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Definition of Probability

• Experiment: toss a coin twice

• Sample space: possible outcomes of an experiment 

– Ω={HH, HT,TH,TT}

• Event: a subset of possible outcomes.

– 𝐴={HH}, B={HT, TH}

• Probability of an event: an number assigned to an 

event Pr(𝐴)

– Axiom 1: Pr 𝐴 ≥ 0

– Axiom 2:  Pr Ω = 1

– Axiom 3:  For every sequence of disjoint events 

Pr 𝑖ڂ 𝐴𝑖 = σ𝑖 Pr(𝐴𝑖) 3



Set notations

• 𝐸1 ∩ 𝐸2 is the event that both 𝐸1 and 𝐸2
happen.

• 𝐸1 ∪ 𝐸2 for the event that at least one of  

𝐸1 and 𝐸2 happen.

• 𝐸1 − 𝐸2 for the occurrence of an event that 

is in 𝐸1 but not in 𝐸2.

• ത𝐸 stands for Ω − 𝐸.

4



Lemma: for any two events 𝐸1 and 𝐸2：

Pr 𝐸1 ∪ 𝐸2 = Pr 𝐸1 + Pr 𝐸2 − Pr(𝐸1 ∩ 𝐸2)

Proof.  (Inclusion-exclusion principle)
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Union Bound

Lemma: For any finite or countably infinite 

sequence of events 𝐸1, 𝐸2, …

𝑃𝑟 ራ

𝑖≥1

𝐸𝑖 ≤෍

𝑖≥1

Pr 𝐸𝑖 .

Proof.
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Independence

• Two events 𝑨 and 𝑩 are independent in 

case 

Pr 𝐴 ∩ 𝐵 = Pr 𝐴 ⋅ Pr(𝐵)

• A set of events {𝐴1, 𝐴2, … , 𝐴𝑘} are 

mutually independent iff for any subset 

𝐼 ⊆ [1, 𝑘]

Pr ሩ

𝑖∈𝐼

𝐴𝑖 =ෑ

𝑖∈𝐼

Pr(𝐴𝑖)
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Independence

Consider the experiment of tossing a coin twice

• Example I.

– 𝐴 = {𝐻𝑇,𝐻𝐻}, 𝐵 = {𝐻𝑇}

– Will event 𝐴 independent from event 𝐵?

• Example II.

– 𝐴 = {𝐻𝑇}, 𝐵 = {𝑇𝐻}

– Will event 𝐴 independent from event 𝐵?

• Disjoint  Independence

• If 𝐴 is independent from 𝐵, 𝐵 is independent from 

𝐶, will 𝐴 be independent from 𝐶?
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Application1: Identify 

polynomials
𝑥 + 1 𝑥 − 2 𝑥 + 3 𝑥 − 4 𝑥 + 5 𝑥 − 6

?= 𝑥6 − 7𝑥3 + 25

• Generally 𝐹 𝑥 ?= 𝐺(𝑥)
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Probabilistic algorithm

• Assume 𝑀𝑎𝑥(𝐷𝑒𝑔(𝐺(𝑥)), 𝐷𝑒𝑔 (𝐹(𝑥))) = 𝑑

• Algorithm 

– Choose an integer 𝑟 uniformly at random in 

the range {1, … . , 100𝑑}

– Compute 𝐹(𝑟) and 𝐺(𝑟)

– If 𝐹(𝑟) = 𝐺(𝑟) output Yes;

otherwise,       output No.
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Analysis 
• 𝐸:  The event that the algorithm fails.

• The algorithm may fail iff

– 𝐹(𝑥) ≠ 𝐺(𝑥) and 𝐹(𝑟) = 𝐺(𝑟)

– 𝑟 is the solution 𝑜𝑓 𝐻(𝑥) = 𝐹(𝑥) − 𝐺(𝑥) = 0.

– 𝐻(𝑥) has at most 𝑑 solutions.

• Pr 𝐸 ≤
𝑑

100𝑑
=

1

100

• Idea : If it keeps returning (Yes), we repeat the 

algorithm for k times.

