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History

In November 2015, Laszlo Babai, a
mathematician and computer scientist at
the University of Chicago, claimed to have
proven that the graph isomorphism
problem is solvable in guasi-polynomial

time. This work was presented in STOC &

2016. And finally updated in 2017.

Interestingly, in July 2016, Wenxue Du, a
Chinese mathematician at the Anhui
University, devised an algorithm
outputting a generating set and a block
family of the automorphism group of a
graph within time n¢%°9" for some
constant C.
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In 1988, Babai won the Hungarian State
Prize, in 1990 he was elected as a
corresponding member of the Hungarian
Academy of Sciences, and in 1994 he
became a full member. In 1999 the
Budapest University of Technology and
Economics awarded him an honorary
doctorate.
In 1993, Babai was awarded the Godel
Prize together with Shafi Goldwasser,
Silvio Micali, Shlomo Moran, and Charles
Rackoff, for their papers on interactive
proof systems
In 2015, he was elected a fellow of the
American Academy of Arts and Sciences,
and won the Knuth Prize.
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Graph Score

* Let G be a graph. The vertices of G be
V1, V5, ..., Uy. The the degree sequence of
G, or a score of G IS:

(degG (Ul), degG (Uz), ) degG (vn))

* Two scores are equal to each other If one
can be obtained form the other by
rearranging the order of the numbers.



 |somorphic graphs == The same scores.
* The same scores =/=Isomorphic graphs.

JANJAN

(2,2,2,2,2,2) (2,2,2,2,2,2)

Not every finite sequence Is a graph Score.
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Score Theorem

Let D = (d, d,,...,d,,) be a sequence of
natural numbers, n > 1. Suppose that d, <
d, <---<d,, and let the symbol D’ denote

the sequence (d,',d,’, ...,d,,_{"), where

df=<(di if i<n-—d,
l \di_l ifl'ZTl—dn

Then D is a graph score iff D' is a graph
score.
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Application

Thm:Let D = (dy,d,, ..., d,)

be a sequence of natural

numbers, n> 1. Suppose

that d, <d, <---<d,, and

let the symbol D’ denote the

sequence

(d,",d,’, .. ,d,_,"), where

g = d; if i<n—d,
i_{di—l ifi=n—d,

Then D Is a graph score |ff
D" is a graph score.

- (1,1,1,2,2,3,4,5,5)
- (1,1,1,1,1,2,3,4)
- (0,0,1,1,1,1,2)

* (0,0,0,0,1,1)

- (0,0,0,0,0)
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Proof

Thm:Let D = (dy,d,,...,d,;) e (if)
be a sequence of natural , S
numbers, n>1. Suppose G = (V',E'), where

that d; <d, <---<d,,and | = {V1» Vo, e Vn—l}
let the symbol D’ denote the
sequence New vertex v,

(d,',d,, .., d,_."), where

o [di if i<n—d, (00 - e00 -
i T ld; -1 ifizn—d,

Then D Is a graph score Iff G = (V, E)

D" is a graph score. V=V ui{v,}

E=E'u{{v,v}ti=n—dy,n—d,+1,..,n— 1}.13



Thm:Let D = (d,,d,, ...,d,,) be a sequence of natural numbers, n > 1.
Suppose that d, <d, < -+ <d,, and let the symbol D’ denote the
sequence (d,’, d,’, ...,d,,_."), where

! if i<n-—d,
i T 1d, -1 ifizn—d,

Then D is a graph score iff D' is a graph score.

. (Only if)
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Thm:Let D = (d,,d,, ...,d,,) be a sequence of natural numbers, n > 1.
Suppose that d, <d, < -+ <d,, and let the symbol D’ denote the
sequence (d,’, d,’, ...,d,,_."), where
g = d; if i<n—d,
: d—1 ifi=zn—d,

Then D is a graph score iff D' is a graph score.

. (Only if)

U1 Uy Vs

U7 —e U7

The set ¢ of all graphs on the vertex set {v,, ..., v,,} in which
the degree of each vertex v; equals d;. i = 1,2, ...,n. It will
be sufficient to prove the following claim

The set G contains a graph G, in which the vertex
v, IS adjacent exactly to the last d,,vertices, I.e. to vertices

Un-d,,Vn-d,+1, -+ Vn-1-



The set G contains a graph G, in which the vertex
v, IS adjacent exactly to the last d,,vertices, I.e. to vertices

Un-d,,Vn-d,+1, -» Vn-1-
* If d,, = n — 1, then any graph from G
satisfies the claim.

* OW.d,<n—-1:VGEG
- j(G) =
Max {j € {12,..,n—1} | {v;,v,}¢ E(G)}

v U2 (
U7

V1 V2 Vs
—e v7
Vg4 Us N6
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The set G contains a graph G, in which the vertex
v, IS adjacent exactly to the last d,,vertices, I.e. to vertices

Un-d,,Vn-d,+1, -» Vn-1-

* If d,, = n — 1, then any graph from G
satisfies the claim.

* OW.d,<n—-1:VGEG

- j(G) =
Max {j € {12,..,n—1} | {v;,v,}¢ E(G)}
> Let G, be agraphin G
with smallest possible
value of j(G).
U1 U2 U3 > Prove:

*—e U7

V4 Vs g ](Go):n . dn . 1

v U2 (
U7
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j(GO):n_dn_l

* (Proof by contradiction) Suppose
j=j(Gy) >n—d, —1

the last vertex not connected to v,

G'" = (V,E") where
E' = (E(Go) \{{Vi» Un}, {Uj»vk}}) U {{vj' vn}, (Vs vk}}

The score of ¢' and G, are the same. There is a
contradiction as J(G") < J(G,) — 1. 18
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