Graph: Isomorphism and Score

longhuan@sjtu.edu.cn

图同构

－图同构（Graph isomorphism）：若对图 $G=$ (V, E) 以及图 $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ 存在双射函数 $f: V \rightarrow V^{\prime}$ ，满足对任意 $x, y \in V$ 都有
$\{x, y\} \in E$ 当且仅当 $\{f(x), f(y)\} \in E^{\prime}$ 那么我们称图 G 和图 G^{\prime} 是同构的。

- 用符号图 $G \cong G^{\prime}$ 表示图同构。
- 直观：同构的图之间，仅仅是顶点的名字不同。

图同构的例子

$f: a \mapsto 1, b \mapsto 2, \mathrm{c} \mapsto 3, d \mapsto 5, e \mapsto 4$

History

- In November 2015, László Babai, a mathematician and computer scientist at the University of Chicago, claimed to have proven that the graph isomorphism problem is solvable in quasi-polynomial time. This work was presented in STOC 2016. And finally updated in 2017.
- Interestingly, in July 2016, Wenxue Du, a Chinese mathematician at the Anhui University, devised an algorithm outputting a generating set and a block family of the automorphism group of a graph within time $n^{\text {clogn }}$ for some constant C.

图的计数

－问题：以集合 $V=\{1,2, \ldots, n\}$ 中的元素为顶点构造图，$G=(V, E)$ 其中 $E \subseteq\binom{V}{2}$ ，求问能构成多少个图？
－解：$\left|\binom{V}{2}\right|=\binom{n}{2}$ ，为 K_{n} 的边数目。
每条边有两种可能，故以 V 为顶点的图共有 $2\left(\begin{array}{l}\binom{n}{2} \text { 种。 }\end{array}\right.$

2°

> 考虔结扬上的相 的惟, 有少是彼此不同的?

非同构图计数

－问题：以集合 $V=\{1,2, \ldots, n\}$ 中的元素为顶点构造图，$G=(V, E)$ 其中 $E \subseteq\binom{V}{2}$ ，求问彼此不同构的图有多少个？
－例：含三个顶点的彼此不同构的图只有以下4种：

$$
4<2\binom{3}{2}=8
$$

－显然，（同构）图的个数不会超过所有图的个数（是 $2\binom{n}{2}$ ）。
－与此同时，任一 $G=(V, E)$ 至多与 $n!$ 个 V 上不同的图同构。
－例： $3!=6$ ，但与第一张图同构且互不相同的图只有三种。

－解：设 n 个顶点且不同构的图有 x 个，则：

$$
\frac{2^{\binom{n}{2}}}{n!} \leq x \leq 2^{\binom{n}{2}}
$$

－我们可以对上下界估值：

$$
\begin{aligned}
-\log _{2} 2^{\binom{n}{2}} & =\binom{n}{2}=\frac{n^{2}}{2}\left(1-\frac{1}{n}\right) \\
-\log _{2} \frac{2\binom{n}{2}}{n!} & =\binom{n}{2}-\log _{2} n!\quad x=2^{\Theta\left(\frac{n^{2}}{2}\right)} \\
& \geq\binom{ n}{2}-\log _{2} n^{n} \\
& =\frac{n^{2}}{2}\left(1-\frac{1}{n}-\frac{2 \log _{2} n}{n}\right)
\end{aligned}
$$

Graph Score

- Let G be a graph. The vertices of G be $v_{1}, v_{2}, \ldots, v_{n}$. The the degree sequence of G, or a score of G is:
$\left(\operatorname{deg}_{G}\left(v_{1}\right), \operatorname{deg}_{G}\left(v_{2}\right), \ldots, \operatorname{deg}_{G}\left(v_{n}\right)\right)$
- Two scores are equal to each other if one can be obtained form the other by rearranging the order of the numbers.
- Isomorphic graphs $=\Rightarrow$ The same scores.
- The same scores =/ \Rightarrow Isomorphic graphs.

(2,2,2,2,2,2)
(2,2,2,2,2,2)

Not every finite sequence is a graph Score.

Score Theorem

Let $D=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a sequence of natural numbers, $n>1$. Suppose that $d_{1} \leq$ $d_{2} \leq \cdots \leq d_{n}$, and let the symbol D^{\prime} denote the sequence $\left(d_{1}{ }^{\prime}, d_{2}{ }^{\prime}, \ldots, d_{n-1}{ }^{\prime}\right)$, where

$$
d_{i}^{\prime}= \begin{cases}d_{i} & \text { if } i<n-d_{n} \\ d_{i}-1 & \text { if } i \geq n-d_{n}\end{cases}
$$

Then D is a graph score iff D^{\prime} is a graph score.

Application

Thm:Let $D=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a sequence of natural numbers, $n>1$. Suppose that $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$, and let the symbol D^{\prime} denote the sequence
($d_{1}{ }^{\prime}, d_{2}{ }^{\prime}, \ldots, d_{n-1}{ }^{\prime}$), where

$$
d_{i}^{\prime}= \begin{cases}d_{i} & \text { if } i<n-d_{n} \\ d_{i}-1 & \text { if } i \geq n-d_{n}\end{cases}
$$

Then D is a graph score iff D^{\prime} is a graph score.