– The updated algorithm will fail iff every 𝐸𝑖 fails 

for 1 ≤ 𝑖 ≤ 𝑘.
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• Pr(𝐸) = Pr(𝐸1 ∩ 𝐸2 ∩⋯ ∩ 𝐸𝑘)
= Pr(𝐸1 ) · Pr(𝐸2) · ⋯ · Pr(𝐸𝑘)

≤
1

100

𝑘

For 𝑖 = 1 to 𝑘 do 

• Choose an integer 𝑟 uniformly at random in the 

range {1, … . , 100𝑑}
• Compute 𝐹(𝑟) and 𝐺(𝑟)
• 𝐼𝑓 𝐹(𝑟) = 𝐺(𝑟) return  Yes;

otherwise stop and output  No.
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Conditioning 

• If 𝐸 and 𝐹 are events with Pr 𝐹 > 0, the 

conditional probability of 𝑬 given 𝑭 is 

Pr 𝐸 𝐹 =
Pr(𝐸 ∩ 𝐹)

Pr(𝐹)

• If 𝐸 and 𝐹 are independent

Pr 𝐸 𝐹 =
Pr(𝐸 ∩ 𝐹)

Pr(𝐹)
=
Pr 𝐸 Pr(𝐹)

Pr(𝐹)
= Pr(𝐸)
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Application 

• Example: Drug test

A = {Patient is a Women}

B = {Drug fails}

Pr(B|A) = ?

Pr(A|B) = ?
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Application 2: Monty Hall problem

• Suppose you're on a game show,

and you're given the choice of

three doors: Behind one door is a

car; behind the others, goats. You

pick a door, say No. 1, and the

host, who knows what's behind

the doors, opens another door,

say No. 3, which has a goat. He

then says to you, "Do you want to

pick door No. 2?" Is it to your

advantage to switch your choice?
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Tuesday boy problem

• “I have two children. One is a boy born on 

a Tuesday. What is the probability I have 

two boys?”

<BTU, girl>   7

<girl, BTU>   7

<BTU, boy>  7

<boy, BTU>  7-1= 6          6

(7+6)/(7+7+7+6)=13/27
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Drug Evaluation
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Simpson’s Paradox: View I

A = {Using Drug I}

B = {Using Drug II}

C = {Drug succeeds}

Pr(C|A)= 219/2020 ~ 10%

Pr(C|B)=1010/2200 ~ 50%

Drug II is better than Drug I

18



Simpson’s Paradox: View II

Female Patient

A = {Using Drug I}

B = {Using Drug II}

C = {Drug succeeds}

Pr(C|A) ~ 10%

Pr(C|B) ~ 5%

Male Patient

A = {Using Drug I}

B = {Using Drug II}

C = {Drug succeeds}

Pr(C|A) ~ 100%

Pr(C|B) ~ 50%

Drug I is better than Drug II
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Another version: Berkeley gender bias case (1973)

Applicants Admitted

Men 8442 44%

Women 4321 35%

Department
Men Women

Applicants Admitted Applicants Admitted

A 825 62% 108 82%

B 560 63% 25 68%

C 325 37% 593 34%

D 417 33% 375 35%

E 191 28% 393 24%

F 272 6% 341 7%
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Simpson's paradox - Wikipedia

https://en.wikipedia.org/wiki/Simpson%27s_paradox


Vector interpretation of 

Simpson's paradox
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Simpson's paradox - Wikipedia

https://en.wikipedia.org/wiki/Simpson%27s_paradox


A real-life example from a medical study comparing the

success rates of two treatments for kidney stones.
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Vector representation in

which each vector‘s slope

denotes its success rate.

Simpson's paradox - Wikipedia

https://en.wikipedia.org/wiki/Simpson%27s_paradox


Law of total probability

• Let 𝐸1, 𝐸2, … , 𝐸𝑛 be mutually disjoint events 

in the sample space Ω, and let 

𝑖=1ڂ
𝑛 𝐸𝑖 = Ω, then

Pr 𝐵 =෍

𝑖=1

𝑛

Pr(𝐵 ∩ 𝐸𝑖)

= σ𝑖=1
𝑛 Pr 𝐵 𝐸𝑖 Pr(𝐸𝑖)
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Conditional Independence

