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Definition of Probability

Experiment: toss a coin twice

Sample space: possible outcomes of an experiment

- Q={HH, HT,TH,TT}

Event: a subset of possible outcomes.

- A={HH}, B={HT, TH}

Probability of an event: an number assigned to an

event Pr(4)

— Axiom 1: Pr(4) =0

— Axiom 2: Pr(Q) =1

— Axiom 3: For every sequence of disjoint events
Pr(U; 4;) = X; Pr(4;) 3



Set notations

E; N E, Is the event that both E; and E,
happen.

E, U E, for the event that at least one of
E, and E, happen.

E, — E, for the occurrence of an event that
IS In E; but not in E,.

E stands for Q — E.



Lemma: for any two events E; and E,:

Pr(E, UE,) = Pr(E;) + Pr(E,) — Pr(E; N E,)

Proof. (Inclusion-exclusion principle)



Union Bound

Lemma: For any finite or countably infinite
sequence of events E, E,, ...

Pr (U Ei) < Z Pr(E,).

=1 =1

Proof.



Independence

 Two events A and B are independent In
case

Pr(An B) = Pr(A) - Pr(B)
 Asetof events {4,,4,,...,4;} are
mutually independent Iff for any subset

I < |1,k]
Pr(ﬂ Al-) = 1_[ Pr(4;)

L] L€l



Independence

Consider the experiment of tossing a coin twice
« Example I.

- A = {HT,HH},B = {HT}

— Will event A independent from event B?
« Example Il.

- A = {HT},B = {TH)

— Will event 4 independent from event B?
 Disjoint # Independence

* If A Is independent from B, B Is independent from
C, will A be independent from C?
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Applicationl: Identify
polynomials

(x+1D)x—-2)x+3)(x—4)(x+5)(x —6)
7= x%—7x3 4 25

* Generally F(x) 7= G(x)



Probabillistic algorithm

 Assume Max(Deg(G(x)),Deg (F(x))) =d
 Algorithm
— Choose an integer r uniformly at random in
the range {1, ....,100d}
— Compute F(r) and G(r)
—If F(r) = G(r) output Yes;
otherwise, output No.
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Analysis
e E: The event that the algorithm fails.
* The algorithm may fail iff
-F(x) #G(x)and F(r) = G(r)
- r 1s the solution of H(x) = F(x) — G(x) = 0.
- H(x) has at most d solutions.

. Pr(E)SL— -

100d 100
« |ldea : If it keeps returning (Yes), we repeat the
algorithm for k times.

— The updated algorithm will fail iff every E; fails
forl1 <i<k.
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Fori =1tok do

« Choose an integer r uniformly at random in the
range {1, ....,100d}

« Compute F(r)and G(r)

e If F(r) = G(r)return Yes;
otherwise stop and output No.

e Pr(E) =Pr(E1 NE2N--- N Ek)
= Pr(E1) - Pr(E2) - ---- Pr(Ek)

1 k
S -
(100)
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Conditioning

 If E and F are events with Pr(F) > 0, the
conditional probability of E given F Is

~ Pr(ENF)
Pr(E|F} = Pr(F)
 If E and F are independent

Pr(ENF) Pr(E)Pr(F)
Pr(F)  Pr(F)

Pr(E|F) = = Pr(E)

13



« Example: Drug test

Application

Women Men
Success 200 1800
Failure 1800 200

A = {Patient is a Women}
B = {Drug fails}

Pr(B|A) =7

Pr(A|B) =?

14



Application 2: Monty Hall problem

e Suppose you're on a game show,
and you're given the choice of
three doors: Behind one door is a
car; behind the others, goats. You
pick a door, say No. 1, and the
host, who knows what's behind
the doors, opens another door,
say No. 3, which has a goat. He
then says to you, "Do you want to
pick door No. 2?" Is it to your
advantage to switch your choice?

Behind door 1 | Behind door 2 | Behind door 3 | Result if staying at door #1 | Result if switching to the door offerad

Car Goat Goat Wwins car Wins goat
Goat Car Goat Wins goat Wins car
Goat Goat Car Wins goat Wins car
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Tuesday boy problem

* “| have two children. One is a boy born on
a Tuesday. What Is the probability | have
two boys?”

