
http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

Math. Struct. in Comp. Science (2011), vol. 21, pp. 943–996. c© Cambridge University Press 2011

doi:10.1017/S0960129511000260 First published online 19 May 2011

The λ-calculus in the π-calculus†

XIAOJUAN CAI and YUXI FU

BASICS, Department of Computer Science

and

MOE-MS Key Laboratory for Intelligent Computing and Intelligent Systems,

Shanghai Jiaotong University, Shanghai 200240, China

Email: {cxj;fu-yx}@cs.sjtu.edu.cn

Received 16 December 2009; revised 19 January 2011

A general approach is proposed for transforming objects to methods on the fly in the

framework of the π-calculus. The power of the approach is demonstrated by applying it to

generate an encoding of the full lambda calculus in the π-calculus. The encoding is proved

to preserve and reflect beta reduction, and is shown to be fully abstract with respect to

Abramsky’s applicative bisimilarity.

1. Introduction

The π-calculus of Milner et al. (1992) has been successful in both theory and practice. As

a theoretical model, it has been shown that the name passing communication mechanism

is both stable and powerful in that many variants of the π-calculus turn out to be

just as powerful (Nestmann and Pierce 2000; Palamidessi 2003; Fu and Lu 2010). The

investigations have also shown that the π-calculus captures much of the expressiveness

of mobile computing. On the practical side, the π-calculus acts as a ubiquitous model

for interpreting various phenomena in mobile and distributed computing. Studies have

indicated that the π-calculus is extremely useful in programming objects, methods,

specifications and protocols widely used in modern computing.

Two issues concerning the pragmatics of the π-calculus are particularly interesting. One

is how the objects of a source model/calculus/language are interpreted and what kind of

features are captured. The other is what particular variant of the π-calculus is used as a

target model in a particular application. In the following we inspect these two aspects by

taking a look at some previous work.

Walker’s encoding of a parallel object-oriented language (Walker 1991; 1995) is carried

out in the minimal π-calculus that has neither conditionals nor any forms of choice

operation. This interpretation is natural since the naming policy of the π-calculus is a

very good fit to the idea of the object-oriented paradigm. The reference of an object and

the invoking of a method are interactions, and the passing of references is simply the

passing of names. Amadio and Prasad’s specification of the Mobile IP protocol (Amadio

and Prasad 2000) makes use of the asynchronous π-calculus (Boudol 1992; Honda and

Tokoro 1991a; Honda and Tokoro 1991b) with choice, match condition and parametric

† The authors are supported by the National Science Foundation of China (60873034, 61033002, 61003013).

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 944

definition. The choice and condition operators strictly enhance the expressive power of the

π-calculus (Fu and Lu 2010). Parametric definition is normally strictly more powerful than

the fixpoint or replication operators (Sangiorgi 1996). Because the π-calculus in Amadio

and Prasad (2000) is mainly used as a description language for specifying protocols, the

localisation operator is absent. The descriptive power of the π-calculus has also been

explored with a view to specifying security protocols. Abadi and Gordon (1999) extended

the π-calculus to Spi in an effort to deal with security issues. Baldamus et al. (2004)

provides an interesting translation of Spi into the π-calculus with guarded choice and

match. The basic idea of the translation is to understand the terms of Spi as objects. The

ability of the π-calculus to create local names dynamically is essential for the interpretation

of encryption and decryption.

A computation is typically composed of both data and control flows. The philosophy

of the first-order π-calculus is that everything is seen as control flow management. To

encode in the π-calculus is to think in terms of access (name) control. But how expressive

is this new paradigm in comparison with traditional ones? We have already mentioned

how object-oriented programming fits in the framework of the π-calculus. The functional

paradigm and the higher order feature can also be realised by control flow management.

Thomsen (1993; 1995) discussed the issue of how to translate higher order CCS into

the π-calculus, and Sangiorgi (1993a; 1993b) proved that the higher order π-calculus is

equivalent to the first-order π-calculus in a strong sense. Other work has confirmed that

the π-calculus is more or less equivalent to many of its variants (Palamidessi 2003; Fu

and Lu 2010). These results add considerable weight to the authority of the π-calculus.

All this work, and much other, has suggested that encoding in the π-calculus is very

much like programming. As in all familiar programming paradigms, programming in the

π-calculus has a certain methodology, the π-methodology. This methodology provides a

general guideline on what entities are modelled, how the computations are simulated and

which equalities are respected.

— In π-programming, there are two kinds of entities. The objects are simply π-processes,

possibly with distinguished reference names. The methods are replicated forms of

prefixed processes. A method can be invoked as often as necessary. The terms of a

source language are normally interpreted as objects in the π-calculus, whereas types

are typically interpreted as methods.

— In π-programs, computations are just reference management, which controls how

names should and should not be passed around. The computational behaviour of a

term is defined by the operators and the structure of the term. The structural aspect of

the source language is captured in π-programs by suitable data structures, which can

be explicit or implicit. Simulations of computations of source language are achieved

by reference management and are organised through data structures.

— The intensional equalities of source models are interpreted by the observational

equivalence of the π-calculus. The quality of an interpretation is judged by a full

abstraction property. The existence of such a property is more likely if the intensional

equality is observational. It is difficult for the observational theory of the π-calculus

to capture the intensional equality if the latter is defined by some extra-logical theory.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 945

Programming in the π-calculus can be greatly simplified if it has a richer set of operators.

For example, guarded choice and the match operator are always convenient. However,

in a particular application, the use of such operators may not be indispensable. A useful

strategy is to encode the source language in some super model of the minimal π-calculus

to start with, and then look for a way to transplant the encoding to a subcalculus. When

dealing with a source calculus, it is interesting to investigate the minimal set of operators

required to carry out a translation into the π-calculus. A result of this kind says a great

deal about the nature of the source model.

Milner’s interpretation (Milner 1992) of the lazy λ-calculus (Abramsky 1990) is an

instructive example of using the general encoding strategy outlined above. An abstraction

λ-term λx.M is coded up by an object with a special name, say ‘λ’. The encoding of

an application term MN has an underlying data structure of a binary tree, with two

children being the encodings of M and N, respectively. A variable x is translated to

a call, a leaf in the binary tree, that may invoke a method named x. Milner shows

that his encoding preserves β-conversion. Sangiorgi (1993a; 1995) strengthened the result

through a full abstraction theorem, stating that the observational equivalence induced by

the encoding is precisely the open applicative bisimilarity, which is a generalisation of

Abramsky’s applicative bisimilarity (Abramsky 1990) to open λ-terms. By modifying the

reference management of this encoding, Milner (1992) also provided an encoding of the

call-by-value λ-calculus (Plotkin 1975). Milner’s encodings have been studied in several

different settings. For example, Sangiorgi (1993b) points out that the close relationship

between the lazy λ-calculus (the call-by-name λ-calculus) and the higher order π-calculus

can be explored to generate encodings in the first-order π-calculus, using the encoding

from the higher order π-calculus to the first-order π-calculus. The encodings of the strong

call-by-name λ-calculus have been studied in several variants of the π-calculus (Fu 1997;

Parrow and Victor 1997; Fu 1999; Merro 2004).

Despite all the efforts, no encoding of the full λ-calculus has been proposed. One expects

that such an encoding should satisfy at least two properties:

— It should preserve and reflect the operational semantics of the full λ-calculus.

— It should satisfy a full abstraction theorem with respect to some observational

equivalence on the λ-terms.

The difficulty of encoding the full λ-calculus in the π-calculus is discussed in Milner (1992).

Milner pointed out that, from the point of view of the π-calculus, the full λ-reduction

strategy appears odd. In the reduction sequence

(λx.M)N →∗ (λx.M ′)N ′

→ M ′{N ′/x}
→∗ . . . N ′

1 . . . N
′
2 . . .

the β-reduction (λx.M ′)N ′ → M ′{N ′/x} is a turning point. Before the β-reduction, the

term N evolves by itself, but after it, two copies of the descendant N ′ of N may evolve

independently in parallel. If N is modelled by a method, it is underneath a replication

operator. But then one could hardly explain N →∗ N ′. If N is interpreted as an object, then

it seems difficult to model the cloning of N ′ into several copies. The idea of interpreting

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 946

M ′{N ′/x} by syntactical substitution does not work either. To model the cloning by a

higher order process, N has to appear in a higher order output prefix, which makes an

interpretation of N →∗ N ′ and λx.M →∗ λx.M ′ very unlikely. These difficulties suggest

that there is probably something about π-programming that we have not understood.

The design of an operationally sound and complete, and observationally fully abstract

encoding of the full λ-calculus in the π-calculus has been an open issue for nearly twenty

years. This problem is resolved in this paper.

The structure of the paper is as follows. Section 2 lays out the necessary background

technicalities. Section 3 explains how to define data structures in the π-calculus. Section 4

defines the encoding of the full λ-calculus in the π-calculus. Section 5 discusses properties

of the encoding. Section 6 establishes the correctness of the encoding. Section 7 provides

conclusions and suggestions for further work. All the proofs of the lemmas stated in

Section 5 and then used in Section 6 are given in Appendix A.

2. Technical background

This section covers the necessary background material on the λ-calculus, the π-calculus

and Milner’s encoding. In the rest of the paper we use {�0/◦0, . . . , �n/◦n} to denote a

substitution that replaces ◦0, . . . , ◦n, which is necessarily pairwise distinct, by �0, . . . , �n,
respectively.

2.1. Lambda calculus

Church’s λ-calculus (Barendregt 1984) is an operational model of functional computation.

The entities of the model are λ-terms and the computations are β-reductions. Let V be

the set of the term variables, ranged over by x, y, z, . . .. The set Λ of the λ-terms is defined

by the grammar

M := x | λx.M | MM ′.

The variable x in λx.M is bound. A variable is free if it is not bound. A λ-term is closed

if it does not contain any free variables. Let Λ0 be the set of closed λ-terms. Let →∗ be

the reflexive and transitive closure of →. The λ-contexts are defined by the grammar

C[ ] ::= | λx.C[ ] | (C[ ])M | M(C[ ]),

where M is a λ-term. We say that C[ ] is a closing λ-context for M if C[M] ∈ Λ0. The

reduction strategy of the λ-terms is defined by the following rules:

(λx.M)N → M{N/x}
β reduction M → M ′

MN → M ′N
structural rule

N → N ′

MN → MN ′ eager evaluation M → M ′

λx.M → λx.M ′ partial evaluation.

Using the notion of λ-context, the four reduction rules can be replaced by the following

single reduction rule:

C[(λx.M)N] → C[M{N/x}]
C[ ] is a λ-context.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 947

The intensional equality on the λ-terms is the well-known β-conversion =β , which is the

equality generated by →. From the observational viewpoint, =β is too fine grained. Take,

for instance, the closed term Ω
def
= (λx.xx)(λx.xx). We have Ω �=β ΩΩ, but ΩΩ is clearly

just as solitary as Ω. The importance of the observational theory of the λ-calculus has

been emphasised by a number of people. Abramsky (1990), for example, introduced the

applicative bisimilarity and developed a coherent observational theory for a particular

reduction strategy, viz. the lazy λ-reduction strategy. The observational approach is, of

course, applicable to other reduction strategies of the λ-calculus. The following definition

of applicative bisimilarity is due to Abramsky.

Definition 1. A binary relation R on Λ0 is an applicative bisimulation if the following

properties hold whenever MRN:

(i) If M →∗ λx.M ′, then N →∗ λx.N ′ for some N ′ such that M ′{L/x} R N ′{L/x} for

every L ∈ Λ0.

(ii) If N →∗ λx.N ′, then M →∗ λx.M ′ for some M ′ such that M ′{L/x} R N ′{L/x} for

every L ∈ Λ0.

The applicative bisimilarity =a is the largest applicative bisimulation.

The relation =a is obviously an equivalence. For λ-terms M,N containing, say, the free

variable x, we could define M =a N if and only if λx.M =a λx.N. Then =a becomes a

congruence on the set of all λ-terms.

Lemma 1. If M → M ′, then M =a M
′.

Proof. If M ′ →∗ λx.M ′′, then M →∗ λx.M ′′. If M →∗ λx.M ′′, then, by the Church–

Rosser property, there exists some M ′′′ such that M ′ →∗ M ′′′ and λx.M ′′ →∗ M ′′′. Clearly,

M ′′′ must be of the form λx.M ′′′′. Therefore,

{(M,M ′) | Λ0 	 M →∗ M ′}

is an applicative bisimulation.

It follows that beta conversion =β is included in =a. The inclusion is strict since

Ω �=β ΩΩ but Ω =a ΩΩ. Another concrete example of Lemma 1 is (λy.I)Ω =a I, where

I ≡ λx.x. What this tells us is that the applicative bisimilarity and the β-conversion are

not termination preserving. This is in contrast to the situation in the lazy λ-calculus.

One implication of this fact is that, as long as we take the applicative bisimilarity as

the equality on the λ-terms, the equivalence of the π-calculus should not be termination

preserving either, or a full abstraction result would be impossible. An alternative would

be to refine =a so that termination is taken into consideration. This would imply an

overhaul of the theory of the λ-calculus since β-conversion would no longer be valid. In

this paper, we shall stick with Definition 1.

An alternative characterisation of the applicative bisimilarity is given by the next lemma.

Lemma 2. The applicative bisimilarity =a is the largest among all R that satisfies the

following properties:

(1) R is symmetric.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 948

(2) If MRN → N ′, then MRN ′.

(3) If (λx.M)RN, then N →∗ λx.N ′ for some N ′ such that (λx.M)R(λx.N ′).

(4) If (λx.M)R(λx.N), then M{L/x}RN{L/x} for every L ∈ Λ0.

Proof. Since M → M ′ implies M =a M
′, the applicative bisimilarity satisfies the above

properties. Conversely, a relation satisfying these properties is a subset of =a.

2.2. π-calculus

We assume that there is a set N of names and a set Nv of name variables. The following

conventions will be enforced throughout the paper:

— The set N is ranged over by a, b, c, d.

— The union set N ∪ Nv is ranged over by e, f, g, . . . , x, y, z.

So, for example, it is syntactically incorrect to write a(c).T . Moreover, the following

additional assumption will be strictly respected:

If, for example, we write (n)T , then the explicit n in (n)T should be understood as a name.

Similarly, if we write a(n).T , then n in a(n).T must be understood as a name variable.

It will become clear that our conventions are very convenient when defining the structural

encoding of the λ-calculus in the π-calculus. We write ñ for a finite set of names/name

variables {n0, n1, · · · , ni}, and we also abbreviate (n0n1 · · · ni)T to (ñ)T . When ñ is empty,

(ñ)T is just T .

The π-calculus (Milner et al. 1992) has a number of variants. The common part of

all these variants is the minimal π-calculus, denoted by πM , which is the variant used

by Milner to encode the lazy λ-calculus. The grammar of the πM-terms is given by the

following BNF:

R, S, T , . . . := π.T | S |T | (a)T | !T ,

where

π := τ | n(x) | nm.

The prefix π may be an internal action, an input a(x) or an output nm. In a(x).T , the

name variable x is bound. A name variable is free if it is not bound. The name a in (a)T

is a local name. A name is global if it is not local. The bounded output prefix term n(c).T

is defined by (c)nc.T . We will write A,B, C, D, O, P , Q for the processes, which are terms

without any free name variables. The operational semantics is defined by the following

rules, in which µ ranges over the set A = {ab, ab, a(b) | a, b ∈ N} ∪ {τ} of action labels:

Action

τ.T
τ−→ T ab.T

ab−→ T a(x).T
ab−→ T {b/x}

.

Composition

S
µ

−→ S ′

S |T
µ

−→ S ′ |T
S

ab−→ S ′ T
ab−→ T ′

S |T τ−→ S ′ |T ′
S

ab−→ S ′ T
a(b)
−→ T ′

S |T τ−→ (b)(S ′ |T ′)
.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 949

Localisation

T
ab−→ T ′

(b)T
a(b)
−→ T ′

a, b are distinct T
µ

−→ T ′

(b)T
µ

−→ (b)T ′
b is not in µ .

Recursion

T | !T
µ

−→ T ′

!T
µ

−→ T ′
.

In the first composition rule, µ should not contain any global name in T .

The minimal π-calculus turns out to be surprisingly powerful. However, it is not very

convenient when it comes to programming. Moreover, it is not yet clear if the full

abstraction result (Theorem 2) is achievable if the target model is πM . In this paper we

shall work with πdef , the π-calculus with parametric definition and guarded choice. The

set of πdef -terms is generated from the following grammar:

R, S, T , . . . :=
∑
i∈I

ϕiπi.Ti | S |T | (a)T | D(x̃),

where I is a finite indexing set and ϕi is a condition. We write P for the set of πdef -

processes. A condition is defined by the following grammar (Parrow and Sangiorgi 1995):

ϕ,ψ := � | ⊥ | p = q | p �= q | ϕ ∧ ψ,

where p = q is a match and p �= q is a mismatch, � and ⊥ are logical truth and falsity,

respectively. The conjunction ϕ ∧ ψ is often abbreviated to the concatenation ϕψ. The

semantics of the case term
∑

i∈I ϕiπi.Ti is given by the following rules, in which ⇔ stands

for logical equivalence:

∑
i∈I ϕiπi.Ti

πi−→ Ti

πi is an output or τ, and ϕi ⇔ �.

∑
i∈I ϕiπi.Ti

ab−→ Ti{b/x}
πi = a(x) and ϕi ⇔ �.

We will use extended choices of the form
∑

i=1..n ϕiµi.Ti, where the prefixes could be

bounded output prefixes. We often write ϕ1µ1.T1+. . .+ϕnµn.Tn for
∑

i=1..n ϕiµi.Ti. Another

alternative notation is

begin case

ϕ1 ⇒ µ1.T1

...

ϕn ⇒ µn.Tn
end case.

The well-known ‘if then else’ can be defined in terms of the case terms. For example,

if p=q ∧ u�=v then µ1.T1 else µ2.T2

is defined by the term

(p=q ∧ u�=v)µ1.T1 + (p�=q)µ2.T2 + (u=v)µ2.T2.

Occasionally, we shall mix several notations.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 950

A parametric definition is given by a finite set of equations in the following form:

D1(x̃1) = T1,

...

Dn(x̃n) = Tn,

where for each i ∈ {1, . . . , n} the free names of Ti must appear in x̃i. An instantiation Di(ñi)

of Di(x̃i) is the term Ti{ñi/x̃i}. In the above definition, Di(x̃i) may have an instantiated

occurrence in any of T1, . . . , Tn. The rule defining the operational semantics of the

parametric definition is

Ti{ñi/x̃i}
µ

−→ T ′

Di(ñi)
µ

−→ T ′
.