• Event 𝐴 and 𝐵 are conditionally 

independent given 𝑪 in case 

Pr(𝐴 ∩ 𝐵|𝐶) = Pr(𝐴|𝐶) · Pr(𝐵|𝐶)

Or  equivalently,

Pr(𝐴|𝐵 ∩ 𝐶) = Pr(𝐴|𝐶)
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• Example: There are three events: 𝐴, 𝐵, 𝐶

– Pr 𝐴 = Pr 𝐵 = Pr 𝐶 =
1

5

– Pr 𝐴 ∩ 𝐶 = Pr 𝐵 ∩ 𝐶 =
1

25
, Pr 𝐴 ∩ 𝐵 =

1

10

– Pr 𝐴 ∩ 𝐵 ∩ 𝐶 =
1

125

– Whether 𝐴, 𝐵 are conditionally 
independent given 𝐶?

– Whether 𝐴, 𝐵 are independent?

25



• Example: There are three events: 𝐴, 𝐵, 𝐶

– Pr 𝐴 = Pr 𝐵 = Pr 𝐶 =
1

5

– Pr 𝐴 ∩ 𝐶 = Pr 𝐵 ∩ 𝐶 =
1

25
, Pr 𝐴 ∩ 𝐵 =

1

10

– Pr 𝐴 ∩ 𝐵 ∩ 𝐶 =
1

125

– Whether 𝐴, 𝐵 are conditionally 
independent given 𝐶? Yes

– Whether 𝐴, 𝐵 are independent? No  
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• A box contains two coins: a regular coin and one fake 

two-headed coin (𝑃(𝐻) = 1). One chooses a coin at 

random and toss it twice. Define the following events.

– 𝐴 = First coin toss results in an H

– 𝐵 = Second coin toss results in an H

– 𝐶 = Coin 1 (regular) has been selected.

27

• 𝑃(𝐴 ∩ 𝐵) = 5/8 ≠ 𝑃(𝐴)𝑃(𝐵) = 9/16 , which means that 

A and B are not independent.

• Given C (Coin 1 is selected), A and B are independent.

Conditional independence neither implies (nor is 

it implied by) independence.
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• Given two events 𝐴 and 𝐵 and suppose that Pr(𝐴) > 0. 

Then

• Example:

Bayes’ Rule

Pr(W|R) R R

W 0.7 0.4

W 0.3 0.6

R: It is a rainy day

W: The grass is wet

Pr(R|W) = ?

Pr(R) = 0.8

)Pr(

)Pr()|Pr(

)Pr(

)Pr(
)|Pr(

A

BBA

A

AB
AB ==
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Bayes’ Rule

R R

W 0.7 0.4

W 0.3 0.6

R: It rains

W: The grass is wet

R W

Information

Pr(W|R)

Inference

Pr(R|W)

30



Pr( | ) Pr( )
Pr( | )

Pr( )

E H H
H E

E
=

Bayes’ Rule

Hypothesis H Evidence E

Information: Pr(E|H)

Inference: Pr(H|E)
PriorLikelihoodPosterior

R R

W 0.7 0.4

W 0.3 0.6

R: It rains

W: The grass is wet
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Bayes’ Rule: More Complicated

Suppose that 𝐵1, 𝐵2, … 𝐵𝑘 form a partition of S: 

Suppose that Pr(𝐵𝑖) > 0 and Pr(𝐴) > 0. Then

;   i j ii
B B B S=  =

1

1

Pr( | ) Pr( )
Pr( | )

Pr( )

Pr( | ) Pr( )

Pr( )

Pr( | ) Pr( )

Pr( ) Pr( | )

i i
i

i i

k

jj

i i

k

j jj

A B B
B A

A

A B B

AB

A B B

B A B

=

=

=

=

=




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Bayes’ Rule: More Complicated

Suppose that 𝐵1, 𝐵2, … 𝐵𝑘 form a partition of S: 

Suppose that Pr(𝐵𝑖) > 0 and Pr(𝐴) > 0. Then

;   i j ii
B B B S=  =

1

1

Pr( | ) Pr( )
Pr( | )

Pr( )

Pr( | ) Pr( )

Pr( )

Pr( | ) Pr( )

