A quick review of probability theory

longhuan@sjtu.edu.cn

Outline

- Events and probability
- Bayes' rule
- Discrete random variables and expectation
- Moments and derivations

Definition of Probability

- **Experiment:** toss a coin twice
- Sample space: possible outcomes of an experiment
 Ω={HH, HT,TH,TT}
- Event: a subset of possible outcomes.

 $- A = \{HH\}, B = \{HT, TH\}$

- **Probability of an event:** an number assigned to an event Pr(A)
 - Axiom 1: $Pr(A) \ge 0$
 - Axiom 2: $Pr(\Omega) = 1$
 - Axiom 3: For every sequence of disjoint events $Pr(\bigcup_i A_i) = \sum_i Pr(A_i)$

Set notations

- $E_1 \cap E_2$ is the event that both E_1 and E_2 happen.
- $E_1 \cup E_2$ for the event that at least one of E_1 and E_2 happen.
- $E_1 E_2$ for the occurrence of an event that is in E_1 but not in E_2 .
- \overline{E} stands for ΩE .

Lemma: for any two events E_1 and E_2 :

 $Pr(E_1 \cup E_2) = Pr(E_1) + Pr(E_2) - Pr(E_1 \cap E_2)$

Proof. (Inclusion-exclusion principle)

Union Bound

Lemma: For any finite or countably infinite sequence of events $E_1, E_2, ...$

$Pr\left(\bigcup_{i\geq 1}E_i\right)\leq \sum_{i\geq 1}\Pr(E_i).$

Proof.

Independence

 Two events A and B are independent in case

$$\Pr(A \cap B) = \Pr(A) \cdot \Pr(B)$$

• A set of events $\{A_1, A_2, ..., A_k\}$ are **mutually independent** iff for any subset $I \subseteq [1, k]$

$$\Pr\left(\bigcap_{i\in I}A_i\right) = \prod_{i\in I}\Pr(A_i)$$

Independence

Consider the experiment of tossing a coin twice

• Example I.

 $-A = \{HT, HH\}, B = \{HT\}$

– Will event A independent from event B?

• Example II.

$$-A = \{HT\}, B = \{TH\}$$

– Will event A independent from event B?

- Disjoint ≠ Independence
- If A is independent from B, B is independent from C, will A be independent from C?

Application1: Identify polynomials (x + 1)(x - 2)(x + 3)(x - 4)(x + 5)(x - 6)

 $? = x^6 - 7x^3 + 25$

• Generally F(x) ? = G(x)

Probabilistic algorithm

- Assume Max(Deg(G(x)), Deg(F(x))) = d
- Algorithm
 - Choose an integer *r* uniformly at random in the range {1, ..., 100*d*}
 - Compute F(r) and G(r)
 - If F(r) = G(r) output Yes; otherwise, output No.

Analysis

- *E*: The event that the algorithm fails.
- The algorithm may fail iff
 - $-F(x) \neq G(x) \text{ and } F(r) = G(r)$
 - *r* is the solution of H(x) = F(x) G(x) = 0.
 - -H(x) has at most *d* solutions.
- $\Pr(E) \le \frac{d}{100d} = \frac{1}{100}$
- Idea : If it keeps returning (Yes), we repeat the algorithm for k times.

- The updated algorithm will fail iff every E_i fails for $1 \le i \le k$.

For i = 1 to k do

- Choose an integer r uniformly at random in the range {1, ..., 100d}
- Compute F(r) and G(r)
- If F(r) = G(r) return Yes; otherwise stop and output No.

