 0$, the equation $x_{1}+x_{2}+\cdots+x_{r}=$ m has $\binom{m+r-1}{r-1}$ non-negative integers solutions of the form $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

m

$$
x_{1}=3, x_{2}=0, x_{3}=2, x_{4}=0, \cdots, x_{r-1}=4, x_{r}=2
$$

Application: counting non-negative solutions.

$m \geq r \geq 0$, the equation $x_{1}+x_{2}+\cdots+x_{r}=$ m has $\binom{m+r-1}{r-1}$ non-negative integers solutions of the form $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

m

Application: counting non-negative solutions.

$m \geq r \geq 0$, the equation $x_{1}+x_{2}+\cdots+x_{r}=$ m has $\binom{m+r-1}{r-1}$ non-negative integers solutions of the form $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

$$
r-1
$$

Question: counting positive solutions.

$m \geq r \geq 0$, the equation $x_{1}+x_{2}+\cdots+x_{r}=$ m has __ positive integers solutions of the form $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

Question: counting positive solutions.

$m \geq r \geq 0$, the equation $x_{1}+x_{2}+\cdots+x_{r}=$ m has $\binom{m-1}{r-1}$ positive integers solutions of the form $\left(x_{1}, x_{2}, \ldots, x_{r}\right)$.

m

Basic Properties

$$
\binom{n}{k}=\binom{n}{n-k}
$$

- Proof ${ }^{1}$:
- Proof:

Pascal's Identity:

$$
\binom{n-1}{k-1}+\binom{n-1}{k}=\binom{n}{k}
$$

- Proof: $\binom{n-1}{k-1}$

$\binom{n-1}{k}$

Pascal＇s Triangle（1654）／杨辉三角（1261）

Exercise

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{k}{m}=\binom{n+1}{m+1} \\
& \sum_{k=0}^{n}\binom{m+k-1}{k}=\binom{n+m}{n}
\end{aligned}
$$

$$
\sum_{i=0}^{n}\binom{n}{i}^{2}=\binom{2 n}{n}
$$

- Proof: $\sum_{l=0}^{n}\left(\begin{array}{l}\left(n_{i}^{2}\right.\end{array}\right)^{2}=\sum_{i=0}^{n}\binom{(0)}{i}\left(\begin{array}{l}n-i\end{array}\right)$

Vandermonde's identity/convolution

$\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k}$
The general form

$$
\binom{n_{1}+\cdots+n_{p}}{m}=\sum_{k_{1}+\cdots+k_{p}=m}\binom{n_{1}}{k_{1}}\binom{n_{2}}{k_{2}} \cdots\binom{n_{p}}{k_{p}}
$$

n balls are put into m bins

balls per bin	unrestricted	$\leq \mathbf{1}$	$\geq \mathbf{1}$
n distinct balls, m distinct bins.	m^{n}	$(m)_{n}$	
n identical balls, m distinct bins.	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins.	$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$		
n identical balls, m identical bins.	$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$		

Multiset Coefficient

- The number of multisets of cardinality k, with elements taken from a finite set of cardinality n, is called the multiset coefficient or multiset number.
- $\left(\binom{n}{k}\right)=\binom{n+k-1}{n-1}=\binom{n+k-1}{k}$

$$
=\frac{n(n+1)(n+2) \cdots(n+k-1)}{k!}=\frac{n^{\bar{k}}}{k!}
$$

n balls are put into m bins

balls per bin	unrestricted	$\leq \mathbf{1}$	$\geq \mathbf{1}$
n distinct balls, m distinct bins.	m^{n}	$(m)_{n}$	
n identical balls, m distinct bins.	$\left(\binom{m}{n}\right)$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins.		$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$	
n identical balls, m identical bins.	$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$		

Basic counting

Binomial theorem

Generalized Binomial theorem

Some special numbers

Binomial theorem

- Binomial Theorem: for any non-negative integer n, we have

$$
(1+x)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k}
$$

- Proof: Exercise
- Applications:

$$
\begin{aligned}
& -\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\cdots+\binom{n}{n}=2^{n} \quad(\text { take } x=1) \\
& -\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\binom{n}{3} \cdots=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}=0 \\
& -2\left[\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\cdots\right]=2^{n}
\end{aligned}
$$

Pascal＇s Triangle（1654）／杨辉三角（1261）

(Un-)Ordered sequence

Ordered sequence

- With 5 different red balls, 3 different yellow balls, 4 different blue balls, we can get $(5+3+4)!=12$! different sequences.

3 1

(2) 4

3
(5)
(4) (2) (3)

- Question: With 5 equal red balls, 3 equal yellow balls, 4 equal blue balls, how many different sequences can we get?