For clarity, we shall not always specify all the parameters when giving parametric

definitions. Fu and Lu (2010) shows that the parametric definition is equivalent to

the replication in terms of expressive power.

A binary relation R on the set of πdef -processes is:

— equipollent if whenever PRQ we have

∃µ �= τ.P =⇒
µ

−→

if and only if

∃µ′ �= τ.Q =⇒
µ′

−→,

where =⇒ is the reflexive and transitive closure of
τ−→;

— extensional if it is closed under composition and localisation;

— a weak bisimulation if it satisfies the following weak bisimulation property:

– if QR−1P
τ−→ P ′, then Q =⇒ Q′R−1P ′ for some Q′;

– if PRQ τ−→ Q′, then P =⇒ P ′RQ′ for some P ′.

The weak bisimilarity ≈ is the largest extensional, equipollent, weak bisimulation on the

set of πdef -processes. For the present calculus, ≈ is precisely the barbed bisimilarity of

Milner and Sangiorgi (1992).

There is a variant of the π-calculus, called the polyadic π-calculus (Milner 1997),

in which more than one name can be passed around in a single communication. To

simulate polyadic communication in the monadic π-calculus, we introduce the following

abbreviations:

a(x1, .., xi).T
def
= a(v).v(x1)...v(xi).T

a〈n1, .., ni〉.T
def
= a(c).cn1...cni.T

a(b1, .., bi).T
def
= a(c).c(b1)...c(bi).T .

Another abbreviation we will use is
∏

i∈{1,..,n} Ti, which stands for T1 | . . . |Tn.
We conclude this section by introducing a structural congruence over the π-processes.

Definition 2. The structural congruence ≡ is the smallest congruence over the π-terms

satisfying the following equalities:

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 951

(1) S ≡ T whenever S is α-convertible to T .

(2) T | 0 ≡ T , S |T ≡ T | S and R | (S |T ) ≡ (R | S) |T .

(3) !T ≡ T | !T .

(4) (a)0 ≡ 0 and (a)(b)T ≡ (b)(a)T .

(5) (a)(S |T ) ≡ S | (a)T if a does not appear global in S .

(6) (a)a(x).T ≡ 0 and (a)am.T ≡ 0.

(7) (a)!a(x).T ≡ 0 and (a)!an.T ≡ 0.

In this paper, the structural congruence is introduced to help define and reason about

relations on processes. It is not part of the language definition, and is not quite the same

as the standard congruence. The following useful fact will be used without any reference.

Lemma 3. If S ′ ≡ S
µ

−→ T , then S ′ µ
−→ T ′ ≡ T for some T ′.

We will write P � to mean that P cannot do any τ-action.

2.3. Milner’s translation

There have been a number of encodings of different variants of the λ-calculus in the π-

calculus. In this subsection we use Milner’s encoding of the lazy λ-calculus as an example

to explain the difficulties of interpreting all four reduction rules of the full λ-calculus.

Milner’s basic idea was to explore the fact that an abstraction term λx.M can be seen

as a process ready to interact at the name λ. Since λx.M is a function, it is naturally

encoded as a π-term in input prefix form. Now consider the application term (λx.M)N.

It is clear that the encoding of (λx.M)N should not be able to interact at λ at this point.

But structurally the encoding of λx.M is a π-term in input prefix form, and the interface

name must be different from λ. This name has to be a local name since the only interface

of the λ-terms with the outside world is λ. We conclude that the encodings of the λ-terms

are parameterised on names. Milner’s encoding is as follows:

�x�(f)
def
= xf

�λx.M�(f)
def
= f(x).f(u).�M�(u)

�MN�(f)
def
= (cd)(�M�(c) | cd.cf | !d(v).�N�(v)).

A closed λ-term M is encoded by �M�(f). The encoding of the abstraction λx.M is the

object f(x).f(u).�M�(u). The underlying structure of �MN�(f) is a binary tree: the left

child �M�(c) is an object accessible at the local name c; and the right child !d(v).�N�(v)

is a method with name d. Notice that an object is in prefix form whereas a method is in

replication form. The part cd.cf is the control management attached to the root. Its role

is to pass the method name d to �M�(c) so that the method can be called as many times

as necessary. The control management also assigns the name f to the final object. The

encoding �x�(f) is simply a call that may invoke the method named x.

The encoding as it stands is sound for two of the four rules: the β-reduction rule and

the structural rule. To accommodate the partial evaluation rule, the process �M�(u) in

�λx.M�(f) must not be blocked by the input prefixes. One possibility for getting rid of the

blocking is to use outputs instead of inputs. Similarly, the object �N�(v) in �MN�(f) is

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 952

blocked by the prefix and the replication operator. Both must go if the eager evaluation

rule is to be respected. However, if the replication disappears in front of �N�(v), it

must reappear somewhere! One way to overcome the problem could be to make the

control management freeze the execution of (the descendant of) �N�(v) immediately after

the contraction of the β-redex MN has been simulated. In summary, to account for

the operational semantics of the full λ-calculus, Milner’s encoding must be modified to

something like

�x�〈f〉 def
= xf

�λx.M�〈f〉 def
= (cxd)(fcx.fd | (�M�〈d〉){cx/x})

�MN�〈f〉 def
= (cd)(�M�〈c〉 |App | �N�〈d〉).

If we try to design App, we soon realise that we have to identify a local name with

another (local or global) name since there are too many output prefixes, and some of the

names carried by the output prefixes must be identified to simulate β-reduction. But this

is completely ruled out by the semantics of the π-calculus, so it might be easier to start

afresh.

3. Data structures defined in the π-calculus

A data structure is an organised set of data that admits a set of predefined operations.

The elements of an instance of a data structure are linked in a way prescribed by the

operations on the data structure. In the π-calculus, a data structure is modelled by a set of

processes of a certain shape. Both the elements of the data structure and the operations

on the data structure are processes. The link relationship among the elements is indicated,

often implicitly, by the reference relationship. In this section, we explain how to define

data structures in the π-calculus and introduce the structural trees that will be used in

our encoding of the λ-terms.

We shall look first at how to encode lists as π-processes. A list of paired names

(〈u1, v1〉, . . . , 〈un, vn〉) is programmed as a list of processes linked by pointers. The element

〈ui, vi〉 is interpreted by the process ai〈ui, vi, ai+1〉. It is accessed through ai. The pointer

ai+1 is the reference of the next pair. In order to indicate the end of the list, we need a

special name, say � or ⊥†. The list is defined in Figure 1, together with the following

three operations on the list:

— The process Add(x, y, u) adds the pair 〈x, y〉 to the head of the list u.

— The process Remove(x, y, u) deletes the pair 〈x, y〉 from u.

— The process Find (x, u, v) checks whether x is the first parameter of a pair in u: if it is,

it outputs the second parameter at v; otherwise it outputs ⊥ at v.

The above example explains the general picture. Most of the data structures are special

instances of the tree structure. Instead of looking at more examples of data structures

coded up in the π-calculus, we shall focus in the following on the general tree structure.

† In this paper, we use ⊥ for the boolean constant false as well as the name that plays the role of false. This

overloading is harmless, and the symbol � is used similarly.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 953

Fig. 1. Encoding of list

3.1. Tree structure

The point of introducing the tree structure into the π-calculus is that an expression or

a program is naturally constructed in a tree-like structure. When translating a source

language into the π-calculus, the tree structure is a useful tool, which can be modified,

improved and refined to obtain a correct interpretation.

A binary tree defined in the π-calculus is a process of the following form:

∏
i∈{0,1,...,k}

ni〈pi, li, ri, ti〉

where each concurrent component ni〈pi, li, ri, ti〉 represents a node.

The names appearing in ni〈pi, li, ri, ti〉 suggest the following interpretation:

— ni is the name of the present node. In other words, it is the reference of the node

ni〈pi, li, ri, ti〉.

— pi, li, ri are the names of the parent, and left and right children, respectively.

— ti is the tag, which carries additional information attached to the node.

In a particular application, there can be more than one tag to a node. Some of these tags

indicate a piece of global information, while others carry local information. A node of a

tree is a term that reveals everything about itself. The revealed information includes its

position in the tree and the name of an object or method attached to the node.

We use the special name ⊥ to indicate that a node has no parent/left child/right child.

Consider the process T defined by

T = l〈⊥, m, n, t0〉
|m〈l, o, p, t1〉 | n〈l, q,⊥, t2〉

| o〈m,⊥,⊥, t3〉 | p〈m,⊥,⊥, t3〉 | q〈n, r, s, t4〉
| r〈q,⊥,⊥, t5〉 | s〈q,⊥,⊥, t6〉,

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 954

which represents the tree

l

��������t0
m ��

��
�

n��
��

�

��������t1
o ��

��
�

p��
��

�
��������t2
q��������t3 ��������t3 ��������t4

r ��
��

�
s��

��
�

��������t5 ��������t6

In this tree, all the node names are exposed. In practice, we are only interested in those

trees where only a restricted number of nodes are accessible. For instance, T (l) defined

in (1) is only accessible at l.

T (l) = (mnopqrs)T . (1)

It is always a good strategy if a tree is only accessible at the root.

It is straightforward to implement a tree-traversal algorithm in the π-calculus using a

depth first or breadth first strategy. Such a traversal is required, for instance, to check if

a certain property is valid for some/all nodes of the trees. In a concurrent computation

scenario, properties are dynamically established. It follows that a traversal will need to

be executed again and again. At the programming level, this means that a while loop

has to be introduced. The implementation of this idea in the π-calculus would inevitably

introduce an infinite τ-loop. This is an undesirable feature in most circumstances since it

may preempt useful actions such as the simulation of a β-reduction.

3.2. Operations on trees

The flat structure of the trees defined above makes it easy to define operations on trees.

The process

n(p, l, r, t).if l �= ⊥ then l(p′, l′, r′, t′).(n〈p, l′, r′, t〉
| l′(p1, l1, r1, t1).l′〈n, l1, r1, t1〉
| r′(p2, l2, r2, t2).r′〈n, l2, r2, t2〉)

interacts with T and transforms it into the tree

l

��������t0
m�������

n�������

��������t1
o ��

� p��
�

��������t2
r ��

�
s��

�

��������t3 ��������t3 ��������t5 ��������t6

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 955

This example shows that as long as we have access to an individual node of a tree,

we can manoeuvre our way through the tree to find the necessary information and use

the information to manipulate the tree.

When programming with trees, the trees have objects or methods attached to their

nodes, and their attachment to the nodes may be static or dynamic.

Static associations, which are implemented by the static composition operator, have the

following shape:

ni〈pi, li, ri, ti〉 |L(pi, li, ri, ti).

Here the node ni〈pi, li, ri, ti〉 has a standby operation L(pi, li, ri, ti), which does not go away

when the node is being visited. The static association is good enough if the methods

attached to the nodes of a tree are fixed. The operation L(pi, li, ri, ti) can be designed

in such a way that anybody who wants to invoke it must first get the associated node

information. In this case, L(pi, li, ri, ti) can only be invoked locally, which is the preferred

way of using static associations.

If the operations attached to the nodes of a tree are allowed to be updated, it is more

convenient to use dynamic associations, which are implemented by the dynamic choice

operator, and take the form

ni〈pi, li, ri, ti〉 + ψτ.L(pi, li, ri, ti).

The advantage of dynamic associations is that after the node has been visited, it could be

reinstated to something like

ni〈pi, li, ri, ti〉 + ψ′τ.L′(pi, li, ri, ti)

where the dynamically associated operation has been updated. Note that even if the node

information is discharged once ψτ.L(pi, li, ri, ti) is put into operation, it is often restored

later. The dynamic association cannot be implemented in πM since the choice operator is

not definable in πM (Fu and Lu 2010).

3.3. Turning objects into methods

In the π-calculus, it is impossible to construct a general process, say Q, that produces the

replicated form !O of a process O by interacting with O. The reason is very simple. The

process Q may contain only a finite number of names. There is no way for Q to reproduce

!a0(x0). · · · .an(xn).aixi from a0(x0). · · · .an(xn).aixi if the set {a0, · · · , an} is large enough.

However, since a data structure is a well-organised set of data, it is possible to have a

π-process L that transforms every instance O of that data structure into some method

from which a copy of O can be made whenever necessary, thus achieving the effect of

!O. Two copies of O may only differ by being rooted at different places. As an example,

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 956

Fig. 2. Freezing a tree

suppose D is a tree defined by

D
def
= (l〈⊥, m, n, t0〉 + t0.Op(l,⊥, m, n, t0))

| (m〈l, o, p, t1〉 + t1.Op(m, l, o, p, t1))

| (n〈l, q,⊥, t2〉 + t2.Op(n, l, q,⊥, t2))
| (o〈m,⊥,⊥, t3〉 + t3.Op(o, m,⊥,⊥, t3))
| (p〈m,⊥,⊥, t3〉 + t3.Op(p, m,⊥,⊥, t3))
| (q〈n, r, s, t4〉 + t4.Op(q, n, r, s, t4))

| (r〈q,⊥,⊥, t5〉 + t5.Op(r, q,⊥,⊥, t5))
| (s〈q,⊥,⊥, t6〉 + t6.Op(s, q,⊥,⊥, t6)),

which has dynamically associated operations. Let D(l) be defined by

D(l)
def
= (mnopqrs)D.

Consider the parametric definition of Freeze(z, v) given in Figure 2. The process

D(l) | Freeze(l, v)

may engage in a series of interactions. By the end of the engagement, the tree D(l) has

been turned into a blueprint of D(l), which looks something like

(v0v1)(!v(p
′, n′).(l′r′)(n′〈p′, l′, r′, t0〉 | v0〈n′, l′〉 | v1〈n′, r′〉)

| !v0(p′′, n′′).(l′′r′′) . . .

| !v1(p′′′, n′′′).(l′′′r′′′) . . .

| . . .).

In the blueprint, the operations attached to the nodes are gone. However, it contains

enough information for the tree D(l) to be restored as many times as necessary. If the

blueprint interacts with v〈⊥, l〉, a replica of the tree T (l), defined in (1), is produced. We

could then use the process

Restore(l) = l(p′, l′, r′, t′).(Restore(l′) | Restore(r′)

| (l〈p′, l′, r′, t′〉 + t′.Op(l, p′, l′, r′, t′)))

to transfer T (l) back to D(l).

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 957

If we think of a tree structure as a piece of running program, the Freeze and Restore

processes defined above are especially interesting. What Freeze does is to terminate the

execution of part of the program and place the fingerprint of its structure in store. A copy

of the terminated program can be revived by Restore, using the fact that the operations

attached to the nodes are uniform in the sense that they are parameterised over the node

information. In fact, the copy can be produced in such a way that it immediately replaces

the subtree rooted at any specific node. The recursive instantiations of the parameters z, v

are crucial for Freeze(z, v) to produce the blueprint properly. It is worth remarking that

the dynamic association greatly facilitates the definition of both Freeze and Restore.

Technically, the definition of a process like Freeze is tricky. Caution should be exercised

to make sure that the correct instantiations of name parameters are carried out top down.

This idea is crucial to the encoding studied in this paper.

3.4. Operations in trees

Suppose an expression op(e1, . . . , en) is modelled by a tree structure in the π-calculus. The

root of the tree has n+1 children interpreting op, e1, . . . , en, respectively. In the general tree

representation, the expression is evaluated as follows to admit as much parallel execution

as possible:

— The node modelling op moves first, and finds its parent information using the parent

link.

— Using the parent information, it goes down the tree and checks if the evaluations of

the expressions e1, . . . , en are all finished.

— If the values of e1, . . . , en are all ready, it evaluates op(e1, . . . , en), otherwise, it either

undoes everything that has been done or keeps on checking.

Notice that parallel executions are required for modelling the full β-reduction. However,

the problem with the above evaluation policy is that, from the viewpoint of the interleaving

semantics, the evaluation could be engaged in an infinite sequence of internal actions.

This is definitely not desirable. The infinite internal chattering is caused by a strategy that

goes up and down the tree to see if some statement is valid or not.

One way to prevent the unnecessary internal chattering is to introduce additional tags

on the nodes. These tags not only indicate the state and the position of the nodes, but

may also act as interfaces for synchronising actions.

To simulate the operation, a tree structure should contain enough tags that enable

direct interactions between the nodes. The key point is that traversal is only required for

tree manipulation, and is not needed for property checking or for potential interactions,

since all the useful properties are indicated by the tags on the nodes and all the potential

interactions can happen immediately. The evaluations of e1, . . . , en could coordinate each

other such that when all are done, an interaction with the node representing op initiates

the evaluation of op(e1, . . . , en).

The application operation of the full λ-calculus is an example that fits into the scenario

described above. In our π-interpretation of the full λ-calculus, an additional tag is used

to indicate the existence of a redex.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 958

4. Encoding in the π-calculus

A λ-term is interpreted as a binary tree definable in the π-calculus. The nodes of the

tree are associated with operations that admit a proper simulation of β-reduction. The

encoding is based on the syntactical assumption that an element of V is an element of

N ∪ Nv .

4.1. Structural trees for λ-terms

The interpretation tree of a λ-term has three kinds of nodes. An application term MN

is interpreted by a tree whose root has two children, the interpretations of M,N. An

abstraction term λx.M is interpreted by a node with one child, the interpretation of M.

A variable is modelled by a leaf. The following diagrams illustrate this:

x : 	
�����x λx.M : 	
�����λx

M

MN : 	
�����
��

��
�

��
��

�

M N

Formally, the node information is described by the following vector:

name parent lchild rchild var fun

The parameters of the vector have the following readings:

— name is the name of the node;

— parent is the name of the parent of the node – if the node does not have a parent,

then parent = ⊥;

— lchild (rchild) is the name of the left (right) child of the node – if the node does not

have any child, then lchild = rchild = ⊥;

— if the node corresponds to an abstraction term λx.M or a variable term x, then var = x,

otherwise var = ⊥;

— if the node is the left child of its parent, then fun = �, otherwise fun = ⊥.

According to the above interpretation, the three kinds of node can be characterised as

follows:

— ⊥ �= lchild �= rchild �= ⊥. This is an application node, which has two children.

— lchild = rchild �= ⊥. This is an abstraction node, which has one child.

— lchild = rchild = ⊥. This is a variable node, which is a leaf.

