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We will start with

counting the ordered
objects.




Ordered sequence



* Problem1: How many 5-letter words are
there(using the 26-letter English alphabet)?

e. g. abcde, sssdd, ...

 Problem2: How many distinct 5-letter
words are there(using the 26-letter English
alphabet) ?

e. g. abcde, sssdd, ...



5-letter words

26 X 26X 26X 26X 26 = 26"
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Distinct 5-letter words

26
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Distinct 5-letter words

26 25
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Distinct 5-letter words

26 25 24 0 e

\ N

\
\ N
a1 ,C, ---X, y,

26 X 25 X 24 x 23 X 22
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Proof by induction

Goal: show that P(x) Is true for any x € w
(D Check that P(0) is true;
@ Suppose that P(k) is true; // induction hypothesis
(® Prove that P(k + 1) is true.
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The generalization of Problem 1

* Propositionl: Let N be an n-element set,
and M be an m-element set, with n >
0,m = 1. Then the number of all possible
mappings f: N - M is m".

* Proof: ( By induction on n)
-n = 0: f:(b; m’ =1,
— Suppose the results works for n = k;
—Ifn=k+1:
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n=k+1, takeany a € N:
a /e
v\
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The generalization of Problem 2

Proposition2: Let N be an n-element set,
and M be an m-element set, with n,m > 0.
Then there exist exactly

n-1
mm—-1).(m—n+1) = H(m—i)
i=0

one-to-one mappings from N into M.

Proof: ( By induction on n)

-n =0: f = Q. The value of an empty product is
defined as 1.

— Suppose the results works for n = k;
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—forn=k+1,take anya € N:

IR

i

W\ y

(m—1)..(m—n+1)
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Falling factorial notation

(n

— L

=x(x—1)(x—n+1)
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n balls are put into m bins

balls per bin

unrestricted

n distinct balls,
m distinct bins.

(m)y,

n identical balls,
m distinct bins.

n distinct balls,
m identical bins.

n<<m

n>m

n identical balls,
m identical bins.

n<<m
n>m
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Application 1: Counting the
different subsets

Given set X, |X| = n, then X has exactly 2"

subsets (n = 0).

« Proofl: By induction on n. (Exercise)

e Proof?;

forany A € X, define f,: X — {0,1} as

falx) ={

1
0

if x €A
if x & A

22



Characteristic function
1 ifxeA

A
®© 060 0/0 0 00

faA 00101 10 1

There exists a bijective relation between the subsets of
Xand f: X - {0,1} (Recall: Equinumerous).



Application2: Counting the

permutations
 Permutation: A bijective mapping of a
finite set X to itself Is called a permutation
of the set X.

* Recall: Bijective functions.
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Counting permutations-Factorial

Given set X , |X]| = n, then there are
n-(n—1)-..-2-1 different permutations on

set X.

n factorial:
n!=n-(n—1)-...-2-1=1_[i.
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« So far, we considered ordered sequences.
« What about the un-ordered occasion?
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Ordered sequence
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Un-ordered set
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Problem 3: counting k-element subsets

Givenset X, |X|=n, n>k >0, how
many different subsets of X contains exactly
k elements?

e.g. X={a,b,c}, k=2,
Then: {a,b}, {a,c}, {b,c}. Three 2-size
subsets.

Convention: (3) VS. |(%)]
e. g. (i) = {{a, b}, {a,c},{b,c}},

()l =3.
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* Proposition: For any finite set X with
| X| = n, the number of all k-element
subsets Is

x\| _ n(n-1)(n-2)..(n—-k+1)
‘(k)‘ B k(k=1)-...2-1 '

* Proof: (Double counting!)
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Binomial coefficients

nm_ 1rx\_ n(n-1)(n-2)..(n—k+1)
° (k)_ ‘(k)‘_ k(k—1)-...2-1
_ I (-b)
- k!
_nn-1)(n-2)..(n=k+1)-(n-k)-..- 1
B k(k=1)-...2:1-(n—k)-.... 1
_ n!
"~ kl-(n—k)!
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Application: counting non-negative solutions.

m=r =0, the equation x; + x, + -+ x,, =
m has (™7 "') non-negative integers
solutions of the form (x4, x5, ..., x;) .

r—1
)
X x X3 X4 Xr—1 \xr
‘Q“ ““ “‘ ‘QQ“ ‘ ‘ “QQ“‘Q
\ Y )
m

X1 = 3,.X'2 = 0, X3 = 2,x4 = O, y Xp—1 — 4,xr =2
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Application: counting non-negative solutions.