•
$$\Pr(E) = \Pr(E_1 \cap E_2 \cap \dots \cap E_k)$$

= $\Pr(E_1) \cdot \Pr(E_2) \cdot \dots \cdot \Pr(E_k)$
 $\leq \left(\frac{1}{100}\right)^k$

Conditioning

- If *E* and *F* are events with Pr(F) > 0, the conditional probability of *E* given *F* is $Pr(E|F) = \frac{Pr(E \cap F)}{Pr(F)}$
- If *E* and *F* are independent

$$\Pr(E|F) = \frac{\Pr(E \cap F)}{\Pr(F)} = \frac{\Pr(E)\Pr(F)}{\Pr(F)} = \Pr(E)$$

Application

• Example: Drug test

	Women	Men
Success	200	1800
Failure	1800	200

A = {Patient is a Women}

$$\mathbf{B} = \{ \mathbf{Drug fails} \}$$

$$Pr(B|A) = ?$$

$$Pr(A|B) = ?$$

Application 2: Monty Hall problem

 Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

Behind door 1	Behind door 2	Behind door 3	Result if staying at door #1	Result if switching to the door offered
Car	Goat	Goat	Wins car	Wins goat
Goat	Car	Goat	Wins goat	Wins car
Goat	Goat	Car	Wins goat	Wins car

Tuesday boy problem

 "I have two children. One is a boy born on a Tuesday. What is the probability I have two boys?"

Drug Evaluation

	Women		Men	
	Drug I Drug II		Drug I	Drug II
Success	200	10	19	1000
Failure	1800	190	1	1000

Simpson's Paradox: View I

Simpson's Paradox: View II

	Wo	men	M	len	
	Drug I	Drug II	Drug I	Drug II	
Success	200	10	19	1000	
Failure	1800	190	1	1000	
	I		Drug	g I is be	etter than Drug II
Female Patient				Male Patient	
$A = \{Using Drug I\}$			$A = \{Using Drug I\}$		
$B = {Using Drug II}$			$B = \{Using Drug II\}$		
$C = \{Drug succeeds\}$			C	= {Drug succeeds}	
$\Pr(C A) \sim \mathbf{10\%}$		$\Pr(C A) \sim 100\%$		r(C A) ~ 100%	
Pr(C B)	$Pr(C B) \sim 5\%$			P	$r(C B) \sim 50\%$

Another version: Berkeley gender bias case (1973)

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

Department	Men		Women	
Department	Applicants	Admitted	Applicants	Admitted
A	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
Е	191	28%	393	24%
F	272	6%	341	7%

Simpson's paradox - Wikipedia

Vector interpretation of Simpson's paradox

Simpson's paradox - Wikipedia

A real-life example from a medical study comparing the success rates of two treatments for kidney stones.

	Treatment A	Treatment B
Small Stones	Group 1 93% (81/87)	Group 2 87% (234/270)
Large Stones	Group 3 73% (192/263)	Group 4 69% (55/80)
Both	78% (273/350)	83% (289/350)

Vector representation in which each vector's slope denotes its success rate.

Simpson's paradox - Wikipedia

Law of total probability

- Let $E_1, E_2, ..., E_n$ be mutually disjoint events in the sample space Ω , and let $\bigcup_{i=1}^{n} E_i = \Omega$, then $\Pr(B) = \sum_{i=1}^{n} \Pr(B \cap E_i)$
 - $= \sum_{i=1}^{n} \Pr(B|E_i) \Pr(E_i)$

Conditional Independence

• Event A and B are conditionally independent given C in case $Pr(A \cap B|C) = Pr(A|C) \cdot Pr(B|C)$

Or equivalently, $Pr(A|B \cap C) = Pr(A|C)$ • Example: There are three events: *A*, *B*, *C*

$$-\Pr(A) = \Pr(B) = \Pr(C) = \frac{1}{5}$$

- $-\Pr(A \cap C) = \Pr(B \cap C) = \frac{1}{25}, \Pr(A \cap B) = \frac{1}{10}$
- $-\Pr(A \cap B \cap C) = \frac{1}{125}$
- Whether *A*, *B* are conditionally independent given *C*?
- Whether *A*, *B* are independent?