So the information about the children can tell you the type of a node. But it does not say if

the node is in a functional position, like the M in MN, or in a non-functional position, like

the M in λx.M or in NM. This additional information is provided by the parameter fun.

4.2. Encoding of λ-terms

The encoding of the λ-calculus is given in Figure 3. The interpretation �L�λ of λ-term L

contains a name λ, which is used to access the structural tree, and is accessible only if

L is an abstraction term. The process �L�λ also makes use of the global names ⊥ and

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 959

Fig. 3. Encoding of the λ-calculus

�, which play the role of the logical values. However, neither ⊥ nor � appears as an

interface name in �L�λ.

In the standard semantics of the λ-calculus, β-reductions are carried out one at a time,

which fits in quite well with the interleaving semantics. In the translation, the semaphore

Sem is used to prevent the simulations of two β-reductions from interfering with each

other. It is given by the following recursive definition:

Sem = s̄.Sem−

Sem− = s.Sem.

The simulation of a β-reduction begins by turning the positive state Sem into the negative

state Sem−. When the simulation ends, it turns Sem− back to Sem. The encoding �M�fn,p
defines a node of the structural tree. The subscripts n, p are the names of the present node

and its parent, respectively. The superscript f indicates whether the node is the left child

of its parent or not. The encoding also makes use of the global name s. The translation

�x�fn,p is a leaf of the structural tree. The interpretation �λx.M�fn,p is a tree, the root of

which corresponds to the abstraction operator λx and has only one child; and the child

is the root of the subtree �M�⊥
m,n. The structure of �MN�fn,p should now be clear. It is a

tree with two immediate subtrees �M��
l,n and �N�⊥

r,n. The superscript � of �M��
l,n indicates

that M is in the function position of MN, whereas the superscript ⊥ in �N�⊥
r,n means that

N is in the value position of MN.

The process L(n, p, l, r, v, f), the node named n, is defined in Figure 4. The intended

meanings of the parameters of L(n, p, l, r, v, f) were explained in Section 4.1. It consists of

two parts: one identifying the position of the node and the other defining the associated

operation that can be enacted at the node. The process n〈p, l, r, v, f〉 declares itself and

proclaims the control information related to the node. Different kinds of nodes have

different influences on the tree structure.

— l = r = ⊥.

In this case L(n, p, l, r, x, f) must be a leaf of the tree, standing for the variable x. The

process (a)v〈n, p, f, a〉.a〈⊥,⊥,⊥〉 simply makes a copy of the frozen tree rooted at x. It

will become clear that the frozen tree is much more complicated than the one in the

previous section.

— l = r �= ⊥ ∧ f=�.

This is an abstraction node that is the left child of its parent, corresponding to the

left-hand side of an application term. The operation of the node Abs(n, p, l, x, f) can

immediately kick off a β-reduction.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 960

Fig. 4. Definition of the node operation

— l = r �= ⊥ ∧ p=λ.
This is an abstraction node, which happens to be the root. In this case, we have that

RAbs(n, p, l, x, f) can start a β-reduction if the environment provides a term at the

special interface λ. The associated operation is not the same as the one in the previous

case. This should not be a problem since we are only interpreting closed λ-terms.

— l = r �= ⊥ ∧ p �= λ ∧ f = ⊥.

This is an abstraction node that is the right child or the only child of its parent. It

cannot invoke any β-reductions, so it does not change the structure of the tree.

— l �= r.

This is an application node that does not invoke any action. Its role is to organise the

control flow of the reduction.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 961

Note that the process L(n, p, l, r, x, f) can be viewed as an enriched solution for App

mentioned in Section 2.

The Backup(n, x, b, e) process makes a replica, or a blueprint, of the tree that encodes a

λ-term. The parameters should be understood as follows:

— n is the name of the root of the tree to be replicated;

— x is the name that may be used to access the replica;

— b is the control name that releases the replica after it has been completely produced;

— e indicates if the tree rooted at n is from the environment or not.

The operational behaviour of Backup(n, x, b, e) will be analysed later in the paper.

4.3. The simulation of β-reduction

When L(n, p, l, r, v, f) is an abstraction node with f = �, a β-redex is present. In this case,

L(n, p, l, r, v, f) can set the semaphore to Sem− and begin to simulate the β-reduction. The

simulation consists of two phases:

(1) In the first phase:

— The child m of the node n is moved to the position of the parent p of node n.

— The node n is deleted.

— The node name m is dropped.

— The right child r1 of p is temporarily detached.

The change in the tree structure can be depicted as follows:

p

	
�����
n ��

��
�

r1��
��

�
p r1

	
�����λv
m

N =⇒ M N

M

(2) In the second phase, the subtree rooted at r1 is backed up. This is done by the process

Backup(r1, v, b,⊥), which replicates the subtree from the root to the leaves in such a

way that a copy of the subtree can be readily generated by providing a new name of

the root and its parent’s name. The parameter b is to make sure that the simulation

of the β-reduction is not complete until every node of the subtree is backed up. When

the backup is over, Sem− will be set back to Sem.

If L(n, p, l, r, v, f) is an abstraction node situated at the root, it can backup a λ-term from

the environment. This situation is indicated by instantiating e by �, where e is the fourth

parameter of Backup. In this case the backup process needs to do some more work and

make sure that the result of the backup is the interpretation of a well-defined closed

λ-term. It achieves this by treating all the interpretations of free variables as if they were

the interpretations of the closed λ-term Ω. In order to do this properly, a tree structure

is introduced to record the interpretations of the closed variables of the λ-term, reflecting

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 962

naturally the nested structure of the closed variables. When the backup comes down to

a leaf that encodes the variable v, it checks the status of v in the term being backed up

using the process Find defined in Figure 1. There are three possibilities:

— If Find returns with v′ = ⊥ and e = �, the term being backed up comes from the

environment and the variable v is not the interpretation of a bound variable. In this

case, we substitute Ω for v in the backup.

— If Find returns with v′ = ⊥ and e = ⊥, the term being backed up comes from within

and v is not bound in that subterm. In this case, the variable v should be backed up

since every restored copy shares the same v.

— If the name v′ returned by Find is not ⊥, then v corresponds to a closed variable in

the λ-term being backed up. In this case, a new local name must be produced every

time a copy of the backup is made.

The condition l = ⊥ ∨ r = ⊥ in the definition of Backup works for the terms from within

and the terms from without. The term from the environment might be corrupted, but as

long as one of l or r is ⊥, the backup procedure will regard it as representing a variable.

One might wonder why the tree a of the paired names must be revisited every time

a copy of the replica is restored, and even why the tree is required at restore time. The

point is that bound variables in different copies must not get confused. The nodes of the

tree named a are dispersed underneath different replication operators so that the second

parameters of the paired names are all localised underneath the replication operators.

After the simulation of (λx.M)N −→ M{N/x}, the process Backup(n, x, b, e) will have

transformed the interpretation of (λx.M)N into a process of the form

(xx0x1 . . . xk)( . . . | !x(n′, p′, f′, a).(. . . | x0〈. . .〉 | . . .)
| !x0(n

′
0, p

′
0, f

′
0, a0).(. . . | x1〈. . .〉 | . . .)

| . . .
| !xk(n

′
k, p

′
k, f

′
k, ak).(. . .)).

An occurrence of the variable x in M is interpreted as (a)x〈n, p, f, a〉.a〈⊥⊥⊥〉. It can make

a copy of the interpretation of N by interacting with !x(n′, p′, f′, a). , starting a chain of

replication. Notice that since Find works from leaf to root, the Backup process can deal

properly with terms like λy.(λy.y)y.

5. Properties of the encoding

In this section, we study the properties of the encoding, including determining what

operations the translations can perform and what forms they may evolve into. This

section forms a preamble to the next section, which shows the correctness of the encoding.

By the definition of the encoding, for every closed λ-term L the only public interface

of �L�λ is λ. So the possible actions of �L�λ are either
τ−→ or

λz−→ for some name z:

— If the next action of �L�λ is a τ-action, the simulation of (λx.M)N → M{N/x} is

initiated by this action and will be followed by a number of τ-actions carried out in

two stages:

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 963

– In the reduction stage, the tree of (λx.M)N is adjusted to the tree of M, while the

tree of N is frozen.

– In the replication stage, every occurrence of x in M is replaced by a replica of N.

The reduction stage is not immediately followed by the replication stage. This is

because a replication of N is fired by each occurrence of x. These replications may

not only interleave among themselves, but also interleave with other reduction stages.

— If the next action of �L�λ is a λz-action, then L ≡ λx.M for someM, and the translation

is ready to input a λ-term from the environment. Suppose �L�λ
λq

−→ P for some P . By

synchronising with the semaphore, the process P can start to simulate the input of a

λ-term N from the environment. This simulation may also be divided into two stages:

– In the input stage, the tree of λx.M is adjusted to the tree of M, while the tree

structure of the ‘λ-term N’ provided by the environment is frozen. The term N

might contain a few grammatical errors, which are corrected in the input stage.

– In the replication stage, every occurrence of x in M is replaced by a replica of the

corrected version of N.

We shall analyse these two cases in detail in Sections 5.1 and 5.2, respectively. To do the

analysis, we find it helpful to introduce some additional notation and definitions:

— To simplify the account, we shall pretend that we are working with the polyadic

πdef . For example, we shall write P
n(p,l,r,v,f)
−−−−−→ P ′ to mean that the names p, l, r, v, f are

received in that order at n in an atomic action.

— The translation �L�fn,p of the λ-term L has an underlying tree structure. This tree takes

the form

(̃v)(ñ)
∏
i∈I
L(ni, pi, li, ri, vi, fi)

for some finite set I , where ṽ is the set of the bound variables of L, and ñ is the set

of the node names of the tree excluding the root name n and the name of its parent

p. For each i ∈ I , the component L(ni, pi, li, ri, vi, fi) is a node of the tree and ni is the

name of the node. In the following we shall write Tn,p,f
L for the tree∏

i∈I
L(ni, pi, li, ri, vi, fi). (2)

We also write L(n′, p′, l′, r′, v′, f′) ∈ T
n,p,f
L to indicate that L(n′, p′, l′, r′, v′, f′) is a

component of Tn,p,f
L .

— We write RTn,p,f
M for the composition of the nodes in Tn,p,f

M apart from the root located

at n.

— If N is a sub-term of L, that is L ≡ C[N] for some closing λ-context, we write

T
n,p,f
L ≡ T

n,p,f
C[ ] |Tn′ ,p′ ,f′

N

to mean that Tn,p,f
C[ ] is what is left after removing the nodes of Tn′ ,p′ ,f′

N from T
n,p,f
L . Here

n′ is the name of the sub-term N and p′ is its parent’s name.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 964

— Suppose Tz,⊥,⊥
L is of the form (2). The notation T (z, L) stands for the process

(̃v)(ñ)
∏

L(n,p,l,r,v,f)∈Tz,⊥⊥
L

n〈p, l, r, v, f〉

where ṽ is the set of the bound variables of L, and ñ is the set of the node names

excluding z.

— A rooted binary tree Tr is a directed graph with the following properties:

– There is a node, called the root, that does not have any incoming edges. Every

other node has precisely one incoming edge.

– Every node has zero, one or two outgoing edges. If a node has two children, the

children are ordered and are called the left and right child, respectively.

A labelled tree LT is a rooted binary tree with each of its node labelled by a pair

〈n, ϑ〉, where n is a name and ϑ is either a name or ◦. We write 1z for the single node

labelled tree with label 〈z, ◦〉, and LT for the set of all labelled trees.

— Suppose LT1 and LT2 are two labelled trees. We write LT1 � LT2 if LT1 can be

obtained from LT2 by pruning all the subtrees from some nodes.

— Suppose n is the label of a specific leaf of the labelled tree LT . We write LT · (n, l, r, v)
for the labelled tree that extends LT as follows:

– If l = ⊥ ∨ r = ⊥, then LT · (n, l, r, v) is obtained from LT by changing the second

parameter of the label of the specific leaf to v.

– If l = r �= ⊥, then LT · (n, l, r, v) is obtained from LT by changing the second

parameter of the label of the specific leaf to v and attaching to the leaf a single

child labelled 〈l, ◦〉.
– If ⊥ �= l �= r �= ⊥, then LT · (n, l, r, v) is obtained from LT by attaching to the

specific leaf a left child labelled 〈l, ◦〉 and a right child labelled 〈r, ◦〉.
— Let LT be a labelled tree. The notation I(LT ) denotes the multi-set of all the first

parameters of the labels of the leaves of LT whose second parameter is ◦.

5.1. The reduction action

In this subsection we consider the τ-actions of the translations. Suppose O contains the

β-redex (λx.M)N. We may indicate this fact by writing O ≡ C[(λx.M)N] where C[ ] is a

closing context for (λx.M)N. By the definition of the encoding and structural congruence,

we have

�O�λ ≡ (s)(x̃)(ñ)
(
Sem |Tn,λ,⊥

O

)
where x̃ is the set of the bound variables in O and ñ is the set of the internal node names

of the tree Tn,λ,⊥
O . We can rearrange the bound names in T

n,λ,⊥
O by applying structural

congruence rules:

T
n,λ,⊥
O ≡ T

n,λ,⊥
C[ ] |Tn′ ,p′ ,f′

(λx.M)N,

T
n′ ,p′ ,f′

(λx.M)N ≡ L(n′, p′, l, r,⊥, f′) |L(l, n′, m, m, x,�) |Tm,l,⊥
M |Tr,n′ ,⊥

N .

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 965

The β-reduction C[(λx.M)N] → C[M{N/x}] is simulated in two stages, which are

described in the following subsections.

5.1.1. The reduction stage. A β-redex is resolved in a reduction stage. By the end of a

reduction stage all the occurrences of a bound variable are tied to the replicated form of

the encoding of a λ-term. This is achieved mainly by the Backup process. By the definition

of L(n, p, l, r, v, f) given in Figure 4,

L(l, n′, m, m, x,�)
s−→ L1 ≡ n′(p1, l1, r1, v1, f1). · · ·

Sem
s−→ Sem−.

So the reduction stage begins by setting Sem to the state Sem−:

�O�λ
τ−→ P1 ≡ (s)(x̃)(ñ)(Sem− |Tn,λ,⊥

C[ ] |L(n′, p′, l, r,⊥, f′) |L1 |Tm,l,⊥
M |Tr,n′ ,�

N ).

The process L1 may interact with L(n′, p′, l, r,⊥, f′) and Tm,l,⊥
M . According to the structures

of M, P1 may perform:

— two τ-actions in the case of M ≡ w for some w;

— three τ-actions in the case of M ≡ λw.M1 for some w,M1; or

— four τ-actions in the case of M ≡ M1M2 for some M1,M2.

After these τ-actions, P1 will have evolved into P2, that is, we have

P1
τ

=⇒ P2 ≡ (s)(x̃)(ñ)(Sem− |Tn,λ,⊥
C[ ] |Tn′ ,p′ ,f′

M | (b)(Backup(r, x, b,⊥) | b.s) |Tr,n′ ,�
N )

≡ (s)(x̃)(ñ)(Sem− |Tn,λ,⊥
C[M] | (b)(Backup(r, x, b,⊥) | b.s) |Tr,n′ ,�

N ).

Now Backup(r, x, b,⊥) is able to input at r. It has three kinds of transition described as

follows, where Copy(x, x0, x1, w, e) abbreviates !x(n′, p′, f′, a). · · · :
— If x0 = x1 = ⊥, the first case of Backup(n, x, b, e) applies and

Backup(r, x, b,⊥)
r(p,⊥,⊥,w,f)
−−−−−−→ b−→ Copy(x,⊥,⊥, w,⊥).

— If x0 = x1 �= ⊥, the second case of Backup(n, x, b, e) applies and

Backup(r, x, b,⊥)
r(p,m,m,w,f)
−−−−−−→ τ−→ (x′b′)(b′.b.Copy(x, x′, x′, w,⊥)

| Backup(m, x′, b′,⊥)).

— If x0 �= x1, the third case of Backup(n, x, b, e) applies and

Backup(r, x, b,⊥)
r(p,l′ ,r′ ,⊥,f)
−−−−−−→ τ−→ (x0x1b0b1)(b0.b1.b.Copy(x, x0, x1, w,⊥)

| Backup(l′, x0, b0,⊥) | Backup(r′, x1, b0,⊥)).

By the above analysis, Backup(r, x, b,⊥) must interact with Tr,n′ ,�
N , reading the nodes of

the tree recursively from root to leaf. When it reaches a leaf, it backs up and unlocks all

the bi’s in reverse order. Process P2 evolves into the following process P3 when the prefix

b before s is demolished:

P2
τ

=⇒ P3 ≡ (s)(x̃)(ñ)(Sem− |Tn,λ,⊥
C[M] | s | �x :=N�⊥)

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 966

where �x:=N�e is the process

(x0x1 . . . xk)�x:=N�x0x1 ...xk
e

and �x:=N�x0x1 ...xk
e is the process

!x(n′, p′, f′, a). | !x0(n
′
0, p

′
0, f

′
0, a0). | . . . | !xk(n′

k, p
′
k, f

′
k, ak). .

The parameter e, which is either ⊥ or �, is the parameter e in Backup(n, x, b, e).

As the final step in the reduction stage, the process P3 resets Sem− to Sem in a single

step:

P3
τ−→ P4 ≡ (s)(x̃)(ñ′)(Sem |Tn,λ,⊥

C[M] | �x:=N�⊥),

where ñ′ is obtained from ñ by removing several names, bearing in mind that in the

simulation of the λ-reduction two nodes are removed and all the nodes related to N are

removed.

The process �x:=N�⊥ is similar to the blueprint discussed in Section 3. If it interacts

with x〈n, p, f, a〉, a replica of the tree of N is produced and is rooted at n with p being the

parent node. It should be obvious that (x)�x:=N�e ≡ 0.

5.1.2. The replication stage. In a replication stage, a copy of a replica is made in the

position of an occurrence of the variable that is tied to the replica. This is achieved by

providing the replica with the location name of the variable. The instantiation of an x in

C[M] can start as soon as �x:=N�⊥ is ready since a leaf node L(ni, pi,⊥,⊥, x, fi) in the

tree of M can carry out the action x〈ni, pi, fi, a〉 and turn into a〈⊥,⊥,⊥〉, where a is a

newly generated local name. The process �x:=N�⊥ has three kinds of transition:

— If N ≡ N1N2 for some N1 and N2, then

�x:=N�⊥
x(n′ ,p′ ,f′ ,a)
−−−−−−→ (x̃)(�x:=N�x̃⊥ | (l′r′)(L(n′, p′, l′, r′,⊥, f′)

| x0〈l′, n′,�, a〉 | x1〈r′, n′,⊥, a〉)).