m=r =0, the equation x; + x, + -+ x,, =
m has (™7 "') non-negative integers
solutions of the form (x4, x5, ..., x;) .

r—1

)
( \

\ )
f

m
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Application: counting non-negative solutions.

m =r = 0, the equation x; + x, + -+ x,. =
m has (""" "') non-negative integers
solutions of the form (x4, x5, ..., x;) .

r—1

)
( \

\ )
f

m

34



Question: counting positive solutions.

m=r =0, the equation x; + x, + -+ x,, =
m has positive Integers solutions of the
form (xq, x5, ..., %) .

r—1

)
( \

\ )
f

m
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Question: counting positive solutions.

m =r = 0, the equation x; + x, + -+ x,. =
m has (""" ) positive integers solutions of
the form (x4, x5, ..., x;-) .

r—1

)
( \

\ )
f

m
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* Proofl:

e Proof?;

Basic Properties

()= (2 )
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Pascal's ldentity:

(ema)+

* Proof:

VSHENOF

n—1
k

-1

|
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1

Pascal’s Triangle (1654) [ /¥ =ff

0
0
1 1
0 1
2 2 2
0 1
3
0 1
4 4 4 4
0 1 2 4
5) 5! 5! 5) 5) 5!



Exercise
> () =0
(" =



> () =(%)

1=0
e Proof: ¥ ("
roof: Zl‘:()(i)z — Z?=O(n)( n)

X éﬁ




Vandermonde’s identity/convolution

r

(") = 202

k=0

The general form

S B YN ([ i I

ky+etkp=m
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n balls are put into m bins

balls per bin unrestricted <1 >1
n distinct balls, . (m)
m distinct bins. Mn
n identical balls, n+m-—1 (m) n—1
m distinct bins. m-—1 n m—1
n distinct balls, fl n<m
m identical bins. 0 n>m
n identical balls, j1 n<m
m Identical bins. 0 n>m
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Multiset Coefficient

* The number of multisets of cardinality k,
with elements taken from a finite set of
cardinality n, Is called the multiset
coefficient or multiset number.

(( )) (n+k 1) (n+k 1)

_ n(n+1)(n+2)---(n+k-1) _n

k! k!

&
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n balls are put into m bins

balls per bin unrestricted <1 >1
n distinct balls, . (m)
m distinct bins. n
n identical balls, ((m)) (m) n—1
m distinct bins. n n m—1
n distinct balls, fl n<m
m identical bins. 0 n>m
n identical balls, j1 n<m
m Identical bins. 0 n>m
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mmm DBasic counting

== (Generalized Binomial theorem

mm Some special numbers
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Binomial theorem

 Binomial Theorem: for any non-negative
Integer n, we have

n

AL

k=0

* Proof: Exercise

» Applications:
)+ () + @)+t () =27 (takex = 1)
- ()~ (D + ()~ (G) - =Zk=o()(-D* =0
-2+ + (4] =2

a7



Pascal’'s Triangle (1654) / #¥ = (1261)




|
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(Un-)Ordered sequence
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Ordered sequence



With 5 different red balls, = different yellow
balls, 4 different blue balls, we can get
(5 4+ 2 + 4)! = 12! different sequences.

7N
00600 " 0060060

* Question: With 5 equal red balls, = equal
yellow balls, 4 equal blue balls, how many

different sequences can we get?

N
000 "T00000O0
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 Theorem: If we have objects of m kinds,
k; iIndistinguishable objects of ith kind,
where k; + k, + -+ k,,, = n, then the
number of distinct arrangements of the

objects in a row Is . Usually

kqlky!. k!

. n
written (, " ).

00 00
12! %EIJ

5!314!
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 Multinomial Theorem: For arbitrary real
number x4, x,, ..., X,,, and any natural

number n > 1, the following equality holds:
(g + x5 + -+ 2x)"

n ke Kk k

1 2 m

= Xi X" oo X .
1 2 m

kKi+Km=n
ki, Kkm=0

e e.g. In (x +y + 2)! the coefficient of

x2y3z° is (2,13(?5) = 2520.
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Basic counting

Binomial theorem

Some special numbers
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Newton(1665)’s generalized binomial theorem
Let (}) = rr-1)roktl) % where r is arbitrary,

k!
k > 0 Is an integer
If x and y are real numbers with |x| > |y|

00)

X

k=0

r(r—1
_ T rxr_ly n ( - )xr—Zyz
n 7‘(7‘—13)'(7"_2) xr—3y3 + ...
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1 1 1 5 7

Vitx=1+-x—=x?+—x3 ——x*+-—x>— -

2 8 16 128 256

=1—x+x?—x3+x*—x>+--

1+x)7t =
(1 +x) 1+x

Generally: r = —s

1 s+k—1
(1_x)s=2( k )xk

k=0
1 1 3 5 35 63
= 1 — — — 2 — — 3 — 4 — — 5 LI ]
—ff?? wak8x 16x +128x 256x +
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Basic counting

Binomial theorem

Generalized Binomial theorem
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Stirling subset numbers

Z}: The

number of ways to partition a set of n
things into k nonempty subsets.