• Example: There are three events: *A*, *B*, *C*

$$-\Pr(A) = \Pr(B) = \Pr(C) = \frac{1}{5}$$

- $-\Pr(A \cap C) = \Pr(B \cap C) = \frac{1}{25}, \Pr(A \cap B) = \frac{1}{10}$
- $-\Pr(A \cap B \cap C) = \frac{1}{125}$
- Whether *A*, *B* are conditionally independent given *C*? Yes
- Whether *A*, *B* are independent? No

- A box contains two coins: a regular coin and one fake two-headed coin (P(H) = 1). One chooses a coin at random and toss it twice. Define the following events.
 - -A = First coin toss results in an H
 - -B = Second coin toss results in an H
 - C = Coin 1 (regular) has been selected.
- $P(A \cap B) = 5/8 \neq P(A)P(B) = 9/16$, which means that A and B are not independent.
- Given C(Coin 1 is selected), A and B are independent.

Conditional independence neither implies (nor is it implied by) independence.

Outline

- Events and probability
- Bayes' rule
- Discrete random variables and expectation
- Moments and derivations

Bayes' Rule

• Given two events A and B and suppose that Pr(A) > 0. Then Pr(A|B) Pr(B|A)

$$\Pr(B \mid A) = \frac{\Pr(B)}{\Pr(A)} = \frac{\Pr(B)\Pr(B)}{\Pr(A)}$$

• Example:

Pr(W R)	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6

R: It is a rainy day W: The grass is wet Pr(R|W) = ?

Pr(R) = 0.8

Bayes' Rule

	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6

R: It rains W: The grass is wet

Information

Bayes' Rule

	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6

R: It rains

W: The grass is wet

Bayes' Rule: More Complicated

Suppose that B_1, B_2, \dots, B_k form a partition of S:

$$B_i \bigcap B_j = \emptyset; \ \bigcup_i B_i = S$$

Suppose that Pr(Bi) > 0 and Pr(A) > 0. Then $Pr(B_i | A) = \frac{Pr(A | B_i) Pr(B_i)}{Pr(A)}$

Bayes' Rule: More Complicated

Suppose that B_1, B_2, \dots, B_k form a partition of S:

$$B_i \bigcap B_j = \emptyset; \ \bigcup_i B_i = S$$

Suppose that Pr(Bi) > 0 and Pr(A) > 0. Then $Pr(B_i | A) = \frac{Pr(A | B_i) Pr(B_i)}{Pr(A)}$

$$= \frac{\Pr(A \mid B_i) \Pr(B_i)}{\sum_{j=1}^{k} \Pr(AB_j)}$$

Bayes' Rule: More Complicated

Suppose that B_1, B_2, \dots, B_k form a partition of S:

$$B_i \bigcap B_j = \emptyset; \ \bigcup_i B_i = S$$

Suppose that Pr(Bi) > 0 and Pr(A) > 0. Then

$$Pr(B_i | A) = \frac{Pr(A | B_i) Pr(B_i)}{Pr(A)}$$
$$= \frac{Pr(A | B_i) Pr(B_i)}{\sum_{j=1}^k Pr(AB_j)}$$
$$= \frac{Pr(A | B_i) Pr(B_i)}{\sum_{j=1}^k Pr(B_j) Pr(A | B_j)}$$

In all

Assume that $E_1, E_2, ..., E_n$ are mutually disjoint sets such that $\bigcup_{i=1}^n E_i = E$, then

$$\Pr(E_j|B) = \frac{\Pr(E_j \cap B)}{\Pr(B)}$$
$$= \frac{\Pr(B|E_j)\Pr(E_j)}{\sum_{i=0}^{n} \Pr(B|E_i)\Pr(E_i)}$$

Example

- We have three coins
 - Two of them: fair
 - The other one: Pr(H) = 2/3
- Flip them we get: *HHT*
- Problem: What is the probability that the first coin is the biased one?