The application node has been copied to n′. Now the two processes x0〈l′, n′,�, a〉 and

x1〈r′, n′,⊥, a〉 can interact with �x:=N�⊥ and get the copy of N1 and N2, respectively.

— If N ≡ λv.N1 for some N1 and v, then

�x:=N�⊥
x(n′ ,p′ ,f′ ,a)
−−−−−−→ (x̃)(�x:=N�x̃⊥ | (m′a′v′)(L(n′, p′, m′, m′, v′, f′)

| x′〈m′, n′,⊥, a′〉 | a′〈v, v′, a〉)).

After the abstraction node has been copied to n′, the process x′〈m′, n′,⊥, a′〉 interacts

with �x:=N�⊥ and gets the copy of N1. The name a′ is used to record the new name

v′ that is correlated with v. The free variable v in N1 will be replaced by a new local

name v′ every time N1 is replicated.

— If N ≡ w for some w, then

�x:=N�⊥
x(n′ ,p′ ,f′ ,a)
−−−−−−→ (x̃)(�x:=N�x̃⊥ | (o)(Find (w, a, o) | o(v′). · · · ))

τ
=⇒ (x̃)(�x:=N�x̃⊥ |L(n′, p′,⊥,⊥, w, f′)).

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 967

Since we have the τ-action

(a)(Find (w, a, o) | a〈⊥,⊥,⊥〉) τ−→ a〈⊥,⊥,⊥〉 | o〈⊥〉,

a leaf with variable w is copied to n′.

To avoid confusing the bound names in two copies of N, the parameter a is introduced.

It is easy to see that all the pointers {ai}i∈I form a tree with root a. For an application

node, the pointer ai is transmitted to both the left and right subtrees. For an abstraction

node with variable v, a new name v′ is generated and the pair (v, v′) is inserted with a

new pointer aj whose parent is ai. Pointer aj will be transmitted to the single subtree. For

a variable v, Find (v, ai, o) searches the tree from ai to the root and returns the result on

channel o. If v′ = ⊥, a leaf with variable v is copied at n′. But if v′ �= ⊥, instead of a leaf

with variable v, a leaf with variable v′ is copied.

When two occurrences of x are copying N, the bound names will not be confused

because we assign a fresh root a for every x. So every x in M is replaced by a λ-term N ′,

which is α-convertible to N. After all the occurrences of x in M have been replaced by

N, the replication stage ends. Formally,

P4 =⇒ P5 ≡ (s)(x̃′)(ñ′)(Sem | (x)�x:=N�⊥ |Tn,λ,⊥
C[M{N/x}])

≡ (s)(x̃′)(ñ′)(Sem |Tn,λ,⊥
C[M{N/x}])

≡ �C[M{N/x}]�λ,

where x̃′ = x̃ ∪ x̃′′ \ {x} and x̃′′ is the set of the bound variables introduced by the copies

of N for all the occurrences of x in M.

Ideally, the simulation of β-reductions would proceed as follows: when a reduction stage

has completed, the replication stage begins, then, after all the replications are complete, a

new reduction stage starts, and so on. In other words the reduction O → O′ → O′′ → . . .

is simulated by

�O�λ
τ

=⇒︸︷︷︸
reduction

=⇒︸︷︷︸
replication

�O′�λ
τ

=⇒︸︷︷︸
reduction

=⇒︸︷︷︸
replication

· · · .

In practice, the encoding can start a reduction stage provided Sem is ready; and it can

begin a replication stage of some x provided �x:=N�e is available. If we use
τ−→1 to

denote the τ-action performed in a reduction stage, and
τ−→2 in a replication stage, a

transition sequence looks like

�O�λ
τ

=⇒1
τ

=⇒2
τ

=⇒1
τ

=⇒2 · · · .

The interleaving between the replication and reduction stages is harmless, though it does

make the analysis of the simulations a little nasty. The semaphore and the fact that

L(n, p, l, r, v, f)
n〈p,l,r,v,f〉
−−−−−→ 0 for every node are the basic mechanisms ensuring that the

interleaving does not have an adverse effect on the simulation.

5.2. Input actions

When the λ-term being encoded is an abstraction λx.M, the translation may also perform

the input action λz. According to the definition of the encoding and the structural

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 968

congruence,

�λx.M�λ ≡ (s)(Sem | (x̃)(ñ)(L(n, λ, m, m, x,⊥) |Tm,n,⊥
M )),

where x̃ is the set of all the bound variables in M and ñ is the set of all the names of the

tree node. By the definition of the node,

L(n, λ, m, m, x,⊥)
λz−→ L1 ≡ s.m(p1, l1, r1, v1, f1).(b)(Backup(z, x, b,�)

| b.s.L(m, λ, l1, r1, v1,⊥)).

Consequently,

�λx.M�λ
λz−→ P1 ≡ (s)(Sem | (x̃)(ñ)(L1 |Tm,n,⊥

M )).

At this stage, the translation can still engage in a β-reduction. But if it sets the semaphore

to Sem−, the translation moves to an input stage, followed by a replication stage.

5.2.1. Input stages. In an input stage, a replica of the encoding of a term imported from

the environment is made. This is again achieved mainly by the Backup process. To kick

off the input stage, P1 first consumes the prefix s in L1, and then reads the root of TM:

P1
τ−→ P2

τ−→ Q0 ≡ (s)(Sem− | (x̃)(ñ)(b)(Backup(z, x, b,�)

| b.s.L(m, λ, l1, r1, v1,⊥) |RTm,n,⊥
M )).

The root m will not be reinstated before Backup(z, x, b,�) ends. This is different from the

situation in the reduction stage, where the tree structure is adjusted at the same time as

the process Backup(r, x, b,⊥) begins. The reason is that the root of Tm,n,⊥
M might also be

an abstraction node. If we change its parent n into λ, then a new action
λz′

−→ for some z′

is possible. The action
λz′

−→ may be harmless to the correctness of the encoding, but we

prefer the present encoding for its robustness.

The process Backup(z, x, b,�) works in a similar way to Backup(z, x, b,⊥). It backs up

the tree rooted at z from the environment. For each closed λ-term N, we have

(z)(Q0 |T (z,N))
τ

=⇒ (s)(x̃)(ñ)(Sem |Tn,λ,⊥
M | �x:=N��).

While we are completely assured that the grammar of T (z,N) is in its correct form, we

are not at all certain if the term being imported from the environment is good. A term

may be ill-defined because:

— It contains free variables; the name used to denote these free variables might even be

⊥, � or λ.

— The tree nodes do not have the desired format.

— The node names are name variables.

— Two nodes share the same name.

— A node has no children, but neither its left or right child parameter is the special

name ⊥.

However, the process Backup(z, x, b,�) works correctly even if a term has these problems

by essentially not using any names imported from the environment in any prefix. We now

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 969

explain how the process Backup(z, x, b,�) corrects these syntactical errors by considering

all possibilities for the input action
n(p,l,r,v,f)
−−−−−→:

— Consider the process Backup(n, x, b, e) defined in Figure 3. The names received to

instantiate the parameters p, f of the prefix n(p, l, r, v, f) do not appear anywhere in

the rest of the process. In fact, the parent and function information of a node is

ignored by Backup(n, x, b, e). The information conveyed in the four parameters n, l, r, v

is enough for the backup process.

— If l = ⊥ ∧ r �= ⊥ or l �= ⊥ ∧ r = ⊥, an incorrect form of a node is encountered, and

the process Backup(z, x, b,�) handles it as if it were a leaf.

— If v = ⊥ or v = � or v = λ, these two names are very special in our encoding, but

it does not matter if they are imported as v in an abstraction node or a leaf because

in the replacement stage, the variable in an abstraction node will be renamed and the

leaf with free variables will be replaced by Ω.

Consequently, Backup(z, x, b,�) acts correctly for all inputs from the environment.

Since environments do not always provide sufficient information, the backup procedure

may either succeed or get stuck. In the case of a successful backup, we have the following

transition:

Q0

n0(p0 ,l0 ,r0 ,v0 ,f0)−−−−−−−−→ Q1
τ

=⇒ Q′
1

n1(p1 ,l1 ,r1 ,v1 ,f1)−−−−−−−−→ Q2
τ

=⇒ Q′
2

...
nk(pk,lk ,rk ,vk ,fk)−−−−−−−−→ Qk

τ
=⇒ Q′

k

≡ (s)(Sem− | (x̃)(ñ)(s.L(m, λ, l1, r1, v1,⊥) |RTm,n,⊥
M ) | �x:=N��),

where n0 = z, k � 1 and N is a closed λ-term. After it has dealt with all the leaves of a

tree, the process Qk broadcasts this fact upward through the tree, with the help of bi’s, to

release �x:=N��. Finally, the process Q′
k resets Sem− to Sem through the action

Q′
k

τ−→ P3 ≡ (s)(Sem | (x̃)(ñ)(Tm,λ,⊥
M | �x:=N��)),

which completes the input stage. So a successful backup always imports, as it were, a

closed λ-term from the environment, no matter how corrupted the information provided

by the environment is.

The backup procedure may fail when it is ready to read node information but the

environment refuses to provide any. In this case nothing can ever happen. One might

wonder why it is not a good idea to let the input stage get stuck once corruption is

detected. The truth is that a more complex encoding would be necessary to implement

that strategy since there are many ways an input term may be corrupted.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 970

5.2.2. Replication stages. A replication stage in the current situation is almost the same

as the replication stage in Section 5.1.2. The only difference is that the parameter e in

�x:=N�e takes the value � in the present case. As in the previous situation, we have

P3 =⇒ P4 ≡ (s)(x̃′)(ñ′)(Sem | (x)�x:=N�� |Tn,λ,⊥
M{N/x})

≡ (s)(x̃′)(ñ′)(Sem |Tn,λ,⊥
M{N/x})

≡ �M{N/x}�λ,

where x̃′ = x̃∪ ỹ \{x}, ỹ contains the newly generated bound variables in every occurrence

of N, and ñ′ is the set of the names of the nodes of the original tree apart from the root

name plus the names of the nodes in the translation of N.

As in the previous subsection, the replication stage interleaves with other stages, and

this kind of interleaving is again harmless.

5.3. Correspondence property

It is not difficult to see that the key step of the simulation of a β-reduction is indicated

by the change of the state of the semaphore. By changing the semaphore from its positive

state Sem to its negative state Sem−, the interpretation initiates the simulation. After the

semaphore is set back to Sem, the translation signals the completion of the simulation.

This suggests we classify all the descendants of the translations according to the state

of the semaphore. If M is an abstraction term λx.M ′, then the interpretation of M can

perform a labelled action λz for each z. After the labelled action, the descendants of the

interpretation can also be classified by the two states of the semaphore. These observations

are formalised in the following definition.

Definition 3. Let M, λx.M ′ be closed λ-terms, z be a name and LT be a labelled tree. The

sets TM , BM , LTz
λx.M ′ , LBz

λx.M ′ and LLT
λx.M ′ are defined by the following inductions:

(1) �M�λ ∈ TM .

(2) Suppose P ∈ TM . Then:

(a) If P
τ−→ P ′ ≡ (ñ)(Sem |Q) for some Q and ñ with s ∈ ñ, then P ′ ∈ TM .

(b) If P
τ−→ P ′ ≡ (ñ)(Sem− |Q) for some Q and ñ with s ∈ ñ, and if there exists some

Q′ such that Q =⇒ Q′ � and

(ñ)(Sem− |Q′)
τ−→ (ñ)(Sem |Q′′) ≡ �M ′�λ

for some M ′, then P ′ ∈ BM ′ .

(c) If M ≡ λx.M ′ and P
λz−→ P ′, then P ′ ∈ LTz

M .

(3) Suppose P ∈ BM . Then:

(a) If P
τ−→ P ′ ≡ (ñ)(Sem− |Q) for some Q and ñ with s ∈ ñ, then P ′ ∈ BM .

(b) If P
τ−→ P ′ ≡ (ñ)(Sem |Q) for some Q and ñ with s ∈ ñ, then P ′ ∈ TM .

(c) If M ≡ λx.M ′ and P
λz−→ P ′, then P ′ ∈ LBz

M .

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 971

(4) Suppose P ∈ LTz
λx.M ′ . Then:

(a) If P
τ−→ P ′ ≡ (ñ)(Sem |Q) for some Q and ñ with s ∈ ñ, then P ′ ∈ LTz

λx.M ′ .

(b) If P
τ−→ P ′ ≡ (ñ)(Sem− |Q) and if there exist some P ′′, P ′′′ such that P ′ τ−→

P ′′ z(p,l,r,v,f)
−−−−−→ P ′′′, then P ′ ∈ L1z

λx.M ′ .

(5) Suppose P ∈ LBz
λx.M ′ . Then:

If P
τ−→ P ′ ≡ (ñ)(Sem− |Q) for some Q and ñ with s ∈ ñ, then P ′ ∈ LBz

λx.M ′ .

(6) Suppose P ∈ LLT
λx.M ′ . Then:

(a) If P
τ−→ P ′ ≡ (ñ)(Sem− |Q) for some Q and ñ with s ∈ ñ, then P ′ ∈ LLT

λx.M ′ .

(b) If P
n(p,l,r,v,f)
−−−−−→ P ′, then P ′ ∈ LLT ·(n,l,r,v)

λx.M ′ .

(c) If P
τ−→ P ′ ≡ (ñ)(Sem |Q) for some Q and ñ with s ∈ ñ, and if there exist some Q′

and some closed λ-term N such that Q =⇒ Q′ � and (ñ)(Sem |Q′) ≡ �N�λ, then

P ′ ∈ TN .

The π-processes in TM are the translations of the λ-term M. So each closed λ-term is

not just interpreted by a single π-process, but rather by a set of π-processes. The set BM

consists of the translations of the λ-term M with an unfinished backup task for the last

reduction. A process in TM has no unfinished ‘β-reduction’. This is indicated by the fact

that the semaphore is in the positive state Sem. On the other hand, a process in BM does

have an unfinished ‘β-reduction’, indicated by the negative state Sem− of the semaphore.

If the λ-term is an abstraction, then the π-processes in TM and BM can do the observable

action λz, which takes the π-processes to LTz
M and LBz

M , respectively. A π-process in

LLT
λx.M ′ can repeatedly read the node information from the environment until all the leaves

of the labelled tree are labelled with ⊥. While it is doing this, it expands the labelled tree

LT and stays in LLT
λx.M ′ . By the end of the procedure, the shape of the labelled tree LT

is precisely the shape of the interpretation tree of some closed λ-term N.

Definition 3 summarises the correspondence between the β-reductions of the closed

λ-terms and the τ-actions of the interpretations of the λ-terms. The next lemma explains

the correspondence in one direction.

Lemma 4. Suppose M → M ′ for closed λ-terms M,M ′. The following statements are

valid:

(1) If P ∈ TM , then ∃P ′.P
τ

=⇒ P ′ ∈ TM ′ .

(2) If P ∈ BM , then ∃P ′.P
τ

=⇒ P ′ ∈ TM ′ .

(3) If P ∈ LTz
M , then ∃P ′.P

τ
=⇒ P ′ ∈ LTz

M ′ .

(4) If P ∈ LBz
M , then ∃P ′.P

τ
=⇒ P ′ ∈ LTz

M ′ .

Conversely, the actions of the interpretations of a closed λ-term reflect the β-reductions

of the λ-term. This is described in the following lemma.

Lemma 5. Suppose M, λx.M ′ are closed λ-terms. Then:

(1) There is no infinite τ-action sequence

P0
τ−→ P1

τ−→ · · · τ−→ Pi
τ−→ · · ·

in any of TM , BM , LTz
λx.M ′ , LBz

λx.M ′ and LLT
λx.M ′ .

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 972

(2) Suppose P ∈ TM . Then:

(a) If P
τ−→ P ′, then either P ′ ∈ TM or M1 exists such that M → M1 and P ′ ∈ BM1

.

(b) If P
λz−→ P ′, then M must be an abstraction term and P ′ ∈ LTz

M . If M is an

abstraction term, then ∃P ′.P =⇒ λz−→ P ′ ∈ LTz
M .

(c) If P
µ

−→ P ′, then either µ = τ or µ = λz for some z.

(3) Suppose P ∈ BM . Then:

(a) If P
τ−→ P ′, then P ′ ∈ BM ∪ TM .

(b) If P
λz−→ P ′, then M must be an abstraction term and P ′ ∈ LBz

M . If M is an

abstraction term, then ∃P ′.P =⇒ λz−→ P ′ ∈ LBz
M .

(c) If P
µ

−→ P ′, then either µ = τ or µ = λz for some z.

(4) Suppose P ∈ LTz
λx.M ′ . Then:

(a) If P
τ−→ P ′, then either P ′ ∈ LTz

λx.M ′ ∪ L1z
λx.M ′ or M1 exists such that M ′ → M1

and P ′ ∈ LBz
λx.M1

.

(b) There exists P ′ such that P
τ−→ P ′ ∈ L1z

λx.M ′ .

(c) P can and can only perform τ-actions.

(5) Suppose P ∈ LBz
λx.M ′ . Then:

(a) If P
τ−→ P ′, then P ′ ∈ LBz

λx.M ′ ∪ LTz
λx.M ′ .

(b) P can and can only perform τ-actions.

(6) Suppose P ∈ LLT
λx.M ′ . Then:

(a) If P
τ−→ P ′, then either P ′ ∈ LLT

λx.M ′ or P ′ ∈ TM ′{N/x} for some closed λ-term N.

(b) If P
τ−→ P ′ ∈ TM ′{N/x} for some closed λ-term N, then for every closed λ-term

λx.M ′′ and every P1 ∈ LLT
λx.M ′′ some P ′

1 exists such that P1
τ

=⇒ P ′
1 ∈ TM ′′{N/x}.

(c) If P
n(p,l,r,v,f)
−−−−−→ P ′, then P ′ ∈ LLT ·(n,l,r,v)

λx.M ′ . Moreover, for every closed λ-term λx.M ′′

and every P1 ∈ LLT
λx.M ′′ some P ′

1 exists such that P1

n(p,l,r,v,f)
=⇒ P ′

1 ∈ LLT ·(n,l,r,v)
λx.M ′′ .

(d) P can and can only do either τ-actions or input actions at names in I(TL).

If we want to construct a relation R from Λ0 to P that demonstrates the correspondence

between the closed λ-terms and their translations, then, inevitably, R should contain (M,P )

for every process P ∈ TM ∪ BM . However, we need to throw more elements into R in

order to close up the argument. Hence, we have the next definition.

