
Types and Programming Languages

Lecture 4. Types, the simply typed λ-calculus

Xiaojuan Cai

cxj@sjtu.edu.cn

BASICS Lab, Shanghai Jiao Tong University

Spring, 2016

cxj@sjtu.edu.cn

Outline

Typed arithmetic expressions
Typing relation
Safety = Progress + Preservation

Simply typed λ-calculus
Function types

By anonymous

Q: Why bother doing proofs about programming languages? They
are almost always boring if the definitions are right.

A: The definitions are almost always wrong.

By anonymous

Q: Why bother doing proofs about programming languages? They
are almost always boring if the definitions are right.

A: The definitions are almost always wrong.

Arithmetic expressions

t ::= terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v ::= values
true true value
false false value
nv numeric value

nv ::= numeric values
0 zero value
succ nv successor value

Types

I Recall that evaluating a term can either result in a value or
else get stuck at some stage, by reaching a term like
pred false.

I In fact, we can tell stuck terms without actually evaluating it.

I Coming soon: If a term is well typed, i.e., it has some type T ,
then it never get stuck (never goes wrong).

Types

I Recall that evaluating a term can either result in a value or
else get stuck at some stage, by reaching a term like
pred false.

I In fact, we can tell stuck terms without actually evaluating it.

I Coming soon: If a term is well typed, i.e., it has some type T ,
then it never get stuck (never goes wrong).

Types

I Recall that evaluating a term can either result in a value or
else get stuck at some stage, by reaching a term like
pred false.

I In fact, we can tell stuck terms without actually evaluating it.

I Coming soon: If a term is well typed, i.e., it has some type T ,
then it never get stuck (never goes wrong).

Typing relation

The typing relation for arithmetic expressions, written “t : T , is
defined by a set of inference rules assigning types to terms.

T ::= types
Bool type of booleans
Nat type of natural numbers

Typing rules:

T-True
true : Bool

T-False
false : Bool

T-Zero
0 : Nat

T-Succ
t1 : Nat

succ t1 : Nat
T-Pred

t1 : Nat
pred t1 : Nat

T-If
t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
T-IsZero

t1 : Nat
iszero t1 : Bool

Typing relation

The typing relation for arithmetic expressions, written “t : T , is
defined by a set of inference rules assigning types to terms.

T ::= types
Bool type of booleans
Nat type of natural numbers

Typing rules:

T-True
true : Bool

T-False
false : Bool

T-Zero
0 : Nat

T-Succ
t1 : Nat

succ t1 : Nat
T-Pred

t1 : Nat
pred t1 : Nat

T-If
t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
T-IsZero

t1 : Nat
iszero t1 : Bool

Uniqueness of types

When reasoning about the typing relation, we will often inverse the
typing relation.

Lemma 8.2.2:

1. If true : R or false : R, then R = Bool;

2. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

3. If 0 : R, or succ t1 : R, or pred t1 : R, then R = Nat and
t1 : Nat.

4. If iszero t1 : R, then R = Bool and t1 : Nat.

Thoerem 8.2.4 [Uniqueness of types]: Each term t has at most
one type.
Above theorem does not hold for languages with subtyping rules.

Uniqueness of types

When reasoning about the typing relation, we will often inverse the
typing relation.
Lemma 8.2.2:

1. If true : R or false : R, then R = Bool;

2. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

3. If 0 : R, or succ t1 : R, or pred t1 : R, then R = Nat and
t1 : Nat.

4. If iszero t1 : R, then R = Bool and t1 : Nat.

Thoerem 8.2.4 [Uniqueness of types]: Each term t has at most
one type.
Above theorem does not hold for languages with subtyping rules.

Uniqueness of types

When reasoning about the typing relation, we will often inverse the
typing relation.
Lemma 8.2.2:

1. If true : R or false : R, then R = Bool;

2. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

3. If 0 : R, or succ t1 : R, or pred t1 : R, then R = Nat and
t1 : Nat.

4. If iszero t1 : R, then R = Bool and t1 : Nat.

Thoerem 8.2.4 [Uniqueness of types]: Each term t has at most
one type.

Above theorem does not hold for languages with subtyping rules.