<BTU, gir[> 7

<girl, BTU> 7

<BTU, boy> 7

<boy, BTU> 7-1=6
(7+6)/(7+7+7+6)=13/27




Drug Evaluation

Women Men
Drug | Drug |l | Drug | Drug Il
Success 200 10 19 1000
Failure 1800 190 1 1000
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Simpson’s Paradox: View |

Women Men
Drug | Drug Il | Drug | Drug I
Success 200 10 19 1000
Failure 1800 190 1 1000
ﬂ Drug Il is better than Drug |
A = {Using Drug I}
Drug I Drug II B = {Using Drug I}
Success | 219 1010 > C = Drugsucceeds}
Pr(C|A)=219/2020 ~ 10%
Failure 1801 1190

Pr(C|B)=1010/2200 ~ 50%

18



Simpson’'s Paradox: View I

Women Men
Drug | Drug [l | Drug | Drug I

Success 200 10 19 1000
Failure 1800 190 1 1000
Drug I is better than Drug I
Female Patient Male Patient
A = {Using Drug I} A = {Using Drug I}
B = {Using Drug 11} B = {Using Drug 11}
C = {Drug succeeds} C = {Drug succeeds}
Pr(C|A) ~ 10% Pr(C|A) ~ 100%

Pr(C|B) ~ 5% Pr(C|B) ~ 50%



Another version: Berkeley gender bias case (1973)

Applicants | Admitted

Men 8442 44%

Women 4321 35%
Department Men. ; Women :

Applicants Admitted | Applicants Admitted
A 825 62% 108 82%
B 560 63% 25 68%
C 325 37% 593 34%
D 417 33% 375 35%
E 191 28% 393 24%
F 272 6% 341 7%

Simpson's paradox - Wikipedia
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https://en.wikipedia.org/wiki/Simpson%27s_paradox

Vector interpretation of
Simpson's paradox

D



https://en.wikipedia.org/wiki/Simpson%27s_paradox

A real-life example from a medical study comparing the
success rates of two treatments for kidney stones.

Treatment A Treatment B
Group 1 Group 2
RIS e 93% (81/87) 87% (234/270)
Group 3 Group 4
Large Stones 73% (192/263) 69% (55/80)
Both 78% (273/350) 83% (289/350)
& 300
< > mBsmall BbO’[h_,..
)
£ > MBlarge Bsmall .~
3 MBhoth >
= 200
é Vector representation in
3 100 which each vector's slope
; ‘ denotes its success rate.
o
£ Blarge Simpson's paradox - Wikipedia
pZd

100

o

200 300
Number of cases
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https://en.wikipedia.org/wiki/Simpson%27s_paradox

Law of total probability
 LetE, E,, ..., E,, be mutually disjoint events
In the sample space (), and let
UL, E; = Q, then
n
Pr(B) = Z Pr(B N E;)
i=1

= i=1 Pr(B|E;) Pr(Ey)

23



Conditional Independence

 Event A and B are conditionally
Independent given C In case

Pr(An B|C) = Pr(A|C) - Pr(B|C)
Or equivalently,
Pr(A|lB nC) = Pr(A|C)

24



 Example: There are three events: A,B, C
_ Pr(4) = Pr(B) = Pr(C) = %
_Pr(4A n C) =Pr(B N C) =%,Pr(A N B) =

—Pr(AanC)=Els

—Whether A4, B are conditionally
Independent given C?

— Whether A, B are independent?

1

10

25



 Example: There are three events: A,B, C
_ Pr(4) = Pr(B) = Pr(C) = %
_Pr(4A n C) =Pr(B N C) =%,Pr(A N B) =

—Pr(AanC)=Els

—Whether A4, B are conditionally
iIndependent given C? Yes

— Whether A, B are independent? No

1

10

26



* A box contains two coins: a regular coin and one fake
two-headed coin (P(H) = 1). One chooses a coin at
random and toss it twice. Define the following events.

— A = First coin toss results in an H
- B = Second coin toss results in an H
— C = Coin 1 (reqular) has been selected.

e PANB)=5/8+ P(A)P(B) =9/16, which means that
A and B are not independent.
 Given C(Coin 1 is selected), Aand B are independent.

Conditional independence neither implies (nor is

it implied by) independence.
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Bayes’ Rule

« Given two events A and B and suppose that Pr(4) > 0.

Pr(AB) _ Pr(A| B)Pr(B)

Then
Pr(B|A) = Pr(A)
« Example:
Pr(W|R) |R —R
W 0.7 0.4
—W 0.3 0.6

Pr(R) =0.8

Pr(A)

R: Itis a rainy day
W: The grass is wet
Pr(RW) =?