Definition 4. For closed λ-term λx.M and N, let CTN
λx.M , CBN

λx.M and CN
λx.M be the smallest

sets satisfying the following properties:

(1) If P ∈ LTz
λx.M , then (z)(P |T (z,N)) ∈ CTN

λx.M .

(2) If P ∈ LBz
λx.M , then (z)(P |T (z,N)) ∈ CBN

λx.M .

(3) If P ∈ L1z
λx.M , then (z)(P |T (z,N)) ∈ CN

λx.M .

(4) If P ∈ CN
λx.M and P

τ−→ P ′ ≡ (ñ)(Sem− |Q) for some Q and ñ with s ∈ ñ, then

P ′ ∈ CN
λx.M .

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 973

By definition, the π-process T (z,N) provides the static information of the interpretation

structure of N. The only action it can ever do is to interact with Backup(z, x, b,�).

Intuitively, an element of CTN
λx.M is an interpretation of λx.M that is destined to be

involved in the import of N from an environment. The difference between CBN
λx.M and

CTN
λx.M is the same as that between BM and TM . A process in CN

λx.M is an interpretation

of λx.M that is already engaged in the import.

The classification described in Definition 4 also enjoys a kind of correspondence

property.

Lemma 6. Suppose λx.M and N are closed λ-terms. Then:

(1) There is no infinite τ-action sequence

P0
τ−→ P1

τ−→ · · · τ−→ Pi
τ−→ · · ·

in any of CTN
λx.M , CBN

λx.M and CN
λx.M .

(2) If P ∈ CTN
λx.M ∪ CBN

λx.M ∪ CN
λx.M and M{N/x} → M ′, then P

τ
=⇒ P ′ ∈ TM ′ for some

P ′.

(3) Suppose P ∈ CTN
λx.M . Then:

(a) If P
τ−→ P ′, then either P ′ ∈ CTN

λx.M ∪ CN
λx.M or M ′ exists such that M → M ′ and

P ′ ∈ CBN
λx.M ′ .

(b) There exists P ′ such that P
τ−→ P ′ ∈ CTN

λx.M ∪ CN
λx.M .

(c) P can only do τ-actions.

(4) Suppose P ∈ CBN
λx.M . Then:

(a) If P
τ−→ P ′, then P ′ ∈ CBN

λx.M ∪ CTN
λx.M .

(b) There exists P ′ such that P
τ−→ P ′.

(c) P can only do τ-actions.

(5) Suppose P ∈ CN
λx.M . Then:

(a) If P
τ−→ P ′, then P ′ ∈ CN

λx.M ∪ TM{N/x}.

(b) There exists P ′ such that P
τ−→ P ′.

(c) P can only do τ-actions.

We will need the following technical lemma in the proof of the full abstraction theorem

given in the next section.

Lemma 7. For every closed λ-term M and all P ,Q in

TM ∪ BM ∪ (
⋃

L{N/x}≡M

CTN
λx.L ∪ CBN

λx.L ∪ CN
λx.L),

we have P ≈ Q.

Every element of TM ∪ BM ∪ (
⋃
L{N/x}≡M CTN

λx.L ∪ CBN
λx.L ∪ CN

λx.L) can be regarded as an

interpretation of the λ-term M according to our encoding. The above lemma essentially

states that all the interpretations of a closed λ-term are equivalent.

The proofs of Lemmas 4, 5, 6 and 7 are given in Appendix A.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 974

6. Correctness of the encoding

In this section we justify the encoding defined in Section 4. It has become traditional for

such a justification to consist of two parts:

(1) The interpretation �M�λ of a closed λ-term M should simulate the β-reduction

of M; and it should not introduce any additional internal actions other than

those simulations. This property is often referred to as operational soundness and

completeness.

(2) The encoding should relate the applicative bisimilarity on the closed λ-terms to the

observational equivalence on the interpretations. This correspondence is the so-called

full abstraction property.

We shall discuss these two properties in the following subsections.

6.1. Operational soundness and completeness

What is required operationally for the π-process P to simulate a λ-term M? Obviously,

the β-reduction of M should be simulated non-trivially by the τ-actions of P . Conversely,

a sequence of τ-actions of P must, essentially, reflect the β-reduction of M. It may well be

the case that P needs to perform some internal adjustments before the real simulation, but

these internal adjustments should be completed in a finite number of steps. In addition

to this bisimulation property, we should have M →∗ λx.M ′ for some M ′ if and only if

P =⇒ λz−→ P ′ for some fresh z and some P ′. Moreover, P ′ must also be able to simulate

M ′ in such a way that, for each closed λ-term N, we have (z)(P ′ |T (z,N)) simulates

M{N/x}. These remarks lead to the following definition, which is meant to capture the

operational soundness and completeness.

Definition 5. Let R be a relation from Λ0 to P. It is said to be a subbisimilarity if the

following properties hold:

(1) ∀M ∈ Λ0.∃P .MRP .

(2) If PR−1M → M ′, then ∃P ′.P
τ

=⇒ P ′R−1M ′.

(3) If MRP τ−→ P ′, then either ∃M ′.M → M ′RP ′ or MRP ′.

(4) If MRP0 and P0
τ−→ P1 · · · τ−→ Pi

τ−→ · · · is an infinite sequence of τ-actions, then

there must be some k � 1 and M ′ such that M → M ′RPk .
(5) If λx.MRP , then P =⇒ P ′ λz−→ P ′′ for some fresh z and some P ′, P ′′ such that

λx.MRP ′ and M{N/x} R (z)(P ′′ |T (z,N)) for every N ∈ Λ0.

(6) If MRP and P
λz−→ P ′ for some fresh z, then M ≡ λx.M ′ for some x,M ′ such that

M ′{N/x} R (z)(P ′ |T (z,N)) for every N ∈ Λ0.

Requirements (2) and (4) imply that the encoding is termination preserving. One might

wonder why process T (z,N) is used in clauses (5) and (6) instead of Tz,⊥,⊥
L . The reason is

that we really do not want N to reduce at this point, just as we do not want N to reduce

at the point the substitution {N/x} is applied to M.

We are now ready to show that our encoding of the λ-calculus preserves and reflects

the operational semantics.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 975

Theorem 1. There is a subbisimilarity from Λ0 to P.

Proof. Let R be the union of the relations{
(M,P )

∣∣ M ∈ Λ0 ∧ P ∈ TM ∪ BM

}
and {

(M{N/x}, P )

∣∣∣∣ λx.M,N ∈ Λ0 and

P ∈ CTN
λx.M ∪ CBN

λx.M ∪ CN
λx.M

}
.

We argue that R is a subbisimilarity. This amounts to verifying the six properties of

Definition 5:

(1) ∀M ∈ Λ0.MR�M�λ ∈ TM .

(2) Suppose MRP and M → M ′. There are two cases:

— P ∈ TM ∪ BM . Then by Lemma 4 (1, 2) some P ′ exists such that P
τ

=⇒ P ′ ∈ TM ′ .

— P ∈ CTN
λx.M1

∪ CBN
λx.M1

∪ CN
λx.M1

and M ≡ M1{N/x}. By Lemma 6 (2), some P ′

exists such that P
τ

=⇒ P ′ ∈ TM ′ .

(3) Suppose MRP τ−→ P ′. From Lemma 5 (2a, 3a) and Lemma 6 (3a, 4a, 5a), it is easy to

see that either MRP ′ or M → M ′RP ′ for some M ′.

(4) Suppose MRP0 and P0
τ−→ P1 · · · τ−→ Pi

τ−→ · · · is an infinite sequence of τ-actions.

It follows from Lemma 5 (1, 2a, 3a) and Lemma 6 (1, 3a, 4a, 5a) that there must be

some k > 0 and some M ′ such that M → M ′RPk .
(5) Suppose λx.MRP . Then:

— If P ∈ Tλx.M ∪ Bλx.M , it follows from Lemma 5 (2b, 3b) and Definition 3 (2c, 3c)

that some P ′ exists such that P
λz−→ P ′ ∈ LTz

λx.M ∪ LBz
λx.M . Therefore

(z)(P ′ |T (z,N)) ∈ CTN
λx.M ∪ CBN

λx.M

by definition. Hence

M{N/x}R(z)(P ′ |T (z,N)).

— If λx.M ≡ M ′{N/y} and P ∈ CTN
λy.M ′ ∪ CBN

λy.M ′ ∪ CN
λy.M ′ , then it follows from

Lemma 6 (3a, 3b, 4a, 4b, 5a, 5b) that some P ′ exists such that P
τ

=⇒ P ′ ∈ TM ′{N/y}.

So this case is reduced to the previous case.

(6) Suppose MRP and P
λz−→ P ′. Then, from Lemma 6 (3c, 4c, 5c), P must be in TM or

BM . It follows from Lemma 5 (2b, 3b) that M ≡ λx.M ′ for some M ′ and, consequently,

P ′ ∈ LTz
λx.M ′ ∪ LBz

λx.M ′ .

So

(z)(P ′ |T (z,N)) ∈ CTN
λx.M ′ ∪ CBN

λx.M ′

by definition. Hence M ′{N/x}R(z)(P ′ |T (z,N)).

6.2. Full abstraction

Milner (1992) pointed out that the bisimulation equivalence on his encodings of the lazy

λ-calculus induces a relation weaker than β-conversion. Sangiorgi (1994; 1995) pointed out

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 976

that the induced relation is precisely the open applicative bisimilarity on the open λ-terms.

Sangiorgi’s open applicative bisimilarity extends Abramsky’s applicative bisimilarity from

the set of the closed λ-terms to the set of the open λ-terms. We hope to prove a similar

result for the present encoding. Such a result, if attainable, would only hold for the closed

λ-terms. Take, for instance, the open terms Ωxx and Ωx. Clearly, Ωxx and Ωx are open

applicative bisimilar. But �Ωxx�u is not bisimilar to �Ωx�u. So we should focus on the

closed λ-terms.

The difficulty in obtaining a full abstraction result is to make sure that the soundness

property is valid. The most significant contribution of this paper is the soundness of

our encoding with respect to the applicative bisimilarity. All the complications of our

encoding are required to achieve soundness.

Proposition 1. For all closed λ-terms M,N, we have M =a N implies �M�λ ≈ �N�λ.

Proof. The relations R1, R2 and R3 are defined as follows:

R1
def
=

{
(P ,Q)

∣∣∣∣ ∃M,N ∈ Λ0.(M =a N∧
P ∈ TM ∪ BM ∧ Q ∈ TN ∪ BN)

}

R2
def
=

{
(P ,Q)

∣∣∣∣ ∃λx.M, λx.N ∈ Λ0.∃z.(λx.M =a λx.N∧
P ∈ LTz

λx.M ∪ LBz
λx.M ∧ Q ∈ LTz

λx.N ∪ LBz
λx.N)

}

R3
def
=

{
(P ,Q)

∣∣∣∣ ∃λx.M, λx.N ∈ Λ0.(λx.M =a λx.N∧
LT is a labelled tree ∧ P ∈ LLT

λx.M ∧ Q ∈ LLT
λx.N)

}
.

These relation are clearly symmetric. Let R be defined by the relation

R def
= R1 ∪ R2 ∪ R3.

We shall prove that R is a weak bisimulation. By definition, there are three cases:

Case I: (P ,Q) ∈ R1.

— P ∈ TM . By Lemma 5 (2c), there are two cases:

– If P
τ−→ P ′, then by Lemma 5 (2a), either P ′ ∈ TM or there exists some M ′ such

that M → M ′ and P ′ ∈ BM ′ . It follows from M ′ =a M =a N that P ′R1Q.

– If P
λz−→ P ′, then, by Lemma 5 (2b) and Definition 3 (2c), M ≡ λx.M ′ for some

M ′ such that P ′ ∈ LTz
M . Since M =a N, it must be the case that N →∗ λx.N ′

for some N ′ such that M =a λx.N
′. Then by Lemma 4 (1, 2) some Q′′ exists

such that Q
τ

=⇒ Q′′ ∈ Tλx.N ′ . By Lemma 5 (2b) and Definition 3 (2c), we have

Q′′ λz−→ Q′ ∈ LTz
λx.N ′ . Therefore P ′R2Q

′.

— P ∈ BM . By Lemma 5 (3c), there are two cases:

– If P
τ−→ P ′, then P ′ ∈ BM ∪ TM by Lemma 5 (3a). Hence, P ′R1Q.

– If P
λz−→ P ′, then M ≡ λx.M ′ for some x,M ′ and P ′ ∈ LBz

M by Lemma 5 (3b)

and Definition 3 (3c). Since M =a N, it must be the case that N →∗ λx.N ′

for some N ′ such that M =a λx.N
′. Then by Lemma 4 (1, 2), some Q′′ exists

such that Q
τ

=⇒ Q′′ ∈ Tλx.N ′ . By Lemma 5 (2b) and Definition 3 (2c), we have

Q′′ λz−→ Q′ ∈ LTz
λx.N ′ . So P ′R2Q

′.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 977

Case II: (P ,Q) ∈ R2.

— P ∈ LTz
λx.M . By Lemma 5 (4c), there is one case:

– If P
τ−→ P ′, then by Lemma 5 (4a), either P ′ ∈ LTz

λx.M ∪ L1z
λx.M or there exists

some M ′ such that M → M ′ and P ′ ∈ LBz
λx.M ′ . If P ′ ∈ LTz

M , then P ′R2Q.

If P ′ ∈ L1z
λx.M , then by Lemma 5 (1, 4a, 4b, 5a), there exist some Q′′, Q′ such that

Q =⇒ Q′′ ∈ LTz
λx.N and Q′′ τ−→ Q′ ∈ L1z

λx.N . So P ′R3Q
′. If P ′ ∈ LBz

M ′ , then

P ′R2Q because M ′ =a M =a N.

— P ∈ LBz
λx.M . By Lemma 5 (5b), there is one case:

– If P
τ−→ P ′, then P ′ ∈ LTz

λx.M ∪ LBz
λx.M by Lemma 5 (5a). Hence P ′R2Q.

Case III: (P ,Q) ∈ R3.

— P ∈ LLT
λx.M . By Lemma 5 (6d), there are two cases:

– According to Lemma 5 (6a), if P
τ−→ P ′, then either P ′ ∈ LLT

λx.M or P ′ ∈ TM{L/x}

for some closed λ-term L. In the former case, P ′R3Q. In the latter case, Q
τ

=⇒ Q′ ∈
TN{L/x} for some Q′ due to Lemma 5 (6b).

– If P
n(p,l,r,v,f)
−−−−−→ P ′, then P ′ ∈ LLT ·(n,l,r,v)

λx.M by Lemma 5 (6c). For the same reason,

Q
n(p,l,r,v,f)

=⇒ Q′ ∈ LLT ·(n,l,r,v)
λx.N for some Q′. Clearly, P ′R3Q

′.

We may now conclude that R is a weak bisimulation. Hence R ⊆≈. It then follows from

the definition of R that M =a N implies �M�λ ≈ �N�λ.

The proof of the above proposition is actually given for the polyadic πdef , but, in

fact, the result is also valid for the monadic πdef . The translation of the polyadic πdef

to the monadic πdef given in Section 2.2 is not sound with respect to ≈. For instance,

a(x, y) | b(u, v) is equivalent to a(x, y).b(u, v) + b(u, v).a(x, y) in the polyadic πdef . But their

translations in the monadic πdef are not equivalent. However, if we focus on the set of the

interpretations of the closed λ-terms, the encoding of Section 2.2 is fully abstract, and we

will now explain why. If we take the set of the translations of the polyadic πdef -processes

as the set of the observers for the monadic πdef -processes, then we get an equivalence

relation ≈m on the set of the monadic πdef -processes. This equivalence is strictly weaker

than ≈, that is ≈�≈m. But if two bisimilar polyadic πdef -processes are interpretations of

closed λ-terms, then their translations into the monadic πdef -calculus are equivalent with

respect to ≈m. A formal proof is tedious, though the idea is very simple. The main points

are as follows. Suppose PRQ, where R is the relation defined in the above proof. The set

of the actions P ,Q can perform may be classified into three groups.

— The first group consists of the actions that, essentially, simulate the β-reductions. These

interactions are all carried out at the local names. The set of the observers can never

interfere with these interactions. Formally, we have, for example,

(a)C[a(x, y).T | a〈b, c〉.O] ≈ (a)C[a(z).z(x).z(y).T | a(e).e(b).e(c).O],

where C[ ] represents some environment.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 978

— The second group has the λ-action like λz. The name λ carries only one parameter.

It is automatically a monadic prefix. An observation at λ in the polyadic πdef is the

same as in the monadic πdef .

— The third group contains the input actions, which import the node information from

the environment. Now suppose P ∈ LLT
λx.M , Q ∈ LLT

λx.N and λx.M =a λx.N. After it

has been translated to the monadic πdef , P may perform an unintended corrupt action

due to the decomposition of polyadic actions to monadic actions. But the point is that

Q can do precisely the same unintended corrupt actions. This is because the input

actions are all contributed by the Backup subroutine. According to the definition of

Backup, the effect of inputting bad information is local. Moreover, Backup is designed

in such a way that no matter what information it gets from the environment, it always

discards the information it receives and produces good replicas.

In fact, we do not need to refer to the encoding of the polyadic πdef into the monadic

πdef . If we understand the polyadic notation as an abbreviation in the monadic calculus,

the above proof of Proposition 1 can be rephrased to produce a longer proof for the

encoding in the monadic πdef . The present proof can be seen as a shorthand version of

that longer proof.

In the other direction, the encoding also reflects the applicative bisimilarity in the sense

of the next proposition.

Proposition 2. If M,N ∈ Λ0, then �M�λ ≈ �N�λ implies M =a N.

Proof. We will prove that the symmetric relation

R def
= {(M,N) | �M�λ ≈ �N�λ}

is an applicative bisimulation. If M → M ′, then M ′ =a M by Lemma 1. It follows from

Proposition 1 that �M ′�λ ≈ �M�λ ≈ �N�λ and, consequently, M ′RN. Therefore we only

need to consider the case in which at least one of M,N is an abstraction term.