- $(1,1,1,2,2,3,4,5,5)$
- $(1,1,1,1,1,2,3,4)$
- $(1,1,1,0,0,1,2)$
- (0,0,1,1,1,1,2)
- $(0,0,1,1,0,0)$
- (0,0,0,0,1,1)
- (0,0,0,0,0)

Proof

Thm:Let $D=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a sequence of natural numbers, $n>1$. Suppose that $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$, and let the symbol D^{\prime} denote the sequence
($d_{1}{ }^{\prime}, d_{2}{ }^{\prime}, \ldots, d_{n-1}{ }^{\prime}$), where
$d_{i}^{\prime}= \begin{cases}d_{i} & \text { if } i<n-d_{n} \\ d_{i}-1 & \text { if } i \geq n-d_{n}\end{cases}$
Then D is a graph score iff D^{\prime} is a graph score.
$E=E^{\prime} \cup\left\{\left\{v_{i}, v_{n}\right\}: i=n-d_{n}, n-d_{n}+1, \ldots, n-1\right\}$.

Thm:Let $D=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a sequence of natural numbers, $n>1$. Suppose that $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$, and let the symbol D^{\prime} denote the sequence ($d_{1}{ }^{\prime}, d_{2}{ }^{\prime}, \ldots, d_{n-1}{ }^{\prime}$), where

$$
d_{i}^{\prime}= \begin{cases}d_{i} & \text { if } i<n-d_{n} \\ d_{i}-1 & \text { if } i \geq n-d_{n}\end{cases}
$$

Then D is a graph score iff D^{\prime} is a graph score.

- (Only if)

Thm:Let $D=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a sequence of natural numbers, $n>1$. Suppose that $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$, and let the symbol D^{\prime} denote the sequence ($d_{1}{ }^{\prime}, d_{2}{ }^{\prime}, \ldots, d_{n-1}{ }^{\prime}$), where

$$
d_{i}^{\prime}= \begin{cases}d_{i} & \text { if } i<n-d_{n} \\ d_{i}-1 & \text { if } i \geq n-d_{n}\end{cases}
$$

Then D is a graph score iff D^{\prime} is a graph score.

- (Only if)

The set \hat{G} of all graphs on the vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ in which the degree of each vertex v_{i} equals d_{i}. $i=1,2, \ldots, n$. It will be sufficient to prove the following claim

Claim. The set \hat{G} contains a graph G_{0} in which the vertex v_{n} is adjacent exactly to the last d_{n} vertices, i.e. to vertices $v_{n-d_{n}}, v_{n-d_{n}+1}, \ldots, v_{n-1}$.

Claim. The set \hat{G} contains a graph G_{0} in which the vertex v_{n} is adjacent exactly to the last d_{n} vertices, i.e. to vertices $v_{n-d_{n}}, v_{n-d_{n}+1, \ldots}, v_{n-1}$.

- If $d_{n}=n-1$, then any graph from \widehat{G} satisfies the claim.
- O.W. $d_{n}<n-1: \forall G \in \widehat{G}$
$-j(G)=$

$$
\operatorname{Max}\left\{j \in\{1,2, \ldots, n-1\} \mid\left\{v_{j}, v_{n}\right\} \notin E(G)\right\}
$$

Claim. The set \hat{G} contains a graph G_{0} in which the vertex v_{n} is adjacent exactly to the last d_{n} vertices, i.e. to vertices $v_{n-d_{n}}, v_{n-d_{n}+1, \ldots}, v_{n-1}$.

- If $d_{n}=n-1$, then any graph from \widehat{G} satisfies the claim.
- O.W. $d_{n}<n-1: \forall G \in \hat{G}$
$-j(G)=$

$$
\operatorname{Max}\left\{j \in\{1,2, \ldots, n-1\} \mid\left\{v_{j}, v_{n}\right\} \notin E(G)\right\}
$$

$>$ Let G_{0} be a graph in \hat{G} with smallest possible value of $j(G)$.

> Prove:

$$
j\left(G_{0}\right)=n-d_{n}-1
$$

$$
j\left(G_{0}\right)=n-d_{n}-1
$$

- (Proof by contradiction) Suppose

$$
j=j\left(G_{0}\right)>n-d_{n}-1
$$

the last vertex not connected to v_{n}
$G^{\prime}=\left(V, E^{\prime}\right)$ where
$E^{\prime}=\left(E\left(G_{0}\right) \backslash\left\{\left\{v_{i}, v_{n}\right\},\left\{v_{j}, v_{k}\right\}\right\}\right) \cup\left\{\left\{v_{j}, v_{n}\right\},\left\{v_{i}, v_{k}\right\}\right\}$
The score of G^{\prime} and G_{0} are the same. There is a contradiction as $J\left(G^{\prime}\right) \leq J\left(G_{0}\right)-1$.