- Theorem: if we have objects of m kinds, k_{i} indistinguishable objects of i th kind, where $k_{1}+k_{2}+\cdots+k_{m}=n$, then the number of distinct arrangements of the objects in a row is $\frac{n!}{k_{1}!k_{2}!\ldots k_{m}!}$. Usually written $\binom{n}{k_{1}, k_{2}, \ldots, k_{m}}$ 。
$\frac{12!}{5!3!4!}$ 种
- Multinomial Theorem: For arbitrary real number $x_{1}, x_{2}, \ldots, x_{m}$ and any natural number $n \geq 1$, the following equality holds:

$$
\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}
$$

$$
=\sum_{\substack{k_{1}+\cdots k_{m}=n \\ k_{1}, \cdots, k_{m} \geq 0}}\binom{n}{k_{1}, k_{2}, \ldots, k_{m}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{m}^{k_{m}}
$$

- e. g. In $(x+y+z)^{10}$ the coefficient of

$$
x^{2} y^{3} z^{5} \text { is }\binom{10}{2,3,5}=2520
$$

Basic counting

Binomial theorem

Generalized Binomial theorem

Some special numbers

Newton(1665)'s generalized binomial theorem

Let $\binom{r}{k}=\frac{r(r-1) \cdots(\cdots-k+1)}{k!}=\frac{(r)_{k}}{k!} \quad$ where r is arbitrary,

 $k>0$ is an integerIf x and y are real numbers with $|x|>|y|$

$$
(x+y)^{r}=\sum_{k=0}^{\infty}\binom{r}{k} x^{r-k} y^{k}
$$

$$
\begin{aligned}
= & x^{r}+r x^{r-1} y+\frac{r(r-1)}{2!} x^{r-2} y^{2} \\
& +\frac{r(r-1)(r-2)}{3!} x^{r-3} y^{3}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{1+x}=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}+\frac{7}{256} x^{5}-\cdots \\
& (1+x)^{-1}=\frac{1}{1+x}=1-x+x^{2}-x^{3}+x^{4}-x^{5}+\cdots
\end{aligned}
$$

Generally: $r=-s$

$$
\begin{aligned}
& \frac{1}{(1-x)^{s}}=\sum_{k=0}^{\infty}\binom{s+k-1}{k} x^{k} \\
& \frac{1}{\sqrt{1+x}}=1-\frac{1}{2} x+\frac{3}{8} x^{2}-\frac{5}{16} x^{3}+\frac{35}{128} x^{4}-\frac{63}{256} x^{5}+\cdots
\end{aligned}
$$

Basic counting

Binomial theorem

Generalized Binomial theorem

Some special numbers

Stirling subset numbers

- The second Stirling Numbers $\left\{\begin{array}{l}n \\ k\end{array}\right\}$: The number of ways to partition a set of n things into k nonempty subsets.
- egg. $\left\{\begin{array}{l}4 \\ 2\end{array}\right\}=7$

$$
N=\{1,2,3,4\}
$$

$$
\begin{array}{ll}
\{1,2\}\{3,4\}, & \{11\}\{2,3,4\}, \\
\{1,3\}\{2,4\}, & \{2,2\{1,3,4\}, \\
\{1,4\}\{2,3\}, & \{3,\{1,2,4,3, \\
& \{4\}\{1,2,3\} .
\end{array}
$$

Stirling subset numbers

- The second Stirling Numbers $\left\{\begin{array}{l}n \\ k\end{array}\right\}$: The number of ways to partition a set of n things into k nonempty subsets.
- e.g. $\left\{\begin{array}{l}4 \\ 2\end{array}\right\}=7$
- $\left\{\begin{array}{l}n \\ 2\end{array}\right\}=2^{n-1}-1$ why?

Stirling subset numbers

- The second Stirling Numbers $\left\{\begin{array}{l}n \\ k\end{array}\right\}$: The number of ways to partition a set of n things into k nonempty subsets.
- e.g. $\left\{\begin{array}{l}4 \\ 2\end{array}\right\}=7$
- $\left\{\begin{array}{l}n \\ 2\end{array}\right\}=2^{n-1}-1$ why?

Stirling subset numbers

- The second Stirling Numbers $\left\{\begin{array}{l}n \\ k\end{array}\right\}$: The number of ways to partition a set of n things into k nonempty subsets.
- e.g. $\left\{\begin{array}{l}4 \\ 2\end{array}\right\}=7$
- $\left\{\begin{array}{l}n \\ 2\end{array}\right\}=2^{n-1}-1$ why?