Now suppose �M�λ ≈ �N�λ and M ≡ λx.M ′. Then �M�λ
λz−→ P ′ ∈ LTz

λx.M ′ for some

P ′ and some fresh name z. This action must be simulated by

�N�λ =⇒ Q′′′ λz−→ Q′′ =⇒ Q′ ≈ P ′

for some Q′′′, Q′′, Q′. According to Lemma 5 (2a, 2b, 3a, 3b), we have Q′′′ ∈ Tλx.N1
∪

Bλx.N1
for some N1 such that N →∗ λx.N1. Hence, Q′′ ∈ LTz

λx.N1
∪ LBz

λx.N1
. Using

Lemma 5 (4a, 5a), we get that

Q′ ∈ LTz
λx.N2

∪ LBz
λx.N2

∪ L1z
λx.N2

for some N2 such that N1 →∗ N2. By the congruence property of ≈, we have

(z)(P ′ |T (z, L)) ≈ (z)(Q′ |T (z, L))

for each closed λ-term L. By definition,

(z)(P ′ |T (z, L)) ∈ CTL
λx.M ′

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 979

and

(z)(Q′ |T (z, L)) ∈ CTL
λx.N2

∪ CBL
λx.N2

∪ CL
λx.N2

.

Now

(z)(P ′ |T (z, L)) ≈ �M ′{L/x}�λ (3)

and

(z)(Q′ |T (z, L)) ≈ �N2{L/x}�λ. (4)

The equivalence (3) can be proved by induction on the structures of P ′ and T (z, L). Notice

that the structure of P ′ is derived from that of M ′. The equivalence (4) can be proved

similarly. It then follows from (3), (4) and Lemma 7 that

�M ′{L/x}�λ ≈ �N2{L/x}�λ.

In summary, N →∗ λx.N2 and N2{L/x}RM ′{L/x} for all L ∈ Λ0.

We can now conclude that R is an applicative bisimulation.

The full abstraction now follows from Propositions 1 and 2.

Theorem 2. Suppose M,N ∈ Λ0. Then �M�λ ≈ �N�λ if and only if M =a N.

7. Conclusion

In this paper we have advocated a more disciplined methodology for programming with

the π-calculus. The idea that the π-calculus naturally supports an object-oriented paradigm

has been popularised by the work of Walker (Walker 1991; 1995). An object is a general

π-process that may or may not terminate, whereas a method is a replicated form of process

that can be invoked a potentially infinite number of times. One contribution of this paper

is to formalise the procedure of turning an object into a method in an on-the-fly manner,

where the method is supposed to be a replicated form of the object. From a technical

viewpoint, the paper exploits the use of data structures to facilitate the object-to-method

transfer. An object must be designed with an underlying data structure so that it can be

suspended, blueprinted and restored in a replicated form. The use of data structures is

crucial to all three phases. To demonstrate the power of the methodology, and associated

technicalities, we have applied it to resolving the issue of interpreting the full operational

semantics of the λ-calculus.

Our encoding is given at a lower level than Milner’s encoding. Two questions arise:

— Is this level of detail necessary?

— What benefit do we get from this low-level interpretation?

We are not in a position to give a definite answer to the first question, but as Milner

(1992) pointed out, the structural semantics of the full λ-calculus is incompatible with that

of the π-calculus, so a simple structural interpretation of the former in the latter is highly

unlikely, and low-level programming appears to be inevitable. The answer to the second

question is related. The encoding is more an implementation than a structural translation.

One may think of the π-calculus as providing a machine language upon which the ‘higher

order programming language’, the full λ-calculus, is implemented. The significance of the

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 980

present work, in the light of language implementation, is that it points out the problems

and some possible solutions when implementing something in the π-calculus. The extra

technicality used in the encoding to achieve the full abstraction is precisely what is

necessary when implementing a typed higher order language in the untyped machine

language of the π-calculus. At a more fundamental level, the technical novelty exhibited

in the encoding is extremely useful in establishing expressiveness results – see Fu and

Zhu (2010) and Fu (2010b) for interesting examples, and Fu (2010a) for a systematic

exposition.

There are many possible variations of the encoding. At one extreme, is a more

deterministic encoding than the one proposed in this paper. In this deterministic variant,

the backup procedure is immediately followed by an instantiation procedure whose

purpose is to replace all the occurrences of the variable by the imported term. The

instantiation procedure is based on a tree-traversal algorithm that inspects all the nodes

of the structural tree. The deterministic encoding enjoys an easier correctness proof since

it is easier to construct the subbisimilarity. The proof of Theorem 1 is simplified because a

lot of parallelism is removed in the deterministic encoding. But it just does not look nice.

At the opposite extreme, one could imagine an encoding that does not use the semaphore

at all. Such an encoding can probably be regarded as beautiful, but it would make the

correctness proof a headache due to the presence of a multitude of interleaving activities.

The encoding given in this paper is a trade-off between the simplicity of the encoding and

the tractability of the correctness proof.

An important question remains unanswered in this paper. Can the encoding be defined

in πM? The πdef -calculus has two constructs that are not present in πM , viz. parametric

definition and the case construction. The latter can be decomposed into mismatch, match

and guarded choice constructs. Let us consider the possibility of doing away with these

constructs:

— It is a kind of folklore that parametric definition is equivalent to replication in

the variants of the π-calculus with guarded choice only. This issue is discussed in

Milner (1997) and is systematically examined in Fu and Lu (2010). Parametric definition

offers a more concise way of expressing a programming idea than replication. But the

encoding of this paper can be equivalently given in the variant π! of πdef , which uses

replication instead of parametric definition.

— The case processes are not required for modelling internal β-reductions. For instance,

we could add another four more parameters to the definition of a node. Then, to read

from a node named n, we can apply a process of the form

n(p, l, r, v, f, c0, c1, c2, c).(c0.C0 | c1.C1, | c2.C2 | c).

The names received for the parameters c0, c1, c2, c are local names. If ⊥ �= l �= r �= ⊥,

the received names for c, c2 are equal. In this case, only C2 will be fired. The other

two cases can be treated similarly. The definition of L(p, l, r, v, f) makes use of static

rather than dynamic associations, so this part of the encoding can be done in πM .

— The real difficulty arises with the part of the encoding that deals with importing

terms from the environments since the names read from the environment could be

free, which renders the above strategy useless. One solution could be to change from

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 981

the information retrieval viewpoint to an information verification viewpoint. So an

interpretation of the abstraction term λx.M does not import any term tree from an en-

vironment, but, instead, builds up a replicated form of a term tree by making an enquiry

about the shape of the term tree. For instance the interpretation of λx.M may contain

a component

λ(u).u(c0).u(c1).u(c2).u(c).(c0. | c1. | c2. | c. ).
The process places the query (c0, c1, c2) on the environment. The environment then

answers by sending back one of the local names c0, c1, c2 as a verification code.

The process then generates part of the tree according to the code and then makes

further enquiries if necessary. The description given here of this alternative approach

is oversimplified, but it does give an outline. Since this idea sounds so nice, why don’t

we just go with it? Well, it has some problems. For one, when a leaf is reached, we

really need to know which variable it represents. If we cannot come up with some nice

answers, we are back to square one.

We tend to believe that there is no fully abstract encoding of the full λ-calculus in

πM . Our intuition is that in the absence of the match and mismatch operators there

is no way to produce an encoding that is robust enough to withstand all the attacks

from the environment. Proving such a negative conjecture is a much harder challenge.

The expressiveness of πM is one of the most important issues in process theory – see

Fu (2010a) for more discussion of this issue.

It is tempting to think that better encodings of the full λ-calculus can be produced

using more ‘advanced’ variants of the π-calculus. For example, the target model can

be one of the typed π-calculi (Sangiorgi and Walker 2001). But, types can only refuse

syntactically wrong data, and can never rule out tree structures that are type safe but

logically wrong. So even in the presence of a strong type system, additional programming

is still necessary to achieve the full abstraction property. One may also try to encode the

full λ-calculus in the higher order π-calculus (Sangiorgi 1993b). After all, higher order

communication is closer to β-reduction than first-order communication is. However, it is

unlikely that an exercise of this kind would pay off. The higher order prefix is a sequential

operator, whereas the lambda binding is not. The best one can do with the higher order

π-calculus is to mimic the (first-order) π-calculus when encoding the low-level activities.

So a kind of double encoding is present. The point we are making is that the encoding

presented in this paper brings out the intrinsic difficulties of modelling the β-reduction in

a process algebraic framework. Additional language features may well complicate rather

than simplify the picture.

Appendix A. Proofs of the Lemmas in Section 5.3

Viewed as a program, the encoding given in Figure 4 is small, but it is not small when we

want to prove some serious properties about the encoding. The interpretation of a λ-term

may engage in complex interleaving activities. The important thing to notice is that the

main cause of interleaving is the instantiation of variables by terms. These interleaving

activities are conducted in a completely parallel way. The proofs given in this appendix

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 982

are examples of the type of process theory proof that must be given at an appropriate

level of detail, since otherwise the size of the proofs would become unnecessarily large.

So, in the following proofs, a number of statements will be made without proofs: the

validity of these statements can be checked by routine calculations, but at the expense of

occupying much more space.

A.1. Proofs of Lemmas 4 and 5

We prove Lemma 8 stated below. It is easy to see that, apart from clauses (2d) and (4d),

Lemma 8 is precisely Lemma 5. It is also easy to see that Lemma 4 is a corollary of

Lemma 8 (1, 2d, 3a, 4d, 5a).

In the following proofs, we will make use of some abbreviations defined in Section 5,

which should be consulted for the details.

Lemma 8. Suppose M, λx.M ′ are closed λ-terms. Then:

(1) There is no infinite τ-action sequence

P0
τ−→ P1

τ−→ · · · τ−→ Pi
τ−→ · · ·

in any of TM , BM , LTu
λx.M ′ , LBu

λx.M ′ and LLT
λx.M ′ .

(2) Suppose P ∈ TM . Then:

(a) If P
τ−→ P ′, then either P ′ ∈ TM or ∃M1.M → M1 ∧ P ′ ∈ BM1

.

(b) If P
λu−→ P ′, then M is an abstraction term and P ′ ∈ LTu

M; if M is an abstraction

term, then ∃P ′.P=⇒ λu−→ P ′ ∈ LTu
M .

(c) If P
µ

−→ P ′, then µ = τ ∨ ∃u.µ = λz.

(d) If M → M1, then ∃P ′.P
τ

=⇒ P ′ ∈ BM1
.

(3) Suppose P ∈ BM . Then:

(a) If P
τ−→ P ′, then P ′ ∈ BM ∪ TM .

(b) If P
λu−→ P ′, then M is an abstraction term and P ′ ∈ LBu

M; if M is an abstraction

term, then ∃P ′.P=⇒ λu−→ P ′ ∈ LBu
M .

(c) If P
µ

−→ P ′, then µ = τ ∨ ∃u.µ = λu.

(4) Suppose P ∈ LTu
λx.M ′ . Then:

(a) If P
τ−→ P ′, then either P ′ ∈ LTu

λx.M ′ ∪ L1u
λx.M ′ or ∃M1.M

′ → M1 ∧ P ′ ∈ LBu
λx.M1

.

(b) ∃P ′.P
τ−→ P ′ ∈ LTu

λx.M ′ ∪ L1u
λx.M ′ .

(c) P can and can only perform τ-actions.

(d) If λx.M ′ → λx.M ′
1, then ∃P ′.P

τ
=⇒ P ′ ∈ LBM ′

1
.

(5) Suppose P in LBu
λx.M ′ . Then:

(a) If P
τ−→ P ′, then P ′ ∈ LBu

λx.M ′ ∪ LTu
λx.M ′ .

(b) P can and can only perform τ-actions.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 983

(6) Suppose P ∈ LLT
λx.M ′ . Then:

(a) If P
τ−→ P ′, then either P ′ ∈ LLT

λx.M ′ or P ′ ∈ TM ′{N/x} for some closed λ-term N.

(b) If P
τ−→ P ′ ∈ TM ′{N/x} for some closed λ-term N, then for every closed λ-term

λx.M ′′ and every P1 ∈ LLT
λx.M ′′ , some P ′

1 exists such that P1
τ

=⇒ P ′
1 ∈ TM ′′{N/x}.

(c) If P
n(p,l,r,v,f)
−−−−−→ P ′, then P ′ ∈ LLT ·(n,l,r,v)

λx.M ′ . Moreover for every closed λ-term λx.M ′′

and every P1 ∈ LLT
λx.M ′′ , some P ′

1 exists such that P1

n(p,l,r,v,f)
=⇒ P ′

1 ∈ LLT ·(n,l,r,v)
λx.M ′′ .

(d) P can and can only do either τ-actions or input actions at names in I(TL).

Proof. Suppose the elements of N are enumerated by

u0, u1, . . . , uj , . . .

and the elements of LT, the set of all the labelled trees, are enumerated by

LT0, LT1, . . . , LTk, . . . .

Let h be a set of the sets of the π-processes having the shape

{tM, bM, lbuM, ltuM, lLTM | M ∈ Λ0, u ∈ N, LT ∈ LT}.

An element of h is a set indexed by: a closed λ-term; a pair of a closed λ-term and a

name; or a pair of a closed λ-term and a labelled tree. The set of all such h is denoted by

H . The function F : H → H is defined inductively as follows. For each

h = {tM, bM, lbuM, ltuM, lLTM | M ∈ Λ0, u ∈ N, LT ∈ LT},

F(h) is

{t′M, b′
M, lb

′u
M, lt

′u
M, l

′LT
M | M ∈ Λ0, u ∈ N, LT ∈ LT}

whose elements are constructed by the following inductions on all M ∈ Λ0, u ∈ N and

LT ∈ LT:

(1) t′M = tM ∪ {�M�λ}, b′
M = bM , lt′uM = ltuM , lb′u

M = lbuM and l′LTM = lLTM .

(2) Suppose P ∈ tM . Then:

(a) If P
τ−→ P ′ ≡ (s)(Sem |Q) for some Q and s, then t′M = t′M ∪ {P ′}.

(b) If P
τ−→ P ′ ≡ (s)(Sem− |Q) for some Q and s, and if there exists some Q′ such

that Q =⇒ Q′ � and (s)(Sem− |Q′)
τ−→ (s)(Sem |Q′′) ≡ �M ′�λ for some M ′, then

b′
M ′ = b′

M ′ ∪ {P ′}.

(c) If M ≡ λx.M ′ and P
λu−→ P ′, then lt′uM = lt′uM ∪ {P ′}.

(3) Suppose P ∈ bM . Then:

(a) If P
τ−→ P ′ ≡ (s)(Sem− |Q) for some Q and s, then b′

M = b′
M ∪ {P ′}.

(b) If P
τ−→ P ′ ≡ (s)(Sem |Q) for some Q and s, then t′M = t′M ∪ {P ′}.

(c) If M ≡ λx.M ′ and P
λu−→ P ′, then lb′u

M = lb′u
M ∪ {P ′}.

(4) Suppose P ∈ ltuM . Then:

(a) If P
τ−→ P ′ ≡ (s)(Sem |Q) for some Q and s, then lt′uM = lt′uM ∪ {P ′}.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 984

(b) If P
τ−→ P ′ ≡ (s)(Sem− |Q) and if there exist some P ′′, P ′′′ such that P ′ τ−→

P ′′ u(p,l,r,v,f)
−−−−−→ P ′′′, then l′1uM = l′1uM ∪ {P ′}.

(5) Suppose P ∈ lbuM . Then:

If P
τ−→ P ′ ≡ (s)(Sem− |Q) for some Q and s, then lb′u

M = lb′u
M ∪ {P ′}.

(6) Suppose P ∈ lLTM . Then:

(a) If P
τ−→ P ′ ≡ (s)(Sem− |Q) for some Q and s, then l′LTM = l′LTM ∪ {P ′}.

(b) If P
n(p,l,r,v,f)
−−−−−→ P ′, then l′LT ·(n,l,r,v)

M = l′LT ·(n,l,r,v)
M ∪ {P ′}.

(c) If P
τ−→ P ′ ≡ (s)(Sem |Q) for some Q and s, and if there exist some Q′ and

some closed λ-term N such that Q =⇒ Q′ � and (s)(Sem |Q′) ≡ �N�λ, then

t′N = t′N ∪ {P ′}.
By the above definition, the function F is monotone with respect to the subset relation,

so we can construct an increasing sequence:

h0 def
= {�,�,�,�,�, · · · }
...

hi+1 def
= F(hi)

...

The least fixed point hω is precisely the set

{TM,BM,LBu
M,LTu

M,LLT
M | M ∈ Λ0, u ∈ N, LT ∈ LT}.

We denote the sets in hi by (tM)i, (bM)i, · · · . Each process P in TM , for example, is in (tM)k

for some k. Intuitively, (tM)i+1, (bM)i+1, (lbuM)i+1, (ltuM)i+1, (lLTM )i+1 contain the processes that

can be reached from �M�λ after at most i actions.

We shall check that the lemma holds for (tM)0 and (tM)1. We then show that the lemma

holds for (tM)i+1, for i � 1, under the assumption that it holds for (tM)i. The properties of

the other sets can be checked similarly. We begin by making the following observations,

which can all be proved by induction:

— All the processes in TM , LTu
M are of the form (s)(Sem |Q); and all the processes in

BM , LBu
M and LLT

M are of the form (s)(Sem− |Q).

— If a process performs some action and evolves into a process in another set, then either

it changes the state of the semaphore or it performs an input action.

— If M is not an abstraction term, then

∀u ∈ N.∀LT ∈ LT.(LTu
M = LBu

M = LLT
M = �).

In the following proof we assume that M is an abstraction term when we write LTu
M ,

LBu
M or LLT

M for some u, LT .

— For each P ∈ TM ∪ BM , after the reduction stage and all the replication stages are

finished, P evolves into the encoding of M. Hence P =⇒ �M�λ.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 985

Since all the elements of h0 are �, the lemma holds for h0. For h1 we need to check

that the only element �M�λ of (tM)1 satisfies the properties of the lemma. For each closed

λ-term M, we have �M�λ ≡ (s)(Sem | (̃vñ)Tn,λ,⊥
M ), where ṽ = {vx | x is free in M)}, and ñ is

the set of the internal node names of the tree Tn,λ,⊥
M .

(1) If �M�λ
τ−→ P ′, since there are no interactions between any pair of components of

T
n,λ,⊥
M , there must exist a redex node L(Pi, ni, mi, mi, vi,�) ∈ T

n,λ,⊥
M and

L(pi, ni, mi, mi, vi,�)
s−→ L1

Sem
s−→ Sem−.

So P ′ is α-convertible to (s)(Sem− |Q) for some Q, and it is clear that P ′ �∈ TM .