Uniqueness of types

When reasoning about the typing relation, we will often inverse the
typing relation.
Lemma 8.2.2:

1. If true : R or false : R, then R = Bool;

2. If if t1 then t2 else t3 : R, then t1 : Bool, t2 : R, and
t3 : R.

3. If 0 : R, or succ t1 : R, or pred t1 : R, then R = Nat and
t1 : Nat.

4. If iszero t1 : R, then R = Bool and t1 : Nat.

Thoerem 8.2.4 [Uniqueness of types]: Each term t has at most
one type.
Above theorem does not hold for languages with subtyping rules.

The most basic property of type system

Safety = Progress + Preservation

I Progress: A well-typed term is not stuck (either it is a value
or it can take a step according to the evaluation rules).

I Preservation: If a well-typed term takes a step of evaluation,
then the resulting term is also well typed.

Porgress

Lemma 8.3.1 [Canonical forms]:

I If v is a value of type Bool, then v is either true or false.

I If v is a value of type Nat, then v is a numeric value
according to the grammar.

Theorem 8.3.2 [Progress]: Suppose t is a well-typed term (that
is, t : T for some T). Then either t is a value or else there is some
t ′ with t −→ t ′.
Proof. By induction on a derivation of t : T.

Preservation

Theorem 8.3.3 [Preservation]: If t : T and t −→ t ′, then t ′ : T.

Proof. Either by induction on a derivation of t : T, or by induction
on a derivation of t −→ t ′.

Outline

Typed arithmetic expressions
Typing relation
Safety = Progress + Preservation

Simply typed λ-calculus
Function types

Add types to λ-calculus

Coming soon: A typing relation for variables, abstractions, and
applications that

I maintain type safety: satisfy the type progress and
preservation;

I are not to conservative: they should assign types to most of
the programs we actually care about writing.

Turing completeness of λ-calculus implies that there is no hope of
giving an exact type analysis for these primitives. For example:

if 〈long and tricky computation〉 then true else (λx.x)

Add types to λ-calculus

Coming soon: A typing relation for variables, abstractions, and
applications that

I maintain type safety: satisfy the type progress and
preservation;

I are not to conservative: they should assign types to most of
the programs we actually care about writing.

Turing completeness of λ-calculus implies that there is no hope of
giving an exact type analysis for these primitives. For example:

if 〈long and tricky computation〉 then true else (λx.x)

Arrow type
For a function,

1. we care about the types of both arguments and results:

arrow type T→ T

Note the difference between T→ T→ T and (T→ T)→ T

2. the type of an abstraction relies on the type of argument, e.g.

λx .x : Bool→ Bool or λx .x : Nat→ Nat

3. Hence, the typing relation on abstractions should be written as

λx : T1 .t2 : T1 → T2

But how do we derive T2? We assume x : T1!!! So we need an
environment (context) for our typing relation:

Γ ` t : T

Arrow type
For a function,

1. we care about the types of both arguments and results:

arrow type T→ T

Note the difference between T→ T→ T and (T→ T)→ T

2. the type of an abstraction relies on the type of argument, e.g.

λx .x : Bool→ Bool or λx .x : Nat→ Nat

3. Hence, the typing relation on abstractions should be written as

λx : T1 .t2 : T1 → T2

But how do we derive T2? We assume x : T1!!! So we need an
environment (context) for our typing relation:

Γ ` t : T

Arrow type
For a function,

1. we care about the types of both arguments and results:

arrow type T→ T

Note the difference between T→ T→ T and (T→ T)→ T

2. the type of an abstraction relies on the type of argument, e.g.

λx .x : Bool→ Bool or λx .x : Nat→ Nat

3. Hence, the typing relation on abstractions should be written as

λx : T1 .t2 : T1 → T2

But how do we derive T2? We assume x : T1!!! So we need an
environment (context) for our typing relation:

Γ ` t : T

Arrow type
For a function,

1. we care about the types of both arguments and results:

arrow type T→ T

Note the difference between T→ T→ T and (T→ T)→ T

2. the type of an abstraction relies on the type of argument, e.g.