A More Complicated Example

R

W

U

- It rains
- The grass is wet
 - People bring umbrella

A More Complicated Example

R It rains

W The grass is wet

U People bring umbrella

Pr(UW|R)=Pr(U|R)Pr(W|R) $Pr(UW|\neg R)=Pr(U|\neg R)Pr(W|\neg R)$

A More Complicated Example

Pr(R) = 0.8

R	It rains

W The grass is wet

U People bring umbrella

Pr(UW|R) = Pr(U|R)Pr(W|R)

 $Pr(UW| \neg R) = Pr(U| \neg R)Pr(W| \neg R)$

Pr(W R)	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6

Pr(U R)	R	$\neg R$
U	0.9	0.2
¬U	0.1	0.8

$$Pr(U|W) = ?$$

Outline

- Events and probability
- Bayes' rule
- Discrete random variables and expectation
- Moments and derivations
- The probabilistic method

Random Variable and Distribution

- A random variable X is a numerical outcomes of a random experiment $X: \Omega \rightarrow R$
- The distribution of a random variable is the collection of possible outcomes along with their probabilities:

– Discrete case:

$$\Pr(X = a) = \sum_{s \in \Omega, X(s) = a} \Pr(s)$$

Random Variable: Example

- Let *S* be the set of all sequences of two rolls of a die. Let *X* be the sum of the number of dots on the two rolls.
- The event X = 4 corresponds to the set of basic *events* {(1,3), (2,2), (3,1)}. Hence

$$\Pr(X=4) = \frac{3}{36} = \frac{1}{12}$$

Independent random variable

• Two random variables X and Y are independent if and only if

 $\Pr((X = x) \cap (Y = y)) = \Pr(X = x) \cdot \Pr(Y = y)$

Expectation

- A basic characteristic of a random variable is expectation.
- The expectation of a random variable is a weighted average of the values it assumes, where each value is weighted by the probability that the variable assumes that value.

Expectation

 A random variable X~Pr(X = x). Then, its expectation is

$$E[X] = \sum_{x} x \Pr(X = x)$$

• In an empirical sample, x_1, x_2, \dots, x_N ,

$$E[X] = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Examples

□ The expectation of the random variable X representing the sum of two dice is $E(X) = \frac{1}{36} \cdot 2 + \frac{2}{36} \cdot 3 + \frac{3}{36} \cdot 4 + \dots + \frac{1}{36} \cdot 12 = 7$

Examples

- □ The expectation of the random variable X representing the sum of two dice is $E(X) = \frac{1}{36} \cdot 2 + \frac{2}{36} \cdot 3 + \frac{3}{36} \cdot 4 + \dots + \frac{1}{36} \cdot 12 = 7$
- □ A random variable X that takes on the value 2ⁱ with probability 1/2ⁱ for i=1,2,...

$$E(X) = \sum_{i=1}^{\infty} \frac{1}{2^i} 2^i = \sum_{i=1}^{\infty} 1 = \infty$$

Linearity of expectations

• Expectation of sum of random variables E(X) + E(Y) = E(X + Y)Proof. □ Generally: For any finite collection of discrete random variables $X_1, X_2, ..., X_n$ with finite expectations.

$$E\left[\sum_{i=1}^{n} X_{i}\right] = \sum_{i=1}^{n} E[X_{i}]$$

Example

Recall: The expected sum of two dice.
 Solution:

Let $X = X_1 + X_2$

where X_i represents the outcome of dice *i* for i = 1, 2. Then

$$E(X_i) = \frac{1}{6} \sum_{j=1}^{6} j = \frac{7}{2}$$
$$E(X) = E(X_1) + E(X_2) = 7$$

Lemma

For any constant c and discrete random variable X

$$E[cX] = c \cdot E[X]$$

Proof.

$$E[cX] = \sum_{j} j \cdot \Pr(cX = j)$$

= $c\sum_{j} (j/c) \cdot \Pr(X = j/c)$
= $c\sum_{k} k \cdot \Pr(X = k)$
= $c \cdot E[X]$