* The second Stirling Numbers {

4
. e.g. {2} — 7
a= fl,l,%'Lf]
7:.27, 2,43, Gl {23, 60>
?l , 31 iﬁzz'.ua}{ s iﬂl 3 ?‘Ei
/ 14741, 2,3y

58



Stirling subset numbers

* The second Stirling Numbers {Z} The

number of ways to partition a set of n
things into k nonempty subsets.

. e.g. {‘ZL} — 7
; {g} =2""1 -1 why?

0'.'..
.
@ -
L4

g

.l‘
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Stirling subset numbers

* The second Stirling Numbers {Z} The

number of ways to partition a set of n
things into k nonempty subsets.

. e.g. {‘ZL} =7

; {g} =2""1 -1 why?
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Stirling subset numbers

* The second Stirling Numbers {Z} The

number of ways to partition a set of n
things into k nonempty subsets.

. e.g. {‘ZL} =7

; {g} =2""1 -1 why?
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Stirling subset numbers

* The second Stirling Numbers {Z} The

number of ways to partition a set of n
things into k nonempty subsets.

. e.g. {‘ZL} =7

LI G A
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Stirling cycle numbers

* The first Stirling Numbers [Z] The number

of ways to partition a set of n things into k
nonempty cycles.

* Li] 2 )
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Stirling cycle numbers

* The first Stirling Numbers [Z] The number

of ways to partition a set of n things into k
nonempty cycles.

=) es [f=n
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Stirling cycle numbers

* The first Stirling Numbers [Z] The number

of ways to partition a set of n things into k
nonempty cycles.

e = {7} eq [‘ZL] ~ 11

k|
-
1.

=(n-1)

=0 [n] =n! whereneZ™.

[ [P [ Wy



« Y1_, [Z] =n! wheren € Z™.



n balls are put into m bins

balls per bin unrestricted <1 >1

n distinct balls n n
! |
m distinct bins. m (m)y, m: {m}
n identical balls, n+m-—1 (m) n—1
m distinct bins. m-—1 n m-—1
. - m (

n distinct balls, {n} < 1 n<m {n}
m identical bins. ] k 0 n>m m
n identical balls, j1 n<m
m Identical bins. 0 n>m
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Partition of a number

e P,(n): number of partition the positive
Integer n Iinto k parts.

« e.g. P,(7) =3 {{1,6},{2,5},{3,4}}
P.(7)=1 {{1,1,1,1,1,2}}
 Number of integral solutions to
(X, +x,++x,=n
\x12x22°"2xk21

e P,(n) =P, (n—1)+P,(n—k) why?

<
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n balls are put into m bins

balls per bin unrestricted <1 >1

n distinct balls, n n
|
m distinct bins. m (m)n m {m}
n identical balls, n+m-—1 (m) n—1
m distinct bins. m—1 n m-—1
. . m

n distinct balls, Z {n} n<m {n}
m identical bins. ] k n>m m

. . m
n identical balls, 2 ) n<m ()
m identical bins. Pk n>m Pmilt
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Partition of a number

e P,(n): number of partition the positive
Integer n Iinto k parts.

¢ Yk=1Pk(M) = pp(n +m) why?
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Twelvefold way

The twelve combinatorial objects and their enumeration formulas.

f-class Any f Injective f Surjective f
£ n-sequence in X n-permutation in X composition of N with x subsets
x" z z!{"}
n-multisubset of X n-subset of X composition of n with x terms
foS, r+n-—1 T n—1
n n n—=
partition of N into < x subsets . .
T partition of N into < x elements partition of Ninto x subsets
R nes )
7k S5 A
= Lk B d
S.o0foS partition of n into x non-negative parts | partition of n into < x parts 1 partition of n into x parts
x @1 © 9y

pz(n+z)

[n <z

pz(n)

https://en.wikipedia.org/wiki/Twelvefold way
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https://en.wikipedia.org/wiki/Twelvefold_way
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