Stirling subset numbers

- The second Stirling Numbers $\left\{\begin{array}{l}n \\ k\end{array}\right\}$: The number of ways to partition a set of n things into k nonempty subsets.
- e.g. $\left\{\begin{array}{l}4 \\ 2\end{array}\right\}=7$
- $\left\{\begin{array}{l}n \\ k\end{array}\right\}=k\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}+\left\{\begin{array}{l}n-1 \\ k-1\end{array}\right\}$

Stirling cycle numbers

- The first Stirling Numbers $\left[\begin{array}{l}n \\ k\end{array}\right]$: The number of ways to partition a set of n things into k nonempty cycles.
- $\left[\begin{array}{l}n \\ k\end{array}\right] \geq\left\{\begin{array}{l}n \\ k\end{array}\right\}$,

Stirling cycle numbers

- The first Stirling Numbers $\left[\begin{array}{l}n \\ k\end{array}\right]$: The number of ways to partition a set of n things into k nonempty cycles.
- $\left[\begin{array}{l}n \\ k\end{array}\right] \geq\left\{\begin{array}{l}n \\ k\end{array}\right\}$, e.g. $\left[\begin{array}{l}4 \\ 2\end{array}\right]=11$

Stirling cycle numbers

- The first Stirling Numbers $\left[\begin{array}{l}n \\ k\end{array}\right]$: The number of ways to partition a set of n things into k nonempty cycles.
- $\left[\begin{array}{l}n \\ k\end{array}\right] \geq\left\{\begin{array}{l}n \\ k\end{array}\right\}$, e.g. $\left[\begin{array}{l}4 \\ 2\end{array}\right]=11$
- $\left[\begin{array}{l}n \\ 1\end{array}\right]=(n-1)$!
- $\sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right]=n$! where $n \in Z^{+}$.
$\left[\begin{array}{l}n \\ k\end{array}\right]=(n-1) \cdot\left[\begin{array}{c}n-1 \\ k\end{array}\right]+\left[\begin{array}{l}n-1 \\ k-1\end{array}\right] \quad$ Why?
- $\sum_{k=0}^{n}\left[\begin{array}{l}n \\ k\end{array}\right]=n$! where $n \in Z^{+}$.

n balls are put into m bins

balls per bin	unrestricted	$\leq \mathbf{1}$	$\geq \mathbf{1}$
n distinct balls, m distinct bins.	m^{n}	$(m)_{n}$	$m!\left\{\begin{array}{l}n \\ m\end{array}\right\}$
n identical balls, m distinct bins.	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins.	$\sum_{k=1}^{m}\left\{\begin{array}{l}n \\ k\end{array}\right\}$	$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$	$\left\{\begin{array}{l}n \\ m\end{array}\right\}$
n identical balls, m identical bins.		$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$	

Partition of a number

- $P_{k}(n)$: number of partition the positive integer n into k parts.
- e.g. $P_{2}(7)=3 \quad\{\{1,6\},\{2,5\},\{3,4\}\}$

$$
P_{6}(7)=1 \quad\{\{1,1,1,1,1,2\}\}
$$

- Number of integral solutions to

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+\cdots+x_{k}=n \\
x_{1} \geq x_{2} \geq \cdots \geq x_{k} \geq 1
\end{array}\right.
$$

- $P_{k}(n)=P_{k-1}(n-1)+P_{k}(n-k)$ why?

n balls are put into m bins

balls per bin	unrestricted	≤ 1	≥ 1
n distinct balls, m distinct bins.	m^{n}	$(m)_{n}$	$m!\left\{\begin{array}{l}n \\ m\end{array}\right\}$
n identical balls, m distinct bins.	$\binom{n+m-1}{m-1}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n distinct balls, m identical bins.	$\sum_{k=1}^{m}\left\{\begin{array}{l} n \\ k \end{array}\right\}$	$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$	$\left\{\begin{array}{l}n \\ m\end{array}\right\}$
n identical balls, m identical bins.	$\sum_{k=1}^{m} p_{k}(n)$	$\begin{cases}1 & n \leq m \\ 0 & n>m\end{cases}$	$p_{m}(n)$

Partition of a number

- $P_{k}(n)$: number of partition the positive integer n into k parts.
- $\sum_{k=1}^{m} p_{k}(n)=p_{m}(n+m)$ why?

Twelvefold way

The twelve combinatorial objects and their enumeration formulas.

f-class	Any f	Injective f	Surjective f
f	n-sequence in X x^{n}	$\begin{aligned} & n \text {-permutation in } X \\ & x^{\underline{n}} \end{aligned}$	composition of N with x subsets $x!\left\{\begin{array}{l} n \\ x \end{array}\right\}$
$f \circ \mathbf{S}_{n}$	n-multisubset of X $\binom{x+n-1}{n}$	$\begin{aligned} & n \text {-subset of } X \\ & \qquad\binom{x}{n} \end{aligned}$	composition of n with x terms $\binom{n-1}{n-x}$
$S_{x} \circ f$	partition of N into $\leq x$ subsets $\sum_{k=0}^{x}\left\{\begin{array}{l} n \\ k \end{array}\right\}$	partition of N into $\leq x$ elements $[n \leq x]$	partition of N into x subsets $\left\{\begin{array}{l} n \\ x \end{array}\right\}$
$\mathrm{S}_{\boldsymbol{x}} \circ \mathrm{f} \circ \mathrm{S}_{\boldsymbol{n}}$	partition of n into x non-negative parts $p_{x}(n+x)$	partition of n into $\leq x$ parts 1 $[n \leq x]$	partition of n into x parts $p_{x}(n)$

https://en.wikipedia.org/wiki/Twelvefold way