λx .x : Bool→ Bool or λx .x : Nat→ Nat

3. Hence, the typing relation on abstractions should be written as

λx : T1 .t2 : T1 → T2

But how do we derive T2? We assume x : T1!!! So we need an
environment (context) for our typing relation:

Γ ` t : T

Pure simply typed λ-calculus (λ→)

Terms t ::= x | λx : T .t | t t

Values v ::= λx : T .t

Types T ::= T→ T

Contexts Γ ::= ∅ | Γ, x : T

Typing

T-Var
x : T ∈ Γ
Γ ` x : T

T-Abs
Γ, x : T1 ` t2 : T2

Γ ` λx : T1 .t2 : T1 → T2

T-App
Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

Quiz: 1. Please draw the type derivation tree of the term
(λx : Bool→ Nat.x true)(λx : Bool.if x then 0 else (succ 0)).

2. What about this term λx : Bool .x x?

Pure simply typed λ-calculus (λ→)

Terms t ::= x | λx : T .t | t t

Values v ::= λx : T .t

Types T ::= T→ T

Contexts Γ ::= ∅ | Γ, x : T

Typing

T-Var
x : T ∈ Γ
Γ ` x : T

T-Abs
Γ, x : T1 ` t2 : T2

Γ ` λx : T1 .t2 : T1 → T2

T-App
Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

Quiz: 1. Please draw the type derivation tree of the term
(λx : Bool→ Nat.x true)(λx : Bool.if x then 0 else (succ 0)).
2. What about this term λx : Bool .x x?

Properties of typing

Lemma 9.3.1 [Inversion of the Typing Relation]:

1. If Γ ` x : R, then x : R ∈ Γ.

2. If Γ ` λx : T1 .t2 : R, then R = T1 → R2 for some R2 with
Γ, x : T1 ` t2 : R2.

3. If Γ ` t1 t2 : R, then there is some type T1 such that
t1 : T1 → R and Γ ` t2 : T1.

4. for booleans · · ·

Theorem 9.3.3 [Uniqueness of types]: In a given typing context
Γ, a term t (with free variables all in the domain of Γ) has at most
one type.

Properties of typing

Lemma 9.3.1 [Inversion of the Typing Relation]:

1. If Γ ` x : R, then x : R ∈ Γ.

2. If Γ ` λx : T1 .t2 : R, then R = T1 → R2 for some R2 with
Γ, x : T1 ` t2 : R2.

3. If Γ ` t1 t2 : R, then there is some type T1 such that
t1 : T1 → R and Γ ` t2 : T1.

4. for booleans · · ·

Theorem 9.3.3 [Uniqueness of types]: In a given typing context
Γ, a term t (with free variables all in the domain of Γ) has at most
one type.

Progress

Lemma 9.3.4 [Canonical forms]:

I If v is a value of type Bool, then v is either true or false.

I If v is a value of type T1 → T2, then v = λx : T1.t2.

Theorem 9.3.5 [Progress]: Suppose t is a closed, well-typed
term (that is, Γ ` t : T for some T). Then either t is a value or else
there is some t with t −→ t.

Preservation

Theorem 9.3.9 [Preservation]: If Γ ` t : T and t −→ t ′, then
Γ ` t ′ : T.

Quiz. Please try to prove above theorem and figure out what
lemmas we need.

Lemma 9.3.6 [Permutation]: If Γ ` t : T and ∆ is a permutation
of Γ, then ∆ ` t : T. Moreover, the latter derivation has the same
depth as the former.

Theorem 9.3.7 [Weakening]: If Γ ` t : T and x 6∈ dom(Γ), then
Γ, x : S ` t : T. Moreover, the latter derivation has the same depth
as the former.

Theorem 9.3.8 [Preservation of types under substitution]: If
Γ, x : S ` t : T and Γ ` s : S , then Γ ` [x 7→ s]t : T.

Preservation

Theorem 9.3.9 [Preservation]: If Γ ` t : T and t −→ t ′, then
Γ ` t ′ : T.
Quiz. Please try to prove above theorem and figure out what
lemmas we need.

Lemma 9.3.6 [Permutation]: If Γ ` t : T and ∆ is a permutation
of Γ, then ∆ ` t : T. Moreover, the latter derivation has the same
depth as the former.