Pr( ) Pr( | )

i i
i

i i

k

jj

i i

k

j jj

A B B
B A

A

A B B

AB

A B B

B A B

=

=

=

=

=




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Bayes’ Rule: More Complicated

Suppose that 𝐵1, 𝐵2, … 𝐵𝑘 form a partition of S: 

Suppose that Pr(𝐵𝑖) > 0 and Pr(𝐴) > 0. Then

;   i j ii
B B B S=  =

1

1

Pr( | ) Pr( )
Pr( | )

Pr( )

Pr( | ) Pr( )

Pr( )

Pr( | ) Pr( )

Pr( ) Pr( | )

i i
i

i i

k

jj

i i

k

j jj

A B B
B A

A

A B B

AB

A B B

B A B

=

=

=

=

=




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In all

Assume that 𝐸1, 𝐸2, … , 𝐸𝑛 are mutually 

disjoint sets such that ڂ𝑖=1
𝑛 𝐸𝑖 = 𝐸 , then

Pr 𝐸𝑗 𝐵 =
Pr(𝐸𝑗∩𝐵)

Pr(𝐵)

=
Pr 𝐵 𝐸𝑗 Pr(𝐸𝑗)

σ𝑖=0
𝑛 Pr 𝐵 𝐸𝑖 Pr(𝐸𝑖)

35



Example
𝐸𝑖: the 𝑖𝑡ℎ coin is the biased one.

𝐵: 𝐻𝐻𝑇
Pr 𝐵 𝐸1 = Pr 𝐵 𝐸2

=
2

3
·
1

2
·
1

2
=
1

6

Pr 𝐵 𝐸3 =
1

2
·
1

2
·
1

3
=

1

12

Pr(𝐸𝑖) =
1

3

Pr(𝐸1 |𝐵) = 2/5 =

(1/6)(1/3)                 )-

2(1/6)(1/3)+(1/12)(1/3)

• We have three coins 

– Two of them: fair

– The other one: Pr(𝐻) = 2/3

• Flip them we get: 𝐻𝐻𝑇

• Problem: What is the probability 

that the first coin is the biased 

one? 36



A More Complicated Example

R It rains

W The grass is wet

U People bring umbrella

Pr(UW|R)=Pr(U|R)Pr(W|R)

Pr(UW| R)=Pr(U| R)Pr(W| R)

R

W U

Pr(W|R) R R

W 0.7 0.4

W 0.3 0.6

Pr(U|R) R R

U 0.9 0.2

U 0.1 0.8

Pr(U|W) = ?

Pr(R) = 0.8
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A More Complicated Example

R It rains

W The grass is wet

U People bring umbrella

Pr(UW|R)=Pr(U|R)Pr(W|R)

Pr(UW| R)=Pr(U| R)Pr(W| R)

R

W U

Pr(W|R) R R

W 0.7 0.4

W 0.3 0.6

Pr(U|R) R R

U 0.9 0.2

U 0.1 0.8

Pr(U|W) = ?

Pr(R) = 0.8
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A More Complicated Example

R It rains

W The grass is wet

U People bring umbrella

Pr(UW|R)=Pr(U|R)Pr(W|R)

Pr(UW| R)=Pr(U| R)Pr(W| R)

R

W U

Pr(W|R) R R

W 0.7 0.4

W 0.3 0.6

Pr(U|R) R R

U 0.9 0.2

U 0.1 0.8

Pr(U|W) = ?

Pr(R) = 0.8
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Random Variable and Distribution

• A random variable 𝑿 is a numerical 

outcomes of a random experiment

𝑋:Ω → 𝑅

• The distribution of a random variable is 

the collection of possible outcomes along 

with their probabilities:

– Discrete case: 

Pr 𝑋 = 𝑎 = ෍

𝑠∈Ω,𝑋 𝑠 =𝑎

Pr(𝑠)
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Random Variable: Example

• Let 𝑆 be the set of all sequences of two 

rolls of a die. Let 𝑋 be the sum of the 

number of dots on the two rolls.