Variance

• The variance of a random variable X is the expectation of $(X - E[X])^2$:

$$Var(X) = E((X - E[X])^{2})$$

= $E(X^{2} + E[X]^{2} - 2XE[X])$
= $E(X^{2} - E[X]^{2})$
= $E[X^{2}] - E[X]^{2}$

Bernoulli Distribution

- The outcome of an experiment can either be success (i.e., 1) and failure (i.e., 0).
- $\Pr(X = 1) = p$, $\Pr(X = 0) = 1 p$
- E[X] = p, Var(X) = p(1-p)

Binomial Distribution

- Consider a sequence of *n* independent coin flips. What is the distribution of the number of heads in the entire sequence?
- *n* draws of a Bernoulli distribution. *X* stands for the number of successes in these experiments.
- Random variable *X* stands for the number of times that experiments are successful.

$$\Pr(X = x) = p_{\theta}(x) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x} & x = 1, 2, ..., n \\ 0 & \text{otherwise} \end{cases}$$

• E[X] = np (by linearity), Var(X) = np(1-p)

Geometric Distribution

- Suppose that we flip a coin *until* it lands on heads. What is the distribution of the number of flips?
- A geometric random variable X with parameter p is given by the following probability distribution on n=1,2,....:

$$\Pr(X = n) = (1 - p)^{n - 1} p$$

Memoryless

- Geometric random variables are said to be memoryless: the probability that you will reach your first success n trials from now is independent of the number of failures you have experienced.
- Formally,

Pr(X = n + k | X > k) = Pr(X = n)

Proof.

 $\Pr(X = n + k \mid X > k) = \frac{\Pr((X = n + k) \cap (X > k))}{\Pr(X > k)}$ $=\frac{\Pr(X=n+k)}{\Pr(X>k)}$ $=\frac{(1-p)^{n+k-1}p}{\sum_{i=k}^{\infty}(1-p)^{i}p}$ $=\frac{(1-p)^{n+k-1}p}{(1-p)^k}$ $=(1-p)^{n-1}p$ $= \Pr(X = n)$

Expectation

- Method 1: make use of the definitions.
- Method 2:

 $E[X] = p \cdot 1 + (1 - p) \cdot (E[X] + 1)$ $p \cdot E[X] = 1$ E[X] = 1/p $Var[X] = (1 - p)/p^{2}$

Application: Coupon Collector's Problem

- Each box of cereal contain one of n different coupons.
- Once you obtain one of every type of coupon, you can send in for a prize.
- Coupons are distributed independently and uniformly at random from the n possibilities.
- Question: How many boxes of cereal must you buy before you obtain at least one of every type of coupon?

Solution

- Let X be the number of boxes bought until at least one of every type of coupon is obtained.
- X_i is the number of boxes bought while you had exactly i-1 different coupons.
- Clearly, $X = \sum_{1 \le i \le n} X_i$
- X_i is a geometric random variable:
 - When exactly *i* 1 coupons have been found, the probability of obtaining a new coupon *is* $p_i = 1 \frac{i-1}{n}$

$$- E[X_i] = \frac{1}{p_i} = \frac{n}{n-i+1}$$

• By the linearity of expectations, we have

$$E[X] = E[\sum_{1 \le i \le n} X_i] = \sum_{1 \le i \le n} E[X_i] = \sum_{1 \le i \le n} \frac{n}{n - i + 1} = n \cdot \sum_{1 \le i \le n} \left(\frac{1}{i}\right)$$
$$= n \cdot \ln n + \Theta(n)$$
(Where $\sum_{1 \le i \le n} \left(\frac{1}{i}\right) = H(n) = \Theta(\ln n)$ harmonic number)

60

 $Var(X) = Var(X_1 + \cdots X_n)$

 $= Var(X_{1}) + \dots + Var(X_{n})$ $= \frac{1 - p_{1}}{p_{1}^{2}} + \dots + \frac{1 - p_{n}}{p_{n}^{2}}$

$$< \left(\frac{n^2}{n^2} + \frac{n^2}{(n-1)^2} + \cdots + \frac{n^2}{1}\right)$$

$$= n^2 \cdot \left(\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}\right)$$

$$< \frac{\pi^2}{6}n^2$$

Outline

- Events and probability
- Bayes' rule
- Discrete random variables and expectation
- Moments and derivations

Markov's Inequality

• Let *X* be a random variable that assumes only nonnegative values. Then for all a > 0

$$\Pr(X \ge a) \le \frac{E[X]}{a}$$

• Proof.