Theorem 9.3.7 [Weakening]: If Γ ` t : T and x 6∈ dom(Γ), then
Γ, x : S ` t : T. Moreover, the latter derivation has the same depth
as the former.

Theorem 9.3.8 [Preservation of types under substitution]: If
Γ, x : S ` t : T and Γ ` s : S , then Γ ` [x 7→ s]t : T.

Preservation

Theorem 9.3.9 [Preservation]: If Γ ` t : T and t −→ t ′, then
Γ ` t ′ : T.
Quiz. Please try to prove above theorem and figure out what
lemmas we need.

Lemma 9.3.6 [Permutation]: If Γ ` t : T and ∆ is a permutation
of Γ, then ∆ ` t : T. Moreover, the latter derivation has the same
depth as the former.

Theorem 9.3.7 [Weakening]: If Γ ` t : T and x 6∈ dom(Γ), then
Γ, x : S ` t : T. Moreover, the latter derivation has the same depth
as the former.

Theorem 9.3.8 [Preservation of types under substitution]: If
Γ, x : S ` t : T and Γ ` s : S , then Γ ` [x 7→ s]t : T.

The Curry-Howard correspondence

Other names for typing rules from a logic view.
The → type constructor comes with typing rules of two kinds:

I an introduction rule (T-Abs) describing how elements of the
type can be created, and

I an elimination rule (T-App) describing how elements of the
type can be used.

Curry-Howard Correspondence, or isomorphism

Logic Programming languages

proposition types
proposition P ⊃ Q type P → Q
proposition P ∧ Q type P × Q
proof of proposition P term t of type P
proposition P is provable type P is inhabited (by some term)

Erasure and Typability

Type annotations are be used during type checking, and will be
erased before evaluation.

Definition 9.5.1 [Erasure]: The erasure of a simply typed term t
is defined as follows:

erase(x) = x

erase(λx : T1.t2) = λx .erase(t2)

erase(t1 t2) = erase(t1)erase(t2)

Definition 9.5.3 [Typability]: A term m in the untyped λ-calculus
is said to be typable in λ→ if there are some simply typed term t,
type T, and context Γ such that erase(t) = m and Γ ` t : T.

Conclusion

I Typing system Γ ` t : T can remove some terms before they
run into stuck states.

I However, it also removes well-behaviored terms.

I Type safety = progress + preservation

I For proving safety, some other properties such as canonical
forms, uniqueness of type are needed.

I Simply typed λ-calculus is non-Turing-complete.

Conclusion

I Typing system Γ ` t : T can remove some terms before they
run into stuck states.

I However, it also removes well-behaviored terms.

I Type safety = progress + preservation

I For proving safety, some other properties such as canonical
forms, uniqueness of type are needed.

I Simply typed λ-calculus is non-Turing-complete.

Conclusion

I Typing system Γ ` t : T can remove some terms before they
run into stuck states.

I However, it also removes well-behaviored terms.

I Type safety = progress + preservation

I For proving safety, some other properties such as canonical
forms, uniqueness of type are needed.

I Simply typed λ-calculus is non-Turing-complete.

Conclusion

I Typing system Γ ` t : T can remove some terms before they
run into stuck states.

I However, it also removes well-behaviored terms.

I Type safety = progress + preservation

I For proving safety, some other properties such as canonical
forms, uniqueness of type are needed.

I Simply typed λ-calculus is non-Turing-complete.

Conclusion

I Typing system Γ ` t : T can remove some terms before they
run into stuck states.

I However, it also removes well-behaviored terms.

I Type safety = progress + preservation

I For proving safety, some other properties such as canonical
forms, uniqueness of type are needed.

I Simply typed λ-calculus is non-Turing-complete.

Homework

I 8.3.4, 8.3.6, 8.3.7, 9.2.2, 9.2.3, 9.3.2, 9.4.1

Projects. Extend arith with

I Untyped lambda calculus (Chapter 7), due on Apr. 14
(Thursday of Week 8)

I Simple typed lambda calculus (Chapter 10) , due on May. 12
(Thursday of Week 12)

I Subtyping (Chapter 17) , due on Jun. 9 (Thursday of Week
16)

	Typed arithmetic expressions
	Typing relation
	Safety = Progress + Preservation

	Simply typed -calculus
	Function types