• The event 𝑋 = 4 corresponds to the set of 

basic 𝑒𝑣𝑒𝑛𝑡𝑠 {(1,3), (2,2), (3,1)}. Hence

Pr 𝑋 = 4 =
3

36
=

1

12
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Independent random variable

• Two random variables 𝑋 and 𝑌 are 

independent if and only if 

Pr((𝑋 = 𝑥) ∩ (𝑌 = 𝑦)) = Pr(𝑋 = 𝑥) · Pr(𝑌 = 𝑦)
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Expectation

• A basic characteristic of a random variable 

is expectation. 

• The expectation of a random variable is a 

weighted average of the values it 

assumes, where each value is weighted 

by the probability that the variable 

assumes that value.
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Expectation

• A random variable 𝑋~Pr(𝑋 = 𝑥). Then, its 

expectation is

• In an empirical sample, 𝑥1, 𝑥2, … , 𝑥𝑁, 

[ ] Pr( )
x

E X x X x= =

1

1
[ ]

N

ii
E X x

N =
= 

45



Examples
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Examples
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Linearity of expectations

• Expectation of sum of random variables

𝐸(𝑋) + 𝐸(𝑌) = 𝐸(𝑋 + 𝑌)

Proof.

48
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Example
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Lemma

For any constant c and discrete random 

variable X

𝐸[𝑐𝑋] = 𝑐 · 𝐸[𝑋]

Proof. 

𝐸[𝑐𝑋] = σ𝑗 𝑗 · Pr(𝑐𝑋 = 𝑗)
= 𝑐σ𝑗 (𝑗/𝑐) · Pr(𝑋 = 𝑗/𝑐)
= 𝑐σ𝑘 𝑘 · Pr(𝑋 = 𝑘)

= 𝑐 · 𝐸[𝑋]
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Variance

• The variance of a random variable 𝑋 is the 

expectation of 𝑋 − 𝐸 𝑋 2 :

2

2 2

2 2

2 2

( ) (( [ ]) )

( [ ] 2 [ ])

( [ ] )

[ ] [ ]

Var X E X E X

E X E X XE X

E X E X

E X E X

= −

= + −

= −

= −
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Bernoulli Distribution

• The outcome of an experiment can either be 

success (i.e., 1) and failure (i.e., 0).

• Pr(𝑋 = 1) = 𝑝, Pr(𝑋 = 0) = 1 − 𝑝

• 𝐸[𝑋] = 𝑝, 𝑉𝑎𝑟(𝑋) = 𝑝(1 − 𝑝)
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Binomial Distribution
• Consider a sequence of 𝑛 independent coin flips. 

What is the distribution of the number of heads 
in the entire sequence?

• 𝑛 draws of a Bernoulli distribution. 𝑋 stands for 
the number of successes in these experiments.

• Random variable 𝑋 stands for the number of 
times that experiments are successful.

• 𝐸[𝑋] = 𝑛𝑝 (by linearity),  𝑉𝑎𝑟(𝑋) = 𝑛𝑝(1 − 𝑝)

(1 ) 1,2,...,
Pr( ) ( )

0 otherwise

x n xn
p p x n

X x p x x

−
 

− = 
= = =  



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Geometric Distribution

• Suppose that we flip a coin until it lands on 

heads. What is the distribution of the number of 

flips?

• A geometric random variable X with parameter p 

is given by the following probability distribution 

on n=1,2,….:

Pr 𝑋 = 𝑛 = 1 − 𝑝 𝑛−1𝑝
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Memoryless

• Geometric random variables are said to be 

memoryless: the probability that you will 

reach your first success n trials from now 

is independent of the number of failures 

you have experienced.

• Formally,

Pr(𝑋 = 𝑛 + 𝑘 | 𝑋 > 𝑘) = Pr(𝑋 = 𝑛)

56



Proof.

57

Pr 𝑋 = 𝑛 + 𝑘 𝑋 > 𝑘) =
Pr( 𝑋 = 𝑛 + 𝑘 ∩ (𝑋 > 𝑘))

Pr(𝑋 > 𝑘)

=
Pr 𝑋 = 𝑛 + 𝑘

Pr(𝑋 > 𝑘)

=
1 − 𝑝 𝑛+𝑘−1𝑝

σ𝑖=𝑘
∞ 1 − 𝑝 𝑖𝑝

=
1−𝑝 𝑛+𝑘−1𝑝

1−𝑝 𝑘

= 1 − 𝑝 𝑛−1𝑝

= Pr(𝑋 = 𝑛)



Expectation

• Method 1: make use of the definitions.