(2) (a) If �M�λ
τ−→ P ′, we have already shown that there must be some β-redex in

M. Without loss of generality, we may assume that M ≡ C[(λx.N)L] for some

C[ ], N, L, and the node performing
s−→ is the redex node λx in C[(λx.N)L]. We

can rearrange the bound names in T
n,λ,⊥
M by applying the structural congruence

rules:

T
n,λ,⊥
M ≡ T

n,λ,⊥
C[ ] |L(n′, p′, l, r,⊥, f′) |L(l, n′, m, m, vx,�) |Tm,l,⊥

N |Tr,n′ ,⊥
L

P ′ ≡ (s)(̃v)(ñ)(Sem− |Tn,λ,⊥
C[ ] |L(n′, p′, l, r,⊥, f′) |L1 |Tm,l,⊥

N |Tr,n′ ,⊥
L ),

where L(l, n′, m, m, vx,�)
s−→ L1. Let Q′ be defined by

Q′ def
= (̃vñ)(Tn,λ,⊥

C[ ] |L(n′, p′, l, r,⊥, f′) |L1 |Tm,l,⊥
N |Tr,n′ ,⊥

L ).

After Q′ has completed the reduction and replication stages, it will evolve into

Q′ =⇒ Q′′

≡ (ṽ′ñ′)(Tn,λ,⊥
C[N{L/x}] | s | �vx := L�⊥)

≡ (ṽ′′ñ′)(Tn,λ,⊥
C[N{L/x}] | s).

It is obvious that Q′′ has no τ-actions and (s)(Sem− |Q′′)
τ−→ �C[N{L/x}]�λ. Hence,

M → M ′ ≡ C[N{L/x}] and P ′ ∈ (bM ′ )2 ⊆ BM ′ .

(b) If M ≡ λx.M ′ for some x,M ′, then

�λx.M ′�λ ≡ (s)(Sem | (̃vñ)(L(n, λ, m, m, vx,⊥) |Tm,n,⊥
M )).

Therefore �M�λ can perform
λu−→, and according to the construction, we have

�M�λ
λu−→ P ′ ∈ (ltuM)2 ⊆ LTu

M . Moreover, if �M�λ
λu−→ P ′, then M must have the

form of an abstraction, and it follows from the construction that P ′ ∈ (ltuM)2 ⊆
LTu

M .

(c) The encoding �M�λ can either perform a τ-action to begin a simulation of β-

reduction or, if M is an abstraction term, perform
λu−→ for each u.

(d) If M → M ′, then, like in case (a), there must exist some P ′ such that �M�λ
τ−→

P ′ ∈ (bM ′ )2 ⊆ BM ′ .

So the lemma holds for h1.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 986

Now assume that the sets in hi, for i � 1, satisfy the properties of the lemma. Then for

each closed λ-term M, consider the sets in hi+1:

(1) (bM)i+1.

For each P ∈ (bM)i+1 \ (bM)i, P must be of the form (s)(Sem− |Q) for some s, Q.

— By construction, there must be some P ∗ such that P ∗ τ−→ P and P ∗ is either in

(bM)i or in (tM ′ )i for some closed λ-term M ′.

(a) If P ∗ ∈ (bM)i, there is no infinite τ-action sequence

P0 ≡ P
τ−→ P1

τ−→ · · · τ−→ Pi
τ−→ · · ·

such that for any i, Pi ∈ BM , otherwise P ∗ would have an infinite τ-action

sequence with all the processes in BM , which would contradict the induction

hypothesis.

(b) If P ∗ ∈ (tM ′)i, then for some Q∗, we have P ∗ ≡ (s)(Sem |Q∗) and Q∗ s−→ Q.

Moreover, M ′ → M. After performing a finite number of τ-actions, Q will

complete the reduction and replication stages that simulate M ′ → M. So if

there was an infinite τ-action sequence

P ≡ P0
τ−→ P1

τ−→ · · · τ−→ Pi
τ−→ · · ·

such that for every i, Pi ∈ BM , there would be an infinite τ-action sequence

from P ∗, which would contradict the induction hypothesis.

— If P
τ−→ P ′, there are two cases:

– The transition is caused by Q
τ−→ Q′. So, by construction,

P ′ ≡ (s)(Sem− |Q′) ∈ (bM)i+2 ⊆ BM.

– The transition is induced by Sem− s−→ Sem and Q
s−→ Q′. So, by construction,

P ′ ≡ (s)(Sem |Q′) ∈ (tM)i+2 ⊆ TM.

— If M ≡ λx.M ′ for some x,M ′ and P ≡ (s)(Sem− |Q), the process Q can first

perform the τ-action j times, for j � 0, to get the abstraction node λx ready. In

other words, there are some n, m and R such that

Q
τ−→ · · · τ−→︸ ︷︷ ︸

j

Q′ ≡ (nmvx)(L(n, λ, m, m, vx,⊥) |R).

Therefore

P
τ−→ · · · τ−→︸ ︷︷ ︸

j

P ′ ≡ (s)(Sem− |Q′)
λu−→ P ′′.

It follows that P ′ ∈ (bM)i+j+1 ⊆ BM and P ′′ ∈ (lbuM)i+j+2 ⊆ LBu
M .

— If P
λu−→ P ′, there must be an abstraction node with parent λ. By construction, this

is only possible if M has the form of an abstraction. Thus P ′ ∈ (lbuM)i+2 ⊆ LBu
M

from the construction.

— The only public channel of P is λ. So P can only do either
τ−→ or

λu−→.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 987

(2) (tM)i+1.

For each P ∈ (tM)i+1 \ (tM)i, P must have the form (s)(Sem |Q) for some s, Q.

— By construction, there must be some P ∗ in (tM)i or (bM)i, or in (lLTN )i for some

λ-term N and some labelled tree LT such that P ∗ τ−→ P .

(a) If P ∗ ∈ (tM)i, the case is easy.

(b) If P ∗ ∈ biM , then P ∗ ≡ (s)(Sem− | s |Q). If P has infinite τ-action sequence

(s)(Sem |Q)
τ−→ (s)(Sem |Q1)

τ−→ · · ·

with all the processes in TM , then P ∗ also has an infinite τ-action sequence

(s)(Sem− | s |Q)
τ−→ (s)(Sem− | s |Q1)

τ−→ · · ·

with all the processes belonging to BM , which would contradict the induction

hypothesis.

(c) If P ∗ ∈ (lLTN )i, some s, m, R and ñ exist such that

P ∗ ≡ (s)(Sem− | (ñ)(s.L(m, · · · ) |R))

P ≡ (s)(Sem | (ñ)(L(m, · · · ) |R).

If P has an infinite τ-action sequence with all the processes in TM , it must be

caused by R because all interactions between L(m, · · · ) and R should happen

after turning off the semaphore. It follows that P ∗ would also have an infinite

τ-action sequence with all the processes in LLT
M , which would contradict the

induction hypothesis.

— Suppose P ∈ (tM)i+1 \ (tM)i and P
τ−→ P ′. Then:

(a) If P ′ ≡ (s)(Sem |Q′) for some Q′ with Q
τ−→ Q′, then P ′ ∈ (tM)i+2 ⊆ TM .

(b) If P ′ ≡ (s)(Sem− |Q′) for some Q′ with Q
s−→ Q′, there must exist some redex

node, andM ′ such thatM → M ′. As discussed in Section 5.1, after Q′ completes

this reduction stage and all the unfinished replication stages, it evolves into

Q′′ such that it has no more τ-actions and (s)(Sem− |Q′′)
τ−→ �M ′�λ. Therefore,

P ′ ∈ (bM ′ )i+2 ⊆ BM ′ .

— If M ≡ λx.M ′ for some x,M ′ and P ≡ (s)(Sem |Q), the process Q can first perform

the τ-action j times, for j � 0, to get the abstraction node λx ready. In other

words, there are some n, m and R such that

Q
τ−→ · · · τ−→︸ ︷︷ ︸

j

Q′ ≡ (nmvx)(L(n, λ, m, m, vx,⊥) |R).

So P ′ ≡ (s)(Sem |Q′)
λu−→ P ′′. By the construction, we have P ′ ∈ (tM)i+j+1 ⊆ TM

and P ′′ ∈ (ltuM)i+j+2 ⊆ LTu
M .

— If P
λu−→ P ′, there must be an abstraction node with parent λ. So M must have the

form of an abstraction, and we get P ′ ∈ (ltuM)i+2 ⊆ LTu
M from the construction.

— The only public channel of P is λ. So P can only do either
τ−→ or

λu−→.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 988

— Since P ∈ (tM)i+1, P can evolve into the encoding of M by finishing all the

unfinished replication stages. If M → M ′, some P ′ exists such that P=⇒�M�λ
τ−→

P ′. As in the proof for h1, we get P ′ ∈ BM ′ .

(3) (lbuM)i+1.

There must exist some x,M1 such that M ≡ λx.M1. By the construction, for each

process P in (lbuM)i+1 \ (lbuM)i, there exists some P ∗ in (bM)i such that P ∗ λu−→ P , where

P and P ∗ have the following forms:

P ∗ ≡ (s)(Sem− | (ñ)(L(n, λ, m, m, vx,⊥) |R))

P ≡ (s)(Sem− | (ñ)(s.Q |R)),

where L(n, λ, m, m, vx,⊥)
λu−→ s.Q by definition.

— If P has an infinite τ-action sequence with all the processes in LBu
M , it must be

induced by an infinite τ-action sequence of R, which contradicts the induction

hypothesis that P ∗ has no infinite τ-action sequence with all the processes in BM .

— If P
τ−→ P ′, there are two cases, either

R
τ−→ R1 and P ′ ≡ (s)(Sem− | (ñ)(s.Q |R1))

or

R
s−→ R2 and P ′ ≡ (s)(Sem | (ñ)(s.Q |R2)).

In either case, there is some Q∗ such that P ∗ τ−→ Q∗ λu−→ P ′. Correspondingly,

there are two cases for Q∗:

Q∗ ≡ (s)(Sem− | (ñ)(L(n, λ, m, m, vx,⊥) |R1))

Q∗ ≡ (s)(Sem | (ñ)(L(n, λ, m, m, vx,⊥) |R2)).

The process Q∗ is in (bM)i+1 or (tM)i+1. It then follows that

P ′ ∈ (lbuM)i+2 ∪ (ltuM)i+2 ⊆ LBu
M ∪ LTu

M.

— Since P has not finished the reduction stage, it can perform τ-actions. Because

the input action on channel u is blocked by the semaphore, P can only perform

τ-actions.

(4) (ltuM)i+1.

There must exist some x,M1 such that M ≡ λx.M1. If P ∈ (ltuM)i+1 \ (ltuM)i, by

construction, there exists P ∗ ∈ (tM)i such that P ∗ λu−→ P . Here

P ∗ ≡ (s)(Sem | (ñ)(L(n, λ, m, m, vx,⊥) |R))

P ≡ (s)(Sem | (ñ)(s.Q |R)),

where L(n, λ, m, m, vx,⊥)
λu−→ s.Q by definition.

— Like in the (lbuM)i+1 case, for each process in (ltuM)i+1, there is no infinite τ-action

sequence with all the processes in LTu
M .

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 989

— If P
τ−→ P ′, then P ′ has one of the following forms:

P ′ ≡ (s)(Sem | (ñ)(s.Q |R1))

P ′ ≡ (s)(Sem− | (ñ)(s.Q |R2))

P ′ ≡ (s)(Sem− |(ñ)(Q |R)),

where R
τ−→ R1 and R

s−→ R2. If P ′ ≡ (s)(Sem− | (ñ)(Q |R)), there exist Q′, R′ such

that

Q
m(p1 ,l1 ,r1 ,v1 ,f1)−−−−−−−−→

u(p,l,r,v,f)
−−−−−→ Q′

R
m〈p1 ,l1 ,r1 ,v1 ,f1〉
−−−−−−−−→ R′.

So P ′ ∈ (l1uM)i+2 ⊆ L1u
M . For the other two cases, there exists some Q∗ such that

P ∗ τ−→ Q∗ λu−→ P ′ as in case (3). Correspondingly, there are two cases for Q∗:

Q∗ ≡ (s)(Sem | (ñ)(L(n, λ, m, m, vx,⊥) |R1))

Q∗ ≡ (s)(Sem− | (ñ)(L(n, λ, m, m, vx,⊥) |R2)).

According to the argument we made for case (2), the process Q∗ is in (tM)i+1

or there exists some M ′ such that M → M ′ and Q∗ ∈ (bM ′ )i+1. It follows that

P ′ ∈ (ltuM)i+2 ∪ (lbuM ′ )i+2 ⊆ LTu
M ∪ LBu

M .

— Since s.Q
s−→, we have P ′ ∈ (l1uM)i+2 ⊆ L1u

M for some P ′.

— Because the input action on channel u is blocked by the semaphore, P can only

perform τ-actions.

(5) (lLTM )i+1.

M ≡ λx.M1 for some x,M1. There are three major cases according to the types of

LT :

(a) LT = 1u for some u and P ∈ (l1uM)i+1 \ (l1uM)i.

— We first prove that there is no infinite τ-action sequence with all the processes

in L1u
M . First, according to the construction, there must be a P ∗ in (ltuM)i or

(l1uM)i such that P ∗ −→ P . If P ∗ ∈ (ltuM)i, it must have the form

(s)(Sem | (ñ)(s.m(· · · ).Q |R))

for some s, ñ, Q, R, where

L(n, λ, m, m, vx,⊥)
λu−→ s.m(· · · ).Q

and n, m ∈ ñ. From the definition given in Figure 4, the only action of Q is the

input u(p, l, r, v, f). So if P has an infinite τ-action sequence in which all the

processes are in L1u
M , then P ∗ would also have an infinite τ-action sequence with

all the processes in LTu
M , which would contradict the induction hypothesis.

— If P ∗ ∈ (l1uM)i and P
τ−→ P ′, then, since the semaphore will not be turned off

until the import of a λ-term is finished, P ′ must have the form (s)(Sem− |Q).

By construction, we then have P ′ ∈ (l1uM)i+2 ⊆ L1u
M .

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 990

— If P ∗ ∈ (l1uM)i and P
u(p,l,r,v,f)
−−−−−→ P ′, then, by the construction and the definition

given in Figure 4, we have

P ′ ∈ (l1u·(u,l,r,v)M )i+2 ⊆ L1u·(u,l,r,v)
M .

For every λ-term M ′ of the form λx.M ′′ and every process O ∈ (l1uλx.M ′′)i+1,

according to the construction, there is some O∗ ∈ (l1uM)i such that O∗ =⇒ O and

O∗ is of the form

(s)(Sem− | (ñ)(m(· · · ).Q |R))

for some s, ñ, Q, R, where

L(n, λ, m, m, vx,⊥)
λu−→ s−→ m(· · · ).Q.

Since Q can perform an input on channel u, say Q
u(p,l,r,v,f)
−−−−−→ Q′, there must exist

some k, O′ such that

O
τ−→ · · · τ−→︸ ︷︷ ︸

k

u(p,l,r,v,f)
−−−−−→ O′,

and, consequently, O′ ∈ (l1u·(u,l,r,v)λx.M ′′ )i+k+1 ⊆ L1u·(u,l,r,v)
λx.M ′′ .

— As discussed above, the process P can do either a τ action or an input at

name u, and there are no other public channels in any process P ∈ (l1uλx.M ′ )i+1.

Since I(1u) = {u}, we get that the process P can and can only perform either

τ-actions or input actions at the name in I(1u).

(b) I(LT ) �= � and P ∈ (lLTM )i+1 \ (lLTM )i.

— We prove that there is no infinite τ-action sequence with all the processes

in LLT
M . First, according to the construction, there must be a P ∗ such that

either P ∗ ∈ (lLTM )i and P ∗ τ−→ P , or P ∗ ∈ (lLT
′

M )i and P ∗ n(p,l,r,v,f)
−−−−−→ P and

LT = LT ′ · (n, l, r, v). The case of P ∗ ∈ (lLTM )i is easy. If P ∗ ∈ (lLT
′

M )i, then,

since I(LT ) �= �, P has not finished the import. The new input on P ∗ will

not introduce infinite τ-actions, since if P had an infinite τ-action sequence

in which all the processes are in LLT
M , then P ∗ would also have an infinite

τ-action sequence with all the processes in LLT ′

M , which would contradict the

induction hypothesis.

— If P
τ−→ P ′, then, since the semaphore will not be turned off until the import

of a λ-term is finished, P ′ must have the form (s)(Sem− |Q). By construction,

we have P ′ ∈ (lLTM )i+2 ⊆ LLT
M .

— Since the process P has not finished the import, it will continue to read

from the environment. The set of the public channels in P is I(LT ), meaning

that if P
n(p,l,r,v,f)
−−−−−→ P ′, then n ∈ I(LT ). According to the construction, P ′ ∈

(lLT ·(n,l,r,v)
M )i+2 ⊆ LLT ·(n,l,r,v)

M . For every closed λ-term M ′ of the form λx.M ′′ and

every process O ∈ (lLTλx.M ′′)i+1, we have O can perform an input action at a name

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 991

n if and only if n ∈ I(LT ). So we must also have

O
τ−→ · · · τ−→︸ ︷︷ ︸

k

n(p,l,r,v,f)
−−−−−→ O′,

and, therefore, O′ ∈ (lLT ·(n,l,r,v)
λx.M ′′ )i+k+1 ⊆ LLT ·(n,l,r,v)

λx.M ′′ .

— As we have just said, the process P can either do a τ-action or an input

at names in I(LT ), and there are no other public channels in any process

P ∈ (lLTλx.M ′)i+1. So the process P can and can only perform either τ-actions or

input actions at names in I(LT ).

(c) If I(LT ) = �, the process P ∈ (lLTM )i+1 \ (lLTM )i has completed the import from the

environment and LT must be a labelled tree of some λ-term N.

— First we argue that there is no infinite τ-action sequence with all the processes

in LLT
M . According to the construction, there must be a P ∗ such that either

P ∗ ∈ (lLTM )i and P ∗ τ−→ P , or P ∗ ∈ (lLT
′

M )i and P ∗ n(p,l,r,v,f)
−−−−−→ P and LT =

LT ′ · (n, l, r, v). The case of P ∗ ∈ (lLTM )i is easy. If P ∗ ∈ (lLT
′

M )i, then since P

has finished the import, after at most a finite number of steps of reduction

and replication, it would have no more τ-actions except those turning off the

semaphore. Otherwise, P ∗ would have an infinite τ-action sequence with all the

processes in LLT ′

M , which would contradict the induction hypothesis.