29



Bayes’ Rule

R —R

W 0.7 0.4

—W 0.3 0.6
Information

Pr(W|R)

R: It rains

W: The grass Is wet

&

\/@

Inference

Pr(R|W)

30



Bayes’ Rule

R: It rains

R —R
W 0.7 0.4
—W 0.3 0.6

W: The grass Is wet

Information: Pr(E[|H)
@sterlor i L1kelihood flgrlor

=l

Pr(H |E)|

~
 ——

-] 7

Pr(E | H)Pr(H)

Pr(E)

31



Bayes’ Rule: More Complicated

Suppose that B,, B,, ... B form a partition of S:

Bi(1B; =< |JBi =S

Suppose that Pr(Bi) > 0and Pr(4) > 0. Then
Pr(A|B;)Pr(B;)
Pr(A)

Pr(Bi [ A) =

32



Bayes’ Rule: More Complicated

Suppose that B,, B,, ... B form a partition of S:

BlmBJ :@, UiBi :S
Suppose that Pr(Bi) > 0and Pr(4) > 0. Then
Pr(A|B;)Pr(B;)
Pr(A)
_ Pr(A|B;)Pr(B;)

ZLPr(AB )

Pr(Bi [ A) =

33



Bayes’ Rule: More Complicated

Suppose that B,, B,, ... B form a partition of S:

Bi(1B; =< |JBi =S

Suppose that Pr(Bi) > 0and Pr(4) > 0. Then
Pr(A|[B;)Pr(B;)
Pr(A)
_ Pr(A|B;)Pr(B;)
lezlPr(ABj)
_ Pr(A|B;)Pr(B;)
Z'Jf:lpr(Bj)Pr(M B;)

Pr(Bi [ A) =

34



In all

Assume that E,, E,, ..., E,, are mutually
disjoint sets such that U;_, E; = E, then
Pr(E;jNB)

Pr(B)
B Pr(B‘Ej)Pr(Ej)
X, Pr(BIE;)Pr(E))

Pr(E;|B) =

35



Example

E;: the it" coin is the biased one.
B: HHT
Pr(B|E;) = Pr(B|E>)

G 60-:

Pr(E, |B) = 2/5 =
(1/6)(1/3)
2(1/6)(1/3)+(1/12)(1/3)

« We have three coins

— Two of them: fair
— The other one: Pr(H) = 2/3
Flip them we get: HHT

Problem: What is the probability
that the first coin is the bhiased
one? 36




A More Complicated Example

@ R It rains
/ \ W The grass Is wet
@ @ U People bring umbrella

37



A More Complicated Example

R It rains
®\ W The grass Is wet
/ U People bring umbrella
@ @ Pr(UW|R)=Pr(U|R)Pr(W|R)

Pr(UW| —R)=Pr(U| —=R)Pr(W| —R)

38



A More Complicated Example

R It rains
Q\A W The grass Is wet

@ @ U People bring umbrella
Pr(UW|R)=Pr(U|R)Pr(W|R)

Pr(R) =0.8 Pr(UW| —R)=Pr(U| =R)Pr(W| —R)
Pr(W|R) |R —R Pr(UR) |R —R
W 0.7 0.4 U 0.9 0.2
—~W 0.3 0.6 —U 0.1 0.8

W) = 2

39
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Random Variable and Distribution

« Arandom variable X i1s a numerical
outcomes of a random experiment
X:Q) >R

* The distribution of a random variable is
the collection of possible outcomes along
with their probabillities:

— Discrete case:

Pr(X =a) = z Pr(s)

SeEQX(s)=a

41



Random Variable: Example

* Let S be the set of all sequences of two
rolls of a die. Let X be the sum of the
number of dots on the two rolls.

 The event X = 4 corresponds to the set of
basic events {(1,3), (2,2),(3,1)}. Hence

3 1
PI'(X=4)=£ :E

42



Independent random variable

« Two random variables X and Y are
iIndependent If and only If

Pr(X=x)Nn (Y=y))=Pr(X=x) - -Pr(Y =vy)

43



Expectation

* A basic characteristic of a random variable
IS expectation.

* The expectation of a random variable Is a
welghted average of the values it
assumes, where each value is weighted
by the probability that the variable
assumes that value.

44



Expectation

 Arandom variable X~Pr(X = x). Then, its
expectation is

E[X]=D xPr(X =x)

 In an empirical sample, x;, x,, ..., Xy,

E[X]= %Zililxi

45



Examples

O The expectation of the random variable X

representing the sum of two dice 1s
3

1 2 1
E(X)—%'24-%'34-%'44-'“4-%'12—7

46



Examples

O The expectation of the random variable X

representing the sum of two dice 1s

E(X) = 1 2+2 3+3 4+ - +1 12 =7
- 36 36 36 36 B
O A random variable X that takes on the value 2!

with probablhty 1/2" for i= 12

E(X)—ZZLZL 21

a7



Linearity of expectations

* Expectation of sum of random variables
EX)+EXY) = E(X+Y)

Proof.