• Method 2:

𝐸 𝑋 = 𝑝 · 1 + 1 − 𝑝 · 𝐸 𝑋 + 1

𝑝 · 𝐸 𝑋 = 1

𝐸[𝑋] = 1/𝑝

𝑉𝑎𝑟 𝑋 = (1 − 𝑝)/𝑝2

58



Application: Coupon Collector’s Problem

❖ Each box of cereal contain

one of n different coupons.

❖ Once you obtain one of

every type of coupon, you

can send in for a prize.

❖ Coupons are distributed

independently and uniformly

at random from the 𝑛
possibilities.

❖ Question: How many

boxes of cereal must you

buy before you obtain at

least one of every type of

coupon? 59



Solution
• Let X be the number of boxes bought until at least one of every 

type of coupon is obtained.

• Xi is the number of boxes bought while you had exactly i-1 

different coupons. 

• Clearly, X=∑1≤i≤nXi

• Xi is a geometric random variable:

– When exactly 𝑖 − 1 coupons have been found, the 

probability of  obtaining a new coupon 𝑖𝑠 𝑝𝑖 = 1 −
𝑖−1

𝑛

– E[Xi] = 
1

𝑝
𝑖

=
𝑛

𝑛−𝑖+1

• By the linearity of expectations, we have 

E[X] = E[∑1≤i≤nXi] = ∑1≤i≤n E[Xi] = ∑1≤i≤n 

𝑛

𝑛−𝑖+1
= n·∑1≤i≤n 

1

𝑖

= 𝑛 · ln 𝑛 + Θ 𝑛

(Where  ∑1≤i≤n (
1

𝑖
)= H(n) =Θ(ln 𝑛) harmonic number) 60
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𝑉𝑎𝑟 𝑋 = 𝑉𝑎𝑟 𝑋1 +⋯𝑋𝑛

= 𝑉𝑎𝑟 𝑋1 +⋯+ 𝑉𝑎𝑟(𝑋𝑛)

=
1 − 𝑝1

𝑝1
2 +⋯+

1 − 𝑝𝑛

𝑝𝑛
2

<
𝑛2

𝑛2
+

𝑛2

(𝑛 − 1)2
+⋯

𝑛2

1

= 𝑛2 ⋅
1

12
+

1

22
+⋯

1

𝑛2

<
𝜋2

6
𝑛2

𝑝𝑖 = 1 −
𝑖−1

𝑛



Outline

• Events and probability

• Bayes’ rule

• Discrete random variables and expectation

• Moments and derivations



Markov’s Inequality

• Let 𝑋 be a random variable that assumes 

only nonnegative values. Then for all 𝑎 > 0

Pr 𝑋 ≥ 𝑎 ≤
𝐸[𝑋]

𝑎

• Proof. 
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Example

• Bound the probability of obtaining more 

than 
3𝑛

4
heads in a sequence of 𝑛 fair coin 

flips. Let 𝑋𝑖 = 1 if the 𝑖𝑡ℎ coin flip is head, 

otherwise, 𝑋𝑖 = 0.

– Let 𝑋 = σ1≤𝑖≤𝑛𝑋𝑖.  It follows that 𝐸 𝑋 =
𝑛

2

– Pr 𝑋 ≥
3𝑛

4
≤

𝐸 𝑋
3𝑛

4

= 2/3
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Chebyshev’s Inequality

• For any 𝑎 > 0,

Pr 𝑋 − 𝐸 𝑋 ≥ 𝑎 ≤
𝑉𝑎𝑟[𝑋]

𝑎2

• Proof.
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Example: Coupon Collector’s 

Problem

Recall: 𝐸[𝑋] = 𝑛 · 𝐻𝑛

By Markov’s inequality: 

Pr(𝑋 ≥ 2𝑛 · 𝐻𝑛) ≤ 1/2

By Chebyshev’s inequality, this can be 

improved to 

Pr(𝑋 ≥ 2𝑛 · 𝐻𝑛) ≤ 𝑂
1

ln 𝑛 2
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Union bound

• After unpacking 2𝑛 · 𝐻𝑛 cereals,  the 

probability that the 𝑖th card has not shown is

Pr(no card 𝑖 after 2𝑛 ⋅ 𝐻𝑛 step) = 1 −
1

𝑛

2𝑛⋅𝐻𝑛

• The probability that we do not get the whole 

set of 𝑛 cards after step  is:

67

Pr 𝑋 > 2𝑛 · 𝐻𝑛 ≤ 𝑛 ⋅ 1 −
1

𝑛

2𝑛⋅𝐻𝑛

≤ 𝑛 ⋅ 𝑒−2⋅𝐻𝑛 = 𝑂(1/𝑛)



• Pr 𝑋 ≥ 2𝑛 · 𝐻𝑛 ≤
1

2
Markov

• Pr 𝑋 ≥ 2𝑛 · 𝐻𝑛 ≤ 𝑂
1

ln 𝑛 2 Chebyshev

• Pr 𝑋 > 2𝑛 · 𝐻𝑛 ≤ 𝑂
1

𝑛
Union Bound

Chebyshev also gives (weak) lower bound. Using more 

advanced tools one can show

• Pr 𝑋 ≤ 1 − 𝜖 𝑛 − 1 ln 𝑛 ≤ 𝑒−𝑛
𝜖

[1801.06733] Probabilistic Tools for the Analysis of Randomized Optimization Heuristics (arxiv.org)

68

https://arxiv.org/abs/1801.06733


Chernoff Bound-style

Pr 𝑋 ≥ 𝑎 = Pr(𝑒𝑡𝑋 ≥ 𝑒𝑡⋅𝑎) for any 𝑡 > 0

69

≤
𝐸(𝑒𝑡𝑋)

𝑒𝑡⋅𝑎

≤ min
t>0

𝐸(𝑒𝑡𝑋)

𝑒𝑡⋅𝑎



Conditional Expectation

• 𝑋 is a discrete random variable, and 𝐸 is

an event with 𝑃 𝐸 > 0. The conditional

expectation of 𝑋 conditioned on 𝐸 is

𝐸 𝑋 𝐸 ≜ σ𝑥∈𝑅𝑎𝑛(𝑋) 𝑥 ⋅ 𝑃[𝑋 = 𝑥|𝐸]

• Let 𝑌 be another discrete random variable.

The conditional expectation of 𝑋
conditioned on 𝑌, written as 𝐸 𝑋 𝑌 , is a

random variable of 𝐸 𝑋 𝑌 = 𝑦 .
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Conditional Expectation
• 𝑋 is a discrete random variable, and 𝐸 is an event with 𝑃 𝐸 > 0. The conditional

expectation of 𝑋 conditioned on 𝐸 is

𝐸 𝑋 𝐸 ≜ σ𝑥∈𝑅𝑎𝑛(𝑋) 𝑥 ⋅ 𝑃[𝑋 = 𝑥|𝐸]

• Let 𝑌 be another discrete random variable. The conditional expectation of 𝑋
conditioned on 𝑌, written as 𝐸 𝑋 𝑌 , is a random variable of 𝐸 𝑋 𝑌 = 𝑦 .

71

• Proposition: 𝐸[𝐸 𝑋 𝑌] = 𝐸[𝑋].



Conditional Expectation

72

• Proposition: 𝐸[𝐸 𝑋 𝑌] = 𝐸[𝑋].

• Proof.

= σ𝑦 Pr 𝑌 = 𝑦 ⋅ 𝐸[𝑋|𝑌 = 𝑦]

= σ𝑦 Pr 𝑌 = 𝑦 ⋅ σ𝑥 𝑥 ⋅ Pr[𝑋 = 𝑥|𝑌 = 𝑦]

= σ𝑦 Pr 𝑌 = 𝑦 ⋅ σ𝑥 𝑥 ⋅
Pr[𝑋=𝑥∩𝑌=𝑦]

Pr[𝑌=𝑦]

= σ𝑦σ𝑥 𝑥 ⋅ Pr[𝑋 = 𝑥 ∩ 𝑌 = 𝑦]

= σ𝑥 𝑥 σ𝑦 Pr[𝑋 = 𝑥 ∩ 𝑌 = 𝑦]