Example

- Bound the probability of obtaining more than $\frac{3n}{4}$ heads in a sequence of *n* fair coin flips. Let $X_i = 1$ if the *i*th coin flip is head, otherwise, $X_i = 0$.
 - Let $X = \sum_{1 \le i \le n} X_i$. It follows that $E[X] = \frac{n}{2}$

$$-\Pr\left(X \ge \frac{3n}{4}\right) \le \frac{E[X]}{\frac{3n}{4}} = 2/3$$

Chebyshev's Inequality

- For any a > 0, $\Pr(|X - E(X)| \ge a) \le \frac{Var[X]}{a^2}$
- Proof.

Example: Coupon Collector's Problem

Recall: $E[X] = n \cdot Hn$

By Markov's inequality:

$\Pr(X \ge 2n \cdot Hn) \le 1/2$

By Chebyshev's inequality, this can be improved to

$$\Pr(X \ge 2n \cdot Hn) \le O\left(\frac{1}{(\ln n)^2}\right)$$

Union bound

- After unpacking $2n \cdot Hn$ cereals, the probability that the *i*th card has not shown is Pr(no card *i* after $2n \cdot Hn$ step) = $\left(1 \frac{1}{n}\right)^{2n \cdot Hn}$
- The probability that we do not get the whole set of *n* cards after step is:

$$\Pr(X > 2n \cdot Hn) \le n \cdot \left(1 - \frac{1}{n}\right)^{2n \cdot Hn}$$

$$\leq n \cdot e^{-2 \cdot Hn} = O(1/n)$$

• $\Pr(X \ge 2n \cdot Hn) \le \frac{1}{2}$

Markov

• $\Pr(X \ge 2n \cdot Hn) \le O\left(\frac{1}{(\ln n)^2}\right)$

Chebyshev

• $\Pr(X > 2n \cdot Hn) \le O\left(\frac{1}{n}\right)$ Union Bound

Chebyshev also gives (weak) lower bound. Using more advanced tools one can show

• $\Pr(X \le (1 - \epsilon)(n - 1) \ln n) \le e^{-n^{\epsilon}}$

[1801.06733] Probabilistic Tools for the Analysis of Randomized Optimization Heuristics (arxiv.org)

Chernoff Bound-style

 $Pr(X \ge a) = Pr(e^{tX} \ge e^{t \cdot a})$ for any t > 0

$$\leq \frac{E(e^{tX})}{e^{t \cdot a}}$$
$$\leq \min_{t>0} \frac{E(e^{tX})}{e^{t \cdot a}}$$

Conditional Expectation

 X is a discrete random variable, and E is an event with P(E) > 0. The conditional expectation of X conditioned on E is

$$E[X|E] \triangleq \sum_{x \in Ran(X)} x \cdot P[X = x|E]$$

• Let *Y* be another discrete random variable. The conditional expectation of *X* conditioned on *Y*, written as E[X|Y], is a random variable of E[X|Y = y].

Conditional Expectation

• *X* is a discrete random variable, and *E* is an event with *P*(*E*) > 0. The conditional expectation of *X* conditioned on *E* is

 $E[X|E] \triangleq \sum_{x \in Ran(X)} x \cdot P[X = x|E]$

- Let *Y* be another discrete random variable. The conditional expectation of *X* conditioned on *Y*, written as E[X|Y], is a random variable of E[X|Y = y].
- Proposition: E[E[X|Y]] = E[X].