0O Generally: For any finite collection of discrete
random variables X, X,, ..., X;, with finite
expectations.

E in_ = iE[xi]

49



Example 0

O Recall: The expected sum of two dice.

L

Solution:
Let X — Xl + Xz

where X; represents the outcome of dice i for
i = 1,2. Then
7

E(X)__Z] 1j__
E(X) = E(X,) + E(X,) = 7

50



Lemma

For any constant ¢ and discrete random
variable X

ElcX]| =c - E|X]
Proof.

E|cX] 2. J - Pr(cX =j)

¢y (/c)-Pr(X =j/c)
), k-Pr(X =k)
= c- E|X]

51



Variance

e The variance of a random variable X is the
expectation of (X — E[X])? :

Var(X) = E((X = E[X])?)
= E(X %+ E[X]* -=2XE[X])
= E(X* - E[X]")
= E[X*]-E[X]*

52



Bernoulli Distribution

* The outcome of an experiment can either be
success (I.e., 1) and failure (i.e., 0).

e PriX=1) =p, PriX=0) =1-p
* E|IX] = p, Var(X) = p(1—p)

53



Binomial Distribution

» Consider a sequence of n independent coin flips.
What is the distribution of the number of heads
In the entire sequence?

e n draws of a Bernoulli distribution. X stands for
the number of successes in these experiments.

 Random variable X stands for the number of
times that experiments are successful.

(nj pP’A-p)"™* x=12,..,n
X

| 0 otherwise
o E[X] = np (by linearity), Var(X) = np(1 —p)

Pr(X =x) = py(X) =+

54



Geometric Distribution

e Suppose that we flip a coin until it lands on
heads. What is the distribution of the number of
flips?

« A geometric random variable X with parameter p
IS given by the following probability distribution
on n=1,2,.....

Pr(X=n)= (1-p)"'p

55



Memoryless

« Geometric random variables are said to be
memoryless: the probability that you will
reach your first success n trials from now
IS Independent of the number of failures
you have experienced.

* Formally,
PriX=n+k|X>k) = Pr(X=n)

56



Proof.

= k
Pr(X = n+ k| X > k) :Pr((X :r(-l;(kif;)(X> ))

Pr(X=n+k)
~ T Pr(X > k)

(1 _ p)n+k—1p
IR -pip
_ (1-p)tkip
 (a-p)
=1-p"'p
= Pr(X =n)

57



Expectation

* Method 1: make use of the definitions.

e Method 2:
ElX]=p-1+ (1- p)-(E[X] + 1)
p-E|X]=1

58



Application: Coupon Collector’s Problem

*» Each box of cereal contain
one of n different coupons.

% Once you obtain one of
every type of coupon, you
can send in for a prize.

% Coupons are distributed
iIndependently and uniformly
at random from the n
possibilities.

 Question: How  many
boxes of cereal must you
buy before you obtain at
least one of every type of
coupon?




Solution

Let X be the number of boxes bought until at least one of every
type of coupon is obtained.

X; Is the number of boxes bought while you had exactly i-1
different coupons.

Clearly, X=) 5<%
X; Is a geometric random variable:

— When exactly i — 1 coupons have been found, the
probability of obtaining a new couponis p, =1 — %
n

n—i+1

— E[XI] = p— —
By the linearity of expectations, we have
1
E[X] = E[2 1<inXi] = 2 1<in EIX] = Z1<|<nn 1 =N 4<isn (;)

=n-Inn+0(n)
(Where ) o, (%)= H(n) =0@(Inn) harmonic number) 60



Var(X) = Var(X; + -+ X,,)

= Var(X;) + -+ Var(X,)

1—p; 1—py
— > 4+ .o 4 5
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Markov's Inequality

 Let X be a random variable that assumes
only nonnegative values. Then for all a > 0

E[X]
a

Pr(X > a) <

* Proof.

63



Example

* Bound the probability of obtaining more
3n : : :
than " heads Iin a sequence of n fair coin
flips. Let X; = 1 if the i*" coin flip is head,
otherwise, X; = 0.
—Let X = Yy qien X;. It follows that E[X] =~
-Pr(x=>3) <55 = 2/3

4

64



Chebyshev's Inequality

* Forany a > 0,

Pr(lX — E(X)| > a) < LA

e Proof.