= σ𝑥 𝑥 ⋅ Pr[𝑋 = 𝑥]

= 𝐸[𝑋]



Proof of Chernoff bounds (1)

73

• Let 𝑋1, … , 𝑋𝑛 be independent random variables such that 𝑋𝑖 ∼
𝐵𝑒𝑟 𝑝𝑖 for each 𝑖 = 1,2, … , 𝑛. Let 𝑋 = σ𝑖=1

𝑛 𝑋𝑖 and denote 𝜇 = 𝐸[𝑋], 

then Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1+𝛿 1+𝛿

𝜇

If 0 < 𝛿 < 1 , then Pr 𝑋 ≤ 1 − 𝛿 𝜇 ≤
𝑒−𝛿

1−𝛿 1−𝛿

𝜇

.

𝑀𝑋𝑖 𝑡 = 𝐸[𝑒𝑡𝑋𝑖]

= 𝑝𝑖𝑒
𝑡 + (1 − 𝑝𝑖)

= 1 + 𝑝𝑖(𝑒
𝑡−1)

≤ 𝑒𝑝𝑖(𝑒
𝑡−1)

𝑀𝑋 𝑡 =ෑ

𝑖=1

𝑛

𝑀𝑋𝑖 𝑡

≤ෑ

𝑖=1

𝑛

𝑒𝑝𝑖(𝑒
𝑡−1)

= exp ෍

𝑖=1

𝑛

𝑝𝑖(𝑒
𝑡−1)

= 𝑒(𝑒
𝑡−1)𝜇



Proof of Chernoff bounds (2) 

74

• Let 𝑋1, … , 𝑋𝑛 be independent random variables such that 𝑋𝑖 ∼
𝐵𝑒𝑟 𝑝𝑖 for each 𝑖 = 1,2, … , 𝑛. Let 𝑋 = σ𝑖=1

𝑛 𝑋𝑖 and denote 𝜇 = 𝐸[𝑋], 

then Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1+𝛿 1+𝛿

𝜇

If 0 < 𝛿 < 1 , then Pr 𝑋 ≤ 1 − 𝛿 𝜇 ≤
𝑒−𝛿

1−𝛿 1−𝛿

𝜇

.

Pr 𝑋 ≥ 1 + 𝛿 𝜇 = Pr 𝑒𝑡𝑋 ≥ 𝑒𝑡 1+𝛿 𝜇 for any 𝑡 > 0

≤
𝐸(𝑒𝑡𝑋)

𝑒𝑡 1+𝛿 𝜇

≤
𝑒(𝑒

𝑡−1)𝜇

𝑒𝑡 1+𝛿 𝜇
for any 𝛿 > 0

set 𝑡 = ln(1 + 𝛿) > 0≤
𝑒𝛿

1 + 𝛿 1+𝛿

𝜇



Proof of Chernoff bounds (3) 

75

• Let 𝑋1, … , 𝑋𝑛 be independent random variables such that 𝑋𝑖 ∼
𝐵𝑒𝑟 𝑝𝑖 for each 𝑖 = 1,2, … , 𝑛. Let 𝑋 = σ𝑖=1

𝑛 𝑋𝑖 and denote 𝜇 = 𝐸[𝑋], 

then Pr 𝑋 ≥ 1 + 𝛿 𝜇 ≤
𝑒𝛿

1+𝛿 1+𝛿

𝜇

If 0 < 𝛿 < 1 , then Pr 𝑋 ≤ 1 − 𝛿 𝜇 ≤
𝑒−𝛿

1−𝛿 1−𝛿

𝜇

.

Pr 𝑋 ≤ 1 − 𝛿 𝜇 = Pr 𝑒𝑡𝑋 ≥ 𝑒𝑡 1−𝛿 𝜇 , for any 𝑡 < 0

≤
𝐸(𝑒𝑡𝑋)

𝑒𝑡 1−𝛿 𝜇

≤
𝑒(𝑒

𝑡−1)𝜇

𝑒𝑡 1−𝛿 𝜇
for any 0 < 𝛿 < 1

set 𝑡 = ln 1 − 𝛿 < 0≤
𝑒−𝛿

1 − 𝛿 1−𝛿

𝜇
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