Conditional Expectation

- Proposition: E[E[X|Y]] = E[X].
- Proof.

 $= \sum_{v} \Pr[Y = y] \cdot E[X|Y = y]$ $= \sum_{v} \Pr[Y = y] \cdot \sum_{x} x \cdot \Pr[X = x | Y = y]$ $= \sum_{y} \Pr[Y = y] \cdot \sum_{x} x \cdot \frac{\Pr[X = x \cap Y = y]}{\Pr[Y = y]}$ $= \sum_{y} \sum_{x} x \cdot \Pr[X = x \cap Y = y]$ $= \sum_{x} x \sum_{y} \Pr[X = x \cap Y = y]$ $=\sum_{x} x \cdot \Pr[X = x]$ = E[X]

Proof of Chernoff bounds (1)

• Let $X_1, ..., X_n$ be independent random variables such that $X_i \sim Ber(p_i)$ for each i = 1, 2, ..., n. Let $X = \sum_{i=1}^n X_i$ and denote $\mu = E[X]$, then $\Pr(X \ge (1 + \delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$

If
$$0 < \delta < 1$$
, then $\Pr(X \le (1 - \delta)\mu) \le \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^{\mu}$.

$$M_{X_{i}}(t) = E[e^{tX_{i}}]$$

= $p_{i}e^{t} + (1 - p_{i})$
= $1 + p_{i}(e^{t} - 1)$
 $\leq e^{p_{i}(e^{t} - 1)}$

$$M_X(t) = \prod_{\substack{i=1\\n}}^n M_{X_i}(t)$$

$$\leq \prod_{i=1}^n e^{p_i(e^t - 1)}$$

$$= \exp\left\{\sum_{i=1}^n p_i(e^t - 1)\right\}$$

$$= e^{(e^t - 1)\mu}$$

Proof of Chernoff bounds (2)

• Let $X_1, ..., X_n$ be independent random variables such that $X_i \sim Ber(p_i)$ for each i = 1, 2, ..., n. Let $X = \sum_{i=1}^n X_i$ and denote $\mu = E[X]$, then $\Pr(X \ge (1 + \delta)\mu) \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$

If $0 < \delta < 1$, then $\Pr(X \le (1 - \delta)\mu) \le \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^{\mu}$.

Pr

$$(X \ge (1+\delta)\mu) = \Pr(e^{tX} \ge e^{t(1+\delta)\mu}) \text{ for any } t > 0$$

$$\leq \frac{E(e^{tX})}{e^{t(1+\delta)\mu}}$$

$$\leq \frac{e^{(e^t-1)\mu}}{e^{t(1+\delta)\mu}} \text{ for any } \delta > 0$$

$$\leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \text{ set } t = \ln(1+\delta) > 0$$

Proof of Chernoff bounds (3)

• Let $X_1, ..., X_n$ be independent random variables such that $X_i \sim Ber(p_i)$ for each i = 1, 2, ..., n. Let $X = \sum_{i=1}^n X_i$ and denote $\mu = E[X]$, then $\Pr(X \ge (1 + \delta)\mu) \le \left(\frac{e^{\delta}}{(1 + \delta)^{1 + \delta}}\right)^{\mu}$

If $0 < \delta < 1$, then $\Pr(X \le (1 - \delta)\mu) \le \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^{\mu}$.

$$\Pr(X \le (1 - \delta)\mu) = \Pr(e^{tX} \ge e^{t(1 - \delta)\mu}), \text{ for any } t < 0$$

$$\le \frac{E(e^{tX})}{e^{t(1 - \delta)\mu}}$$

$$\le \frac{e^{(e^t - 1)\mu}}{e^{t(1 - \delta)\mu}} \text{ for any } 0 < \delta < 1$$

$$\le \left(\frac{e^{-\delta}}{(1 - \delta)^{1 - \delta}}\right)^{\mu} \text{ set } t = \ln(1 - \delta) < 0$$