— If P ≡ (s)(Sem− |Q) and P
τ−→ P ′, there are two cases.

– The transition is caused by Q
τ−→ Q′ and P ′ ≡ (s)(Sem− |Q′). Then P ′ ∈

(lLTM )i+2 ⊆ LLT
M .

– The transition is caused by Q
s−→ Q′ and P ′ ≡ (s)(Sem |Q′). According to

the definition of the encoding in Figure 4 and the discussion in Section 5.2,

the encoding of some closed λ-term N ′ has been imported at this stage.

Then after Q′ completes the reduction stage and all the replication stages,

it would evolve into some Q′′ such that Q′ τ
=⇒ Q′′ �. Then (s)(Sem |Q′) ≡

�M ′{N ′/x}�λ and P ′ ∈ (tM ′{N ′/x})
i+2 ⊆ TM ′{N ′/x}, where M ′ is such that

M ≡ λx.M ′. For every closed λ-term λx.M ′′ and every process O ∈ (lLTλx.M ′′)i+1,

O must also have finished the import. Thus O
τ

=⇒ O′ ∈ TM ′′{N ′/x} for

some O′.

— P can perform τ-actions since the semaphore has not been turned off. In the

definition of RAbs(n, λ, m, vx, f), the only public channel λ in P is blocked by s.

So P can only perform τ-actions.

A.2. Proof of Lemma 6

Proof. First note that part (2) can be deduced from Lemma 6 (1, 3a, 3b, 4a, 4b, 5a, 5b)

and Lemma 4 (1). So we only need to prove Lemma 6 (1, 3, 4, 5). Here is the case analysis:

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 992

(1) P ∈ CTN
λx.M .

So P ≡ (u)(Q |T (u,N)) for some u, where Q ∈ LTu
λx.M .

— The interactions between Q and T (u,N) can only contribute a finite number of

τ-actions. If P had an infinite τ-action sequence with all the processes in CTN
λx.M ,

then Q would have an infinite τ-action sequence with all the processes in LTu
λx.M ,

which would contradict Lemma 5 (1).

— If P
τ−→ P ′, the transition must be caused by some τ-action of Q because T (u,N)

has no τ-actions and the interaction between Q and T (u,N) cannot happen

right now. Assume P ′ def
= (u)(Q′ |T (u,N)), where Q

τ−→ Q′. By Lemma 5 (4a),

Q′ ∈ LTu
λx.M ∪ L1u

λx.M or ∃M ′.M → M ′ ∧ P ′ ∈ LBu
λx.M ′ . Accordingly, we have

P ′ ∈ CTN
λx.M ∪ CN

λx.M or ∃M ′.M → M ′ ∧ P ′ ∈ CBN
λx.M ′ .

— By Lemma 5 (4b), there exists Q′ such that Q
τ−→ Q′ ∈ L1u

λx.M . Therefore some P ′

exists such that P
τ−→ P ′ ∈ CN

λx.M ⊆ CTN
λx.M ∪ CN

λx.M .

— It follows from Lemma 5 (4c) that Q can and can only do τ-actions. The process

T (u,N) has only output actions at private channels. An interaction between Q

and its descendants and T (u,N) cannot happen before the process jumps out of

CTN
λx.M . Therefore P can only perform τ-actions.

(2) P ∈ CBN
λx.M .

So P ≡ (u)(Q |T (u,N)), where Q ∈ LBu
λx.M . The following arguments are very much

like those in the previous case.

— If P has an infinite τ-action sequence with all the processes in CTN
λx.M , then Q

would have an infinite τ-action sequence with all the processes in LBu
λx.M , which

would contradict Lemma 5 (1).

— If P
τ−→ P ′, this transition must be caused by some τ-action of Q. We can assume

P ′ def
= (u)(Q′ |T (u,N)), where Q

τ−→ Q′. By Lemma 5 (5a), Q′ ∈ LBu
λx.M ∪ LTu

λx.M .

Consequently, P ′ ∈ CBN
λx.M ∪ CTN

λx.M .

— It follows from Lemma 5 (5b) that Q can and can only do τ-actions. The process

T (u,N) has only output actions at private channels. An interaction between Q

and its descendants and T (u,N) cannot happen before the process jumps out of

CTN
λx.M . Therefore, P can only perform τ-actions.

(3) P ∈ CN
λx.M . There are two cases:

— P ≡ (u)(Q |T (u,N)) where Q ∈ L1u
λx.M .

By Lemma 5, Q has no infinite τ-action sequences. So an infinite τ-action sequence

of P must be caused by the interactions between Q and T (u,N). Without loss of

generality, we may assume that T (u,N) has the transitions

T (u,N)
u〈p,l,r,v,f〉
−−−−−→

l〈p′ ,l′ ,r′ ,v′ ,f′〉
−−−−−−−→ · · ·

n〈pn,⊥,⊥,vn,fn〉−−−−−−−−→ 0.

Correspondingly, Q interacts in the following manner:

Q=⇒ Q1︸ ︷︷ ︸
L1u

λx.M

u(p,l,r,v,f)
−−−−−→ =⇒ Q2︸ ︷︷ ︸

L1u ·(u,l,r,v)
λx.M

· · ·Qn−1

n(pn,⊥,⊥,vn,fn)−−−−−−−−→ =⇒ Qn︸ ︷︷ ︸
LLT

λx.M

=⇒ Qn+1︸ ︷︷ ︸
TM{N/x}

.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 993

By Lemma 5 (1, 6), the τ-actions between Q and Qn+1 are finite. Meanwhile,

T (u,N) can only do a finite number of actions. So P does not have any infinite

τ-action sequences in CN
λx.M . Another possibility is that there exists some P ∗ ≡

(u)(Q0 |T (u,N)) ∈ CN
λx.M such that P ∗ τ

=⇒ P . Since P ∗ does not have any infinite

τ-action sequences with all the processes in CN
λx.M , neither does P .

— According to the above discussion, a process in CN
λx.M has the form

P ≡ (ũi)(Qi | Πk∈{1,2,··· ,ni}T (uik , Nik )),

where Ni1 , Ni2 , · · · , Nini
are sub-terms of N, Qi ∈ LLTi

λx.M , and

I(LTi) = ũi = {ui1 , ui2 , · · · , uini }.

Let LTN be the labelled tree of the λ-term N. Then LTi � LTN . If P
τ−→ P ′, there

are two subcases:

– The transition is induced by Qi
τ−→ Q′

i.

It follows from Lemma 5 (6a) that either Q′
i ∈ LLTi

λx.M or Q′
i ∈ TM{N ′/x} for some

closed λ-term N ′. If Q′
i ∈ LLTi

λx.M , it is clear that P ′ ∈ CN
λx.M . If Q′

i ∈ TM{N ′/x} for

some closed λ-term N ′, we know from the proof of Lemma 8 that I(LTi) must

be �. As LTi � LTN and I(LTi) = �, we have LTi = LTN . Consequently,

N ′ ≡ N and P ′ ≡ Q′
i ∈ TM{N/x}.

– The transition is induced by an interaction between Qi and T (uik , Nik ) for some

ik ∈ {1, 2, · · · , ni}.
Then

Qi
uik (p,l,r,v,f)−−−−−−→ Qj

and

T (uik , Nik )
uik 〈p,l,r,v,f〉
−−−−−−→ T ′,

where T ′ is of the shape Πk∈{1,2,··· ,nj}T (ujk , Njk ). Therefore P
τ−→ P ′ ≡ (ũj)(Qj |T ′).

By Lemma 5 (6c), the process Qj is in LLTj
λx.M where LTj = LTi · (uik , l, r, v) and

ũj = I(LTj). So we have P ′ ∈ CN
λx.M .

— By Lemma 5 (6d), Qi can and can only do either τ-actions or input actions at

names in I(LTi). As names in I(LTi) have been restricted in P , P can and can

only perform τ-actions.

A.3. Proof of Lemma 7

Proof. Recall that in the proof of Proposition 1 we constructed three relations R1,R2

and R3. We now define R′
1 to be the relation⎧⎪⎨

⎪⎩(P ,Q)

∣∣∣∣∣∣∣
∃M,N ∈ Λ0.(M =a N

∧ P ∈ TM ∪ BM ∪ (
⋃
L{L′/x}≡M CTL′

λx.L ∪ CBL′

λx.L ∪ CL′

λx.L)

∧ Q ∈ TN ∪ BN ∪ (
⋃
L{L′/x}≡N CTL′

λx.L ∪ CBL′

λx.L ∪ CL′

λx.L))

⎫⎪⎬
⎪⎭ .

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 994

So if

P ,Q ∈ TM ∪ BM ∪ (
⋃

L{L′/x}≡M

CTL′

λx.L ∪ CBL′

λx.L ∪ CL′

λx.L),

then (P ,Q) ∈ R′
1 because M =a M. As in the proof of Proposition 1, we need to check

that the elements in R def
= R′

1 ∪ R2 ∪ R3 satisfy the following bisimulation property:

(1) If QRP τ−→ P ′, then ∃Q′.Q =⇒ Q′RP ′.

(2) If QRP
a(̃n)
−→ P ′, then ∃Q′.Q

a(̃n)
=⇒ Q′RP ′.

Since R1 ⊆ R′
1, we only need to check for the pairs (P ,Q) in R′

1 \ R1:

— Suppose M,N ∈ Λ0, λx.L, L′ ∈ Λ0, M =a N, N ≡ L{L′/x}, P ∈ TM and Q ∈
CTL′

λx.L ∪ CBL′

λx.L ∪ CL′

λx.L. By Lemma 5 (2), there are three cases:

(1) If P
τ−→ P ′ ∈ TM , then P ′RQ.

(2) If P
τ−→ P ′ and ∃M ′.M → M ′ ∧ P ′ ∈ BM ′ , then P ′RQ as M ′ =a M =a N.

(3) If P
λu−→ P ′ ∈ LTu

M , then by Lemma 5 (2b) there exist x,M ′ such that M ≡ λx.M ′.

Since M =a N, we must have N →∗ λx.N ′ and M =a λx.N
′. According to

Lemma 6 (2), we have Q =⇒ Q′ ∈ Tλx.N ′ . It follows from Lemma 5 (2b) that

Q′ =⇒ λu−→ Q′′ ∈ LTu
λx.N ′ . So Q

λu
=⇒ Q′′ and P ′RQ′′.

— Suppose M,N ∈ Λ0, λx.L, L′ ∈ Λ0, M =a N, N ≡ L{L′/x}, P ∈ BM and Q ∈
CTL′

λx.L ∪ CBL′

λx.L ∪ CL′

λx.L. According to Lemma 5 (3), there are three cases:

(1) If P
τ−→ P ′ ∈ BM , then P ′RQ.

(2) If P
τ−→ P ′ ∈ TM , then P ′RQ.

(3) If P
λu−→ P ′ ∈ LBu

M , then, similarly, Q′ =⇒ λu−→ Q′′ ∈ LTu
λx.N ′ , where N →∗ λx.N ′.

Hence P ′RQ′′.

— Suppose M,N ∈ Λ0, λx.L, L′ ∈ Λ0, M =a N, M ≡ L{L′/x}, P ∈ CTL′

λx.L and

Q ∈ TN ∪ BN . By Lemma 6 (3), there are three cases:

(1) If P
τ−→ P ′ ∈ CTL′

λx.L, then P ′RQ.

(2) If P
τ−→ P ′ ∈ CL′

λx.L, then P ′RQ.

(3) If P
τ−→ P ′ and ∃L′′.L → L′′ ∧ P ′ ∈ CBL′

λx.L′′ , then P ′RQ since L′′{L′/x} =a

L{L′/x} =a N.

— Suppose M,N ∈ Λ0, λx.L, L′ ∈ Λ0, M =a N, M ≡ L{L′/x}, P ∈ CBL′

λx.L and Q ∈
TN ∪ BN . By Lemma 6 (4), there are two cases:

(1) If P
τ−→ P ′ ∈ CBL′

λx.L, then P ′RQ.

(2) If P
τ−→ P ′ ∈ CTL′

λx.L, then P ′RQ.

— Suppose M,N ∈ Λ0, λx.L, L′ ∈ Λ0, M =a N, M ≡ L{L′/x}, P ∈ CL′

λx.L and Q ∈
TN ∪ BN . By Lemma 6 (5), there are two cases:

(1) If P
τ−→ P ′ ∈ CL′

λx.L, then P ′RQ;

(2) If P
τ−→ P ′ ∈ TL{L′/x}, then P ′RQ since L{L′/x} ≡ M =a N.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

The λ-calculus in the π-calculus 995

We can now conclude that for every M ∈ Λ0 and all P ,Q in

TM ∪ BM ∪ (
⋃

L{N/x}≡M

CTN
λx.L ∪ CBN

λx.L ∪ CN
λx.L),

that P ≈ Q.

Acknowledgements

We would like to thank the members of BASICS for their interest in this work. The

encoding described in this paper was announced in BASICS 2009, and we would like to

thank the other participants for their questions and comments. We are also grateful to the

two anonymous referees for their detailed comments on a previous version of this paper.

References

Abadi, M. and Gordon, A. (1999) A Calculus for Cryptographic Protocols: The Spi Calculus.

Information and Computation 148 (1) 1–70.

Abramsky, S. (1990) The Lazy Lambda Calculus. Research Topics in Functional Programming 65–

116.

Amadio, R. and Prasad, S. (2000) Modelling IP Mobility. Formal Methods in System Design 17 (1)

61–99.

Baldamus, M., Parrow, J. and Victor, B. (2004) Spi Calculus Translated to π-calculus Preserving

May-Tests. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science

(LICS’04), IEEE Computer Society 22–31.

Barendregt, H. (1984) The Lambda Calculus: its Syntax and Semantics, North Holland.

Boudol, G. (1992) Asynchrony and the π-calculus. Technical Report 1702, INRIA Sophia-Antipolis.

Fu, Y. (1997) A Proof Theoretical Approach to Communication. In: Degano, P. Gorrieri, R. and

Marchetti-Spaccamela, A. (eds.) Automata, Languages and Programming: Proceedings of the

24th International Colloquium, ICALP’97. Springer-Verlag Lecture Notes in Computer Science

1256 325–335.

Fu, Y. (1999) Variations on Mobile Processes. Theoretical Computer Science 221 327–368.

Fu, Y. (2010a) Theory of Interaction. Working Paper.

Fu, Y. (2010b) The Value-Passing Calculus. Working Paper.

Fu, Y and Lu, H. (2010) On the Expressiveness of Interaction. Theoretical Computer Science 411

1387–1451.

Fu, Y. and Zhu, H. (2010) The Name-Passing Calculus. Working Paper.

Honda, K. and Tokoro, M. (1991) An Object Calculus for Asynchronous Communications.

In: America, P. (ed.) Proceedings ECOOP ’91: European Conference on Object-Oriented

Programming. Springer-Verlag Lecture Notes in Computer Science 512 133–147.

Honda, K. and Tokoro, M. (1991) On Asynchronous Communication Semantics. In: Madsen, O. L.

(ed.) Proceedings ECOOP ’92: European Conference on Object-Oriented Programming. Springer-

Verlag Lecture Notes in Computer Science 615 21–51.

Merro, M. and Sangiorgi, D. (2004) On Asynchrony in Name-Passing Calculi. Mathematical

Structures in Computer Science 14 (5) 715–767.

Milner, R. (1992) Functions as Processes. Mathematical Structures in Computer Science 2 (2) 119–146.

Milner, R. (1997) The Polyadic π-calculus: a Tutorial. Theoretical Computer Science 198 239–249.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 05 Dec 2011 IP address: 111.186.13.79

X. Cai and Y. Fu 996

Milner, R., Parrow, J. and Walker, D. (1992) A Calculus of Mobile Processes, Part I and Part II.

Information and Computation 100 (1) 1–77.

Milner, R. and Sangiorgi, D. (1992) Barbed Bisimulation. In: Kuich, W. (ed.) Automata, Languages

and Programming, Proceedings 19th International Colloquium ICALP’92. Springer-Verlag Lecture

Notes in Computer Science 623 685–695.

Nestmann, U. and Pierce, B. (2000) Decoding Choice Encodings. Information and Computation 163

(1) 1–59.

Palamidessi, C. (2003) Comparing the Expressive Power of the Synchronous and Asynchronous

π-calculi. Mathematical Structures in Computer Science 13 (5) 685–719.

Parrow, J. and Victor, B. (1997) The Update Calculus. In: Johnson, M. (ed.) Algebraic Methodology

and Software Technology, Proceedings 6th International Conference, AMAST’97. Springer-Verlag

Lecture Notes in Computer Science 1349 409–423.

Parrow, J. and Sangiorgi, D. (1995) Algebraic Theories for Name-Passing Calculi. Information and

Computation 120 174–197.

Plotkin, G. (1975) Call-by-Name, Call-by-Value and the λ-calculus. Theoretical Computer Science 1

(2) 125–159.

Sangiorgi, D. (1993a) Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms, Ph.D. thesis, University of Edinburgh.

Sangiorgi, D. (1993b) From π-calculus to Higher-Order π-calculus – and Back. In: Gaudel, M.-C.

and Jouannaud, J.-P. (eds.) Proceedings TAPSOFT ’93: Theory and Practice of Software

Development. Springer-Verlag Lecture Notes in Computer Science 668 151–166.

Sangiorgi, D. (1994) The Lazy λ-calculus in a Concurrency Scenario. Information and Computation

111 120–153.

Sangiorgi, D. (1995) Lazy Functions and Mobile Processes. Technical Report 2515, INRIA Sophia-

Antipolis.

Sangiorgi, D. (1996) π-calculus, Internal Mobility, and Agent-Passing Clculi. Theoretical Computer

Science 167 (1-2) 235–274.

Sangiorgi, D. and Walker, D. (2001) The π Calculus: A Theory of Mobile Processes, Cambridge

University Press.

Thomsen, B. (1993) Plain CHOCS – A Second Generation Calculus for Higher Order Processes.

Acta Informatica 30 (1) 1–59.

Thomsen, B. (1995) A Theory of Higher Order Communicating Systems. Information and

Computation 116 (1) 38–57.

Walker, D. (1991) π-calculus Semantics for Object-Oriented Programming Languages. In: Ito, T.

and Meyer, A.R. (eds.) Theoretical Aspects of Computer Software: Proceedings International

Conference TACS ’91. Springer-Verlag Lecture Notes in Computer Science 526 532–547.

Walker, D. (1995) Objects in the π-calculus. Information and Computation 116 (2) 253–271.

http://journals.cambridge.org