65



Example: Coupon Collector’s
Problem
Recall: E|X] = n-Hn
By Markov's inequality:
Pr(X>=2n-Hn) < 1/2

By Chebyshev’s inequality, this can be
Improved to

1
Pr(X=2n-Hn) < O ((lnn)2>

66



Union bound

« After unpacking 2n - Hn cereals, the
probability that the ith card has not shown is

1 2n-Hn
Pr(no card i after 2n - Hn step) = (1 — E)

* The probabillity that we do not get the whole
set of n cards after step Is:

1 2n-Hn
Pr(X > 2n-Hn) <n - (1——)

n

<n-e#H" = 0(1/n) _



e Pr(X >2n-Hn) S% Markov

1
(In n)?

e Pr(X >2n:-Hn) < 0( ) Chebyshev

e Pr(X>2n-Hn) <O (%) Union Bound

Chebyshev also gives (weak) lower bound. Using more
advanced tools one can show

e PriX<(1—-e)(n—1)Inn) <e™

€

[1801.06733] Probabilistic Tools for the Analysis of Randomized Optimization Heuristics (arxiv.orq)

68
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Chernoff Bound-style

Pr(X = a) = Pr(et® > et%) foranyt > 0

E(etX)
— et-a

_E(e™)
=80 eta

69



Conditional Expectation

e X IS a discrete random variable, and E Is
an event with P(E) > 0. The conditional
expectation of X conditioned on E IS

EIX|E] £ ZxERan(X)x - P|X = x|E]

* Let Y be another discrete random variable.
The conditional expectation of X
conditioned on Y, written as E[X]|Y], is a
random variable of E|X|Y = y].

70



Conditional Expectation

e X is adiscrete random variable, and E is an event with P(E) > 0. The conditional
expectation of X conditioned on E is

E[X|E] £ ZxERan(X)x'P[X = x|E]

Let Y be another discrete random variable. The conditional expectation of X
conditioned on Y, written as E[X|Y], is a random variable of E[X|Y = y].

* Proposition: E[E|X|Y]] = E[X].

71



Conditional Expectation
» Proposition: E[E[X|Y]] = E[X].

Y =yl -E[X|Y = y]
=2y PrlY =y| - Xy x - PriX = x|Y = y]
. 1. . Pr[X=xnY=y|
=2y PrlY =y]|- X, x T~

=D2y2xXx - PriX=xnY =y]

72



Proof of Chernoff bounds (1)

 Let X, ...,X,, be independent random variables such that X; ~
Ber(p;) foreachi = 1,2,...,n.Let X = 7', X; and denote u = E[X],

38 -
then PI‘(X = (1 + 5).“) = ((1+6)1+6)

e s
fO<d<1,then PriX<(1-96)p) < ((1_5)1_5) ,

n
My, (8) = E[et™] Me(0) = | | Mx,(®
=pie’ + (1 —py) oh
=1+ p;(e'—-1) < 1_[ ePie’=1)

< epi(e’-1) =1 n
= exp {2 pi(et—l)}
i=1

— e(et_l)li

73



Proof of Chernoff bounds (2)

 Let X, ...,X,, be independent random variables such that X; ~
Ber(p;) foreachi =1,2,...,n.Let X = }I*; X; and denote u = E[X],

36 -
then PI‘(X = (1 + 5).“) = ((1+5)1+6)

e s
fO<d<1,then PriX<(1-96)p) < ((1_5)1_5) ,

Pr(X > (1 + &6)u) = Pr(et® = et(+9K) forany t > 0

E(etX)
et(1+6)u
e(et_l)ﬂ

<

< RTCETS) foranyo > 0

) U
e
S<(1+5)1+5) sett=In(1+6)>0

74



Proof of Chernoff bounds (3)

Let X4, ..., X;, be independent random variables such that X; ~
Ber(p;) foreachi =1,2,...,n.Let X = }I*; X; and denote u = E[X],

e’ -
thenPr(X > (1 + &)u) < ((1+5)1+6)

e s
fO<d<1,then PriX<(1—-96)p) < ((1—5)1—5) ,

Pr(X < (1 —6)u) = Pr(et® = et(1=9K) forany t < 0
E(etX)
et(1—6)u
e(et_l)ﬂ
et(1—6)u

<

< forany0 < 4§ <1

e 0 3
< <(1 — 5)1_6) sett =In(1—-6) <0
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